

Test Report

Applicant	:	Ningbo Sharkward Electronics Co Ltd
		No 88 Gongmao Road No 3 Jishigang Industrial
Address	:	Zone Haishu District Ningbo, Zhejiang Sheng
		315000 China
Product Name	:	Bluetooth MicrowaveFixture Sensor
Brand Mark	:	Sharkward
Model	:	ANT-9-BLE-GE
Series model	:	See contents 1.2
FCC ID	:	2AVMOANT
Report Number	:	BLA-EMC-202412-A4101
Date of Receipt	:	Dec. 16, 2024
Date of Test	:	Dec. 16, 2024 to Dec. 31, 2024
Test Standard	:	47 CFR Part 15, Subpart C 15.247
Test Result	:	Pass

Compiled by: Mark then Review by:

BlueAsia of Technical Services(Shenzhen) Co.,Ltd.

Address: Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China

The test report is effective only with both signature and specialized stamp and The result(s) shown in this report refer only to the sample(s) tested. Without written approval of BlueAsia, this report can't be reproduced except in full. The results described in this report do not represent the quality or characteristics of the sampled batch, nor do they represent any similar or identical products that are not explicitly stated.

Page 2 of 83

Table of Contents

1 General information	5
1.1 General information	5
1.2 General description of EUT	5
2 Test summary	7
3 Test Configuration	
3.1 Test mode	
3.2 Operation Frequency each of channel	
3.3 Test channel	
3.4 Auxiliary equipment	
3.5 Test environment	9
4 Laboratory information	10
4.1 Laboratory and accreditations	10
4.2 Measurement uncertainty	
5 Test equipment	11
6 Test result	
6.1 Antenna requirement	14
6.2 Conducted emissions at AC power line (150 kHz-30 MHz)	
6.3 Conducted peak output Power	19
6.4 Minimum 6dB bandwidth	
6.5 Power spectrum density	21
6.6 Conducted Band Edges Measurement	
6.7 Conducted spurious emissions	
6.8 Radiated spurious emissions	25
6.9 Radiated emissions which fall in the restricted bands	37
7 Appendix A	44
7.1 Maximum Conducted Output Power	
7.2 -6dB Bandwidth	48
7.3 Occupied Channel Bandwidth	52
Rhug Acia and an and an and an	

BIUEASIA of Technical Services (Shenzhen) Co.,Ltd.

Tel: +86-755-23059481 Email: <u>marketing@cblueasia.com</u> <u>www.cblueasia.com</u> version.v1.3

Page 3 of 83

7.4 Maximum Power Spectral Density Level	
7.5 Band Edge	60
7.6 Conducted RF Spurious Emission	
Appendix B: photographs of test setup	
Appendix C: photographs of EUT	

Page 4 of 83

Revise Record

Version No.	Date	Description
01	Dec. 31, 2024	Original

Page 5 of 83

1 General information

1.1 General information

Applicant	Ningbo Sharkward Electronics Co Ltd		
Address	No 88 Gongmao Road No 3 Jishigang Industrial Zone Haishu District		
Address	Ningbo, Zhejiang Sheng 315000 China		
Manufacturer	Ningbo Sharkward Electronics Co Ltd		
A dalara a a	No 88 Gongmao Road No 3 Jishigang Industrial Zone Haishu District		
Address	Ningbo, Zhejiang Sheng 315000 China		
Factory	Ningbo Sharkward Electronics Co Ltd		
A dalara a a	No 88 Gongmao Road No 3 Jishigang Industrial Zone Haishu District		
Address	Ningbo, Zhejiang Sheng 315000 China		

1.2 General description of EUT

Bluetooth MicrowaveFixture Sensor			
ANT-9-BLE-GE			
ANT-1M-4T-BLE-GE, ANT-1M-4T-BLE-SR, ANT-1M-4T-BLE,			
ANT-3-BLE-GE, ANT-3-BLE-SR, ANT-3-BLE, ANT-3D-BLE-GE,			
ANT-3D-BLE-SR, ANT-3D-BLE, ANT-7-BLE-GE, ANT-7-BLE-SR,			
ANT-7-BLE, ANT-7D-BLE-GE, ANT-7D-BLE-SR, ANT-7D-BLE,			
ANT-9-BLE-GE, ANT-9-BLE-SR, ANT-9-BLE, ANT-9C-BLE-GE,			
ANT-9C-BLE-SR, ANT-9C-BLE			
The above models are identical in PCB layout, internal structure and			
components ,only Item number and color is different.			
2402MHz-2480MHz			
GFSK			
1Mbps, 2Mbps			
2MHz			
40			
monopole antenna			
2.26dBi (Provided by customer)			

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481 Email: <u>marketing@cblueasia.com</u> <u>www.cblueasia.com</u>

version.vi.3

Page 6 of 83

Power supply:	DC 12V		
Hardware Version	V1		
Software Version	V1		
Note: For a more detailed description, please refer to Specification or User's Manual supplied by			

the applicant and/or manufacturer.

Page 7 of 83

2 Test summary

No.	Test item	FCC standard	Test Method(Clause)	Result
1	Antenna Requirement	§15.203	N/A	Pass
2	Conducted Emissions at AC Power Line (150kHz-30MHz)	§15.207	ANSI C63.10-2013 Clause 6.2	Pass
3	Conducted Peak Output Power	§15.247(b)(3)	ANSI C63.10-2013 Cluase 7.8.5	Pass
4	Minimum 6dB Bandwidth	§15.247a(2)	ANSI C63.10-2013 Cluase 11.8.1	Pass
5	Power Spectrum Density	§15.247(d)	ANSI C63.10-2013 Cluase 11.10.2	Pass
6	Conducted Band Edges Measurement	§15.247(d)	ANSI C63.10-2013 Cluase 11.13	Pass
7	Conducted Spurious Emissions	§15.247(d)	ANSI C63.10-2013 Cluase 11.11	Pass
8	Radiated Spurious Emissions	§15.209 §15.247(d)	ANSI C63.10-2013 Cluase 6.4,6.5,6.6	Pass
9	Radiated Emissions which fall in the restricted bands	§15.209 §15.247(d)	ANSI C63.10-2013 Cluase 11.12	Pass

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481 Email: <u>marketing@cblueasia.com</u> <u>www.cblueasia.com</u> version.v1.3

Page 8 of 83

3 Test Configuration

3.1 Test mode

Test Mode Note 1	Description
TX	Keep the EUT in continuously transmitting with modulation mode.
RX	Keep the EUT in receiving mode
TX Low channel	Keep the EUT in continuously transmitting mode in low channel
TX middle channel	Keep the EUT in continuously transmitting mode in middle channel
TX high channel	Keep the EUT in continuously transmitting mode in high channel

Note 1: The EUT was configured to measure its highest possible emission and/or immunity level. The test modes were adapted according to the operation manual for use.

Power level setup in software				
Test Software Name	Non Signaling TEST			
Mode	Channel Frequency (MHz) Soft Set			
ТХ	CH00	2402		
	CH20	2442	TX level : Default	
	СН39	2480		

Page 9 of 83

3.2 Operation Frequency each of channel

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

3.3 Test channel

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

3.4 Auxiliary equipment

Device Type	Manufacturer	Model Name	Serial No.	Remark
PC	Lenovo	E460C	1	From lab (No.BLA-ZC-BS-2022005)
Rechargeable battery	TIANNENG	6-DZF-20.3	/	/
DC POWER SUPPLY	ZHAOXIN	KXN-305D	/	/

3.5 Test environment

Environment	Temperature	Voltage
Normal	25°C	DC 12V

Page 10 of 83

4 Laboratory information

4.1 Laboratory and accreditations

The test facility is recognized, certified, or accredited by the following organizations:

Company name:	Company name: BlueAsia of Technical Services(Shenzhen) Co., Ltd.			
Address: Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan Distri Shenzhen, Guangdong Province, China				
CNAS accredited No.:	L9788			
A2LA Cert. No.:	5071.01			
FCC Designation No.:	CN1252			
ISED CAB identifier No.:	CN0028			
Telephone:	+86-755-28682673			
FAX:	+86-755-28682673			

4.2 Measurement uncertainty

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Parameter	Expanded Uncertainty
Radiated Emission(9kHz-30MHz)	±4.34dB
Radiated Emission(30Mz-1000MHz)	±4.24dB
Radiated Emission(1GHz-18GHz)	±4.68dB
AC Power Line Conducted Emission(150kHz-30MHz)	±3.45dB
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±1.5 dB
Power Spectral Density, conducted	±3.0 dB
Unwanted Emissions, conducted	±3.0 dB
Temperature	±3 °C
Supply voltages	±3 %
Time	±5 %

Page 11 of 83

5 Test equipment

Radiated Spurious Emissions (Below 1GHz)

Equipment	Name	Model	Manufacture	S/N	Cal. Date	Due. Date
BLA-EMC-002-01	Anechoic	9*6*6	SKET	N/A	2024/3/27	2027/3/26
BLA-ENIC-002-01	chamber	chamber	SNET	N/A	2024/3/21	2027/3/20
BLA-EMC-002-02	Control room	966 control	SKET	N/A	2024/3/27	2027/3/26
BLA-ENIC-002-02	Control room	room	SKET	N/A	2024/3/27	2027/3/20
BLA-EMC-009	EMI receiver	ESR7	R&S	101199	2024/08/08	2025/08/07
BLA-EMC-043	Loop antenna	FMZB1519B	Schwarzbeck	00102	2024/06/29	2026/06/28
	Broadband		Coburgenthe of	040050	2024/06/20	2026/06/27
BLA-EMC-065	antenna	VULB9168	Schwarzbeck	01065P	2024/06/29	2026/06/27
BLA-XC-01	Coaxial Cable	N/A	BlueAsia	V01	N/A	N/A
BLA-XC-02	Coaxial Cable	N/A	BlueAsia	V02	N/A	N/A

Radiated Spurious Emissions (Above 1GHz)

Equipment	Name	Model	Manufacture	S/N	Cal. Date	Due. Date
BLA-EMC-001 -01	Anechoic chamber	9*6*6 chamber	SKET	N/A	2023/11/16	2026/11/15
BLA-EMC-001 -02	Control Room	966 control room	SKET	N/A	2023/11/16	2025/11/15
BLA-EMC-008	Spectrum	FSP40	R&S	100817	2024/08/08	2025/08/07
BLA-EMC-012	Broadband antenna	VULB9168	Schwarzbeck	00836 P:00227	2022/10/12	2025/10/11
BLA-EMC-013	Horn Antenna	BBHA9120D	Schwarzbeck	01892	2024/06/29	2026/06/28
BLA-EMC-014	Amplifier	PA_000318G- 45	SKET	PA201804300 3	2024/08/08	2025/08/07
BLA-EMC-046	Filter bank	2.4G/5G Filter bank	SKET	N/A	2024/06/28	2025/06/27
BLA-EMC-061	Receiver	ESPI7	R&S	101477	2024/06/28	2025/06/27
BLA-EMC-066	Amplifier	LNPA_30M01 G-30	SKET	SK202106080 1	2024/06/28	2025/06/27
BLA-EMC-086	Amplifier	LNPA_18G40 G-50dB	SKET	SK202207130 1	2024/06/28	2025/06/27

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481

Email: marketing@cblueasia.com www.cblueasia.com

Page 12 of 83

BLA-EMC-087	Horn Antenna	BBHA 9170	Schwarzbeck	1106	2024/06/29	2026/06/28
BLA-XC-03	Coaxial Cable	N/A	BlueAsia	V03	N/A	N/A
BLA-XC-04	Coaxial Cable	N/A	BlueAsia	V04	N/A	N/A

RF conducted

Equipment	Name	Model	Manufacture	S/N	Cal. Date	Due. Date
BLA-EMC-003- 003	Shield room	5*3*3	SKET	N/A	2023/11/16	2025/11/15
BLA-EMC-016	Signal Generator	N5182A	Agilent	MY52420567	2024/06/28	2025/06/27
BLA-EMC-038	Spectrum	N9020A	Agilent	MY49100060	2024/08/08	2025/08/07
BLA-EMC-042	Power sensor	RPR3006W	DARE	14100889SN042	2024/08/08	2025/08/07
BLA-EMC-044	Radio communication tester	CMW500	R&S	132429	2024/08/08	2025/08/07
BLA-EMC-064	Signal Generator	N5182B	KEYSIGHT	MY58108892	2024/06/28	2025/06/27
BLA-EMC-079	Spectrum	N9020A	Agilent	MY54420161	2024/08/08	2025/08/07
BLA-EMC-088	Audio Analyzer	ATS-1	Audio Precision	ATS141094	2024/06/28	2025/06/27
Conducted Emis	ssions					

Conducted Emissions

Equipment	Name	Model	Manufactu re	S/N	Cal. Date	Due. Date
BLA-EMC-003-001	Shield room	8*3*3	SKET	N/A	2023/11/16	2025/11/15
BLA-EMC-009	EMI receiver	ESR7	R&S	101199	2024/08/08	2025/08/07
BLA-EMC-011	LISN	ENV216	R&S	101372	2024/08/08	2025/08/07
BLA-EMC-033	Impedance transformer	DC-2GHz	DFXP	N/A	2024/06/28	2025/06/27
BLA-EMC-041	LISN	AT166-2	ATTEN	AKK180600 0003	2024/08/08	2025/08/07
BLA-EMC-045	Impedance stable network	ISNT8-cat 6	TESEQ	53580	2024/08/08	2025/08/07
BLA-EMC-095	Single-channel vehicle artificial power network	NNBM 8124	Schwarzbe ck	01045	2024/06/28	2025/06/27
BLA-EMC-096	Single-channel	NNBM	Schwarzbe	01075	2024/06/28	2025/06/27

BlueAsia of Technical Services (Shenzhen) Co., Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

version.v1.3

Page 13 of 83

	vehicle artificial	8124	ck			
	power network					
BLA-XC-05	Coaxial Cable	N/A	BlueAsia	V05	N/A	N/A

Test Software Record:

Software No.	Software Name	Manufacture	Software version	Test site
BLA-EMC-S001	EZ-EMC	EZ	EEMC-3A1+	RE
BLA-EMC-S002	EZ-EMC	EZ	EEMC-3A1+	RE
BLA-EMC-S003	EZ-EMC	EZ	EEMC-3A1+	CE
BLA-EMC-S010	MTS 8310	MW	2.0.0.0	RF

Page 14 of 83

6 Test result

6.1 Antenna requirement

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	N/A

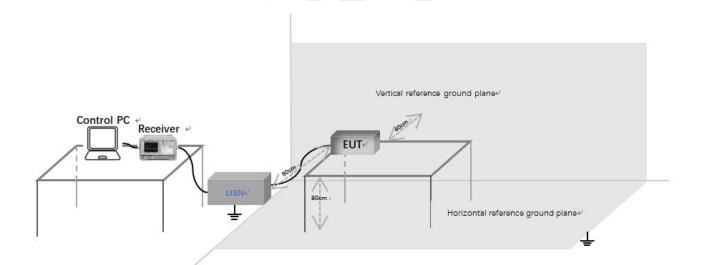
6.1.1 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of a so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT antenna:

The antenna is monopole antenna. The best case gain of the antenna is 2.26dBi.

Page 15 of 83


6.2 Conducted emissions at AC power line (150 kHz-30 MHz)

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.2
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	TX

6.2.1 Limit

	Conducted limit(dBµV)			
Frequency of emission(MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		
*Decreases with the logarithm of the frequency.				

6.2.2 Test setup

Description of test setup connection:

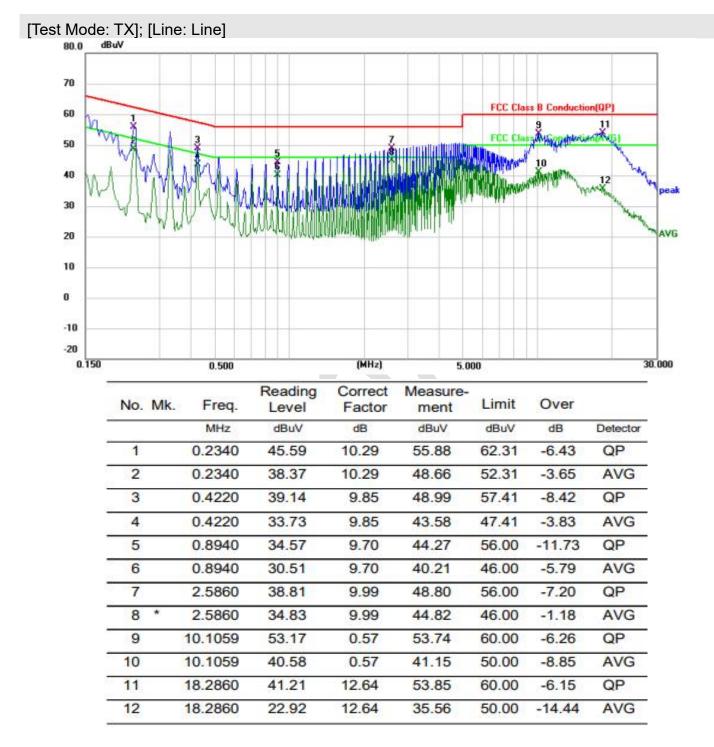
- a) Connect the control PC to the receiver through a USB to GPIB cable;
- b) The receiver is connected to the LISN through a coaxial line;
- c) Connect the power port of LISN to the EUT.

BlueAsia of Technical Services (Shenzhen) Co., Ltd.

Tel: +86-755-23059481 Email: <u>marketing@cblueasia.com</u> <u>www.cblueasia.com</u> version.v1.3

Page 16 of 83

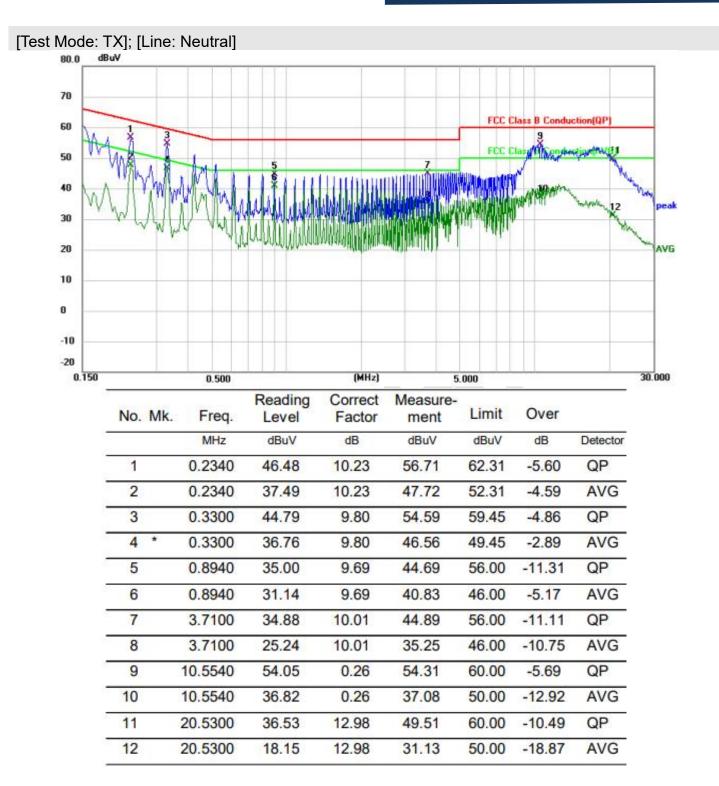
6.2.3 Procedure


- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50H + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

LISN=Read Level+ Cable Loss+ LISN Factor

Page 17 of 83

6.2.4 Test data


Test Result: Pass

BlueAsia of Technical Services (Shenzhen) Co., Ltd.

Tel: +86-755-23059481 Email: <u>marketing@cblueasia.com</u> <u>www.cblueasia.com</u> version.v1.3

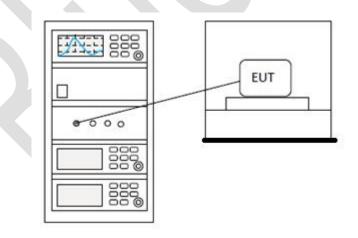
Page 18 of 83

Test Result: Pass

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481

Email: <u>marketing@cblueasia.com</u> <u>www.cblueasia.com</u> version.v1.5

Page 19 of 83


6.3 Conducted peak output Power

Test Standard47 CFR Part 15, Subpart C 15.247				
Test Method ANSI C63.10 (2013) Section 7.8.5				
Test Mode (Pre-Scan) TX				
Test Mode (Final Test)	TX			

6.3.1 Limit

Frequency range(MHz)	Output power of the intentional radiator(watt)		
	1 for ≥50 hopping channels		
902-928	0.25 for 25≤ hopping channels <50		
	1 for digital modulation		
	1 for ≥75 non-overlapping hopping channels		
2400-2483.5	0.125 for all other frequency hopping systems		
	1 for digital modulation		
5725-5850	1 for frequency hopping systems and digital modulation		

6.3.2 Test setup

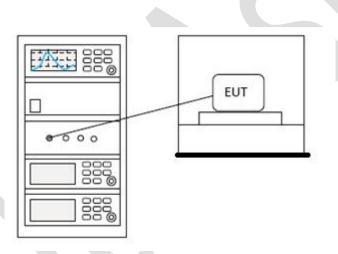
6.3.3 Test data

Pass: Please refer to appendix A for details

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

version:v1.3

Page 20 of 83


6.4 Minimum 6dB bandwidth

Test Standard 47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 11.8.1			
Test Mode (Pre-Scan) TX				
Test Mode (Final Test)	ТХ			

6.4.1 Limit

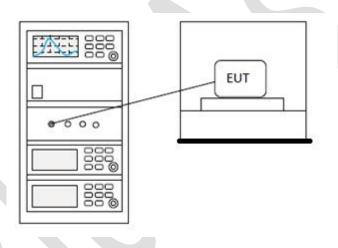
≥500 kHz

6.4.2 Test setup

6.4.3 Test data

Pass: Please refer to appendix A for details

Page 21 of 83


6.5 Power spectrum density

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 11.10.2
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ

6.5.1 Limit

≤8dBm in any 3 kHz band during any time interval of continuous transmission

6.5.2 Test setup

6.5.3 Test data

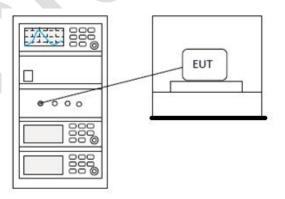
Pass: Please refer to appendix A for details

Page 22 of 83

6.6 Conducted Band Edges Measurement

Test Standard 47 CFR Part 15, Subpart C 15.247	
Test Method ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2	
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	TX

6.6.1 Limit


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20dB.

Attenuation below the general limits specified in §15.209(a) is not required.

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

6.6.2 Test setup

Page 23 of 83

6.6.3 Test data

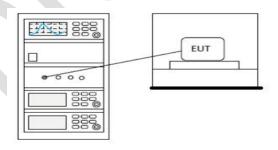
Pass: Please refer to appendix A for details

Page 24 of 83

6.7 Conducted spurious emissions

Test Standard	47 CFR Part 15, Subpart C 15.247			
Test Method ANSI C63.10 (2013) Section 7.8.6 & Section 11.11				
Test Mode (Pre-Scan) TX				
Test Mode (Final Test)	TX			

6.7.1 Limit


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20dB.

Attenuation below the general limits specified in §15.209(a) is not required.

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

6.7.2 Test setup

6.7.3 Test data

Pass: Please refer to appendix A for details

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481

Email: <u>marketing@cblueasia.com</u> <u>www.cblueasia.com</u>

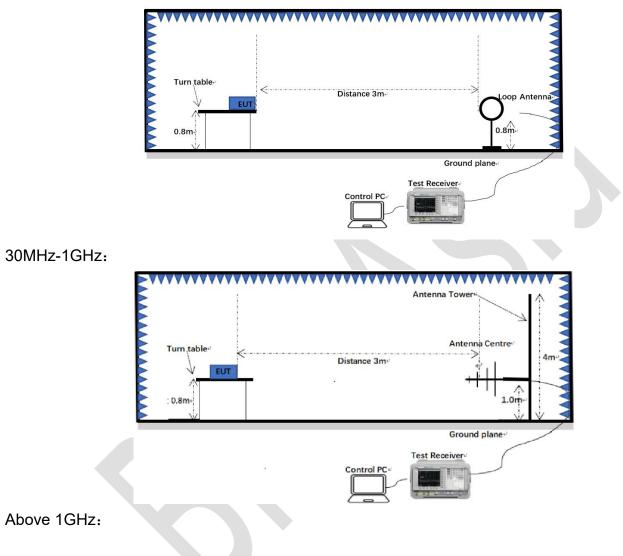
Page 25 of 83

6.8 Radiated spurious emissions

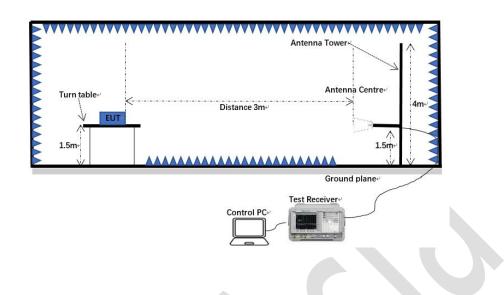
Test Standard	47 CFR Part 15, Subpart C 15.247			
Test Method ANSI C63.10 (2013) Section 6.4,6.5,6.6				
Test Mode (Pre-Scan) TX				
Test Mode (Final Test)	TX			

6.8.1 Limit

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200 3	
Above 960	500 3	


Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

Page 26 of 83


6.8.2 Test setup

Below 1GHz:

Page 27 of 83

6.8.3 Procedure

- a) For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c) The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d) The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f) The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g) If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h) Test the EUT in the lowest channel, the middle channel, the highest channel.
- i) The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481

Email: marketing@cblueasia.com www.cblueasia.com

Page 28 of 83

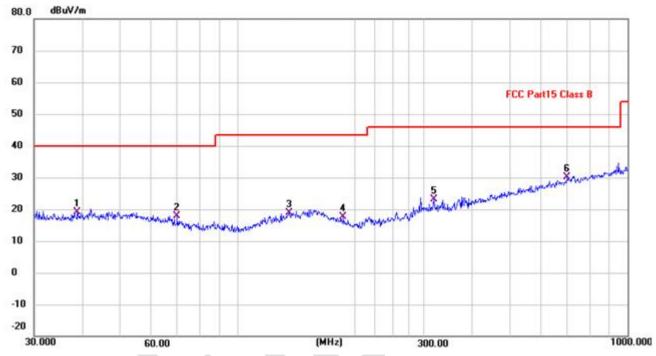
found the X axis positioning which it is the worst case.

j) Repeat above procedures until all frequencies measured was complete.

Note 1: Scan from 9 kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. Fundamental frequency is blocked by filter, and only spurious emission is shown. Note 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Note 3: The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Level (dBuV) = Reading (dBuV) + Factor (dB/m)

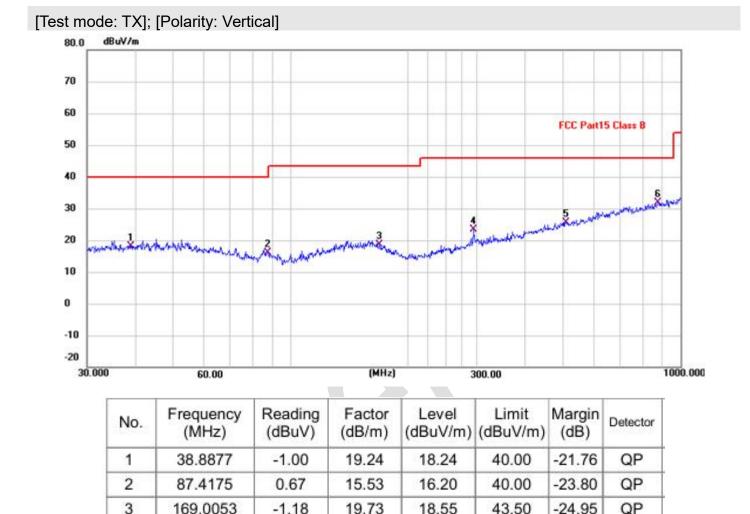


Page 29 of 83

6.8.4 Test data

Remark: During the test, pre-scan the BLE1M/BLE2M mode, and found the BLE1M mode which it is worse case. Below 1GHz

[Test mode: TX]; [Polarity: Horizontal]



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	38.7516	-0.10	19.24	19.14	40.00	-20.86	QP
2	69.8448	1.26	16.69	17.95	40.00	-22.05	QP
3	135.5061	-1.04	19.88	18.84	43.50	-24.66	QP
4	186.4407	-0.09	17.60	17.51	43.50	-25.99	QP
5	318.8170	2.36	20.73	23.09	46.00	-22.91	QP
6 *	699.3044	1.42	28.62	30.04	46.00	-15.96	QP

Test Result: Pass

Page 30 of 83

19.66

25.51

30.58

23.31

25.65

31.81

46.00

46.00

46.00

-22.69

-20.35

-14.19

QP

QP

QP

Test Result: Pass

4

5

6 *

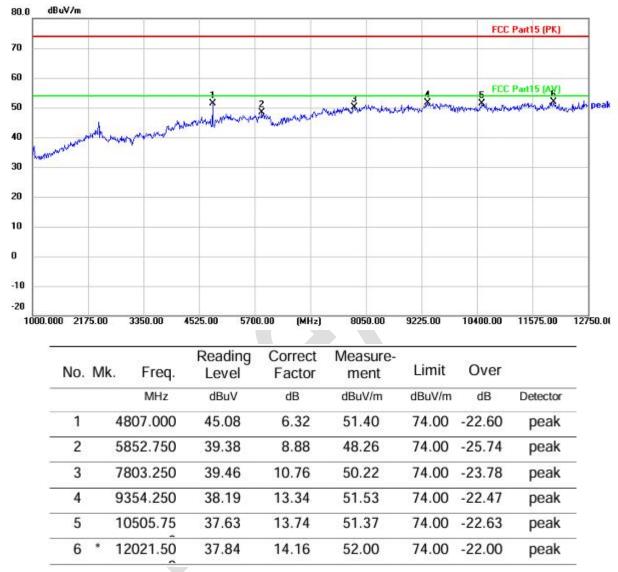
294.1136

508.2581

875.2468

3.65

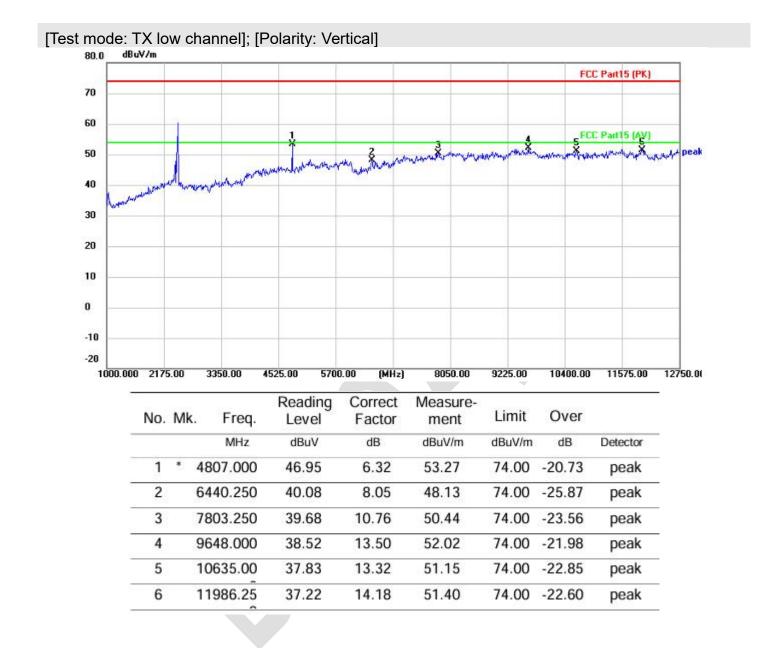
0.14


1.23

Page 31 of 83

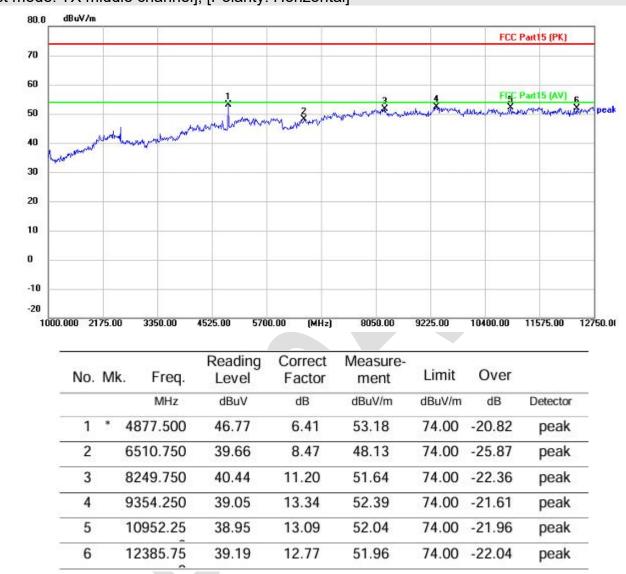
Above 1GHz:

Remark: During the test, pre-scan the BLE1M/BLE2M mode, and found the BLE1M mode which it is worse case.



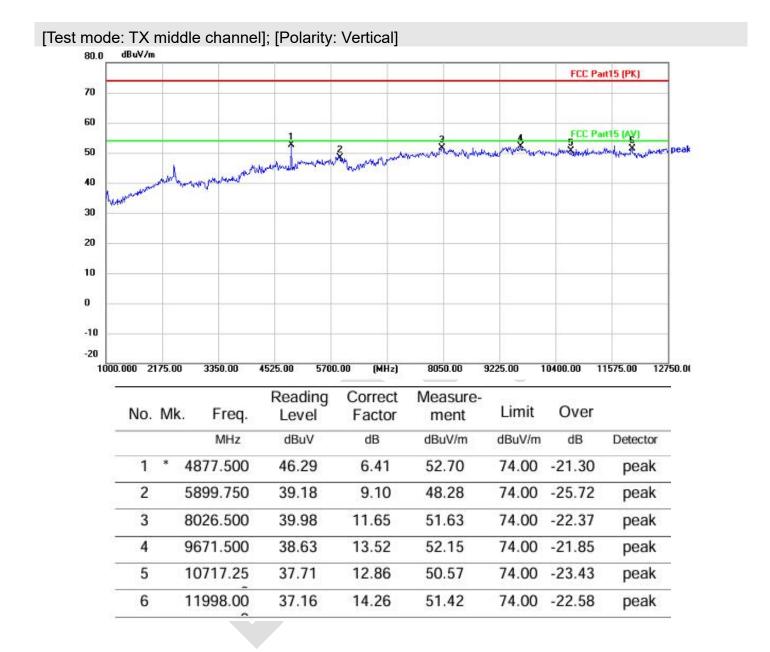
[Test mode: TX low channel]; [Polarity: Horizontal]

Test Result: Pass


Page 32 of 83

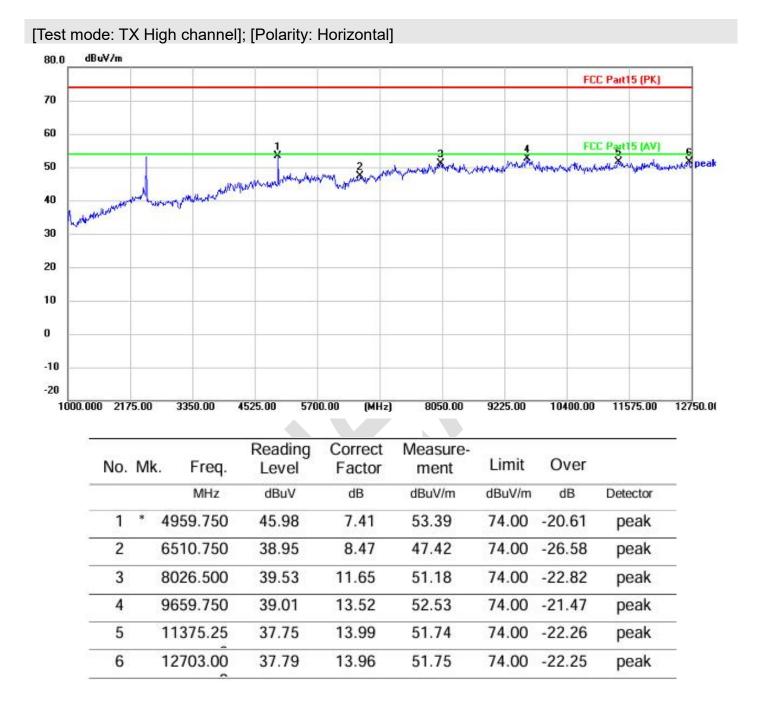
Test Result: Pass

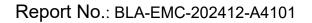
Page 33 of 83



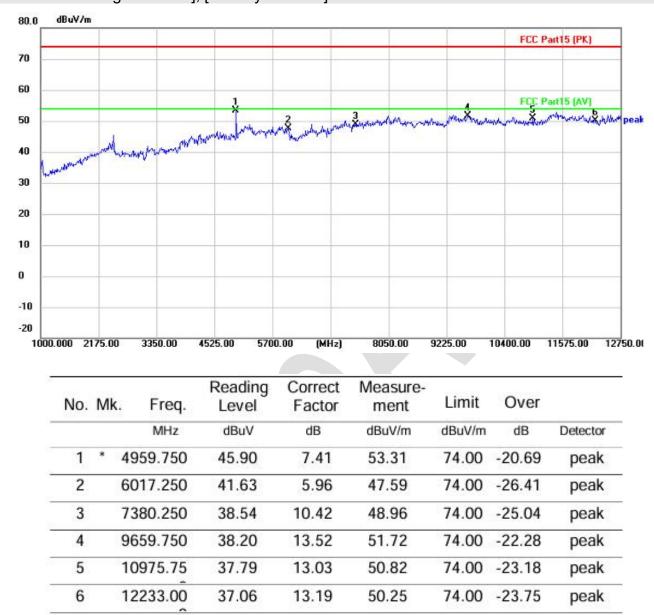
[Test mode: TX middle channel]; [Polarity: Horizontal]

Test Result: Pass


Page 34 of 83


Test Result: Pass

Page 35 of 83



Test Result: Pass

Page 36 of 83

[Test mode: TX High channel]; [Polarity: Vertical]

Test Result: Pass

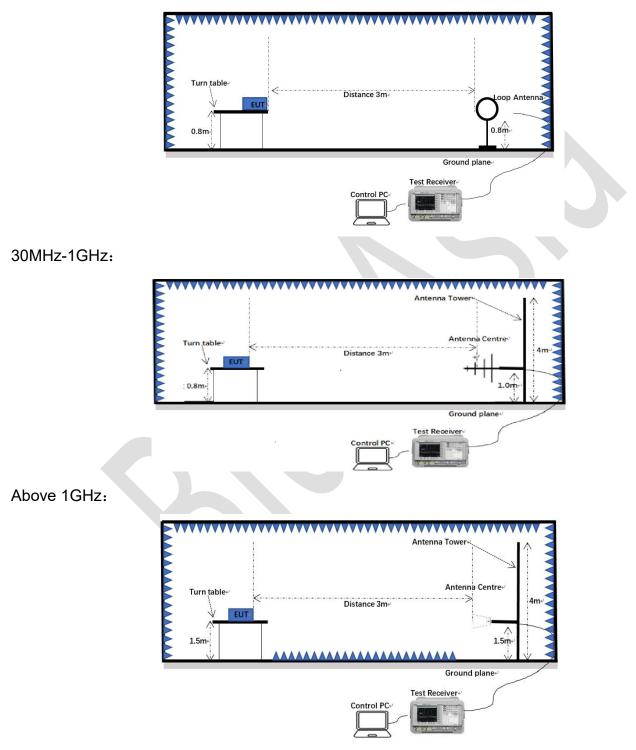
Page 37 of 83

6.9 Radiated emissions which fall in the restricted bands

Test Standard	47 CFR Part 15, Subpart C 15.247		
Test Method ANSI C63.10 (2013) Section 6.10.5			
Test Mode (Pre-Scan)	ТХ		
Test Mode (Final Test)	TX		

6.9.1 Limit

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3


Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

Page 38 of 83

6.9.2 Test setup

Below 1GHz:

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481

Email: marketing@cblueasia.com www.cblueasia.com

version.v1.5

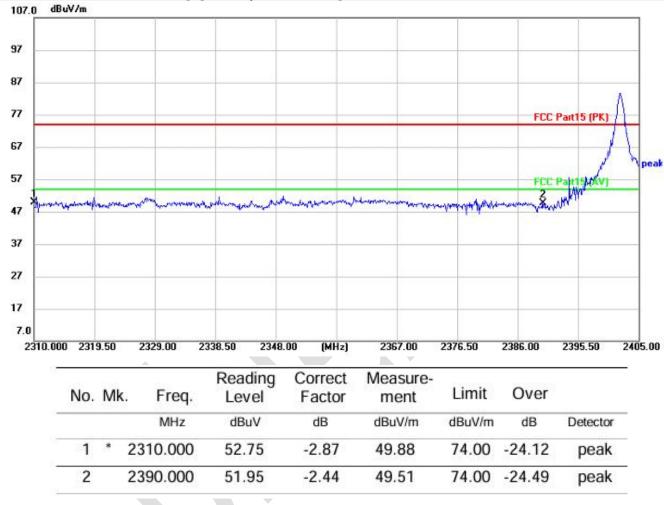
Page 39 of 83

6.9.3 Procedure

- a) For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c) The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d) The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f) The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g) If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h) Test the EUT in the lowest channel, the middle channel, the highest channel.
- i) The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j) Repeat above procedures until all frequencies measured was complete.

Note 1: Level (dBuV) = Reading (dBuV) + Factor (dB/m)

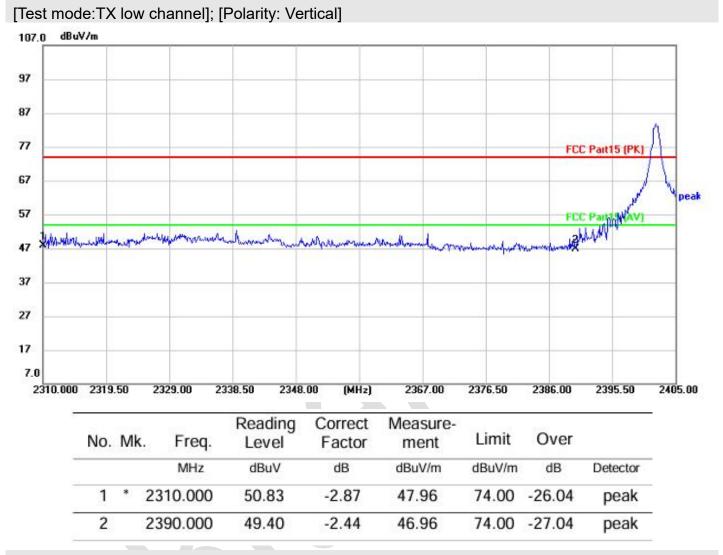
Note 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.


BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

Page 40 of 83

6.9.4 Test data

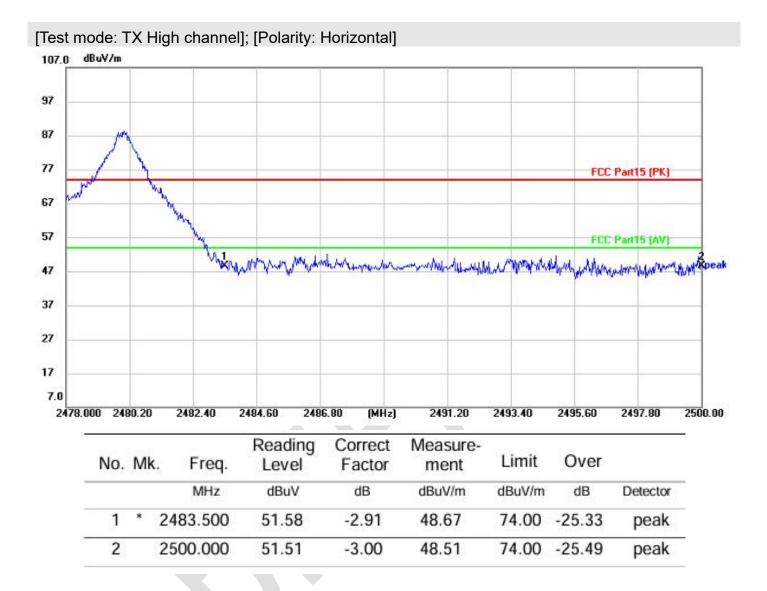
Remark: During the test, pre-scan the BLE1M/BLE2M mode, and found the BLE1M mode which it is worse case.


[Test mode: TX low channel]; [Polarity: Horizontal]

Test Result: Pass

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481 Email: <u>marketing@cblueasia.com</u> www.cblueasia.com version.v1.3

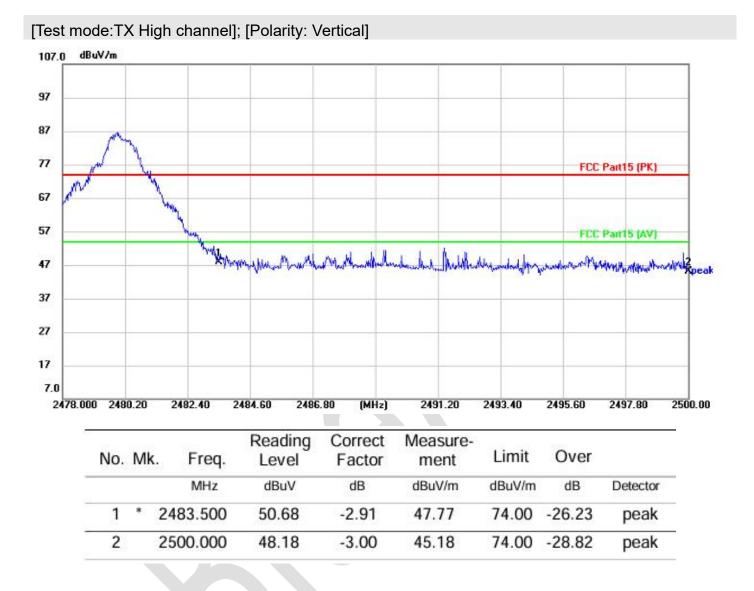
Page 41 of 83



Test Result: Pass

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481 Email: <u>marketing@cblueasia.com</u> <u>www.cblueasia.com</u>

Page 42 of 83



Test Result: Pass

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481 Email: <u>marketing@cblueasia.com</u> www.cblueasia.com

Page 43 of 83

Test Result: Pass

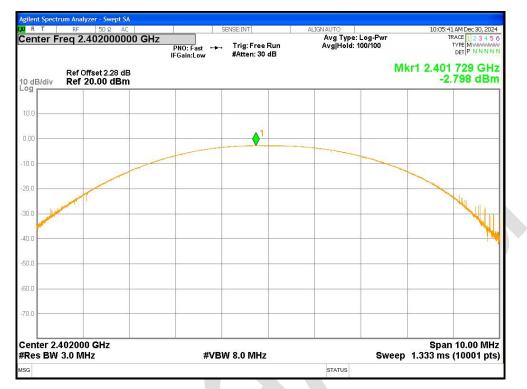
BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481 Email: <u>marketing@cblueasia.com</u> <u>www.cblueasia.com</u>



Page 44 of 83

7 Appendix A

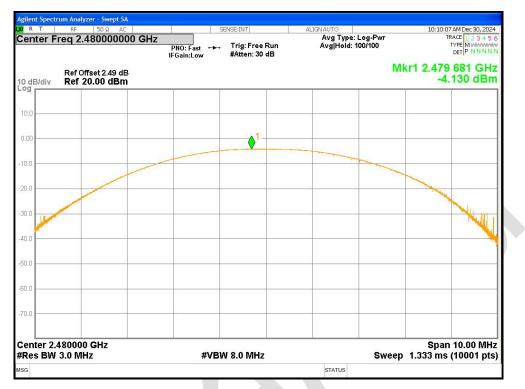
7.1 Maximum Conducted Output Power


Condition	Mode	Frequency	Antenna	Conducted Power	Limit	Verdict
		(MHz)		(dBm)	(dBm)	
NVNT	BLE 1M	2402	Ant1	-2.798	30	Pass
NVNT	BLE 1M	2442	Ant1	-4.062	30	Pass
NVNT	BLE 1M	2480	Ant1	-4.13	30	Pass
NVNT	BLE 2M	2402	Ant1	-2.694	30	Pass
NVNT	BLE 2M	2442	Ant1	-4.016	30	Pass
NVNT	BLE 2M	2480	Ant1	-4.013	30	Pass

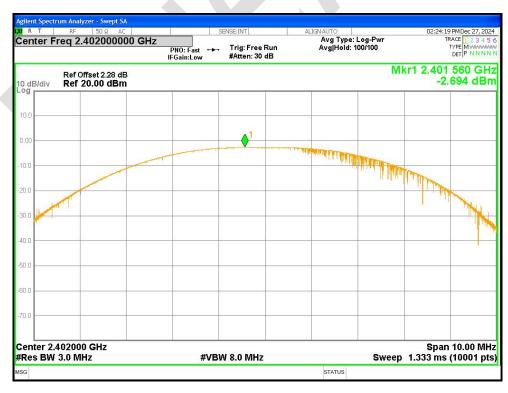
Report No.: BLA-EMC-202412-A4101

Page 45 of 83

Power NVNT BLE 1M 2402MHz Ant1


Power NVNT BLE 1M 2442MHz Ant1

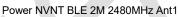
BlueAsia of Technical Services (Shenzhen) Co., Ltd.



Page 46 of 83

Power NVNT BLE 1M 2480MHz Ant1

Power NVNT BLE 2M 2402MHz Ant1


BlueAsia of Technical Services (Shenzhen) Co.,Ltd.

Page 47 of 83

Power NVNT BLE 2M 2442MHz Ant1

BlueAsia of Technical Services (Shenzhen) Co., Ltd.

Page 48 of 83

7.2-6dB Bandwidth

Condition	Mode	Frequency	Antenna	-6 dB Bandwidth	Limit -6 dB	Verdict
		(MHz)		(MHz)	Bandwidth (MHz)	
NVNT	BLE 1M	2402	Ant1	0.662	0.5	Pass
NVNT	BLE 1M	2442	Ant1	0.64	0.5	Pass
NVNT	BLE 1M	2480	Ant1	0.695	0.5	Pass
NVNT	BLE 2M	2402	Ant1	1.097	0.5	Pass
NVNT	BLE 2M	2442	Ant1	1.117	0.5	Pass
NVNT	BLE 2M	2480	Ant1	1.124	0.5	Pass

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481 Email: <u>marketing@cblueasia.com</u> <u>www.cblueasia.com</u> version.v1.3

Page <u>49 of 83</u>

gilent Spectrum Analyzer - Occupied B\ R T RF 50 Ω AC		SENSE:INT	ALIGNAUTO		01:57:01 PMDec 27, 2024
enter Freq 2.402000000	GHz #IEGain:Low	Center Freq: 2.402000 Trig: Free Run #Atten: 30 dB	000 GHz Avg Hold: 100/100		lio Std: None lio Device: BTS
Ref Offset 2.28 dE 0 dB/div Ref 22.28 dBm	3			Mkr3	2.402361 GHz -9.6446 dBm
og 2.3					
2.3		1			
.72	Quero in	Mar man	mm		
7.7	North		and an another	mark.	
7.7	× -	<u>.</u>		were and	Phyle A a
7.7 Tomore May					Marring
7.7		2 2		3 52	2 2
7.7					
7.7					
enter 2.402 GHz Res BW 100 kHz		#VBW 300 k	Hz		Span 2 MHz Sweep 1.333 ms
Occupied Bandwidt	'n	Total Power	2.17 dBm		
5	0288 MHz				
Transmit Freq Error	30.233 kHz	OBW Power	99.00 %		
x dB Bandwidth	661.9 kHz	x dB	-6.00 dB		

-6dB Bandwidth NVNT BLE 1M 2402MHz Ant1

-6dB Bandwidth NVNT BLE 1M 2442MHz Ant1

BlueAsia of Technical Services (Shenzhen) Co.,Ltd.

Page 50 of 83

enter Freq 2.480000000	GHz #IFGain:Low	SENSE:INT Center Freq: 2.4800000 J. Trig: Free Run #Atten: 30 dB	ALIGNAUTO D00 GHz Avg Hold: 100/100	02:32:41 PMDec 27, 2024 Radio Std: None Radio Device: BTS
Ref Offset 2.49 dl 0 dB/div Ref 22.49 dBn				Mkr3 2.48038 GHz -12.187 dBm
0g 2.5				
.49			\wedge^1	
.51	mont	How was a server and a server	and	
7.5	N		an way	1
7.5				M
7.5 Contron Weller				Mananan
7.5				
7.5			_	
enter 2.48 GHz Res BW 100 kHz		#VBW 300 k	Hz	Span 2 MHz Sweep 1.333 ms
Occupied Bandwidt	h	Total Power	0.94 dBm	
1.	0594 MHz			
Transmit Freq Error	32.163 kHz	OBW Power	99.00 %	
x dB Bandwidth	694.9 kHz	x dB	-6.00 dB	

-6dB Bandwidth NVNT BLE 1M 2480MHz Ant1

-6dB Bandwidth NVNT BLE 2M 2402MHz Ant1

BlueAsia of Technical Services (Shenzhen) Co.,Ltd.

Page 51 of 83

R T RF 50Ω AC enter Freq 2.442000000	GHz #IFGain:Low	Center Freq: 2.4420000	ALIGN AUTO 00 GHz Avg Hold: 100/100		10:15:24 AM Dec dio Std: None dio Device: BTS	
Ref Offset 2.03 dE dB/div Ref 22.03 dBm				Mkr3	2.442597 -12.773	
9						
13	2	<u>↓</u>	•3			
0	- Award -	My Munine property	mm			
0	Justan		Thomas	May	5	
MMM	V			Wing	man an	
Ma Martin and					har when	marke
D						
0			-		0	
nter 2.442 GHz es BW 100 kHz		#VBW 300 kl	Ηz		Span - Sweep 1.3	
Occupied Bandwidtl	า	Total Power	0.86 dBm			
2.	0769 MHz					
Fransmit Freq Error	38.738 kHz	OBW Power	99.00 %			
x dB Bandwidth	1.117 MHz	x dB	-6.00 dB			

-6dB Bandwidth NVNT BLE 2M 2442MHz Ant1

-6dB Bandwidth NVNT BLE 2M 2480MHz Ant1

BlueAsia of Technical Services (Shenzhen) Co.,Ltd.

Page 52 of 83

7.3 Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 1M	2402	Ant1	1.0251
NVNT	BLE 1M	2442	Ant1	1.0331
NVNT	BLE 1M	2480	Ant1	1.0187
NVNT	BLE 2M	2402	Ant1	2.0952
NVNT	BLE 2M	2442	Ant1	2.0927
NVNT	BLE 2M	2480	Ant1	2.0207

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481 Email: <u>marketing@cblueasia.com</u> www.cblueasia.com version.v1.3

Page 53 of 83

α R T RF 50 Ω AC Senter Freg 2.402000000	CH-7	SENSE:INT Center Freg: 2.402000	ALIGNAUTO	01:56:55 PMDec 27, 2024 Radio Std: None
senter Fred 2.40200000	HIFGain:Low		Avg Hold: 100/100	Radio Device: BTS
Ref Offset 2.28 dB				
10 dB/div Ref 22.28 dBm				
Log 12.3				
2.28				
-7.72		A.A. a.A.		
-17.7	mos	My Marine Marine	mangen	
-27.7	N			
-37.7	and the second sec		m	A MA
-47.7	and the second	6	- In	Ame with how
-57.7				When an a
-67.7 mmm	6 3			
Center 2.402 GHz		27 (B) 41 4 6 6 1		Span 3 MHz
#Res BW 30 kHz		#VBW 100 k	HZ	Sweep 3.333 ms
Occupied Bandwidt	h	Total Power	2.68 dBm	
1.0	0251 MHz			
Transmit Freq Error	38.423 kHz	OBW Power	99.00 %	
x dB Bandwidth	1.213 MHz	x dB	-26.00 dB	
ISG			STATUS	

OBW NVNT BLE 1M 2402MHz Ant1

OBW NVNT BLE 1M 2442MHz Ant1

BlueAsia of Technical Services (Shenzhen) Co.,Ltd.

Page 54 of 83

R T RF 50 Ω AC Center Freg 2.480000000	GH7	SENSE:INT Center Freg: 2.480000	ALIGNAUTO	02:22:41 PMDec 27, 2024 Radio Std: None
2.40000000	#IFGain:Low		Avg Hold: 100/100	Radio Device: BTS
Ref Offset 2.49 dl 10 dB/div Ref 22.49 dBn				
-og 12.5				
2.49				
7.51	a 8			
17.5		Warney Marine	mman	
27.5	and the V		m	8
37.5	- Not		The second second	
47.5	man		Ŋ	man my have
-57.5				when when you want
-67.5				
Center 2.48 GHz #Res BW 30 kHz		#VBW 100 k	Hz	Span 3 MHz Sweep 3.333 ms
Occupied Bandwidt	h	Total Power	1.36 dBm	
1.	0187 MHz			
Transmit Freq Error	48.158 kHz	OBW Power	99.00 %	
x dB Bandwidth	1.189 MHz	x dB	-26.00 dB	

OBW NVNT BLE 1M 2480MHz Ant1

OBW NVNT BLE 2M 2402MHz Ant1

BlueAsia of Technical Services (Shenzhen) Co.,Ltd.

Page 55 of 83

R T RF 50 Ω AC Center Freq 2.442000000	GH7	SENSE:INT Center Freq: 2.442000	ALIGN AUTO	10:22:40 AM Dec 30, 2024 Radio Std: None
	#IFGain:Low		Avg Hold: 100/100	Radio Device: BTS
Ref Offset 2.03 dE 0 dB/div Ref 22.03 dBm				
og 20				
.03				
.97		n n n		
8.0	mannon	wow and as Award	man manus m	
8.0	Ann Martin			maria
3.0 Mananana Arma				In myman
8.0 ***/** * ***				M.M.
3.0				
enter 2.442 GHz				Span 4 MHz
Res BW 43 kHz		#VBW 120 k	Hz	Sweep 2.667 ms
Occupied Bandwidt	h	Total Power	0.10 dBm	
2.	0927 MHz			
Transmit Freq Error	42.113 kHz	OBW Power	99.00 %	
x dB Bandwidth	2.436 MHz	x dB	-26.00 dB	

OBW NVNT BLE 2M 2442MHz Ant1

OBW NVNT BLE 2M 2480MHz Ant1

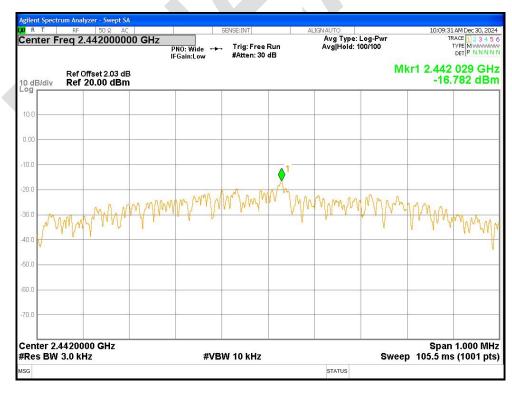
BlueAsia of Technical Services (Shenzhen) Co.,Ltd.

Page 56 of 83

7.4 Maximum Power Spectral Density Level

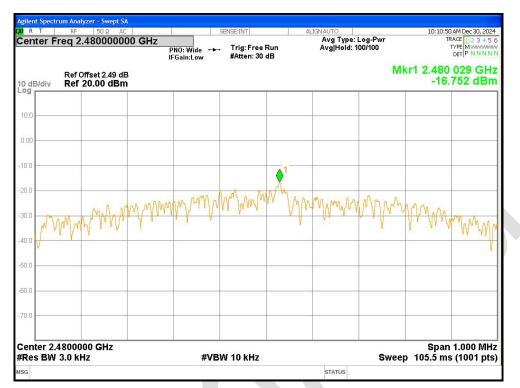
Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-15.409	8	Pass
NVNT	BLE 1M	2442	Ant1	-16.782	8	Pass
NVNT	BLE 1M	2480	Ant1	-16.752	8	Pass
NVNT	BLE 2M	2402	Ant1	-19.563	8	Pass
NVNT	BLE 2M	2442	Ant1	-20.864	8	Pass
NVNT	BLE 2M	2480	Ant1	-20.956	8	Pass

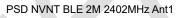
BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481 Email: <u>marketing@cblueasia.com</u> www.cblueasia.com version.v1.3



Page 57 of 83

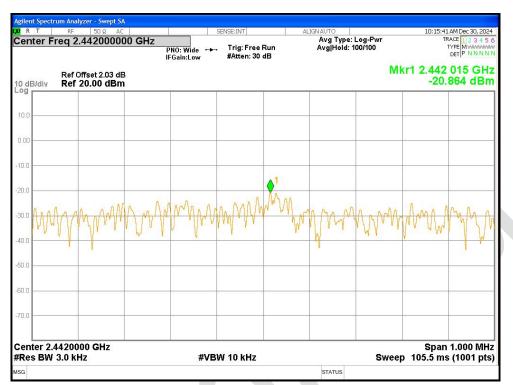
PSD NVNT BLE 1M 2402MHz Ant1

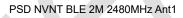

PSD NVNT BLE 1M 2442MHz Ant1


BlueAsia of Technical Services (Shenzhen) Co., Ltd.

Page 58 of 83

PSD NVNT BLE 1M 2480MHz Ant1




BlueAsia of Technical Services (Shenzhen) Co., Ltd.

Page 59 of 83

PSD NVNT BLE 2M 2442MHz Ant1

BlueAsia of Technical Services (Shenzhen) Co.,Ltd.

Page 60 of 83

7.5 Band Edge

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-52.77	-20	Pass
NVNT	BLE 1M	2480	Ant1	-45.55	-20	Pass
NVNT	BLE 2M	2402	Ant1	-52.03	-20	Pass
NVNT	BLE 2M	2480	Ant1	-45.55	-20	Pass

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481 Email: <u>marketing@cblueasia.com</u> <u>www.cblueasia.com</u> Version.V1.3