

RADIO TEST REPORT

Test Report No. 14913531H-C-R1

Customer	Panasonic Automotive Systems Co., Ltd.
Description of EUT	Car Navigation
Model Number of EUT	AT2403
FCC ID	ACJ932AT2403
Test Regulation	FCC Part 15 Subpart C
Test Result	Complied
Issue Date	May 8, 2025
Remarks	-Bluetooth (BR / EDR) parts -Radiated Spurious Emission only

Representative Test Engineer Approved By Tomoya Sone Takumi Shimada Engineer Engineer ACCREDITED CERTIFICATE 5107.02 The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan, Inc. There is no testing item of "Non-accreditation". \mathbb{N} Report Cover Page - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 24.0

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. (Laboratory was not involved in sampling.)
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided by the customer for this report is identified in SECTION 1.
- The laboratory is not responsible for information provided by the customer which can impact the validity of the results.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No.: 14913531H-C

This report is a revised version of 14913531H-C. 14913531H-C is replaced with this report.

Revision	Test Report No.	Date	Page Revised Contents
-	14913531H-C	December 20,	-
(Original)		2024	
1	14913531H-C-R1	May 8, 2025	4.2 Configuration and Peripherals - Exchanged cable information of Cable No.9 and No.10 in Table of List of Cables Used (Page 12)

Reference: Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory Accreditation	ICES	Interference-Causing Equipment Standard	
AC	Alternating Current	IEC	International Electrotechnical Commission	
AFH	Adaptive Frequency Hopping	IEEE	Institute of Electrical and Electronics Engineers	
AM	Amplitude Modulation	IF	Intermediate Frequency	
Amp, AMP	Amplifier	ILAC	International Laboratory Accreditation Conference	
ANSI	American National Standards Institute	ISED	Innovation, Science and Economic Development Canada	
Ant, ANT	Antenna	ISO	International Organization for Standardization	
AP	Access Point	JAB	Japan Accreditation Board	
ASK	Amplitude Shift Keying	LAN	Local Area Network	
Atten., ATT	Attenuator	LIMS	Laboratory Information Management System	
AV	Average	MCS	Modulation and Coding Scheme	
BPSK	Binary Phase-Shift Keying	MRA	Mutual Recognition Arrangement	
BR	Bluetooth Basic Rate	N/A	Not Applicable	
BT	Bluetooth	NIST	National Institute of Standards and Technology	
BT LE	Bluetooth Low Energy	NS	No signal detect.	
BW	BandWidth	NSA	Normalized Site Attenuation	
Cal Int	Calibration Interval	NVLAP	National Voluntary Laboratory Accreditation Program	
CCK	Complementary Code Keying	OBW	Occupied Band Width	
Ch., CH	Channel	OFDM	Orthogonal Frequency Division Multiplexing	
CISPR	Comite International Special des Perturbations Radioelectriques	P/M	Power meter	
CW	Continuous Wave	PCB	Printed Circuit Board	
DBPSK	Differential BPSK	PER	Packet Error Rate	
DC	Direct Current	PHY	Physical Layer	
D-factor	Distance factor	PK	Peak	
DFS	Dynamic Frequency Selection	PN	Pseudo random Noise	
DQPSK	Differential QPSK	PRBS	Pseudo-Random Bit Sequence	
DSSS	Direct Sequence Spread Spectrum	PSD	Power Spectral Density	
EDR	Enhanced Data Rate	QAM	Quadrature Amplitude Modulation	
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	QP	Quasi-Peak	
EMC	ElectroMagnetic Compatibility	QPSK	Quadri-Phase Shift Keying	
EMI	ElectroMagnetic Interference	RBW	Resolution Band Width	
EN	European Norm	RDS	Radio Data System	
ERP, e.r.p.	Effective Radiated Power	RE	Radio Equipment	
EU	European Union	RF	Radio Frequency	
EUT	Equipment Under Test	RMS	Root Mean Square	
Fac.	Factor	RSS	Radio Standards Specifications	
FCC	Federal Communications Commission	Rx	Receiving	
FHSS	Frequency Hopping Spread Spectrum	SA, S/A	Spectrum Analyzer	
FM	Frequency Modulation	SA, S/A SG	Signal Generator	
	• •	SVSWR		
Freq.	Frequency		Site-Voltage Standing Wave Ratio	
FSK	Frequency Shift Keying	TR	Test Receiver	
GFSK	Gaussian Frequency-Shift Keying	Tx	Transmitting	
GNSS	Global Navigation Satellite System	VBW	Video BandWidth	
GPS	Global Positioning System	Vert.	Vertical	
Hori.	Horizontal	WLAN	Wireless LAN	

CONTENTS

PAGE

SECTION 1:	Customer Information	5
	Equipment Under Test (EUT)	
SECTION 3:	Test Specification, Procedures & Results	7
SECTION 4:	Operation of EUT during testing	10
SECTION 5:	Radiated Spurious Emission	13
APPENDIX 1:	Test data	15
Burst rat	e confirmation	15
Radiated	I Spurious Emission	
APPENDIX 2:	Test Instruments	29
APPENDIX 3:	Photographs of test setup	
	I Spurious Emission	

SECTION 1: Customer Information

Company Name	Panasonic Automotive Systems Co., Ltd.*1)	
Address	4261, Ikonobe-cho, Tsuzuki-ku, Yokohama-shi, Kanagawa-ken 224-8520,	
	Japan	
Telephone Number	+81-50-1802-5117	
Contact Person	Daisuke Takahata	

*1) The Grantee name in the FCC application is "Panasonic Corporation of North America".

The information provided by the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer Information
- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date
- SECTION 4: Operation of EUT during testing

SECTION 2: Equipment Under Test (EUT)

2.1 Identification of EUT

Description	Car Navigation
Model Number	AT2403
Serial Number	Refer to SECTION 4.2
Condition	Production prototype
	(Not for Sale: This sample is equivalent to mass-produced items.)
Modification	No Modification by the test lab
Receipt Date	October 25, 2024
Test Date	October 28 to November 17, 2024

2.2 Product Description

General Specification

Rating	DC 13.2 V
Operating temperature	-30 deg. C to 65 deg. C

Radio Specification

Bluetooth (BR / EDR / BT LE)

Equipment Type	Transceiver		
Frequency of Operation	2402 MHz to 2480 MHz		
Type of Modulation	FHSS, GFSK / π/4-DQPSK, 8DPSK / GFSK		
Antenna Gain	4 dBi		

WLAN (IEEE802.11b/11g/11n-20/11ax-20)

Equipment Type	Transceiver	
Frequency of Operation	2412 MHz to 2462 MHz	
Type of Modulation	DSSS, OFDM	
	OFDMA (IEEE802.11ax only)	26/52/106/242-tone RU
Antenna Gain	4 dBi	

WLAN (IEEE802.11a/11n-20/11ac-20/11ax-20/11n-40/11ac-40/11ax-40/11ac-80/11ax-80)

Equipment Type	Transceiver		
Frequency of Operation	20 MHz Band	5180 MHz to 5240 MHz	
		5745 MHz to 5825 MHz	
	40 MHz Band	5190 MHz to 5230 MHz	
		5755 MHz to 5795 MHz	
	80 MHz Band	5210 MHz, 5775 MHz	
Type of Modulation	OFDM		
	OFDMA	20 MHz: 26/52/106/242-tone RU	
	(IEEE802.11ax only)	40 MHz: 26/52/106/242/484-tone RU	
		80 MHz: 26/52/106/242/484/996-tone RU	
Antenna Gain	RF0: 5 dBi		
	RF1: 5 dBi		

SECTION 3: Test Specification, Procedures & Results

3.1 **Test Specification**

Test Specification	FCC Part 15 Subpart C
	The latest version on the first day of the testing period
Title	FCC 47 CFR Part 15 Radio Frequency Device Subpart C Intentional Radiators
	Section 15.207 Conducted limits
	Section 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz,
	and 5725-5850 MHz

3.2 **Procedures and Results**

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
Spurious	FCC: KDB 558074 D01 15.247	FCC: Section15.247(d)	9.3 dB	Complied	Radiated
Emission &	Meas Guidance v05r02		5000.0 MHz,		(above 30 MHz)
Band Edge	ISED: RSS-Gen 6.13	ISED: RSS-247 5.5	AV, Vertical		*1)
Compliance		RSS-Gen 8.9			
		RSS-Gen 8.10			
Note: UL Japan, Inc.'s EMI Work Procedures: Work Instructions-ULID-003591 and Work Instructions-ULID-003593.					
* In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.					
*1) Radiated test was selected over 30 MHz based on section 15.247(d).					

*1) Radiated test was selected over 30 MHz based on section 15.247(d).

FCC Part 15.31 (e)

This EUT provides the stable voltage constantly to RF part regardless of input voltage. Therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

3.3 **Addition to Standard**

No addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

Measurement uncertainty is not taken into account when stating conformity with a specified requirement. Note: When margins obtained from test results are less than the measurement uncertainty, the test results may exceed the limit.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Measurement distance	Frequency range					
3 m	9 kHz to 30 MHz		dB	3.3		
10 m			dB	3.1		
3 m	30 MHz to 200 MHz Horizontal		dB	5.0		
		Vertical	dB	5.0		
	200 MHz to 1000 MHz	Horizontal	dB	5.2		
		Vertical	dB	6.2		
10 m	30 MHz to 200 MHz	Horizontal	dB	5.5		
		Vertical	dB	5.4		
	200 MHz to 1000 MHz	Horizontal	dB	5.5		
		Vertical	dB	5.5		
3 m	1 GHz to 6 GHz		dB	5.1		
	6 GHz to 18 GHz	6 GHz to 18 GHz				
1 m	10 GHz to 18 GHz	10 GHz to 18 GHz				
	18 GHz to 26.5 GHz	dB	5.3			
	26.5 GHz to 40 GHz	dB	4.8			
0.5 m	26.5 GHz to 40 GHz		dB	5.0		

Radiated emission

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 Japan

Telephone: +81-596-24-8999

A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919

ISED Lab Company Number: 2973C / CAB identifier: JP0002

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measurement distance
No.1 semi-anechoic	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power	10 m
chamber			source room	
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.10 shielded room	3.8 x 2.8 x 2.8	3.8 x 2.8	-	-
No.11 measurement room	4.0 x 3.4 x 2.5	N/A	-	-
No.12 measurement room	2.6 x 3.4 x 2.5	N/A	-	-
Large Chamber	16.9 x 22.1 x 10.17	16.9 x 22.1	-	10 m
Small Chamber	5.3 x 6.69 x 3.59	5.3 x 6.69	-	-

3.6 Test Data, Test Instruments, and Test Set Up

Refer to APPENDIX.

SECTION 4: Operation of EUT during testing

4.1 Operating Mode(s)

Mode	Remarks*
Bluetooth (BT)	BR / EDR, Payload: PRBS9
*EUT has the power	r settings by the software as follows;
Power Setting:	9 dBm
Software:	bluetooth_serial_v3
	(Date: 2024.06.25, Storage location: Driven by connected PC)
*This setting of soft	ware is the worst case.
Any conditions unde	or the normal use do not exceed the condition of setting

Any conditions under the normal use do not exceed the condition of setting.

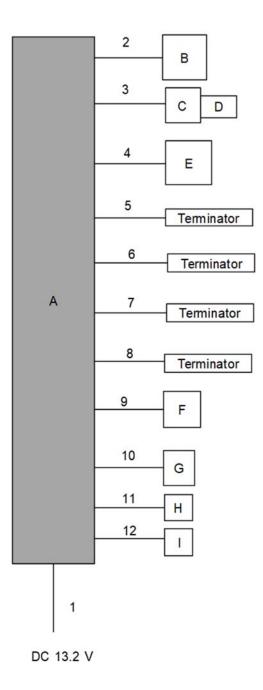
In addition, end users cannot change the settings of the output power of the product.

Details of Operating Mode(s)

Test Item	Mode	Hopping	Tested Frequency
Radiated Spurious Emission (Below 1 GHz)	Tx 3DH5 *1)	Off	2480 MHz
Radiated Spurious Emission (Above 1 GHz)	Tx DH5 Tx 3DH5	Off	2402 MHz 2441 MHz 2480 MHz
*As a result of preliminary test, the formal test t	was performed with the abo	vo modos wł	hich had the

*As a result of preliminary test, the formal test was performed with the above modes, which had the maximum payload length (except Dwell time test)

*2DH mode (2Mb/s EDR: pi/4DQPSK) was excluded for other tests than power measurement by using 3DH mode (3 Mb/s EDR: 8DPSK) as a representative.


*It is considered that the non-tested packet type (e.g. inquiry) can be omitted as it is complied with above all the test items based on Bluetooth Core specification.

*1) Spurious emissions for frequencies below 1 GHz were limited to the channel that had the highest power during the antenna terminal test, as preliminary testing indicated that changing the operating frequency had no significant impact on the emissions in those frequency bands.

Simultaneous transmission

Test ItemMode *1)Radiated Spurious EmissionTx, Hopping Off, DH5 2402 MHz + 11ax-20 [52-tone RU/Index 40] 5825 MHz*1) The test was conducted on representative mode, the worst mode of GHz band at Spurious emission test for BT
and the mode had the highest power at Antenna terminal conducted test for WLAN 5 GHz band.

4.2 Configuration and Peripherals

* Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

No.	Item	Model number	Serial Number	Manufacturer	Remarks
А	Car Navigation	AT2403	500001	Panasonic Automotive	EUT
				Systems Co., Ltd.	
В	ADAS Jig	GVIF3OUT2A	8	Persol AVC	-
				Technology Co., Ltd.	
С	USB BOX	DEP38-10029	-	Japan Aviation	-
				Electronics Industry,	
				Ltd.	
D	USB Memory	RUF3-K16GB	P10416	Buffalo	-
Е	Steering switch	-	1400	Panasonic	-
F	GPS Antenna	ANN-MS	20N40132	U-Blox	-
G	Microphone	SDA3520A	4AC011628	Panasonic	-
Н	Microphone	SDA3520A	4AC011628	Panasonic	-
	Amplifier	7669	01A230000384V	DENSO	-

Description of EUT and Support Equipment

List of Cables Used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	DC Cable	4.3	Unshielded	Unshielded	-
2	Signal Cable	1.9	Unshielded	Unshielded	-
3	USB Cable	2.3	Shielded	Shielded	-
4	Signal Cable	3.0	Unshielded	Unshielded	-
5	XM Antenna Cable	3.0	Shielded	Shielded	-
6	Signal Cable	1.0	Shielded	Shielded	-
7	FM Cable	3.0	Shielded	Shielded	-
8	FM Cable	3.0	Shielded	Shielded	-
9	GPS Antenna Cable	2.0	Shielded	Shielded	-
10	Signal Cable	4.3	Unshielded	Unshielded	-
11	Signal Cable	4.3	Unshielded	Unshielded	-
12	Signal Cable	3.0	Unshielded	Unshielded	-

SECTION 5: Radiated Spurious Emission

Test Procedure

[For below 1 GHz]

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane. Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The height of the measuring antenna varied between 1 m and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Test Antennas are used as below;

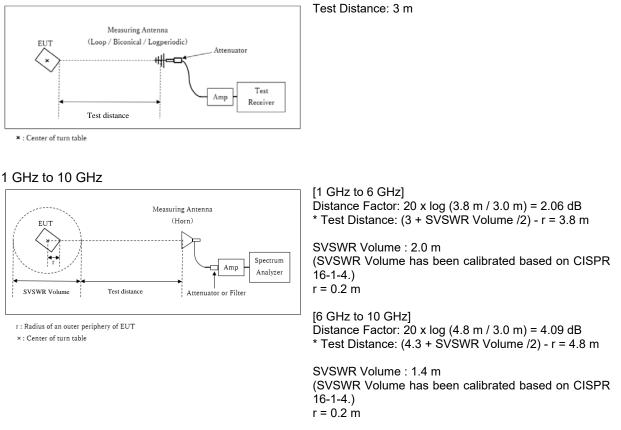
Frequency	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz						
Antenna Type	Biconical	Logperiodic	Horn						

In any 100 kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.

and outside the restricted band of FCC15.205 / Table 6 of RSS-Gen 8.10 (ISED).										
Frequency	Below 1 GHz	Above 1 GHz		20 dBc						
Instrument used	Test Receiver	Spectrum Analyze	r	Spectrum Analyzer						
Detector	QP	PK	PK							
IF Bandwidth	BW 120 kHz	RBW: 1 MHz	RBW: 1 MHz	RBW: 100 kHz						
		VBW: 3 MHz	VBW: 3 MHz	VBW: 300 kHz						
			Detector:							

Power Averaging

Trace: 100 traces Duty factor was added


to the results.

(RMS)

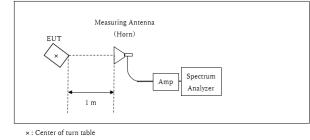

20 dBc was applied to the frequency over the limit of FCC 15.209 / Table 4 of RSS-Gen 8.9 (ISED) and outside the restricted band of FCC15.205 / Table 6 of RSS-Gen 8.10 (ISED).

Figure 1: Test Setup

Below 1 GHz

10 GHz to 26.5 GHz

Distance Factor: 20 x log (1.0 m / 3.0 m) = -9.5 dB *Test Distance: 1 m

The test was made on EUT at the normal use position.

Test results are rounded off and limit are rounded down, so some differences might be observed.

Measurement Range	: 30 MHz to 26.5 GHz
Test Data	: APPENDIX
Test Result	: Pass

APPENDIX 1: Test data

Burst rate confirmation

	Temperature / F Engineer Mode	í í	2 deg. C / Fetsuro Yos Fx		КП					
	DH5						3DH5			
Tx on / (Tx o	on + Tx off) =		0.772	Tx	on / (Tx	on + Tx	off) =		0.77	3
Tx on / (Tx o	on + Tx off) * 100 =		77.2 %	Tx	on / (Tx	on + Tx	off) * 100 =		77.	3 %
Duty factor	= 10 * log (3.749 / 2.89	94) =	1.12 dB	Dut	y factor	= 10 *	log (3.749 / 2.8	98) =	1.1	2 dB
🔆 Agilent		R T	Mkr2 3.749 ms	∦ Aļ		_		R	T ▲ Mkr1	
Ref 107 dBµV •Peak Log 10 dB/	Atten 10 dB		-2.59 dB	Ref 107 •Peak Log 10 dB/		H	tten 10 dB			0.60 dB
2R man litin O					2R 119					
LgAv				LgAv						
S1 S2 Center 2.441 000 GH Res BW 8 MHz	z •VBW 50 MHz	Sweep 5.0	Span 0 Hz 4 ms (8192 pts)	S1 S2 Center Res BW	2.441 000 GH 8 MHz	łz	•VBW 50 MHz	Swee	ep 5.04 ms (Span 0 Hz 8192 pts)
Marker Trace 1R (3) 1a (3) 2R (3) 2a (3) 2a (3)	Type X fixin Time 4.99.1 μs Time 2.894 ms Time 4.99.1 μs Time 3.749 ms	Amplitude 47.33 dB _U U -0.21 dB 47.33 dB _U U -2.59 dB		Marke 1R 1a 2R 2a	er Trace (3) (3) (3) (3) (3)	Type Tine Tine Tine Tine	X fixie 499.1 µs 2.898 ms 499.1 µs 3.749 ms	Amplitude 45.95 dBµU 0.60 dB 45.95 dBµU 0.24 dB		

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber October 30, 2024 22 deg. C / 63 % RH Date Temperature / Humidity

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Ise EMC Lab. No.3 October 30, 2024 22 deg. C / 63 % RH Tetsuro Yoshida (1 GHz to 6 GHz)

No.3 October 29, 2024 23 deg. C / 66 % RH Tomoya Sone (6 GHz to 10 GHz)

No.3 October 29, 2024 22 deg. C / 59 % RH Tetsuro Yoshida (10 GHz to 18 GHz)

Semi Anechoic Chamber Date Temperature / Humidity Engineer

No.3 October 28, 2024 23 deg. C / 56 % RH Tomoya Sone (Above 18 GHz) Tx, Hopping Off, DH5 2402 MHz

Mode

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP / PK)	(AV)	Factor			Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2354.0	44.5	38.3	27.7	5.0	32.2	1.1	44.9	39.9	73.9	53.9	29.0	14.0	*2)
Hori.	2390.0	42.7	34.6	27.5	5.0	32.2	1.1	43.1	36.1	73.9	53.9	30.8	17.8	*1)
Hori.	2786.0	43.3	36.1	28.3	5.3	32.1	1.1	44.8	38.8	73.9	53.9	29.1	15.1	*2)
Hori.	4804.0	40.7	31.5	31.4	7.2	31.2	-	48.1	39.0	73.9	53.9	25.8	15.0	Floor noise
Hori.	5000.0	40.9	33.0	31.7	7.3	31.1	-	48.7	40.8	73.9	53.9	25.2	13.1	
Hori.	7206.0	42.0	33.7	35.6	8.5	32.0	-	54.0	45.7	73.9	53.9	19.9	8.2	Floor noise
Hori.	9608.0	42.4	34.4	35.6	8.9	32.6	-	54.2	46.3	73.9	53.9	19.7	7.6	Floor noise
Vert.	2354.0	43.0	35.2	27.7	5.0	32.2	1.1	43.5	36.7	73.9	53.9	30.4	17.2	*2)
Vert.	2390.0	42.2	31.3	27.5	5.0	32.2	1.1	42.5	32.7	73.9	53.9	31.4	21.2	*1)
Vert.	2786.0	42.5	34.3	28.3	5.3	32.1	1.1	44.1	37.0	73.9	53.9	29.8	16.9	*2)
Vert.	4804.0	41.3	31.3	31.4	7.2	31.2	-	48.7	38.7	73.9	53.9	25.2	15.2	Floor noise
Vert.	5000.0	42.9	36.8	31.7	7.3	31.1	-	50.7	44.6	73.9	53.9	23.2	9.3	
Vert.	7206.0	41.9	33.6	35.6	8.5	32.0	-	53.9	45.6	73.9	53.9	20.0	8.3	Floor noise
Vert.	9608.0	42.3	34.3	35.6	8.9	32.6	-	54.1	46.2	73.9	53.9	19.8	7.7	Floor noise

Result (QP) PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GH2)) - Gain(Amplifter) Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GH2)) - Gain(Amplifter) + Dutyfactor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

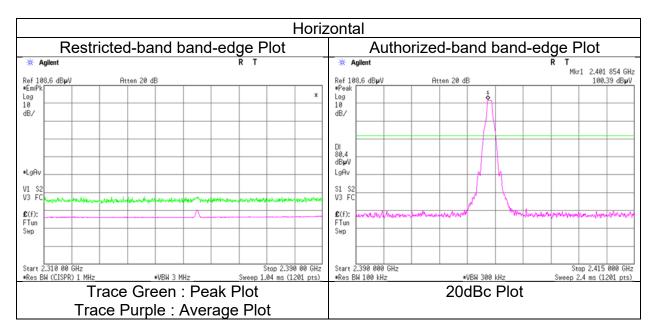
*QP detector was used up to 1GHz.

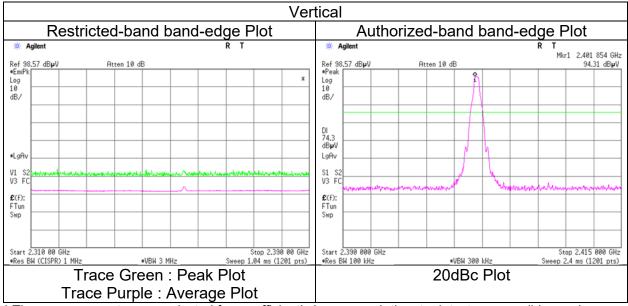
*1) Not Out of Band emission(Leakage Power)
*2) Noise synchronized with duty of carrier freqency

20dBc Data Sheet

Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2402.0	100.4	27.5	5.1	32.2	100.7	-	-	Carrier
Hori.	2400.0	40.7	27.5	5.1	32.2	41.0	80.7	39.7	
Vert.	2402.0	94.3	27.5	5.1	32.2	94.7	-	-	Carrier
Vert.	2400.0	36.8	27.5	5.1	32.2	37.2	74.7	37.5	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)


Distance factor:


1 GHz - 6 GHz 6 GHz - 10 GHz 20log (3.8 m / 3.0 m) = 2.06 dB 20log (4.8 m / 3.0 m) = 4.09 dB

10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

Radiated Spurious Emission (Reference Plot for band-edge)

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer Mode Ise EMC Lab. No.3 October 30, 2024 22 deg. C / 63 % RH Tetsuro Yoshida Tx, Hopping Off, DH5 2402 MHz

* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge and authorized band edge were shown in tabular data.

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Ise EMC Lab. No.3 October 30, 2024 22 deg. C / 63 % RH Tetsuro Yoshida (1 GHz to 6 GHz)

No.3 October 29, 2024 23 deg. C / 66 % RH Tomoya Sone (6 GHz to 10 GHz)

No.3 October 29, 2024 22 deg. C / 59 % RH Tetsuro Yoshida (10 GHz to 18 GHz)

Semi Anechoic Chamber Date Temperature / Humidity Engineer

Mode

No.3 October 28, 2024 23 deg. C / 56 % RH Tomoya Sone (Above 18 GHz) Tx, Hopping Off, DH5 2441 MHz

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP / PK)	(AV)	Factor			Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2825.0	43.5	35.5	28.5	5.3	32.0	1.1	45.3	38.3	73.9	53.9	28.6	15.6	*2)
Hori.	4882.0	40.5	31.5	31.4	7.2	31.2	-	48.0	39.0	73.9	53.9	25.9	14.9	Floor noise
Hori.	5000.0	40.8	32.4	31.7	7.3	31.1	-	48.6	40.2	73.9	53.9	25.3	13.7	
Hori.	7323.0	42.6	33.7	35.6	8.4	32.1	-	54.6	45.7	73.9	53.9	19.3	8.2	Floor noise
Hori.	9764.0	41.4	33.6	35.9	9.0	32.7	-	53.6	45.7	73.9	53.9	20.3	8.2	Floor noise
Vert.	2825.0	43.3	33.9	28.5	5.3	32.0	1.1	45.0	36.8	73.9	53.9	28.9	17.1	*2)
Vert.	4882.0	40.6	31.9	31.4	7.2	31.2	-	48.1	39.4	73.9	53.9	25.8	14.5	Floor noise
Vert.	5000.0	42.8	36.7	31.7	7.3	31.1	-	50.7	44.5	73.9	53.9	23.3	9.4	
Vert.	7323.0	42.5	33.6	35.6	8.4	32.1	-	54.5	45.6	73.9	53.9	19.4	8.3	Floor noise
Vert.	9764.0	41.3	33.5	35.9	9.0	32.7	-	53.5	45.6	73.9	53.9	20.4	8.3	Floor noise

 vor.
 i
 3.3.
 3.3.
 3.9.
 3.7.
 53.5.
 45.6.
 7

 Result (QP / FK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)
 Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

 *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).
 *QP detector was used up to 1GHz.

*2) Noise synchronized with duty of carrier freqency

Distance factor:	1 GHz - 6 GHz	20log (3.8 m / 3.0 m) = 2.06 dB
	6 GHz - 10 GHz	20log (4.8 m / 3.0 m) = 4.09 dB
	10 GHz - 26.5 GHz	20log (1.0 m / 3.0 m) = -9.5 dB

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Ise EMC Lab. No.3 October 30, 2024 22 deg. C / 63 % RH Tetsuro Yoshida (1 GHz to 6 GHz)

No.3 October 29, 2024 23 deg. C / 66 % RH Tomoya Sone (6 GHz to 10 GHz)

No.3 October 29, 2024 22 deg. C / 59 % RH Tetsuro Yoshida (10 GHz to 18 GHz)

Semi Anechoic Chamber Date Temperature / Humidity Engineer

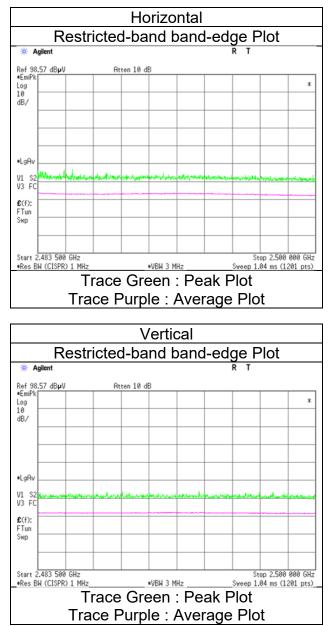
Mode

No.3 October 28, 2024 23 deg. C / 56 % RH Tomoya Sone (Above 18 GHz) Tx, Hopping Off, DH5 2480 MHz

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP / PK)	(AV)	Factor			Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2483.5	46.2	35.2	27.4	5.1	32.2	1.1	46.5	36.6	73.9	53.9	27.4	17.3	*1)
Hori.	4960.0	40.2	32.0	31.6	7.2	31.1	-	47.9	39.7	73.9	53.9	26.0	14.2	Floor noise
Hori.	5000.0	40.8	32.4	31.7	7.3	31.1	-	48.7	40.2	73.9	53.9	25.3	13.7	
Hori.	7440.0	42.0	33.7	35.5	8.4	32.1	-	53.7	45.5	73.9	53.9	20.2	8.4	Floor noise
Hori.	9920.0	40.4	33.4	36.1	9.0	32.8	-	52.8	45.7	73.9	53.9	21.2	8.2	Floor noise
Vert.	2483.5	41.7	33.6	27.4	5.1	32.2	1.1	42.0	35.0	73.9	53.9	31.9	18.9	*1)
Vert.	4960.0	40.2	32.0	31.6	7.2	31.1	-	47.8	39.7	73.9	53.9	26.1	14.2	Floor noise
Vert.	5000.0	42.8	36.7	31.7	7.3	31.1	-	50.6	44.5	73.9	53.9	23.3	9.4	
Vert.	7440.0	41.9	33.6	35.5	8.4	32.1	-	53.6	45.4	73.9	53.9	20.3	8.5	Floor noise
Vert.	9920.0	40.3	33.3	36.1	9.0	32.8	-	52.7	45.6	73.9	53.9	21.3	8.3	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB). *QP detector was used up to 1GHz


Distanc

*1) Not Out of Band emission(Leakage Power)

ce factor:	1 GHz - 6 GHz	20log (3.8 m / 3.0 m) = 2.06 dB
	6 GHz - 10 GHz	20log (4.8 m / 3.0 m) = 4.09 dB
	10 GHz - 26.5 GHz	20log (1.0 m / 3.0 m) = -9.5 dB

Radiated Spurious Emission (Reference Plot for band-edge)

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer Mode Ise EMC Lab. No.3 October 30, 2024 22 deg. C / 63 % RH Tetsuro Yoshida Tx, Hopping Off, DH5 2480 MHz

* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Ise EMC Lab. No.3 October 30, 2024 22 deg. C / 63 % RH Tetsuro Yoshida (1 GHz to 6 GHz)

No.3 October 29, 2024 23 deg. C / 66 % RH Tomoya Sone (6 GHz to 10 GHz)

No.3 October 29, 2024 22 deg. C / 59 % RH Tetsuro Yoshida (10 GHz to 18 GHz)

Semi Anechoic Chamber Date Temperature / Humidity Engineer

No.3 October 28, 2024 23 deg. C / 56 % RH Tomoya Sone (Above 18 GHz) Tx, Hopping Off, 3DH5 2402 MHz

Mode

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP / PK)	(AV)	Factor			Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2354.0	44.6	37.6	27.7	5.0	32.2	1.1	45.0	39.2	73.9	53.9	28.9	14.7	*2)
Hori.	2390.0	44.3	31.9	27.5	5.0	32.2	1.1	44.6	33.3	73.9	53.9	29.3	20.6	*1)
Hori.	2786.0	44.1	37.0	28.3	5.3	32.1	1.1	45.6	39.7	73.9	53.9	28.3	14.2	*2)
Hori.	4804.0	40.7	28.6	31.4	7.2	31.2	-	48.1	36.0	73.9	53.9	25.8	17.9	Floor noise
Hori.	5000.0	40.6	30.8	31.7	7.3	31.1	-	48.4	38.6	73.9	53.9	25.5	15.3	
Hori.	7206.0	42.0	33.7	35.6	8.5	32.0	-	54.0	45.7	73.9	53.9	19.9	8.2	Floor noise
Hori.	9608.0	42.4	34.4	35.6	8.9	32.6	-	54.2	46.3	73.9	53.9	19.7	7.6	Floor noise
Vert.	2354.0	41.7	32.2	27.7	5.0	32.2	1.1	42.1	33.8	73.9	53.9	31.8	20.1	*2)
Vert.	2390.0	42.0	31.7	27.5	5.0	32.2	1.1	42.3	33.1	73.9	53.9	31.6	20.8	*1)
Vert.	2786.0	41.8	31.0	28.3	5.3	32.1	1.1	43.4	33.7	73.9	53.9	30.5	20.2	*2)
Vert.	4804.0	41.7	28.7	31.4	7.2	31.2	-	49.1	36.1	73.9	53.9	24.8	17.8	Floor noise
Vert.	5000.0	41.6	35.5	31.7	7.3	31.1	-	49.4	43.3	73.9	53.9	24.5	10.6	
Vert.	7206.0	41.9	33.6	35.6	8.5	32.0	-	53.9	45.6	73.9	53.9	20.0	8.3	Floor noise
Vert.	9608.0	42.3	34.3	35.6	8.9	32.6	-	54.1	46.2	73.9	53.9	19.8	7.7	Floor noise

Result (QP) PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GH2)) - Gain(Amplifter) Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GH2)) - Gain(Amplifter) + Dutyfactor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

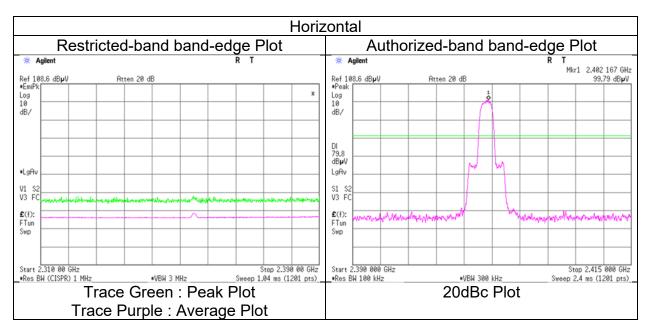
*QP detector was used up to 1GHz.

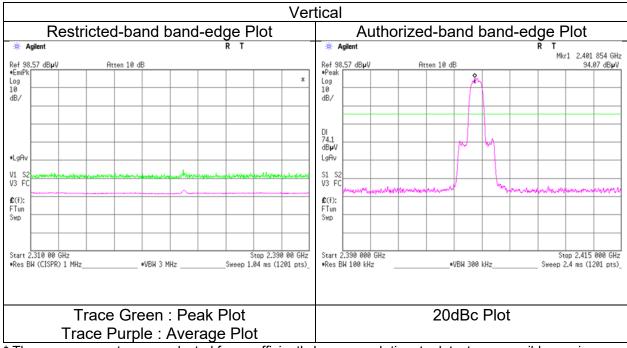
*1) Not Out of Band emission(Leakage Power)
*2) Noise synchronized with duty of carrier freqency

20dBc Data Sheet

Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2402.0	99.8	27.5	5.1	32.2	100.1	-	-	Carrier
Hori.	2400.0	41.5	27.5	5.1	32.2	41.8	80.1	38.3	
Vert.	2402.0	94.1	27.5	5.1	32.2	94.4	-	-	Carrier
Vert.	2400.0	37.9	27.5	5.1	32.2	38.2	74.4	36.2	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)


Distance factor:


1 GHz - 6 GHz 6 GHz - 10 GHz 20log (3.8 m / 3.0 m) = 2.06 dB 20log (4.8 m / 3.0 m) = 4.09 dB

10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

Radiated Spurious Emission (Reference Plot for band-edge)

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer Mode Ise EMC Lab. No.3 October 30, 2024 22 deg. C / 63 % RH Tetsuro Yoshida Tx, Hopping Off, 3DH5 2402 MHz

* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge and authorized band edge were shown in tabular data.

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer Ise EMC Lab. No.3 October 30, 2024 22 deg. C / 63 % RH Tetsuro Yoshida (1 GHz to 6 GHz)

No.3 October 29, 2024 23 deg. C / 66 % RH Tomoya Sone (6 GHz to 10 GHz)

No.3 October 29, 2024 22 deg. C / 59 % RH Tetsuro Yoshida (10 GHz to 18 GHz)

Semi Anechoic Chamber Date Temperature / Humidity Engineer No.3 October 28, 2024 23 deg. C / 56 % RH Tomoya Sone (Above 18 GHz) Tx, Hopping Off, 3DH5 2441 MHz

Mode

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP/PK)	(AV)	Factor			Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2825.0	41.6	34.4	28.5	5.3	32.0	1.1	43.3	37.3	73.9	53.9	30.6	16.6	*2)
Hori.	4882.0	40.0	32.0	31.4	7.2	31.2	-	47.5	39.5	73.9	53.9	26.4	14.4	Floor noise
Hori.	5000.0	40.7	33.0	31.7	7.3	31.1	-	48.5	40.8	73.9	53.9	25.4	13.1	
Hori.	7323.0	42.6	33.7	35.6	8.4	32.1	-	54.6	45.7	73.9	53.9	19.3	8.2	Floor noise
Hori.	9764.0	41.4	33.6	35.9	9.0	32.7	-	53.6	45.7	73.9	53.9	20.3	8.2	Floor noise
Vert.	2825.0	41.7	33.6	28.5	5.3	32.0	1.1	43.4	36.4	73.9	53.9	30.5	17.5	*2)
Vert.	4882.0	39.9	32.1	31.4	7.2	31.2	-	47.4	39.6	73.9	53.9	26.5	14.3	Floor noise
Vert.	5000.0	41.7	36.6	31.7	7.3	31.1	-	49.5	44.4	73.9	53.9	24.4	9.5	
Vert.	7323.0	42.5	33.6	35.6	8.4	32.1	-	54.5	45.6	73.9	53.9	19.4	8.3	Floor noise
Vert.	9764.0	41.3	33.5	35.9	9.0	32.7	-	53.5	45.6	73.9	53.9	20.4	8.3	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB). *QP detector was used up to 1GHz.

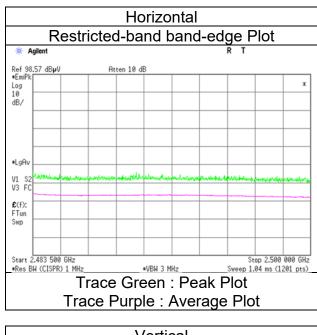
*2) Noise synchronized with duty of carrier freqency

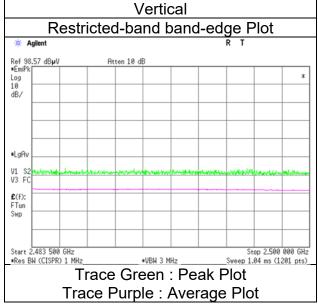
Distance factor:	1 GHz - 6 GHz	20log (3.8 m / 3.0 m) = 2.06 dB
	6 GHz - 10 GHz	20log (4.8 m / 3.0 m) = 4.09 dB
	10 GHz - 26.5 GHz	20log (1.0 m / 3.0 m) = -9.5 dB

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer	lse EMC Lab. No.3 October 30, 2024 22 deg. C / 63 % RH Tetsuro Yoshida (1 GHz to 6 GHz)	No.3 October 29, 2024 23 deg. C / 66 % RH Tomoya Sone (6 GHz to 10 GHz)	No.3 October 29, 2024 22 deg. C / 59 % RH Tetsuro Yoshida (10 GHz to 18 GHz)
Semi Anechoic Chamber Date Temperature / Humidity Engineer Mode	No.3 October 28, 2024 23 deg. C / 56 % RH Tomoya Sone (Above 18 GHz) Tx, Hopping Off, 3DH5	No.3 November 17, 2024 23 deg. C / 62 % RH Hiroki Numata (Below 1 GHz) 2480 MHz	

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP / PK)	(AV)	Factor			Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	42.6	27.0	-	13.8	7.2	32.2	-	15.8	-	40.0	-	24.2	-	
Hori.	52.4	31.7	-	10.4	7.3	32.2	-	17.2	-	40.0	-	22.8	-	
Hori.	66.7	28.6	-	6.7	7.5	32.2	-	10.6	-	40.0	-	29.4	-	
Hori.	266.0	32.9	-	12.6	9.4	32.0	-	22.9	-	46.0	-	23.1	-	
Hori.	298.7	30.4	-	13.6	9.7	32.0	-	21.7	-	46.0	-	24.3	-	
Hori.	320.5	27.1	-	14.1	9.8	32.0	-	19.0	-	46.0	-	27.0	-	
Hori.	2483.5	48.8	35.4	27.4	5.1	32.2	1.1	49.1	36.8	73.9	53.9	24.8	17.1	*1)
Hori.	4960.0	40.4	32.1	31.6	7.2	31.1	-	48.1	39.8	73.9	53.9	25.8	14.1	Floor noise
Hori.	5000.0	40.6	32.6	31.7	7.3	31.1	-	48.4	40.4	73.9	53.9	25.5	13.5	
Hori.	7440.0	42.0	33.7	35.5	8.4	32.1	-	53.7	45.5	73.9	53.9	20.2	8.4	Floor noise
Hori.	9920.0	40.4	33.4	36.1	9.0	32.8	-	52.8	45.7	73.9	53.9	21.2	8.2	Floor noise
Vert.	36.9	33.1	-	16.0	7.1	32.2	-	24.0	-	40.0	-	16.1	-	
Vert.	49.2	32.6	-	11.5	7.3	32.2	-	19.2	-	40.0	-	20.8	-	
Vert.	59.0	27.3	-	8.3	7.4	32.2	-	10.8	-	40.0	-	29.2	-	
Vert.	227.5	30.9	-	11.4	9.1	32.0	-	19.3	-	46.0	-	26.7	-	
Vert.	309.8	26.3	-	13.7	9.8	32.0	-	17.8	-	46.0		28.2	-	
Vert.	481.0	28.7	-	17.2	10.9	32.0	-	24.7	-	46.0		21.3	-	
Vert.	2483.5	44.0	33.7	27.4	5.1	32.2	1.1	44.3	35.1	73.9		29.6	18.8	
Vert.	4960.0	40.2	32.0	31.6	7.2	31.1	-	47.8	39.7	73.9				Floor noise
Vert.	5000.0	42.3	36.2	31.7	7.3	31.1	-	50.1	44.0	73.9		23.8	9.9	
Vert.	7440.0	41.9	33.6	35.5	8.4	32.1	-	53.6	45.4	73.9				Floor noise
Vert.	9920.0 / PK) = Read	40.3	33.3	36.1	9.0	32.8	-	52.7	45.6	73.9	53.9	21.3	8.3	Floor noise

Result (DP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB). *QP detector was used up to 1GHz. *1) Not Out of Band emission(Leakage Power)


Distance factor:	1 GHz - 6 GHz	20log (3.8 m / 3.0 m) = 2.06 dB
	6 GHz - 10 GHz	20log (4.8 m / 3.0 m) = 4.09 dB
	10 GHz - 26.5 GHz	20log (1.0 m / 3.0 m) = -9.5 dB


Radiated Spurious Emission (Reference Plot for band-edge)

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Mode

Ise EMC Lab. No.3 October 30, 2024 22 deg. C / 63 % RH Tetsuro Yoshida (1 GHz to 6 GHz) Tx, Hopping Off, 3DH5 2480 MHz

* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

Test place	lse EMC Lab.	
Semi Anechoic Chamber	No.3	No.3
Date	November 12, 2024	November 17, 2024
Temperature / Humidity	23 deg. C / 51 % RH	23 deg. C / 62 % RH
Engineer	Takumi Nishida	Hiroki Numata
	(Above 1 GHz)	(Below 1 GHz)
Mode	Tx, Hopping Off, DH5 2402	2 MHz + 11ax-20 [52-tone RU/Index 40] 5825 MHz

Mode

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP / PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP / PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	44.1	29.1	-	13.3	7.2	32.2	-	17.4	-	40.0	-	22.6	-	
Hori.	51.8	33.1	-	10.6	7.3	32.2	-	18.8	-	40.0	-	21.2	-	
Hori.	63.3	24.6	-	7.3	7.5	32.2	-	7.1	-	40.0	-	32.9	-	
Hori.	261.4	35.0	-	12.3	9.4	32.0	-	24.7	-	46.0	-	21.3	-	
Hori.	311.0	28.7	-	13.8	9.8	32.0	-	20.2	-	46.0	-	25.8	-	
Hori.	327.4	31.3	-	14.4	9.9	32.0	-	23.6	-	46.0	-	22.4	-	
Hori.	2354.0	44.6	38.7	27.7	5.0	32.2	1.1	45.0	40.3	73.9	53.9	28.9	13.6	*2)
Hori.	2390.0	43.2	34.4	27.6	5.0	32.2	1.1	43.6	35.9	73.9	53.9	30.3	18.0	*1)
Hori.	2786.0	43.6	35.3	28.2	5.3	32.1	1.1	45.0	37.9	73.9	53.9	28.9	16.0	*2)
Hori.	4804.0	39.5	32.3	31.3	7.2	31.2	-	46.8	39.6	73.9	53.9	27.1	14.3	Floor noise
Hori.	5000.0	41.4	33.9	31.5	7.3	31.1	-	49.1	41.6	73.9	53.9	24.8	12.3	
Hori.	7206.0	41.1	33.4	35.6	10.5	32.0	-	55.2	47.5	73.9	53.9	18.7	6.4	Floor noise
Hori.	9608.0	41.3	33.2	35.6	10.9	32.6	-	55.2	47.1	73.9	53.9	18.7	6.8	Floor noise
Vert.	32.3	29.7	-	17.7	7.0	32.2	-	22.2	-	40.0	-	17.8	-	
Vert.	46.8	29.8	-	12.3	7.2	32.2	-	17.2	-	40.0	-	22.8	-	
Vert.	60.1	28.0	-	8.0	7.4	32.2	-	11.2	-	40.0	-	28.8	-	
Vert.	231.1	30.4	-	11.5	9.1	32.0	-	19.0	-	46.0	-	27.0	-	
Vert.	315.3	25.4	-	13.9	9.8	32.0	-	17.1	-	46.0	-	28.9	-	
Vert.	485.9	28.3	-	17.4	10.9	32.0	-	24.5	-	46.0	-	21.5	-	
Vert.	2354.0	43.0	35.5	27.7	5.0	32.2	1.1	43.4	37.1	73.9	53.9			
Vert.	2390.0	42.4	33.7	27.6	5.0	32.2	1.1	42.8	35.2	73.9	53.9	31.1	18.7	*1)
Vert.	2786.0	43.8	37.9	28.2	5.3	32.1	1.1	45.3	40.4	73.9	53.9			'
Vert.	4804.0	39.7	32.2	31.3	7.2	31.2	-	47.0	39.5	73.9	53.9	26.9	14.4	Floor noise
Vert.	5000.0	42.5	36.7	31.5	7.3	31.1	-	50.2	44.4	73.9	53.9		9.5	
Vert.	7206.0	41.3	33.5	35.6	10.5	32.0	-	55.4	47.6	73.9	53.9			Floor noise
Vert.	9608.0	41.1	33.4	35.6	10.9	32.6	-	55.0	47.3	73.9	53.9	18.9	6.6	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Result (AV)= Reading + Art Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

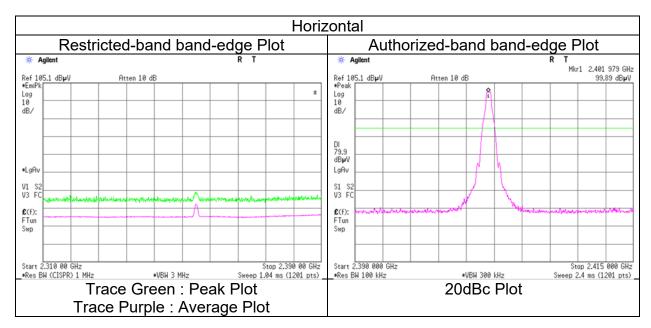
*QP detector was used up to 1GHz. *1) Not Out of Band emission(Leakage Power)

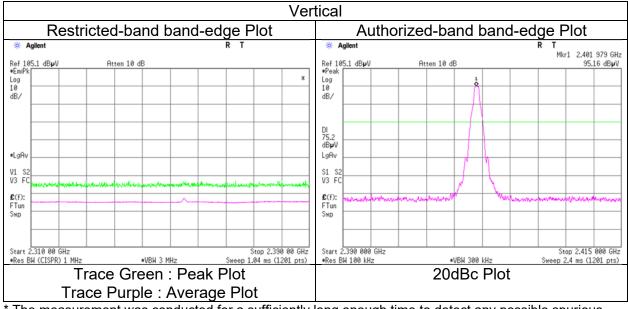
*2) Noise synchronized with duty of carrier frequency

20dBc Data Sheet

Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2402.0	99.9	27.5	5.1	32.2	100.3	-	-	Carrier
Hori.	2400.0	41.1	27.5	5.1	32.2	41.5	80.3	38.8	
Vert.	2402.0	95.2	27.5	5.1	32.2	95.6	-	-	Carrier
Vert.	2400.0	37.2	27.5	5.1	32.2	37.6	75.6	37.9	
Result = Re	Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)								

Distance factor:

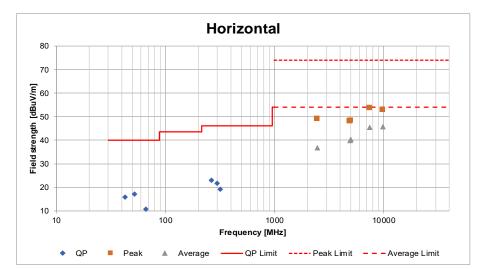

6 GHz - 10 GHz

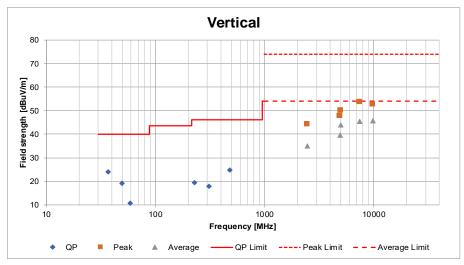

 1 GHz - 6 GHz
 20log (3.8 m / 3.0 m) = 2.06 dB
 6 GHz - 10 GHz
 20log (4.8 m / 3.0 m) = 4.09 dB

10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

Radiated Spurious Emission (Reference Plot for band-edge)

Test placeIse EMC Lab.Semi Anechoic ChamberNo.3DateNovember 12, 2024Temperature / Humidity23 deg. C / 51 % RHEngineerTakumi Nishida
(1 GHz to 26.5 GHz)ModeTx, Hopping Off, DH5 2402 MHz + 11ax-20 [52-tone RU/Index 40] 5825 MHz




* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

Radiated Spurious Emission (Plot data, Worst case mode for Maximum Peak Output Power)

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer	lse EMC Lab. No.3 October 30, 2024 22 deg. C / 63 % RH Tetsuro Yoshida No.3	No.3 October 29, 2024 23 deg. C / 66 % RH Tomoya Sone (6 GHz to 10 GHz)	No.3 October 29, 2024 22 deg. C / 59 % RH Tetsuro Yoshida (10 GHz to 18 GHz)
Semi Anechoic Chamber Date Temperature / Humidity Engineer Mode	No.3 October 28, 2024 23 deg. C / 56 % RH Tomoya Sone (Above 18 GHz) Tx, Hopping Off, 3DH5	No.3 November 17, 2024 23 deg. C / 62 % RH Hiroki Numata (Below 1 GHz) 2480 MHz	

*These plots data contain sufficient number to show the trend of characteristic features for EUT.

APPENDIX 2: Test Instruments

Test Equipment

Test Item		Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
RE	141232	High Pass Filter 3.5-18.0GHz	UL-ISE	HPF SELECTOR	001	09/13/2024	12
RE	141266	Logperiodic Antenna (200-1000MHz)	Schwarzbeck Mess-Elektronik OHG	VUSLP9111B	9111B-191	08/23/2024	12
RE	141323	Coaxial cable	UL-ISE	-	-	09/13/2024	12
RE	141424	Biconical Antenna	Schwarzbeck Mess-Elektronik OHG	VHA9103+BBA9106	1915	03/15/2024	12
RE	141507	Horn Antenna 1-18GHz	Schwarzbeck Mess-Elektronik OHG	BBHA9120D	258	11/20/2023	12
RE	141513	Horn Antenna 15-40GHz	Schwarzbeck Mess-Elektronik OHG	BBHA9170	BBHA9170306	07/19/2024	12
RE	141532	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	051201197	01/31/2024	12
RE	141576	Pre Amplifier	Keysight Technologies Inc	8449B	3008A01671	02/17/2024	12
RE	141580	Microwave System Amplifier	Keysight Technologies Inc	83017A	MY39500779	03/08/2024	12
RE	141582	Pre Amplifier	SONOMA INSTRUMENT	310	260834	02/17/2024	12
RE	141884	Spectrum Analyzer	Keysight Technologies Inc	E4448A	MY44020357	05/09/2024	12
RE	141950	EMI Test Receiver	Rohde & Schwarz	ESU26	100412	11/20/2023	12
RE	142008	AC3_Semi Anechoic Chamber (NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	12/11/2023	24
RE	142013	AC3_Semi Anechoic Chamber (SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-10005	04/12/2023	24
RE	142183	Measure	KOMELON	KMC-36	-	10/21/2024	12
RE	142314	Attenuator	Pasternack Enterprises	PE7390-6	D/C 1504	06/06/2024	12
RE	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	244709	Thermo-Hygrometer	HIOKI E.E. CORPORATION	LR5001	231202103	01/25/2024	12
RE	245787	Double Ridge Horn Antenna	Schwarzbeck Mess-Elektronik OHG	BBHA 9120 C	689	03/06/2024	12
RE	246001	Microwave Cable	Huber+Suhner	SF103/11PC35/ 11PC35/1000mm / SF126E/5000mm	800673(1m) / 610204(5m)	03/06/2024	12

*Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month. As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

RE: Radiated Emission