

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with the standards traceable to National Measurement Laboratory (**NML**) of **R.O.C**, or National Institute of Standards and Technology (**NIST**) of **U.S.A**.

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

BTL's report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and **BTL-self**, extracts from the test report shall not be reproduced except in full with **BTL**'s authorized written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO Guide 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

3TL

Table of Contents	Page
1. CERTIFICATION	6
2 . SUMMARY OF TEST RESULTS	7
2.1 TEST FACILITY	8
2.2 MEASUREMENT UNCERTAINTY	8
3 . GENERAL INFORMATION	9
3.1 GENERAL DESCRIPTION OF EUT	9
3.2 DESCRIPTION OF TEST MODES	10
3.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TE	STED 11
3.5 DESCRIPTION OF SUPPORT UNITS	11
4 . EMC EMISSION TEST	12
4.1 CONDUCTED EMISSION MEASUREMENT	12
4.1.1 POWER LINE CONDUCTED EMISSION LIMITS 4.1.2 TEST PROCEDURE	12 12
4.1.3 DEVIATION FROM TEST STANDARD	12
4.1.4 TEST SETUP 4.1.5 EUT OPERATING CONDITIONS	13 13
4.1.6 EUT TEST CONDITIONS	13
4.1.7 TEST RESULTS	13
4.2 RADIATED EMISSION MEASUREMENT	14
4.2.1 RADIATED EMISSION LIMITS 4.2.2 TEST PROCEDURE	14 15
4.2.3 DEVIATION FROM TEST STANDARD	15
4.2.4 TEST SETUP 4.2.5 EUT OPERATING CONDITIONS	16 17
4.2.6 EUT TEST CONDITIONS	17
4.2.7 TEST RESULTS (9KHZ TO 30MHZ)	17
4.2.8 TEST RESULTS (BETWEEN 30MHZ TO 1000 MHZ) 4.2.9 TEST RESULTS (ABOVE 1000 MHZ)	18 18
5. BANDWIDTH TEST	10
5.1 APPLIED PROCEDURES / LIMIT	19
5.1.1 TEST PROCEDURE	19
5.1.2 DEVIATION FROM STANDARD	19
5.1.3 TEST SETUP 5.1.4 EUT OPERATION CONDITIONS	19 19
5.1.5 EUT TEST CONDITIONS	19
5.1.6 TEST RESULTS	19
6 . MAXIMUM OUTPUT POWER TEST	20

ЗĨL

Table of Contents	Page
6.1 APPLIED PROCEDURES / LIMIT 6.1.1 TEST PROCEDURE 6.1.2 DEVIATION FROM STANDARD 6.1.3 TEST SETUP 6.1.4 EUT OPERATION CONDITIONS 6.1.5 EUT TEST CONDITIONS 6.1.6 TEST RESULTS	20 20 20 20 20 20 20 20
7 . ANTENNA CONDUCTED SPURIOUS EMISSION	21
7.1 APPLIED PROCEDURES / LIMIT	21
7.1.1 TEST PROCEDURE	21
7.1.2 DEVIATION FROM STANDARD	21
7.1.3 TEST SETUP 7.1.4 EUT OPERATION CONDITIONS 7.1.5 EUT OPERATION CONDITIONS 7.1.6 TEST RESULTS	21 21 21 21 21
8 . POWER SPECTRAL DENSITY TEST 8.1 APPLIED PROCEDURES / LIMIT 8.1.1 TEST PROCEDURE 8.1.2 DEVIATION FROM STANDARD 8.1.3 TEST SETUP 8.1.4 EUT OPERATION CONDITIONS 8.1.5 EUT TEST CONDITIONS 8.1.6 TEST RESULTS	22 22 22 22 22 22 22 22 22 22 22
9 . MEASUREMENT INSTRUMENTS LIST	23
10 . EUT TEST PHOTO	25
ATTACHMENT A - CONDUCTED EMISSION	29
ATTACHMENT B - RADIATED EMISSION (9KHZ TO 30MHZ)	32
ATTACHMENT C - RADIATED EMISSION (30MHZ TO 1000MHZ)	34
ATTACHMENT D - RADIATED EMISSION (ABOVE 1000MHZ)	37
ATTACHMENT E - BANDWIDTH	50
ATTACHMENT F - MAXIMUM OUTPUT POWER TEST	53
ATTACHMENT G - ANTENNA CONDUCTED SPURIOUS EMISSION	54
ATTACHMENT H - POWER SPECTRAL DENSITY TEST	58

REPORT ISSUED HISTORY

Issued No.	Description	Issued Date
BTL-FCCP-1-1506028	Original Issue.	Jul. 01, 2015

1. CERTIFICATION

	2.4G RF Dongle
Brand Name :	A4 lech
Model Name :	RN-10B, RN-10C
Applicant :	A-FOUR TECH CO., LTD.
Manufacturer :	5-Link Technology Co.,Ltd.
Address :	Xiwang Industrial District, Tiantangwei, Fenggang Town, Dongguan
	City, Guangdong, China
Date of Test :	Jun. 08, 2015 ~ Jun. 25, 2015
Test Sample :	ENGINEERING SAMPLE
Standard(s) :	FCC Part15, Subpart C :2014 (15.247) / ANSI C63.4-2009

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

The test data, data evaluation, and equipment configuration contained in our test report (Ref No. BTL-FCCP-1-1506028) were obtained utilizing the test procedures, test instruments, test sites that has been accredited by the Authority of TAF according to the ISO-17025 quality assessment standard and technical standard(s).

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

Applied Standard(s): FCC Part15 (15.247) , Subpart C

Standard(s) Section	Test Item	Judgment	Remark
15.207	Conducted Emission	PASS	
15.247(d)	Antenna conducted Spurious Emission	PASS	
15.247(a)(2)	6dB Bandwidth	PASS	
15.247(b)(3)	Peak Output Power	PASS	
15.247(e)	Power Spectral Density	PASS	
15.203	Antenna Requirement	PASS	
15.209/15.205	Transmitter Radiated Emissions	PASS	

NOTE:

(1)" N/A" denotes test is not applicable to this device.

(2) The test follows FCC KDB Publication No. 558074 D01 DTS Meas Guidance v03r02 (Measurement Guidelines of DTS)

2.1 TEST FACILITY

Conducted emission Test:

C05: (FCC RN:965108; FCC DN:TW1082) No. 68-1, Ln. 169, Sec.2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

Radiated emission Test (Below 1 GHz):

CB08: (FCC RN: 614388; FCC DN: TW1054; IC Assigned Code: 4428C-1) 1F., No. 61, Ln. 77, Sing-ai Rd., Neihu Dist., Taipei City 114, Taiwan (R.O.C.)

Radiated emission Test (Above 1 GHz):

CB08: (FCC RN: 614388; FCC DN: TW1054; IC Assigned Code: 4428C-1)

1F., No. 61, Ln. 77, Sing-ai Rd., Neihu Dist., Taipei City 114, Taiwan (R.O.C.)

2.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

BTL measurement uncertainty is less than the CISPR 16-4-2 U_{cispr} requirement.

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of **k=2**, providing a level of confidence of approximately **95** %.

A. Conducted emission test:

Test Site	Measurement Frequency Range	U,(dB)	NOTE
C05	150 kHz ~ 30 MHz	1.94	

B. Radiated emission test:

Test Site	Item	Measurement Frequency Range		Uncertainty	NOTE		
	30 - 200MHz	3.35 dB					
		Horizontal	200 - 1000MHz	3.11 dB			
	Dedicted	Polarization	1 - 18GHz	3.97 dB			
CB08	Radiated emission at 3m	emission at		18 - 40GHz	4.01 dB		
CB00					30 - 200MHz	3.22 dB	
			Vertical	200 - 1000MHz	3.24 dB		
		Polarization	1 - 18GHz	4.05 dB			
			18 - 40GHz	4.04 dB			

Our calculated Measurement Instrumentation Uncertainty is shown in the tables above. These are our U_{lab} values in CISPR 16-4-2 terminology.

Since Table 1 of CISPR 16-4-2 has values of measurement instrumentation uncertainty, called U_{CISPR} , as follows:

Conducted Disturbance (mains port) - 150 kHz - 30 MHz: 3.6 dB

Radiated Disturbance (electric field strength on an open area test site or alternative test site) –

30 MHz – 1000 MHz: 5.2 dB

It can be seen that our $U_{\mbox{\tiny lab}}$ values are smaller than $U_{\mbox{\tiny CISPR}}.$

If U_{lab} is less than or equal to U_{CISPR} , then:

- compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit;

 non-compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit.

If U_{lab} is greater than $U_{\text{CISPR}},$ then:

- compliance is deemed to occur if no measured disturbance level, increased by (U_{lab} U_{CISPR}), exceeds the disturbance limit;
- non-compliance is deemed to occur if any measured disturbance level, increased by $(U_{lab} U_{CISPR})$, exceeds the disturbance limit.

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	2.4G RF Dongle		
Brand Name	A4Tech		
Model Name	RN-10B, RN-10C		
Model Difference	Only differ in model name.		
Product Description	Operation Frequency	2405-2474MHz	
	Modulation Technology	GFSK(1Mbps)	
	Bit Rate of Transmitter		
	Output Power (Max.)	-1.66 dBm	
Power Source	Supplied from PC USB Port.		
Power Rating	I/P: DC 5V 30mA		

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2. Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2405	05	2430	09	2458
02	2407	06	2437	10	2469
03	2418	07	2442	11	2471
04	2426	08	2447	12	2474

3. Table for Filed Antenna

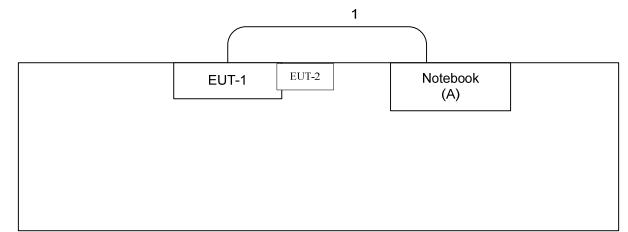
Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	N/A	N/A	Printed	N/A	-17.29

3.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	TX Mode NOTE (1)
Mode 2	TX Mode

The EUT system operated these modes were found to be the worst case during the pre-scanning test as following:


For Conducted Test		
Final Test Mode	Description	
Mode 2	TX Mode	

For Radiated Test		
Final Test Mode Description		
Mode 1	TX Mode NOTE (1)	

Note:

- (1) The measurements are performed at the high, middle, low available channels.
- (2) For radiation below 1GHz, the middle channel is worst case and recorded in the test report.

3.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

3.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID/IC	Series No.	Note
А	Notebook PC	DELL	PP18L	DOC	PF329 A01	

Item	Shielded Type	Ferrite Core	Length	Note
1	NO	NO	1.4m	-

Note:

(1) For detachable type I/O cable should be specified the length in m in ^rLength ^l column.

4. EMC EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

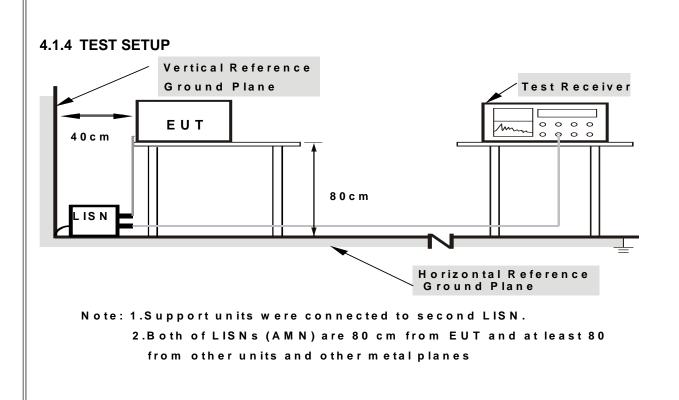
4.1.1 POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

Frequency of Emission (MHz)	Conducted Limit (dBµV)		
	Quasi-peak	Average	
0.15 -0.5	66 to 56*	56 to 46*	
0.50 -5.0	56	46	
5.0 -30.0	60	50	

Note:

(1) The limit of " * " decreases with the logarithm of the frequency

The following table is the setting of the receiver


Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

4.1.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

4.1.3 DEVIATION FROM TEST STANDARD

No deviation

4.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

4.1.6 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: AC 120V 60Hz

4.1.7 TEST RESULTS Please refer to the Attachment A.

Remark:

- (1) All readings are QP Mode value unless otherwise stated AVG in column of Note. If the QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only QP Mode was measured, but AVG Mode didn't perform. In this case, a "*" marked in AVG Mode column of Interference Voltage Measured.
- (2) Measuring frequency range from 150KHz to 30MHz.
- (3) " N/A" denotes test is not applicable to this device.

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 RADIATED EMISSION LIMITS

20dB in any 100 KHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (9KHz-1000MHz)

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

Frequency (MHz)	(dBuV/m) (at 3 meters)		
	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

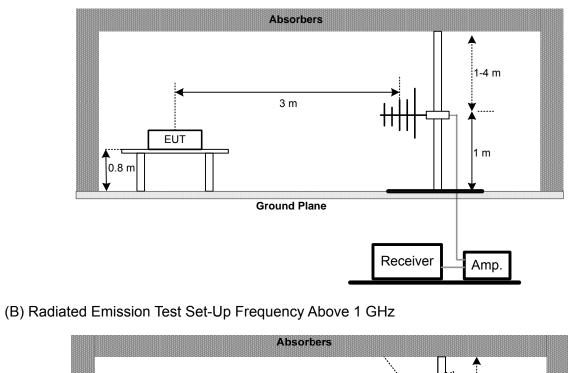
(3) Emission level (dBuV/m)=20log Emission level (uV/m).

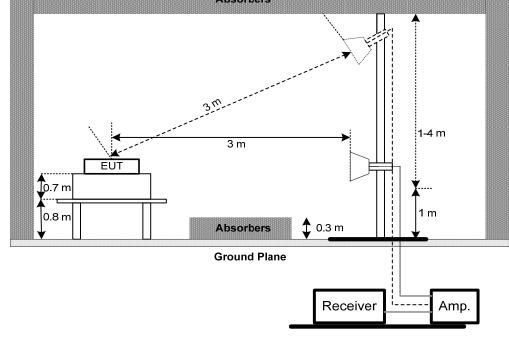
 (4) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use) Margin Level = Measurement Value - Limit Value

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	RBW 1MHz VBW 3MHz peak detector for Pk value
(Emission in restricted band)	RMS detector for AV value

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP/PK detector

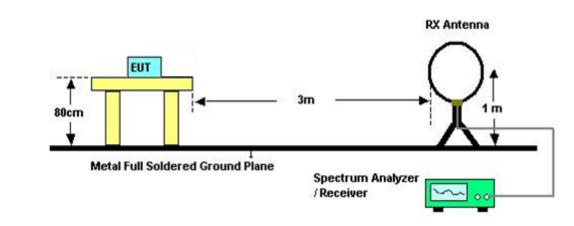
4.2.2 TEST PROCEDURE


- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.


4.2.3 DEVIATION FROM TEST STANDARD

No deviation

4.2.4 TEST SETUP


(A) Radiated Emission Test Set-Up Frequency Below 1 GHz

BL

(C) For radiated emissions below 30MHz

4.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of **4.1.5 Unless** otherwise a special operating condition is specified in the follows during the testing.

4.2.6 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% **Test Voltage**: AC 120V/60Hz

4.2.7TEST RESULTS (9KHZ TO 30MHZ) Please refer to the Attachment B

Remark:

- (1) The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.
- (2) Distance extrapolation factor = 40 log (specific distance / test distance) (dB).
- (3) Limit line = specific limits (dBuV) + distance extrapolation factor.

4.2.8TEST RESULTS (BETWEEN 30MHZ TO 1000 MHZ) Please refer to the Attachment C.

Remark:

- (1) Reading in which marked as QP or Peak means measurements by using are Quasi-Peak Mode or Peak Mode with Detector BW=120KHz; SPA setting in RBW=120KHz, VBW =120KHz, Swp. Time = 0.3 sec./MHz.
- (2) All readings are Peak unless otherwise stated QP in column of 『Note』. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (3) Measuring frequency range from 30MHz to 1000MHz.
- (4) If the peak scan value lower limit more than 20dB, then this signal data does not show in table.

4.2.9TEST RESULTS (ABOVE 1000 MHZ)

Please refer to the Attachment D.

Remark:

- (1) All readings are Peak unless otherwise stated QP in column of "Note]. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission
- (3) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (4) EUT Orthogonal Axis:
 - "X" denotes Laid on Table ; "Y" denotes Vertical Stand ; "Z" denotes Side Stand
- (5) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna
- (6) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

5. BANDWIDTH TEST

5.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2407-2473	PASS

5.1.1 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : RBW= 100KHz, VBW=300KHz, Sweep time = 2.5 ms.

5.1.2 DEVIATION FROM STANDARD

No deviation.

5.1.3 TEST SETUP

5.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.5 Unless otherwise a special operating condition is specified in the follows during the testing.

5.1.5 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: AC 120V/60Hz

5.1.6 TEST RESULTS Please refer to the Attachment E.

6. MAXIMUM OUTPUT POWER TEST

6.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)	Result	
15.247(b)(3)	Maximum Output Power	1 watt or 30dBm	2407-2473	PASS	

6.1.1 TEST PROCEDURE

- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below,
- b. The maximum peak conducted output power was performed in accordance with method 9.1.2 of FCC KDB 558074 D01 DTS Meas Guidance v03r02.

6.1.2 DEVIATION FROM STANDARD

No deviation.

6.1.3 TEST SETUP

6.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.5 Unless otherwise a special operating condition is specified in the follows during the testing.

Transmit output power was measured while the host equipment supply voltage was varied from 85 % to 115 % of the nominal rated supply voltage. No change in transmit output power was observed.

6.1.5 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: AC 120V/60Hz

6.1.6 TEST RESULTS Please refer to the Attachment F.

7. ANTENNA CONDUCTED SPURIOUS EMISSION

7.1 APPLIED PROCEDURES / LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

7.1.1 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : RBW= 100KHz, VBW=300KHz, Sweep time = 10 ms.

7.1.2 DEVIATION FROM STANDARD

No deviation.

7.1.3 TEST SETUP

7.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.5 Unless otherwise a special operating condition is specified in the follows during the testing.

7.1.5 EUT OPERATION CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: AC 120V/60Hz

7.1.6 TEST RESULTS Please refer to the Attachment G.

8. POWER SPECTRAL DENSITY TEST

8.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)	Result	
15.247(e)	Power Spectral Density	8 dBm (in any 3KHz)	2407-2473	PASS	

8.1.1 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW=3KHz, VBW=10 KHz, Sweep time = auto.

8.1.2 DEVIATION FROM STANDARD

No deviation.

8.1.3 TEST SETUP

8.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.5 Unless otherwise a special operating condition is specified in the follows during the testing.

8.1.5 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: AC 120V/60Hz

8.1.6 TEST RESULTS Please refer to the Attachment H.

9. MEASUREMENT INSTRUMENTS LIST

	Conducted Emission Measurement									
Item	Kind of Equipment	Manufacturer	Manufacturer Type No.		Calibrated until					
1	LISN	R&S	ENV216	101050	Nov. 24, 2015					
2	Test Cable	TIMES	CFD300-NL	C01	Jun. 16, 2016					
3	EMI Test Receiver	R&S	ESCI	100082	Apr. 14, 2016					
4	Measurement Software	EZ	EZ_EMC (Version NB-02A)	N/A	N/A					

Radiated Emission Measurement									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until				
1	Spectrum Analyzer	R&S	FSP-40	100129	Jan.07, 2016				
2	Horn Antenna	Schwarzbeck	BBHA 9120	D-325	Jun. 15, 2016				
3	Microwave Pre_amplifier Agilent		8449B	3008A01714	Apr. 16, 2016				
4	Microflex Cable	Harbour industries	27478LL142	1m	May. 13, 2016				
5	Microflex Cable	EMC	S104-SMA	8m	May. 15, 2016				
6	Microflex Cable	Harbour industries	27478LL142	3m	May. 13, 2016				
7	Test Cable	LMR	LMR-400	12m	May. 14, 2016				
8	Test Cable	LMR	LMR-400	3m	May. 14, 2016				
9	Pre-Amplifier	Anritsu	MH648A	M92649	Jun. 18, 2015				
10	Log-Bicon Antenna	Schwarzbeck	VULB9168-352	9168-352	Jun. 18, 2015				
11	Loop Antenna	EMCO	6502	00042960	Nov. 08, 2015				

6dB Bandwidth Measurement								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until			
1	Spectrum Analyzer	R&S	FSP-40	100129	Jan. 07, 2016			

Peak Output Power Measurement								
Item	Kind of Equipment	Manufacturer Type No.		Serial No.	Calibrated until			
1	Power Meter	Anritsu	ML2495A	1128008	Aug. 7, 2016			
2	Power Meter Sensor	Anritsu	MA2411B	1126001	Aug. 7, 2016			

Antenna Conducted Spurious Emission Measurement								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until			
1	Spectrum Analyzer	R&S	FSP-40	100129	Jan. 07, 2016			

Power Spectral Density Measurement								
Iten	N Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until			
1	Spectrum Analyzer	R&S	FSP-40	100129	Jan. 07, 2016			

Remark: "N/A" denotes no model name, serial no. or calibration specified.

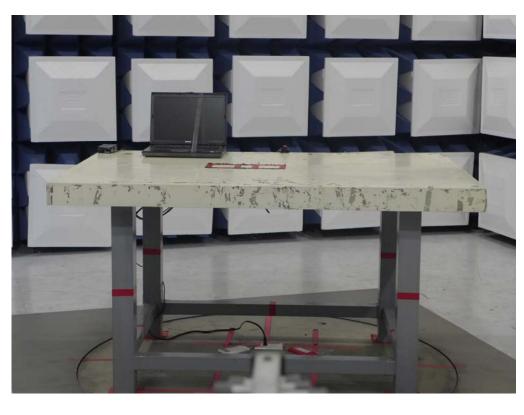
All calibration period of equipment list is one year.

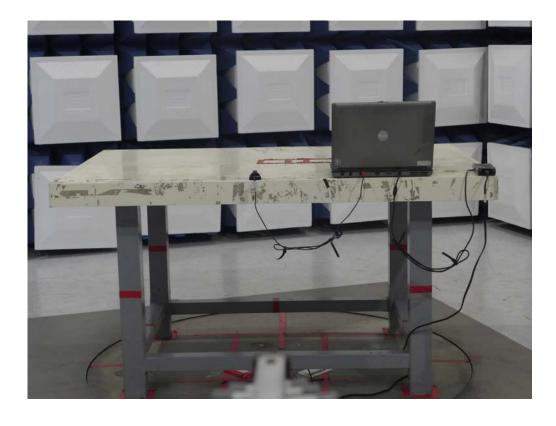
10. EUT TEST PHOTO Conducted Measurement Photos

Report No.: BTL-FCCP-1-1506028

Page 25 of 60

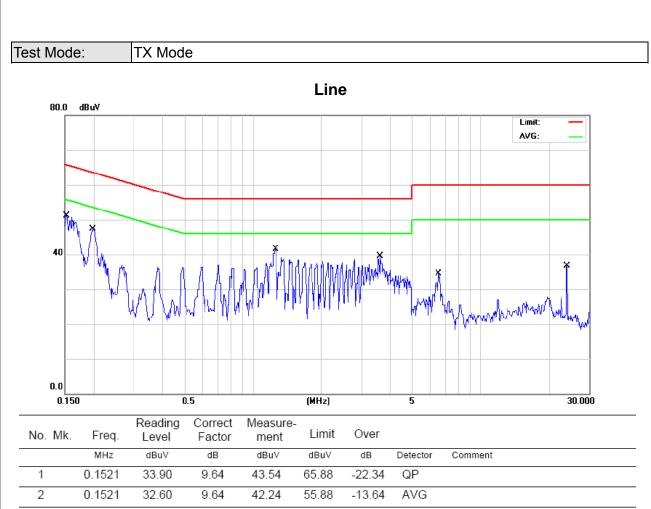
Radiated Measurement Photos


9KHz to 30MHz

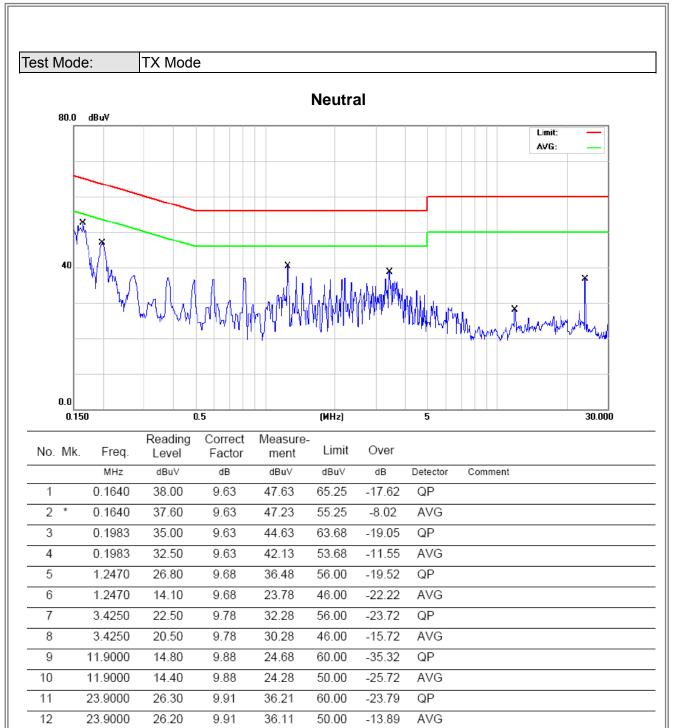


Radiated Measurement Photos

30M to 1000MHz


Radiated Measurement Photos

Above 1000MHz


2	0.1521	32.60	9.64	42.24	55.88	-13.64	AVG		
3	0.1983	34.90	9.63	44.53	63.68	-19.15	QP		
4	* 0.1983	32.70	9.63	42.33	53.68	-11.35	AVG		
5	1.2560	25.00	9.68	34.68	56.00	-21.32	QP		
6	1.2560	13.70	9.68	23.38	46.00	-22.62	AVG		
7	3.6140	24.10	9.80	33.90	56.00	-22.10	QP		
8	3.6140	22.50	9.80	32.30	46.00	-13.70	AVG		
9	6.5500	24.10	9.88	33.98	60.00	-26.02	QP		
10	6.5500	22.50	9.88	32.38	50.00	-17.62	AVG		
11	23.9000	26.30	9.88	36.18	60.00	-23.82	QP		
12	23.9000	26.20	9.88	36.08	50.00	-13.92	AVG		

_

_

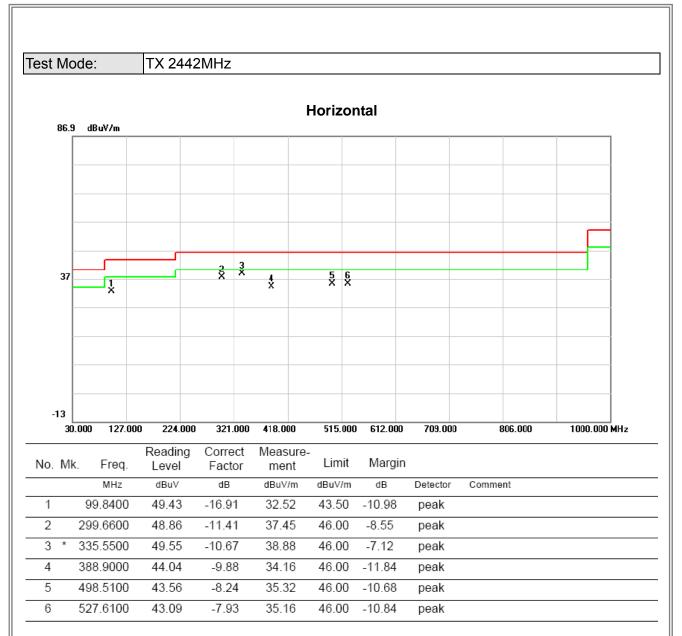
_

ATTACHMENT B - RADIATED EMISSION (9KHZ TO 30MHZ)

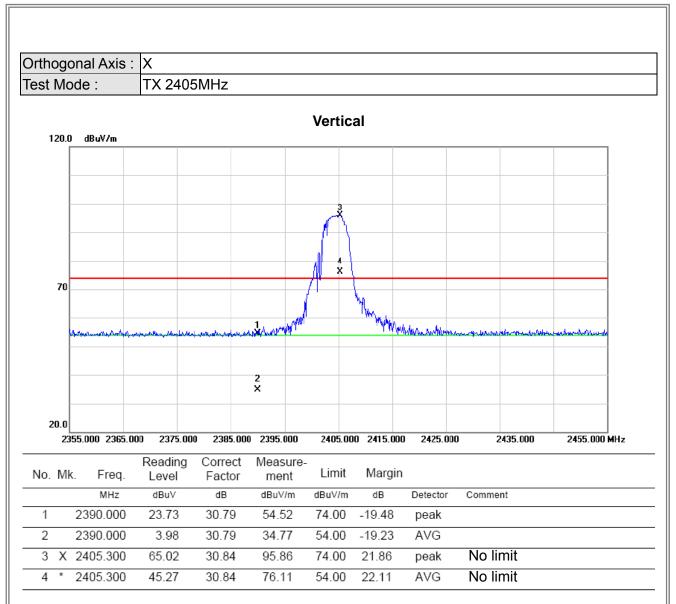
Test Mode:

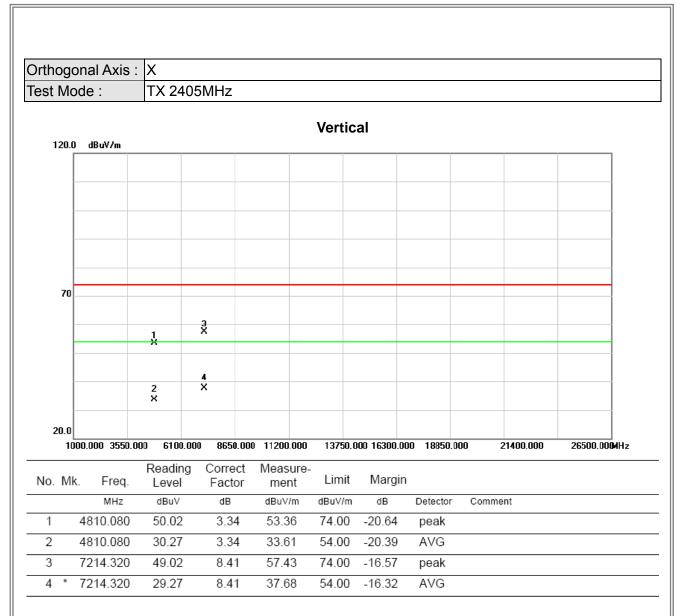
de: TX Mode

Freq. (MHz)	Ant. 0°/90°	Reading(RA) (dBuV)	Corr.Factor(CF) (dB)	Measured(FS) (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Note
0.1230	0°	41.64	11.99	53.63	85.81	-32.17	AVG
0.1230	0°	50.54	11.99	62.53	105.81	-43.27	PK
0.2940	0°	40.24	11.93	52.17	78.24	-26.07	AVG
0.2940	0°	45.25	11.93	57.18	98.24	-41.06	PK
0.4530	0°	38.52	11.95	50.47	74.48	-24.01	AVG
0.4530	0°	49.92	11.95	61.87	94.48	-32.61	PK
0.7430	0°	43.20	12.01	55.21	70.18	-14.97	QP
0.7530	0°	41.25	12.01	53.26	90.18	-36.92	QP
1.3680	0°	38.83	11.93	50.76	64.88	-14.12	QP

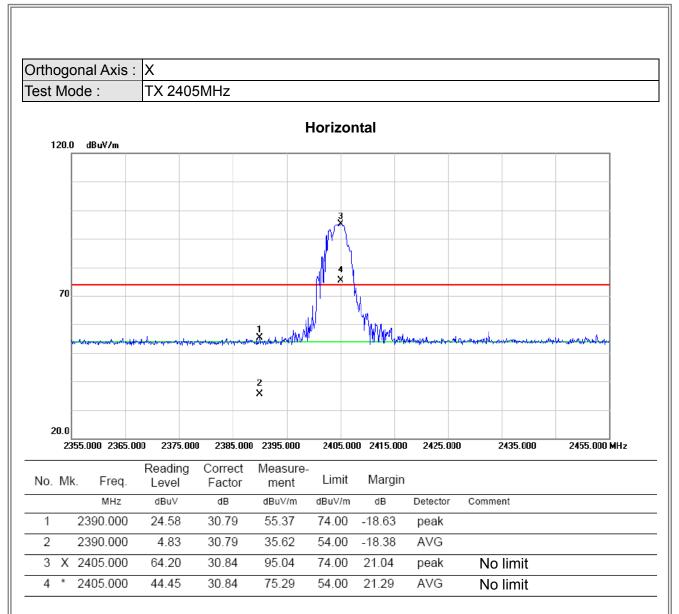

Freq.	Ant.	Reading(RA)	Corr.Factor(CF)	Measured(FS)	Limits	Margin	Note
(MHz)	0°/90°	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	NOLE
0.1210	90°	40.63	11.99	52.62	85.95	-33.33	AVG
0.1210	90°	53.20	11.99	65.19	105.95	-40.76	PK
0.3040	90°	35.39	11.93	47.32	77.95	-30.63	AVG
0.3040	90°	44.29	11.93	56.22	97.95	-41.73	PK
0.4130	90°	39.50	11.95	51.45	75.29	-23.84	AVG
0.4130	90°	46.38	11.95	58.33	95.29	-36.96	PK
0.6930	90°	43.28	12.00	55.28	70.79	-15.51	QP
0.7490	90°	43.20	12.00	55.20	90.79	-35.59	QP
1.3330	90°	38.58	11.95	50.53	65.11	-14.58	QP

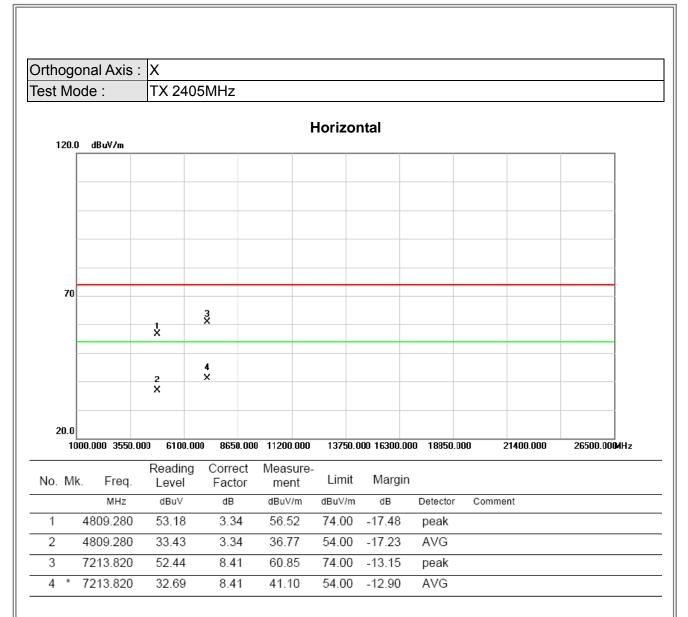
ATTACHMENT C - RADIATED EMISSION (30MHZ TO 1000MHZ)

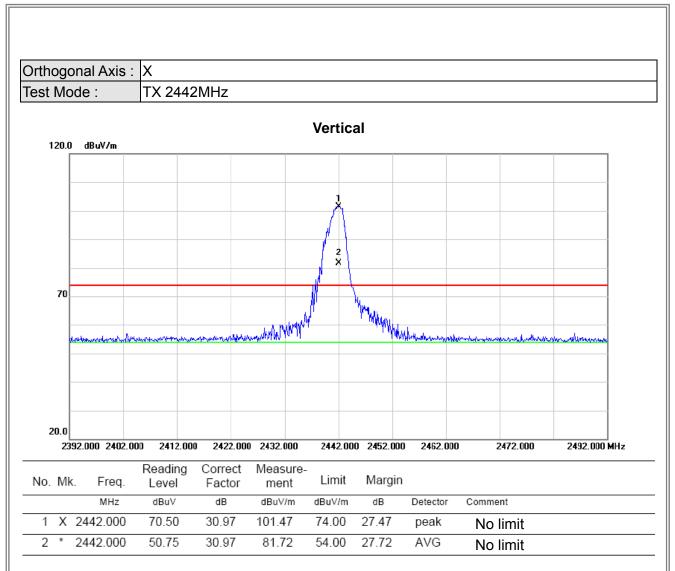


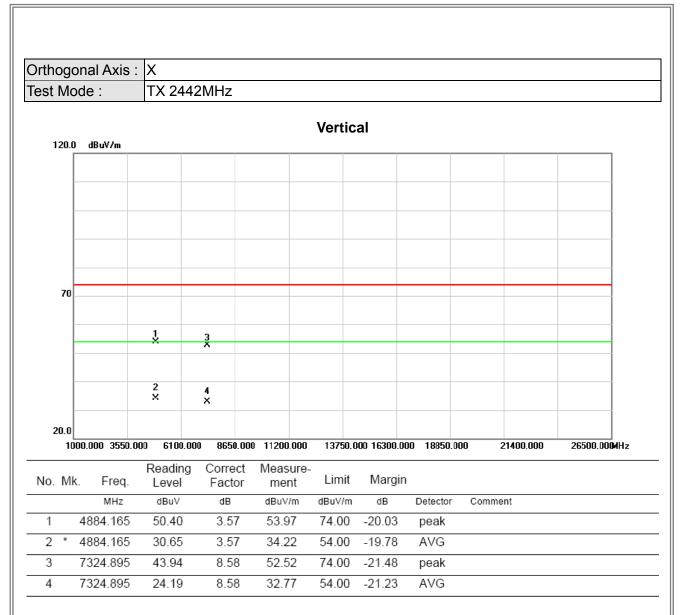


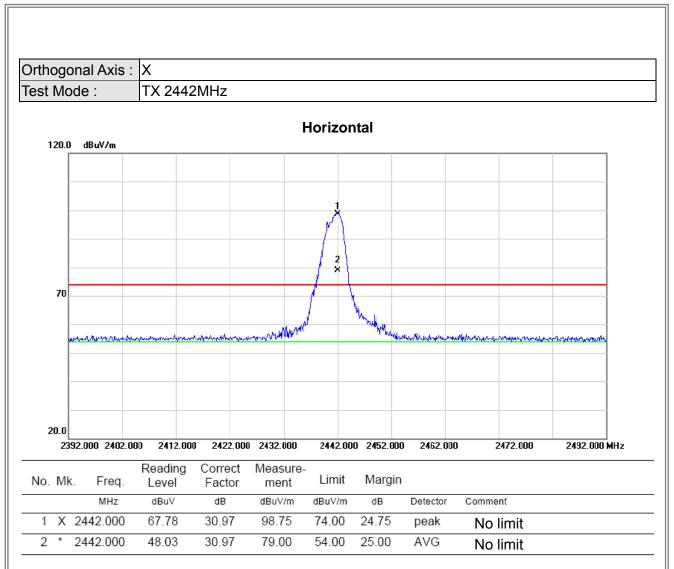
ATTACHMENT D - RADIATED EMISSION (ABOVE 1000MHZ)

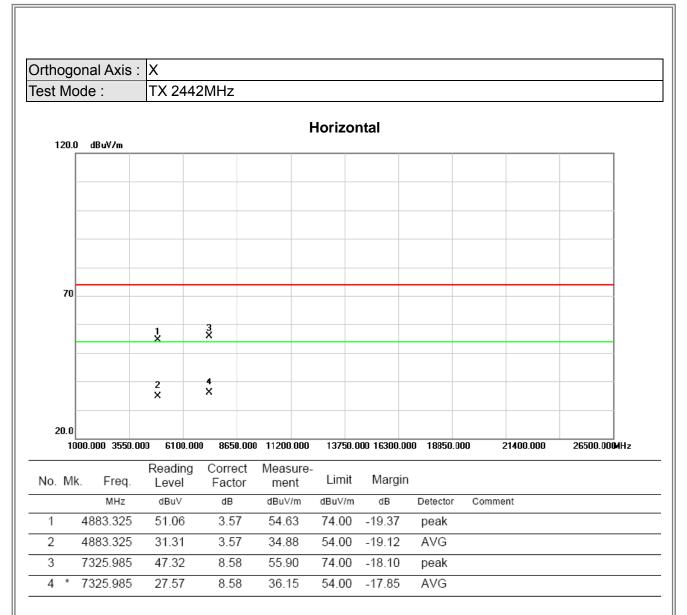


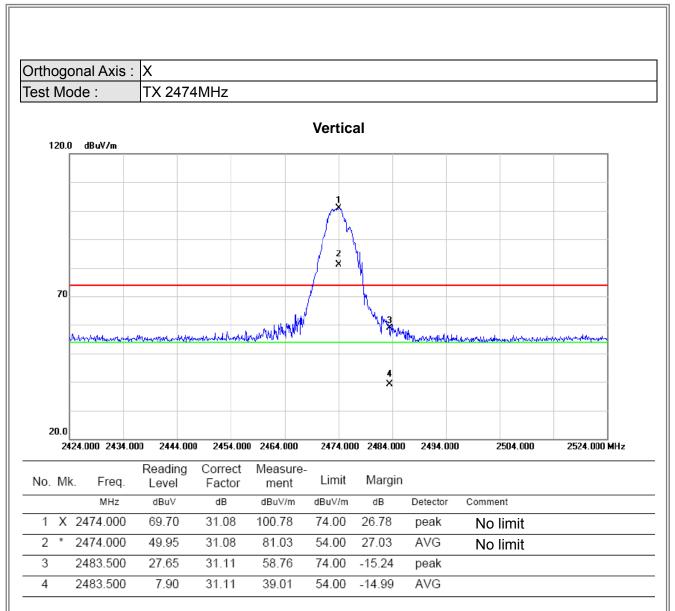


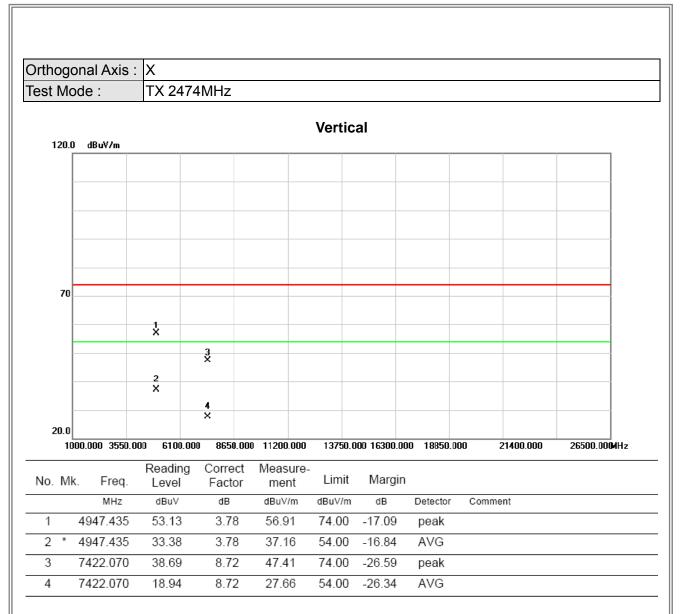


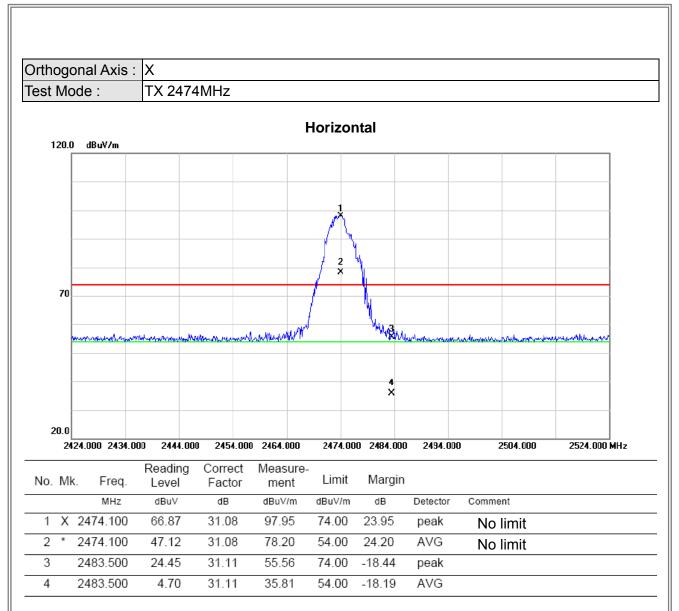


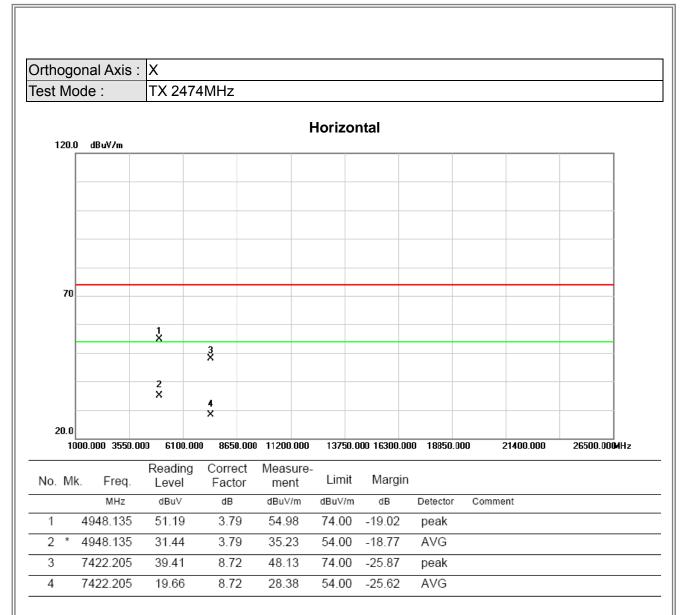


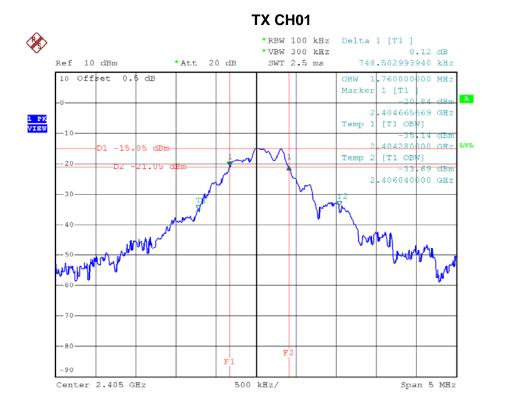


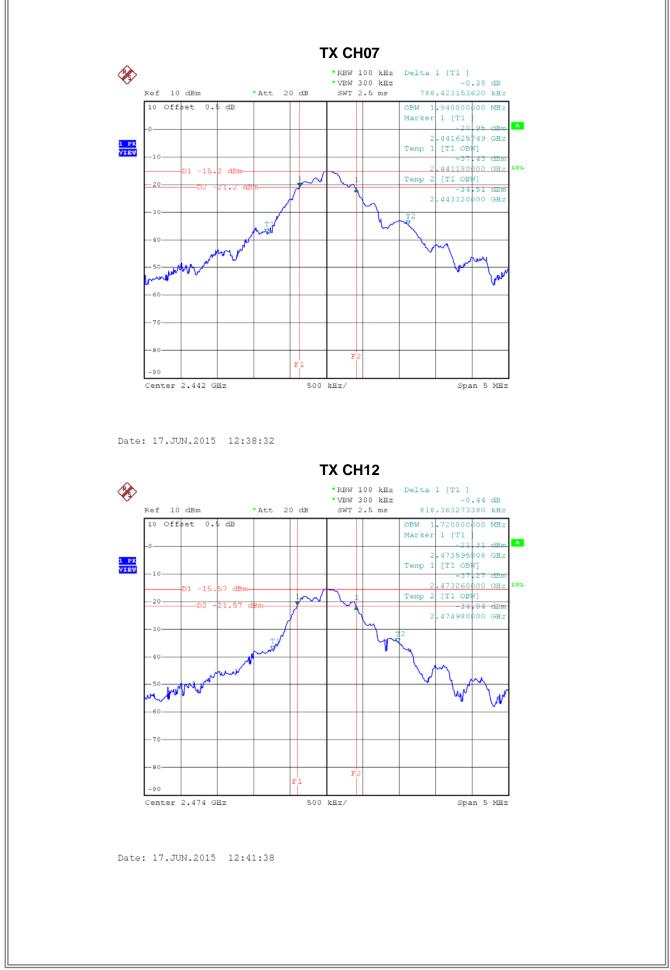






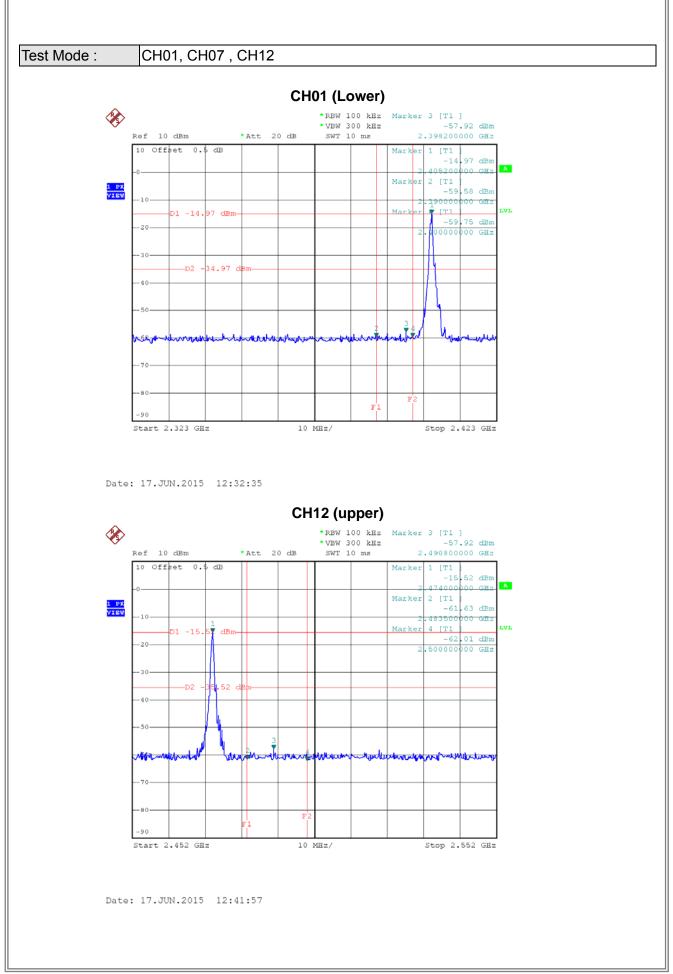


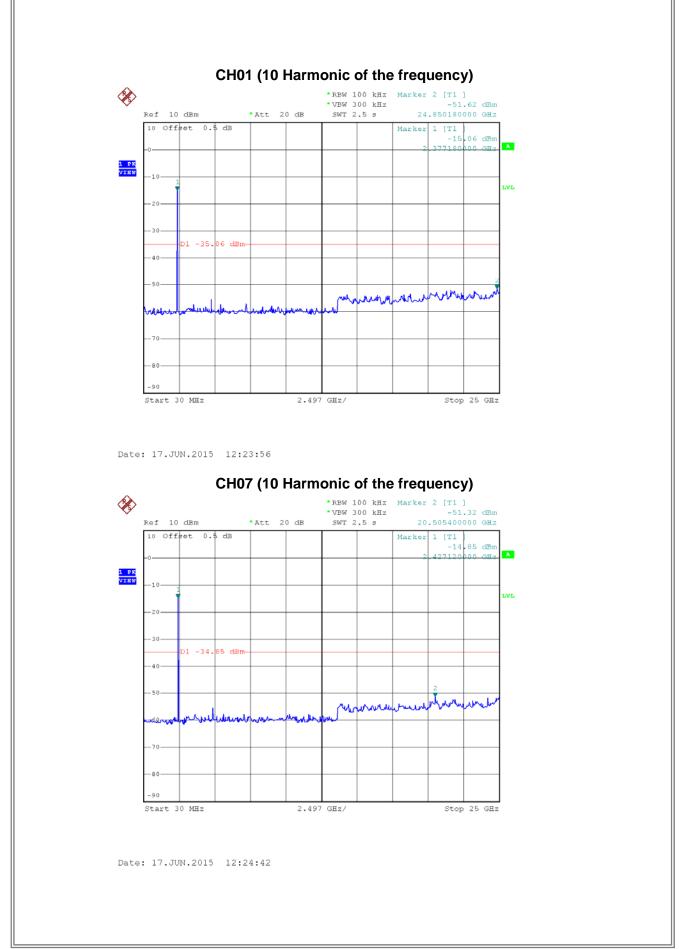


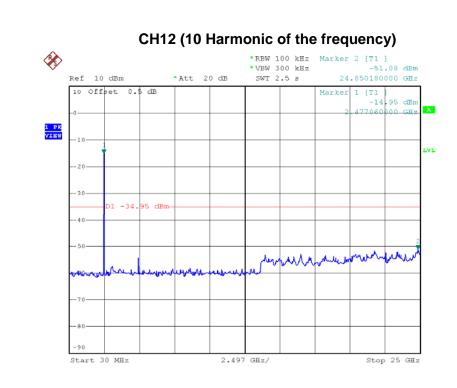

ATTACHMENT E - BANDWIDTH

Frequency	6 dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Limit	Result
2405 MHz	0.75	1.76	>=500 kHz	PASS
2442 MHz	0.79	1.94	>=500 kHz	PASS
2474 MHz	0.82	1.72	>=500 kHz	PASS

Date: 17.JUN.2015 12:32:10

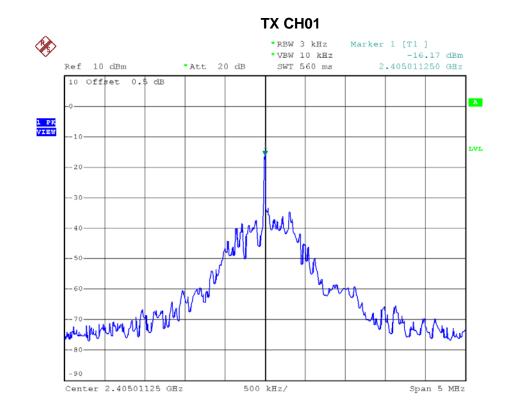



ATTACHMENT F - MAXIMUM OUTPUT POWER TEST

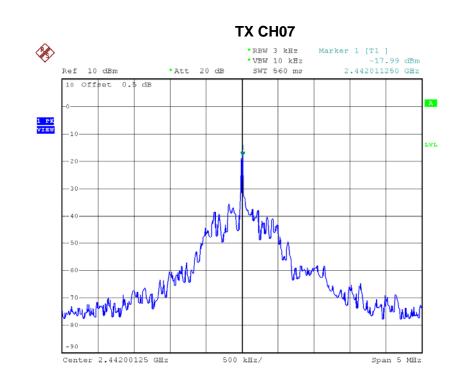

Frequency	Output Power (dBm)	LIMIT (dBm)	Result
2405 MHz	-1.66	30	PASS
2442 MHz	-1.74	30	PASS
2474 MHz	-1.88	30	PASS

ATTACHMENT G - ANTENNA CONDUCTED SPURIOUS EMISSION

BTL



Date: 17.JUN.2015 12:25:16


ATTACHMENT H - POWER SPECTRAL DENSITY TEST

Frequency	Power Density (dBm)	Limit (dBm)	Result
2405 MHz	-16.17	8	PASS
2442 MHz	-17.99	8	PASS
2474 MHz	-19.59	8	PASS

Date: 17.JUN.2015 12:34:06

Date: 17.JUN.2015 12:40:48

