Report No.: FZ0D1814 # DFS TEST REPORT FCC ID : TLZ-AM457-D Equipment : IEEE 802.11 1X1 a/b/g/n Wireless LAN + Bluetooth 5.1 Combo LGA Module Brand Name : AzureWave Model Name : AW-AM457-D Applicant : AzureWave Technologies, Inc. 8F., No.94, Baozhong Rd. , Xindian Dist., New Taipei City, Taiwan 231 Manufacturer : AzureWave Technologies, Inc. 8F., No.94, Baozhong Rd. , Xindian Dist., New Taipei City, Taiwan 231 Standard : 47 CFR FCC Part 15.407 The product was received on Dec. 26, 2020, and testing was started from Mar. 05, 2021 and completed on Mar. 18, 2021. We, Sporton International Inc. Hsinchu Laboratory, would like to declare that the tested sample has been evaluated in accordance with the procedures given in FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02 and shown compliance with the applicable technical standards. The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. Hsinchu Laboratory, the test report shall not be reproduced except in full. Approved by: Sam Chen Sporton International Inc. Hsinchu Laboratory No.8, Ln. 724, Bo'ai St., Zhubei City, Hsinchu County 302010, Taiwan (R.O.C.) TEL: 886-3-656-9065 FAX: 886-3-656-9085 Report Template No.: CB-A12_4 Ver1.1 Page Number : 1 of 26 Issued Date : Apr. 20, 2021 : 02 Report Version ## **Table of Contents** | Histo | ory of this test report | 3 | |-------|---|----| | Sumi | ımary of Test Result | 4 | | 1 | General Description | 5 | | 1.1 | Information | 5 | | 1.2 | Support Equipment | 8 | | 1.3 | Applicable Standards | 8 | | 1.4 | Testing Location Information | 8 | | 2 | Test Configuration of EUT | 9 | | 2.1 | Test Channel Frequencies Configuration | 9 | | 2.2 | The Worst Case Measurement Configuration | 9 | | 3 | Dynamic Frequency Selection (DFS) Test Result | 10 | | 3.1 | General DFS Information | 10 | | 3.2 | Radar Test Waveform Calibration | 13 | | 3.3 | In-service Monitoring | 20 | | 4 | Test Equipment and Calibration Data | 25 | | 5 | Measurement Uncertainty | 26 | | | | | **Appendix A. Test Photos** Photographs of EUT v01 TEL: 886-3-656-9065 FAX: 886-3-656-9085 Report Template No.: CB-A12_4 Ver1.1 Page Number : 2 of 26 : Apr. 20, 2021 Report No.: FZ0D1814 Report Version : 02 Issued Date ## History of this test report Report No.: FZ0D1814 | Report No. | Version | Description | Issued Date | |------------|---------|---|---------------| | FZ0D1814 | 01 | Initial issue of report | Apr. 19, 2021 | | FZ0D1814 | 02 | Revised the FCC test site designation no. on section 1.4. | Apr. 20, 2021 | TEL: 886-3-656-9065 Page Number : 3 of 26 FAX: 886-3-656-9085 Issued Date : Apr. 20, 2021 ## **Summary of Test Result** Report No.: FZ0D1814 | Report
Clause | Ref Std.
Clause | Test Items | Result
(PASS/FAIL) | Remark | |------------------|----------------------|---|-----------------------|--------| | 3.3 | FCC KDB 905462 7.8.3 | DFS: In-Service Monitoring for Channel Move Time (CMT) | PASS | - | | 3.3 | FCC KDB 905462 7.8.3 | DFS: In-Service Monitoring for
Channel Closing Transmission
Time (CCTT) | PASS | - | | 3.3 | FCC KDB 905462 7.8.3 | DFS: In-Service Monitoring for Non-Occupancy Period (NOP) | PASS | - | Note: Since the product is client without radar detection function, only Channel Move Time, Channel Closing Transmission Time and Non-Occupancy Period are required to perform. #### **Declaration of Conformity:** The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers. #### **Comments and Explanations:** The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification. Reviewed by: Sam Chen Report Producer: Wendy Pan TEL: 886-3-656-9065 Page Number : 4 of 26 FAX: 886-3-656-9085 Issued Date : Apr. 20, 2021 ## 1 General Description ### 1.1 Information #### 1.1.1 RF General Information | Specification Items | Specification Items Description | | | | |-----------------------------|--|------------------------|--|--| | Frequency Range | 5250 MHz – 5350 MHz | | | | | | 5470 MHz – 5725 MHz | | | | | Power Type | From power adapter | | | | | Channel Bandwidth | 20/40 MHz operating channel bandwid | lth | | | | | ☐ Master | | | | | Operating Mode | Client with radar detection | | | | | | | | | | | Communication Mode | | ☐ Frame Based | | | | TPC Function | With TPC | ☐ Without TPC | | | | Weather Band (5600~5650MHz) | ⊠ With 5600~5650MHz | ☐ Without 5600~5650MHz | | | | Power-on cycle | NA (No Channel Availability Check Function) | | | | | Firmware Number | 0x00000001 | | | | | | mbination of OFDM-BPSK, QPSK, 16Q m and TPC have the capability to opera | | | | Report No.: FZ0D1814 Note: The above information was declared by manufacturer. #### **TPC Power Result** | Mode | Min Power | Max Power | Min EIRP | Max EIRP | |------------------------------|-----------|-----------|----------|----------| | | (dBm) | (dBm) | (dBm) | (dBm) | | 802.11a_Nss1,(6Mbps)_1TX | - | - | - | - | | 5.25-5.35GHz | 15.07 | 21.07 | 20.23 | 26.23 | | 5.47-5.725GHz | 11.25 | 17.25 | 16.41 | 22.41 | | 802.11n HT20_Nss1,(MCS0)_1TX | - | - | - | - | | 5.25-5.35GHz | 12.77 | 18.77 | 17.93 | 23.93 | | 5.47-5.725GHz | 10.37 | 16.37 | 15.53 | 21.53 | | 802.11n HT40_Nss1,(MCS0)_1TX | - | - | - | - | | 5.25-5.35GHz | 13.50 | 19.50 | 18.66 | 24.66 | | 5.47-5.725GHz | 12.71 | 18.71 | 17.87 | 23.87 | TEL: 886-3-656-9065 Page Number : 5 of 26 FAX: 886-3-656-9085 Issued Date : Apr. 20, 2021 #### 1.1.2 Antenna Information | Ant. | Port | Brand | Model Name | Antenna
Type | Connector | Gain (dBi) | |------|------|---|-------------------|-----------------|-----------|------------| | 1 | 1 | Molex | 1461531050 | Dipole | I-PEX | Note 1 | | Ant. | Port | Brand Holder | Model Name | Antenna
Type | Connector | Gain (dBi) | | 2 | 1 | MAG. LAYERS
SCIENTIFIC-TECHNI
CS CO., LTD | MSA-4008-25GC1-A2 | PIFA | I-PEX | Note 1 | Report No.: FZ0D1814 Note1: | A n4 | | Antenna Gain (dBi) | | |------|-------------|--------------------|-----------| | Ant. | WLAN 2.4GHz | WLAN 5GHz | Bluetooth | | 1 | 3.2 | 4.25 | 3.2 | | 2 | 2.98 | 5.16 | 2.98 | Note2: The above information was declared by manufacturer. ### 1.1.3 Table for Multiple Listing The difference for each EUT is shown as below: | Model Name | EUT | Diplexer Brand | Low power filter Brand | |---------------|-------|----------------|------------------------| | | EUT 1 | Murata | Murata | | AW-AM457-D | EUT 2 | Murata | Walsin | | AVV-AIVI457-D | EUT 3 | Walsin | Murata | | | EUT 4 | Walsin | Walsin | Note: From the above, EUT 1 was selected as representative EUT for all the test and its data was recorded in this report. TEL: 886-3-656-9065 Page Number : 6 of 26 FAX: 886-3-656-9085 Issued Date : Apr. 20, 2021 ### 1.1.4 DFS Band Carrier Frequencies There are two bandwidth systems. For 20MHz bandwidth systems, use Channel 52, 56, 60, 64, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140. Report No.: FZ0D1814 For 40MHz bandwidth systems, use Channel 54, 62, 102, 110, 118, 126, 134. | Frequency Band | Channel No. | Frequency | Channel No. | Frequency | |-------------------------|-------------|-----------|-------------|-----------| | 5250~5350 MHz | 52 | 5260 MHz | 60 | 5300 MHz | | 5250~5350 MHZ
Band 2 | 54 | 5270 MHz | 62 | 5310 MHz | | ballu 2 | 56 | 5280 MHz | 64 | 5320 MHz | | | 100 | 5500 MHz | 120 | 5600 MHz | | | 102 | 5510 MHz | 124 | 5620 MHz | | | 104 | 5520 MHz | 126 | 5630 MHz | | 5470~5725 MHz | 108 | 5540 MHz | 128 | 5640 MHz | | Band 3 | 110 | 5550 MHz | 132 | 5660 MHz | | | 112 | 5560 MHz | 134 | 5670 MHz | | | 116 | 5580 MHz | 136 | 5680 MHz | | | 118 | 5590 MHz | 140 | 5700 MHz | TEL: 886-3-656-9065 Page Number: 7 of 26 FAX: 886-3-656-9085 Issued Date: Apr. 20, 2021 ### 1.2 Support Equipment | Support Equipment | | | | | | | | | |-------------------|--|--------|---------|-------------|--|--|--|--| | No. | No. Equipment Brand Name Model Name FCC ID | | | | | | | | | Α | Notebook | DELL | E4300 | N/A | | | | | | В | Notebook | DELL | E4300 | N/A | | | | | | С | WLAN AP | D-LINK | DIR860L | KA2IR860LA1 | | | | | Report No.: FZ0D1814 ## 1.3 Applicable Standards According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards: FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02 ### 1.4 Testing Location Information Test Lab.: Sporton International Inc. Hsinchu Laboratory Hsinchu ADD: No.8, Ln. 724, Bo'ai St., Zhubei City, Hsinchu County 302010, Taiwan (R.O.C.) (TAF: 3787) TEL: 886-3-656-9065 FAX: 886-3-656-9085 Test site Designation No. TW3787 with FCC. Test site registered number IC 4086D with Industry Canada. | Test Condition | Test Site No. | Test Engineer | Test Environment
(°C / %) | Test Date | |----------------|---------------|---------------|------------------------------|---------------------------------| | DFS | DF01-CB | Benson Su | 22.4-23.2 / 56-59 | Mar. 05, 2021~
Mar. 18, 2021 | TEL: 886-3-656-9065 Page Number: 8 of 26 FAX: 886-3-656-9085 Issued Date: Apr. 20, 2021 ## 2 Test Configuration of EUT ## 2.1 Test Channel Frequencies Configuration | Test Channel Frequencies Configuration | | | | | |--|--------------------------|--|--|--| | IEEE Std. | Test Channel Freq. (MHz) | | | | | 802.11n (HT40) | 5510 MHz | | | | Report No.: FZ0D1814 ## 2.2 The Worst Case Measurement Configuration | Th | The Worst Case Mode for Following Conformance Tests | | | | | |-----------------|--|--|--|--|--| | Tests Item | Dynamic Frequency Selection (DFS) | | | | | | Test Condition | Radiated measurement The EUT shall be configured to operate at the highest transmitter output power setting. If more than one antenna assembly is intended for this power setting, the gain of the antenna assembly with the lowest gain shall be used. The DFS radar test signals have been aligned to the direction corresponding to the EUT's maximum antenna gain. | | | | | | Modulation Mode | 802.11n (HT40) | | | | | TEL: 886-3-656-9065 Page Number : 9 of 26 FAX: 886-3-656-9085 Issued Date : Apr. 20, 2021 ## 3 Dynamic Frequency Selection (DFS) Test Result #### 3.1 General DFS Information #### 3.1.1 DFS Parameters | Table D.1: DFS requirement values | | | | | |-----------------------------------|---|--|--|--| | Parameter | Value | | | | | Non-occupancy period | Minimum 30 minutes | | | | | Channel Availability Check Time | 60 seconds | | | | | Channel Move Time | 10 seconds (Note 1). | | | | | Channel Closing Transmission Time | 200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second periods. (Notes 1 and 2). | | | | | U-NII Detection Bandwidth | Minimum 100% of the 99% power bandwidth (Note 3). | | | | Report No.: FZ0D1814 - Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst. - Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate Channel changes (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions. - Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 is used and for each frequency step the minimum percentage of detection is 90%. Measurements are performed with no data traffic. | Table D.2: Interference threshold values | | | | | | |--|------------------|--|--|--|--| | Maximum Transmit Power | Value (see note) | | | | | | EIRP≥200 mW | -64 dBm | | | | | | EIRP < 200 mW and PSD < 10dBm/MHz | -62 dBm | | | | | | EIRP < 200 mW and PSD >= 10dBm/MHz | -64 dBm | | | | | - Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna. - Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response. - Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911D01. TEL: 886-3-656-9065 Page Number : 10 of 26 FAX: 886-3-656-9085 Issued Date : Apr. 20, 2021 #### 3.1.2 Applicability of DFS Requirements Prior to Use of a Channel | | | DFS Operational mode | | | | | |---------------------------------|--------|--------------------------------|-----------------------------|--|--|--| | Requirement | Master | Client without radar detection | Client with radar detection | | | | | Non-Occupancy Period | Yes | Not required | Yes | | | | | DFS Detection Threshold | Yes | Not required | Yes | | | | | Channel Availability Check Time | Yes | Not required | Not required | | | | | U-NII Detection Bandwidth | Yes | Not required | Yes | | | | Report No.: FZ0D1814 #### 3.1.3 Applicability of DFS Requirements during Normal Operation | | DFS Operational mode | | | | | |-----------------------------------|----------------------|--------------------------------|-----------------------------|--|--| | Requirement | Master | Client without radar detection | Client with radar detection | | | | DFS Detection Threshold | Yes | Not required | Yes | | | | Channel Closing Transmission Time | Yes | Yes | Yes | | | | Channel Move Time | Yes | Yes | Yes | | | | U-NII Detection Bandwidth | Yes | Not required | Yes | | | | Additional requirements for devices with multiple bandwidth modes | Master Device or Client with Radar Detection | Client Without Radar
Detection | | |---|--|--|--| | U-NII Detection Bandwidth and
Statistical Performance Check | All BW modes must be tested | Not required | | | Channel Move Time and Channel Closing Transmission Time | Test using widest BW mode available | Test using the widest BW mode available for the link | | | All other tests | Any single BW mode | Not required | | **Note:** Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency. TEL: 886-3-656-9065 Page Number : 11 of 26 FAX: 886-3-656-9085 Issued Date : Apr. 20, 2021 ## 3.1.4 Channel Loading/Data Streaming | | The data file (MPEG-4) has been transmitting in a streaming mode. | |-------------|--| | \boxtimes | Software to ping the client is permitted to simulate data transfer with random ping intervals. | | \boxtimes | Minimum channel loading of approximately 17%. | | | Unicast protocol has been used. | Report No.: FZ0D1814 TEL: 886-3-656-9065 Page Number : 12 of 26 FAX: 886-3-656-9085 Issued Date : Apr. 20, 2021 #### 3.2 Radar Test Waveform Calibration #### 3.2.1 Short Pulse Radar Test Waveforms | Radar
Type | Pulse Width
(µsec) | PRI (µsec) | Number of Pulses | Minimum
Percentage of
Successful
Detection | Minimum
Trials | |---------------|-----------------------|---|--|---|-------------------| | 0 | 1 | 1428 | 18 | See Note 1 | See Note 1 | | 1A | 1 | 15 unique
PRI in KDB
905462 D02
Table 5a | ((1) (19×10 ⁶)) | 60% | 15 | | 1B | 1 | 15 unique
PRI within
518-3066,
Excluding 1A
PRI | $Roundup \left\{ \left(\frac{1}{360} \right) \times \left(\frac{19 \times 10^6}{PRI} \right) \right\}$ | 60% | 15 | | 2 | 1-5 | 150-230 | 23-29 | 60% | 30 | | 3 | 6-10 | 200-500 | 16-18 | 60% | 30 | | 4 | 11-20 | 200-500 | 12-16 | 60% | 30 | | Aggrega | ate (Radar Type | 80% | 120 | | | Report No.: FZ0D1814 **Note 1**: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests. A minimum of 30 unique waveforms are required for each of the short pulse radar types 1 through 4. If more than 30 waveforms are used for short pulse radar types 1 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. The aggregate is the average of the percentage of successful detections of short pulse radar types 1-4. #### 3.2.2 Long Pulse Radar Test Waveform | Radar
Type | Pulse
Width
(µsec) | Chirp
Width
(MHz) | PRI (µsec) | Number of
Pulses
per <i>Burst</i> | Number of
Bursts | Minimum Percentage of Successful Detection | Minimum
Trials | |---------------|--------------------------|-------------------------|------------|---|---------------------|--|-------------------| | 5 | 50-100 | 5-20 | 1000-2000 | 1-3 | 8-20 | 80% | 30 | Each waveform is defined as follows: - The transmission period for the Long Pulse Radar test signal is 12 seconds. - There are a total of 8 to 20 Bursts in the 12 second period, with the number of Bursts being randomly chosen. This number is Burst Count. - Each Burst consists of 1 to 3 pulses, with the number of pulses being randomly chosen. Each Burst within the 12 second sequence may have a different number of pulses. - The pulse width is between 50 and 100 microseconds, with the pulse width being randomly chosen. Each pulse within a Burst will have the same pulse width. Pulses in different Bursts may have different pulse widths. - Each pulse has a linear FM chirp between 5 and 20 MHz, with the chirp width being randomly chosen. Each pulse within a transmission period will have the same chirp width. The chirp is centered on the pulse. For example, with a radar frequency of 5300 MHz and a 20 MHz chirped signal, the chirp starts at 5290 MHz and TEL: 886-3-656-9065 Page Number : 13 of 26 FAX: 886-3-656-9085 Issued Date : Apr. 20, 2021 ends at 5310 MHz. • If more than one pulse is present in a Burst, the time between the pulses will be between 1000 and 2000 microseconds, with the time being randomly chosen. If three pulses are present in a Burst, the time between the first and second pulses is chosen independently of the time between the second and third pulses. Report No.: FZ0D1814 • The 12 second transmission period is divided into even intervals. The number of intervals is equal to Burst Count. Each interval is of length (12,000,000 / Burst Count) microseconds. Each interval contains one Burst. The start time for the Burst, relative to the beginning of the interval, is between 1 and [(12,000,000 / Burst Count) – (Total Burst Length) + (One Random PRI Interval)] microseconds, with the start time being randomly chosen. The step interval for the start time is 1 microsecond. The start time for each Burst is chosen independently. ### 3.2.3 Frequency Hopping Radar Test Waveform | Radar
Type | Pulse
Width
(µsec) | PRI
(µsec) | Pulses
per Hop | Hopping
Rate (kHz) | Hopping
Sequence
Length (ms) | Minimum
Percentage of
Successful
Detection | Minimum
Trials | |---------------|--------------------------|---------------|-------------------|-----------------------|------------------------------------|---|-------------------| | 6 | 1 | 333 | 9 | 0.333 | 300 | 70% | 30 | The FCC Type 6 waveform uses a static waveform with 100 bursts in the instruments ARB. In addition, the RF list mode is operated with a list containing 100 frequencies from a randomly generated list and it had be ensured that at least one of the random frequencies falls into the UNII Detection Bandwidth of the DUT. Each burst from the waveform file initiates a trigger pulse at the beginning that switches the RF list from one item to the next one. #### 3.2.4 DFS Threshold Level | DFS Threshold Level | | | | | |---|-------|---|--------------------------|--| | DFS Threshold level: - | 63 dB | m | at the antenna connector | | | | | | in front of the antenna | | | The Interference Radar Detection Threshold Level is is -64 dBm + 0 [dBi] + 1 dB = -63 dBm. That had been taken into account the output power range and antenna gain. | | | | | TEL: 886-3-656-9065 Page Number : 14 of 26 FAX: 886-3-656-9085 Issued Date : Apr. 20, 2021 ### 3.2.5 Calibration Setup Report No.: FZ0D1814 TEL: 886-3-656-9065 Page Number : 15 of 26 FAX: 886-3-656-9085 Issued Date : Apr. 20, 2021 #### 3.2.6 Radar Waveform calibration Plot Report No.: FZ0D1814 TEL: 886-3-656-9065 Page Number : 16 of 26 FAX: 886-3-656-9085 Issued Date : Apr. 20, 2021 #### 3.2.7 Test Setup A spectrum analyzer is used as a monitor to verify that the EUT has vacated the Channel within the (Channel Closing Transmission Time and Channel Move Time, and does not transmit on a Channel during the Non-Occupancy Period after the detection and Channel move. Report No.: FZ0D1814 TEL: 886-3-656-9065 Page Number: 17 of 26 FAX: 886-3-656-9085 Issued Date: Apr. 20, 2021 #### 3.2.8 Data traffic Plot Report No.: FZ0D1814 TEL: 886-3-656-9065 Page Number: 18 of 26 FAX: 886-3-656-9085 Issued Date: Apr. 20, 2021 Report No.: FZ0D1814 TEL: 886-3-656-9065 Page Number : 19 of 26 FAX: 886-3-656-9085 Issued Date : Apr. 20, 2021 ### 3.3 In-service Monitoring #### 3.3.1 In-service Monitoring Limit | In-service Monitoring Limit | | | | |-----------------------------------|---|--|--| | Channel Move Time | 10 sec | | | | Channel Closing Transmission Time | 200 ms + an aggregate of 60 ms over remaining 10 sec periods. | | | | Non-occupancy period | Minimum 30 minutes | | | Report No.: FZ0D1814 #### 3.3.2 Measuring Instruments Refer a test equipment and calibration data table in this test report. #### 3.3.3 Test Procedures #### **Test Method** - ✓ Verified during In-Service Monitoring; Channel Closing Transmission Time, Channel Move Time. Client Device will associate with the EUT. Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel for duration greater than 10 seconds. Measure and record the transmissions from the EUT during the observation time (Channel Move Time). Compare the Channel Move Time and Channel Closing Transmission Time limits. - ✓ Verified during In-Service Monitoring; Channel Closing Transmission Time, Channel Move Time. One 12 sec plot needs to be reported for the Short Pulse Radar Types 0 And zoom-in a 60 ms plot verified channel closing time for the aggregate transmission time starting from 200ms after the end of the radar signal to the completion of the channel move. - ✓ Verified during In-Service Monitoring; Non-Occupancy Period. Client Device will associate with the EUT. Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel for duration greater than 10 seconds. Measure and record the transmissions from the EUT during the observation time (Non-Occupancy Period). Compare the Non-Occupancy Period limits. TEL: 886-3-656-9065 Page Number : 20 of 26 FAX: 886-3-656-9085 Issued Date : Apr. 20, 2021 #### 3.3.4 Test Result of Channel Move Time Modulation Mode: 802.11n (HT40) | Doromotor | Test Result | Limit | | |--------------------------|-------------|-------|--| | Parameter | Type 0 | | | | Test Channel (MHz) | 5510 MHz | - | | | Channel Move Time (sec.) | 4.173 | < 10s | | Report No.: FZ0D1814 TEL: 886-3-656-9065 Page Number : 21 of 26 FAX: 886-3-656-9085 Issued Date : Apr. 20, 2021 #### 3.3.5 Test Result of Channel Closing Transmission Time Modulation Mode: 802.11n (HT40) | Doromotor | Test Result | Limit | | |---|-------------|--------|--| | Parameter | Туре 0 | | | | Test Channel (MHz) | 5510 MHz | - | | | Channel Closing Transmission Time (ms) (Note) | 20.47 | < 60ms | | Report No.: FZ0D1814 Note: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 seconds period. The aggregate duration of control signals will not count quiet periods in between transmissions. | Modulation Mode | Freq. | Radar Type | |-----------------|----------|------------| | 802.11n (HT40) | 5510 MHz | 0 | Channel Closing Transmission Time is comprised of 200 ms starting at the beginning of the Channel Move Time plus 60ms additional intermittent control signals Dwell is the dwell time per spectrum analyzer sampling bin. S is the sweep time B is the number of spectrum analyzer sampling bins C is the intermittent control signals of Channel Closing Transmission Time N is the number of spectrum analyzer sampling bins (intermittent control signals) showing a U-NII transmission Dwell (0.156 ms)= S (5000 ms) / B (32000) C(20.47 ms) = N(131) X Dwell (0.156 ms) TEL: 886-3-656-9065 Page Number : 22 of 26 FAX: 886-3-656-9085 Issued Date : Apr. 20, 2021 ### 3.3.6 Test Result of Non-Occupancy Period Modulation Mode: 802.11n (HT40) | Davamatar | Test Result | Limit | | |-----------------------------|-------------|----------|--| | Parameter | Туре 0 | | | | Test Channel (MHz) | 5510 MHz | - | | | Non-Occupancy Period (min.) | ≥30 | ≥ 30 min | | Report No.: FZ0D1814 | Modulation Mode | Freq. | |-----------------|----------| | 802.11n (HT40) | 5510 MHz | #### **Non-Occupancy Period** During the 30 minutes observation time, UUT did not make any transmissions on a channel after a radar signal was detected on that channel by either the Channel Availability Check or the In-Service Monitoring. TEL: 886-3-656-9065 Page Number : 23 of 26 FAX: 886-3-656-9085 Issued Date : Apr. 20, 2021 #### Non-associated test Master was off. During the 30 minutes observation time, The UUT did not make any transmissions in the DFS band after UUT power up. Report No.: FZ0D1814 TEL: 886-3-656-9065 Page Number : 24 of 26 FAX: 886-3-656-9085 Issued Date : Apr. 20, 2021 ## 4 Test Equipment and Calibration Data | Instrument | Brand | Model No. | Serial No. | Characteristics | Calibration
Date | Calibration
Due Date | Remark | |----------------------|-----------|-----------|---------------|-----------------|---------------------|-------------------------|-----------------------| | Signal analyzer | Agilent | N9010A | MY52220519 | 10kHz~44GHz | Mar. 24, 2020 | Mar. 23, 2021 | Radiated
(DF01-CB) | | ESG Signal generator | Agilent | E4438C | MY49072778 | 250kHz-6GHz | Aug. 24, 2020 | Aug. 23, 2021 | Radiated
(DF01-CB) | | Horn Antenna | COM-POWER | AH-118 | 071187 | 1GHz – 18GHz | Jul. 08, 2020 | Jul. 07, 2021 | Radiated
(DF01-CB) | | Horn Antenna | COM-POWER | AH-118 | 071042 | 1GHz – 18GHz | Dec. 22, 2020 | Dec. 21, 2021 | Radiated
(DF01-CB) | | RF Power
Divider | MTJ | 2 Way | DFS-01-DV-02 | 1GHz ~ 6GHz | Oct. 05, 2020 | Oct. 04, 2021 | Radiated
(DF01-CB) | | RF Power
Divider | MTJ | 2 Way | DFS-01-DV-03 | 1GHz ~ 6GHz | Oct. 05, 2020 | Oct. 04, 2021 | Radiated
(DF01-CB) | | RF Power
Divider | MTJ | 4 Way | DFS-01-DV-01 | 1GHz ~ 6GHz | Oct. 05, 2020 | Oct. 04, 2021 | Radiated
(DF01-CB) | | RF Cable-high | Woken | RG402 | High Cable-57 | 1 GHz –18 GHz | Oct. 05, 2020 | Oct. 04, 2021 | Radiated
(DF01-CB) | | RF Cable-high | Woken | RG402 | High Cable-58 | 1 GHz –18 GHz | Oct. 05, 2020 | Oct. 04, 2021 | Radiated
(DF01-CB) | | RF Cable-high | Woken | RG402 | High Cable-59 | 1 GHz –18 GHz | Oct. 05, 2020 | Oct. 04, 2021 | Radiated
(DF01-CB) | Report No.: FZ0D1814 Note: Calibration Interval of instruments listed above is one year. TEL: 886-3-656-9065 Page Number : 25 of 26 FAX: 886-3-656-9085 Issued Date : Apr. 20, 2021 ## 5 Measurement Uncertainty | Test Items | Uncertainty | Remark | |-------------------|-------------|--------------------------| | Radiated Emission | 3.4 dB | Confidence levels of 95% | Report No.: FZ0D1814 TEL: 886-3-656-9065 Page Number : 26 of 26 FAX: 886-3-656-9085 Issued Date : Apr. 20, 2021