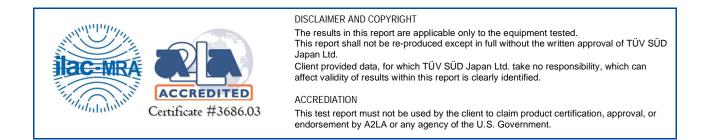
Report on the RF Testing of:

KYOCERA Corporation Mobile Phone, Model: EB1173 FCC ID: JOYEB1173

In accordance with FCC Part 15 Subpart C


Prepared for: KYOCERA Corporation Yokohama Office 2-1-1 Kagahara, Tsuzuki-ku Yokohama-shi, Kanagawa, Japan Phone: +81-45-943-6253 Fax: +81-45-943-6314

COMMERCIAL-IN-CONFIDENCE

Document Number: JPD-TR-23094-0

SIGNATURE			
Ichina	Sigura		
NAME	JOB TITLE	RESPONSIBLE FOR	ISSUE DATE
Hiroaki Suzuki	Deputy Manager of RF Group	Approved Signatory	2023.09.27

EXECUTIVE SUMMARY – Result: Complied A sample of this product was tested and the result above was confirmed in accordance with FCC Part 15 Subpart C.

TÜV SÜD Japan Ltd. Yonezawa Testing Center 5-4149-7 Hachimanpara, Yonezawa-shi, Yamagata, 992-1128 Japan Phone: +81 (0) 238 28 2881 www.tuvsud.com/ja-jp

TÜV SÜD Japan Ltd.

Add value. Inspire trust.

Contents

1	Summary of Test	.3
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8	Modification history of the test report	.3 .3 .3 .3 .3 .3
2	Equipment Under Test	.4
2.1 2.2 2.3 2.4 2.5 2.6	EUT information Modification to the EUT Variation of family model(s) Operating channels and frequencies Operating mode Operating flow	.5 .5 .6 .7
3	Configuration of Equipment	.8
3.1 3.2 3.3	Equipment used Cable(s) used System configuration	.8
4	Test Result	.9
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10	20dB Bandwidth Carrier Frequency Separation Number of Hopping Frequencies 1 Time of Occupancy (Dwell Time) 1 Maximum Peak Output Power 2 Band Edge Compliance of RF Conducted Emissions 2 Spurious Emissions - Conducted - Spurious Emissions - Radiated - 3 Restricted Band of Operation 4 AC Power Line Conducted Emissions	11 13 16 20 21 25 32 13
5	Antenna requirement5	52
6	Measurement Uncertainty5	53
7	Laboratory Information5	
Appendi	x A. Test Equipment5	5 5
Appendi	x B. Duty Cycle	56

1 Summary of Test

1.1 Modification history of the test report

Document Number	Modification History	Issue Date
JPD-TR-23094-0	First Issue	Refer to the cover page

1.2 Standards

CFR47 FCC Part 15 Subpart C

1.3 Test methods

ANSI C63.10-2013

1.4 Deviation from standards

None

1.5 List of applied test(s) of the EUT

Test item section	Test item	Condition	Result	Remark
15.247(a)(1)	20dB Bandwidth	Conducted	PASS	-
15.247(a)(1)	Carrier Frequency Separation	Conducted	PASS	-
15.247(a)(1)(iii)	Number of Hopping Frequencies	Conducted	PASS	-
15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Conducted	PASS	-
15.247(b)(1)	Maximum Peak Output Power	Conducted	PASS	-
15.247(d)	15.247(d) Band Edge Compliance of RF Conducted Emissions		PASS	-
15.247(d)		Conducted	PASS	-
15.205 15.209	Spurious Emissions	Radiated	PASS	-
15.247(d) 15.205 15.209	Restricted Bands of Operation	Radiated	PASS	-
15.207	AC Power Line Conducted Emissions	Conducted	PASS	-

1.6 Test information

None

1.7 Test set up

Table-top

1.8 Test period

27-July-2023 - 7-September-2023

2 Equipment Under Test

All information in this chapter was provided by the applicant.

2.1 EUT information

Applicant	KYOCERA Corporation
	Yokohama Office 2-1-1 Kagahara, Tsuzuki-ku Yokohama-shi, Kanagawa, Japan
	Phone: +81-45-943-6253 Fax: +81-45-943-6314
Equipment Under Test (EUT)	Mobile Phone
Model number	EB1173
Serial number	350614610004222, 350614610006623, 350614610006508
Trade name	Kyocera
Number of sample(s)	3
EUT condition	Pre-Production
Power rating	Battery: DC 3.87 V
Size	(W) 81.2 mm × (D) 17.5 mm × (H) 164.9 mm
Environment	Indoor and Outdoor use
Terminal limitation	-20 °C to 60 °C
Hardware version	DMT1
Software version	EB1173_nightly_20230713
Firmware version	Not applicable
RF Specification	
Protocol	Bluetooth 5.3 + EDR
Frequency range	2402 MHz-2480 MHz
Number of RF Channels	79 Channels
Modulation method/Data rate	FHSS: GFSK (1 Mbps), π/4-DQPSK (2 Mbps), 8-DPSK (3 Mbps)
Channel separation	1 MHz
Conducted power	10.382 mW (DH5) 8.742 mW (3-DH5)
Antenna type	Internal antenna
Antenna gain	-1.1 dBi
-	

2.2 Modification to the EUT

The table below details modifications made to the EUT during the test project.

	Modification State	Description of Modification	Modification fitted by	Date of Modification		
Model: EB1173, Serial Number: 350614610004222, 350614610006623, 350614610006508						
0 As supplied by the applicant Not Applicable Not Applicable						

2.3 Variation of family model(s)

2.3.1 List of family model(s)

	EB1173		EB1169		EB1	185	EB1	EB1205		
	Pattern1*	Pattern2	Pattern1	Pattern2	Pattern1	Pattern2	Pattern1	Pattern2		
hybrid shield	without	with	without	with	without	with	without	with		
Radio Function (Cellular)			3G:B2	4G:B2/B4/B5/B12/B41 3G:B2/B4/B5 2G:850/1900				no ※Components are mounted		
Radio Function (etc)		WiFi:2.4G/5G BT/NFC+FeliCa/GPS								
Size		164.9x81.2x17.5[mm]								

*: Tested

The hybrid shield is a resin, so there is no EMC impact.

The hybrid shield is mounted on top of the screen (tempered glass), but the enclosure size remains unchanged.

EB1205 does not use WWAN (2G/3G/4G) functionality. However, WWAN (2G/3G/4G) components are installed.

2.3.2 Reason for selection of EUT

The applicant decided that the differences between the hybrid shield and the design had no EMC impact and selected EB1173 Pattarn1 with full function.

2.4 Operating channels and frequencies

Channel	Frequency [MHz]	Channel	Frequency [MHz]	Channel	Frequency [MHz]
0	2402	27	2429	54	2456
1	2403	28	2430	55	2457
2	2404	29	2431	56	2458
3	2405	30	2432	57	2459
4	2406	31	2433	58	2460
5	2407	32	2434	59	2461
6	2408	33	2435	60	2462
7	2409	34	2436	61	2463
8	2410	35	2437	62	2464
9	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

2.5 Operating mode

The EUT had been tested under operating condition. There are three channels have been tested as following:

Tested Channel	Frequency [MHz]
Low	2402
Middle	2441
High	2480

The pre-test has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates.

Tested Channel	Modulation Technology	Modulation Type	Packet Type
Low, Middle, High	FHSS	GFSK	DH5
Low, Middle, High	FHSS	8-DPSK	3-DH5

The field strength of spurious emissions was measured at each position of all three axis X, Y and Z to compare the level, and the maximum noise.

The worst emission was found in Z-axis, and the worst case recorded.

Pre-scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports.

2.6 Operating flow

[Tx mode]

- i) Test program setup to the Software
- ii) Select a Test mode
 Operating frequency: Channel Low: 2402 MHz, Channel Middle: 2441 MHz, Channel High: 2480 MHz
- iii) Start test mode

[Rx mode]

- i) Test program setup to the Software
- ii) Select a Test mode
 - Operating frequency: Channel Low: 2402 MHz, Channel Middle: 2441 MHz, Channel High: 2480 MHz
- iii) Start test mode

3 Configuration of Equipment

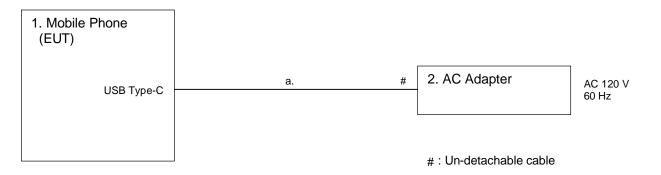
Numbers assigned to equipment on the diagram in "3.3 System configuration" correspond to the list in "3.1 Equipment used" and "3.2 Cable(s) used".

This test configuration is based on the manufacture's instruction.

Cabling and setup(s) were taken into consideration and test data was taken under worse case condition.

3.1 Equipment used

No.	Equipment	Company	Model No.	Serial No.	FCC ID/DoC	Comment
1	Mobile Phone	KYOCERA	EB1173	350614610004222, 350614610006623, 350614610006508	JOYEB1173	EUT
2	AC Adapter	KDDI	0602PQA	N/A	N/A	*


*:AC power line Conducted Emission Test.

3.2 Cable(s) used

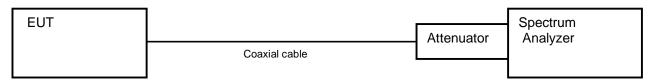
No.	Equipment	Length[m]	Shield	Connector	Comment
а	USB cable (for AC Adapter)	1.5	No	Plastic	*
* * * *					

*: AC power line Conducted Emission Test.

3.3 System configuration

4 Test Result

4.1 20dB Bandwidth


4.1.1 Measurement procedure

[FCC 15.247(a)(1)]

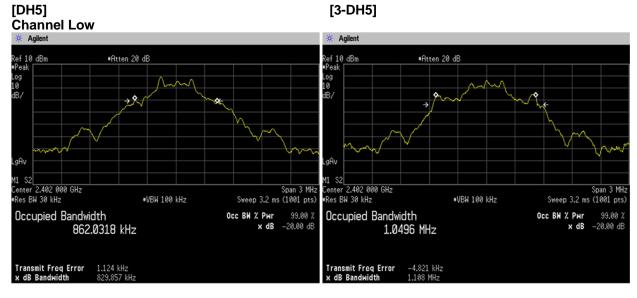
The bandwidth at 6 dB down from the highest inband spectral density is measured with spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to;

- a) Span = 2-3 times the 20 dB bandwidth
- b) RBW \geq 1% of the 20 dB bandwidth
- c) VBW ≥ RBW
- d) Sweep time = auto-couple
- e) Detector = peak
- f) Trace mode = max hold
 - Test configuration

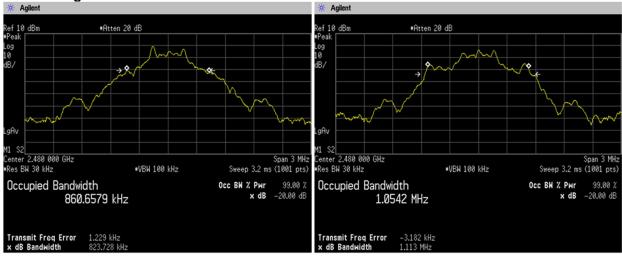
4.1.2 Limit

None


4.1.3 Measurement result

Date Temperature	:	1-August-2023 24.2 [°C]				
Humidity Test place	:	56.7 [%] Shielded room No.4	Test engineer	:	Nobuyuki Toda	

Ohannal	Frequency	20dB bandwidth [MHz]		
Channel	(MHz)	(MHz) DH5		
Low	2402	0.830	1.108	
Middle	2441	0.809	1.111	
High	2480	0.824	1.113	


4.1.4 Trace data

Channel Middle

Channel High

4.2 Carrier Frequency Separation

4.2.1 Measurement procedure

[FCC 15.247(a)(1)]

The adjacent channel interval is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to;

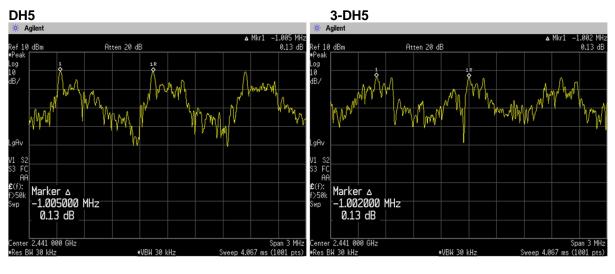
- g) Span = wide enough to capture the peaks of two adjacent channels
- h) RBW \geq 1% of the span
- i) VBW ≥ RBW
- j) Sweep time = auto-couple
- k) Detector = peak
- I) Trace mode = max hold

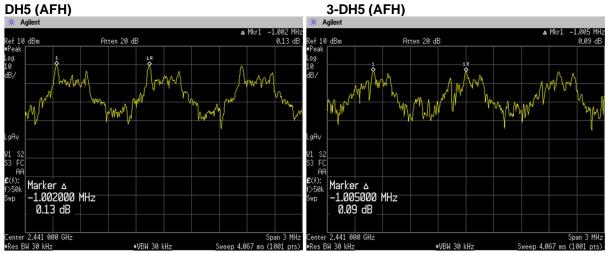
- Test configuration

4.2.2 Limit

System shall have hopping channel carrier frequencies separated by a minimum of, 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

4.2.3 Measurement result


Date	:	1-August-2023				
Temperature	:	24.2 [°C]				
Humidity	:	56.7 [%]	Test engineer	:		
Test place	:	Shielded room No.4	-		Nobuyuki Toda	



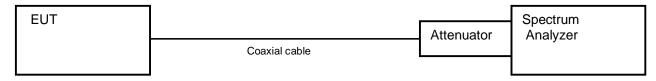
Battery Full

Packet type	Channel separation (MHz)	Limit (MHz)	Result
DH5	1.005	>two-thirds of the 20dB Bandwidth = 553kHz	PASS
3-DH5	1.002	>two-thirds of the 20dB Bandwidth = 742kHz	PASS
DH5(AFH)	1.002	>two-thirds of the 20dB Bandwidth = 553kHz	PASS
3-DH5(AFH)	1.005	>two-thirds of the 20dB Bandwidth = 742kHz	PASS

4.2.4 Trace data

4.3 Number of Hopping Frequencies

4.3.1 Measurement procedure


[FCC 15.247(a)(1)(iii)]

The number of hopping channels is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to;

- a) Span = the frequency band of operation
- b) RBW \geq 1% of the Span
- c) VBW ≥ RBW
- d) Sweep time = auto-couple
- e) Detector = peak
- f) Trace mode = max hold

- Test configuration

4.3.2 Limit

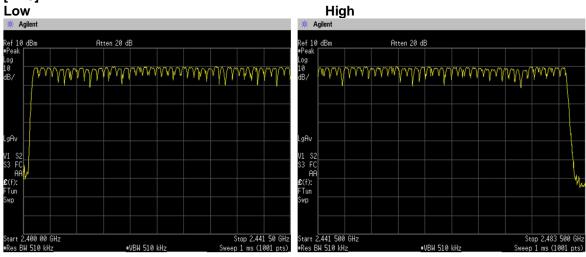
Shall have more than 15 channels.

4.3.3 Measurement result

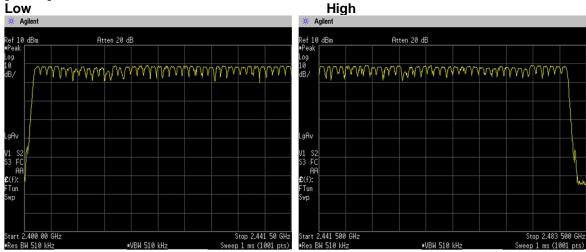
Date	:	1-August-2023			
Temperature	:	24.2 [°C]			
Humidity	:	56.7 [%]	Test engineer	:	
Test place	:	Shielded room No.4			Nobuyuki Toda

FHSS

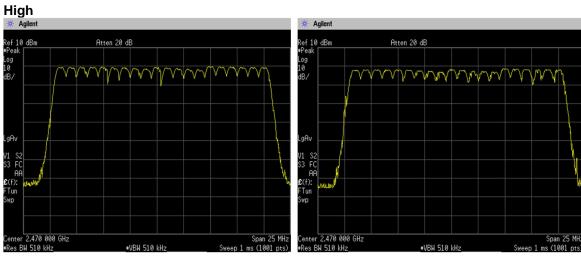
Number of channels	Limit	Result
79	≥15 channel	PASS


AFH

Channel	Number of channels	Limit	Result
Low	20	≥15 channel	PASS
Middle	20	≥15 channel	PASS
High	20	≥15 channel	PASS



4.3.4 Trace data


[3-DH5]

[DH5(AFH)] Low * Agilent Agilen Ref 10 dBm Peak Atten 20 dB ef 10 dBm Atten 20 dB Log 10 dB/ Og V S2 3 FC AA £(f): FTun Swp FC :(f): Tun r 2.411 000 GHz BW 510 kHz 2.411 000 GHz 25 MH: n 25 MHz VBW 510 kHz Res BW 510 •VBW 510 kH Middle 🔆 Agilent 🗰 Agilent Atten 20 dB ef 10 dBm Atten 20 dB ef 10 dBm 0g W N W VW VVVVV A A A γrγγ

\$2 FC FC AA AF Tun Tun ٨n Jn. enter 2.441 000 GHz Res BW 510 kHz Center 2.441 000 GHz #Res BW 510 kHz Span 25 MHz ms (1001 pts) •VBW 510 kH nts)

[3-DH5(AFH)]

FC (f):

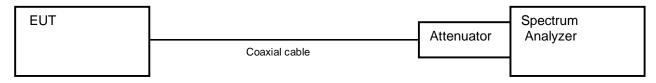
Tun

Span 25 MHz ms (1001 pts)

VBW 510 kH

4.4 Time of Occupancy (Dwell Time)

4.4.1 Measurement procedure


[FCC 15.247(a)(1)(iii)]

The time occupancy of hopping channel is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to;

- a) Span = Zero span, centered on a hopping channel
- b) RBW = 1 MHz
- c) VBW ≥ RBW
- d) Sweep time = auto-couple
- e) Detector = peak
- f) Trace mode = Single

- Test configuration

4.4.2 Limit

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

4.4.3 Measurement result

Date	:	1-August-2023
Temperature	:	24.2 [°C]
Humidity	:	56.7 [%]
Test place	:	Shielded room No.4

Test engineer

1

Nobuyuki Toda

FHSS	1		1	I	1	
Packet type	Channel	Frequency (MHz)	Dwell time (ms)	Occupancy time of 31.6 seconds (s)	Limit	Result
	Low	2402	2.880	0.307	<0.4s	PASS
DH5	Middle	2441	2.880	0.307	<0.4s	PASS
	High	2480	2.876	0.307	<0.4s	PASS
	Low	2402	2.884	0.308	<0.4s	PASS
3-DH5	Middle	2441	2.884	0.308	<0.4s	PASS
	High	2480	2.884	0.308	<0.4s	PASS

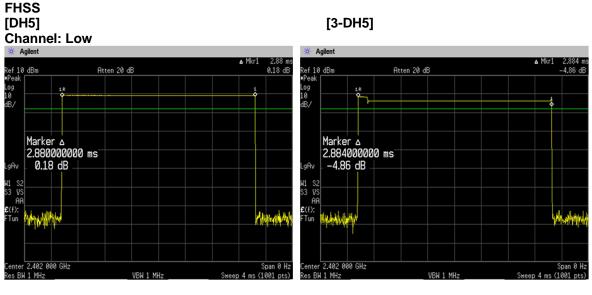
AFH

Packet type	Channel	Frequency (MHz)	Dwell time (ms)	Occupancy time of 8 seconds (s)	Limit	Result
	Low	2402	2.876	0.153	<0.4s	PASS
DH5	Middle	2441	2.876	0.153	<0.4s	PASS
	High	2480	2.876	0.153	<0.4s	PASS
	Low	2402	2.884	0.154	<0.4s	PASS
3-DH5	Middle	2441	2.884	0.154	<0.4s	PASS
	High	2480	2.884	0.154	<0.4s	PASS

FHSS

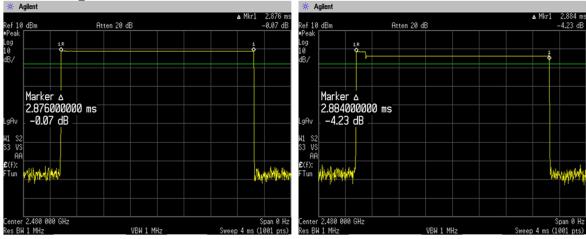
DH5/3-DH5 = Dwell time (ms) x 1600 / 6 / 79 x 31.6

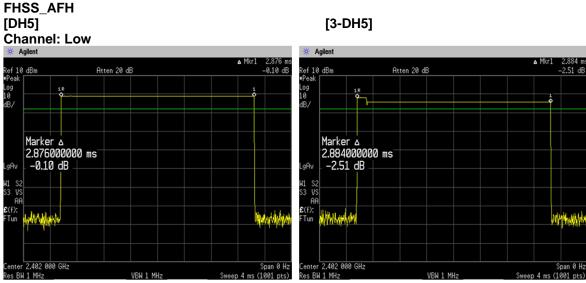
AFH


DH5/3-DH5 = Dwell time (ms) x 800 / 6 / 20 x 8

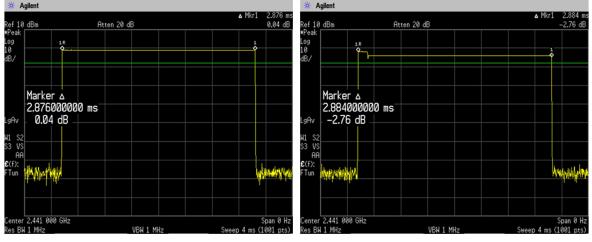
The hopping rates of Bluetooth devices change with different types of payload. The longer the payload is, the slower the hopping rate. The hopping rate scenario is defined in Bluetooth core specification. Calculation:

Occupancy time of 31.6 seconds* = time domain slot length x hop rate / number of hopper channel / 79 /x 31.6 Ex.) for FHSS mode Channel Low, 3-DH5 = 2.890ms x 1600 / 6/ 79 x 31.6 = 308ms

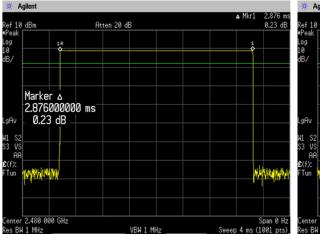

4.4.4 Trace data

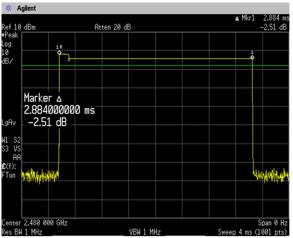


Channel: Middle



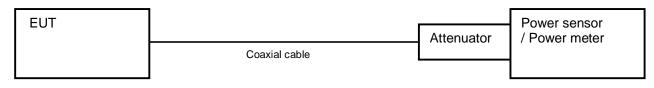
Channel: High





Channel: Middle

Channel: High


4.5 Maximum Peak Output Power

4.5.1 Measurement procedure

[FCC 15.247(b)(1)]

The peak power is measured with a power sensor connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

- Test configuration

4.5.2 Limit

0.125 W or less

4.5.3 Measurement result

Date	: 2-August-2023		
Temperature	: 24.6 [°C]		
Humidity	: 56.3 [%]	Test engineer	:
Test place	: Shielded room No.4	_	Nobuyuki Toda

Battery Full

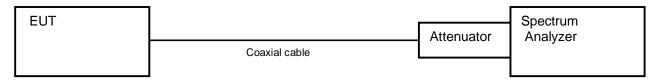
Packet type	Channel	Center Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Peak Output Power (mW)	Limit (mW)	Result
	Low	2402	-1.00	10.93	9.93	9.845	≦125	PASS
DH5	Middle	2441	-0.95	10.93	9.98	9.959	≦125	PASS
	High	2480	-0.77	10.93	10.16	10.382	≦125	PASS
	Low	2402	-1.76	10.93	9.18	8.270	≦125	PASS
3-DH5	Middle	2441	-1.51	10.93	9.42	8.742	≦125	PASS
	High	2480	-1.61	10.93	9.32	8.545	≦125	PASS

Calculation;

 $\begin{array}{l} \mbox{Reading (dBm) + Factor (dB) = Level (dBm)} \\ \mbox{10logP = Level (dBm)} \\ \mbox{P = } 10^{(Maximum Peak Output Power / 10)} (mW) \end{array}$

4.6 Band Edge Compliance of RF Conducted Emissions

4.6.1 Measurement procedure


[FCC 15.247(d)]

The Band Edge is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to;

- a) Span = Arbitrary setting.(Setting suitable for measurement.)
- b) RBW = 1 % of the span
- c) VBW ≥ RBW
- d) Sweep time = auto-couple
- e) Detector = peak
- f) Trace mode = max hold

- Test configuration

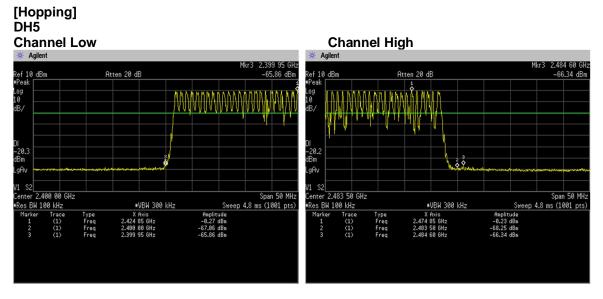
4.6.2 Limit

In any 100kHz bandwidth outside the frequency band the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power.

4.6.3 Measurement result

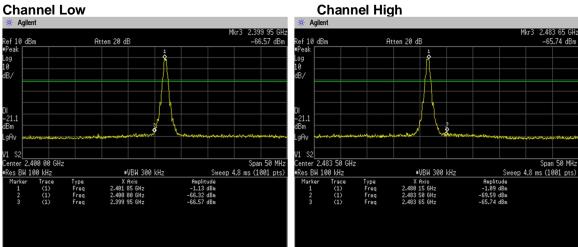
Date	:	1-August-2023				
Temperature	:	24.2 [°C]				
Humidity	:	56.7 [%]	Test engineer	:		
Test place	:	Shielded room No.4	-		Nobuyuki Toda	

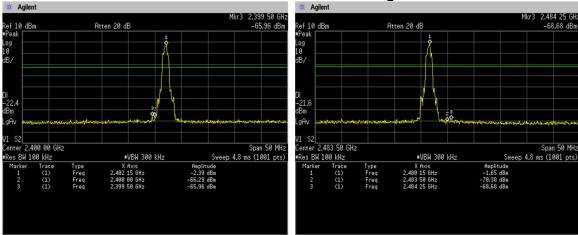
[Hopping]


Packet type	Channel	Frequency (MHz)	RF Power Level (dBm)	Band-edge Frequency (MHz)	Band-edge Level (dBm)	Difference Level (dBm)	Limit (dBm)	Result
DH5	Low	2402	-0.27	2399.95	-65.86	65.59	At least 20dB below from peak of RF	PASS
DHS	High	2480	-0.23	2484.60	-66.34	66.11	At least 20dB below from peak of RF	PASS
3-DH5	Low	2402	-1.26	2399.85	-70.80	69.54	At least 20dB below from peak of RF	PASS
3-005	High	2480	-1.25	2483.80	-68.95	67.70	At least 20dB below from peak of RF	PASS

[No Hopping]

Packet type	Channel	Frequency (MHz)	RF Power Level (dBm)	Band-edge Frequency (MHz)	Band-edge Level (dBm)	Difference Level (dBm)	Limit (dBm)	Result
DH5	Low	2402	-1.13	2399.95	-66.57	65.44	At least 20dB below from peak of RF	PASS
DHS	High	2480	-1.09	2483.65	-65.74	64.65	At least 20dB below from peak of RF	PASS
3-DH5	Low	2402	-2.39	2399.50	-65.96	63.57	At least 20dB below from peak of RF	PASS
3-005	High	2480	-1.65	2484.25	-68.68	67.03	At least 20dB below from peak of RF	PASS


4.6.4 Trace data


3DH5

Channel Low Channel High Agilent # Agilent 2.483 80 GH: -68.95 dBm 2.399 85 GHz -70.80 dBm Atten 20 dB Atten 20 dB ef 10 dBm ef 10 dBr 0g Log 10 dB/ 21.2 3m gAv ٩Â١ /1 \$2 Center 2.400 00 GHz Res BW 100 kHz V1 \$2 Center 2.483 50 GHz •Res BW 100 kHz Span 50 MHz Sweep 4.8 ms (1001 pts) Span 50 MHz Sweep 4.8 ms (1001 pts) •VBW 300 kHz ■VBW 300 kHz Amplitude -1.25 dBm -70.40 dBm -68.95 dBm Type Freq Freq Freq Amplitude -1.26 dBm -70.61 dBm -70.80 dBm Type Freq Freq Freq X Axis 2.418 15 GHz 2.400 00 GHz 2.399 85 GHz X Axis 2.476 15 GHz 2.483 50 GHz 2.483 80 GHz (1) (1) (1) (1) (1) (1) (1)

[No Hopping] DH5

3DH5 **Channel Low**

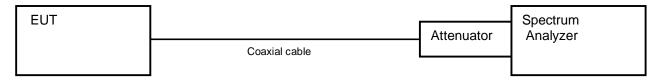
Channel High

TÜV SÜD Japan Ltd.

2.484 25 GH: -68.68 dBm

4.7 Spurious Emissions - Conducted -

4.7.1 Measurement procedure


[FCC 15.247(d)]

The Spurious emissions (Conducted) are measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

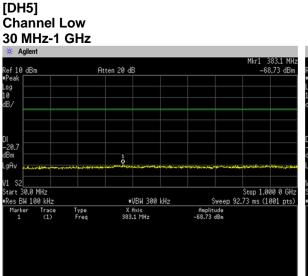
The spectrum analyzer is set to;

- a) Span = wide enough to fully capture the emission being measured
- b) RBW = 100 kHz
- c) VBW ≥ RBW
- d) Sweep time = auto-couple
- e) Detector = peak
- f) Trace mode = max hold

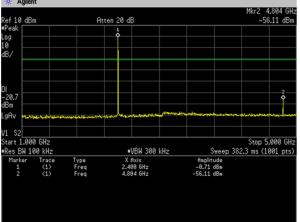
- Test configuration

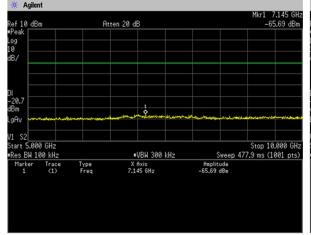
4.7.2 Limit

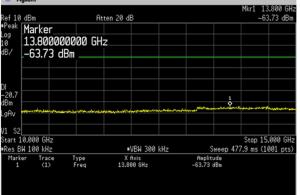
In any 100kHz bandwidth outside the frequency band the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power.

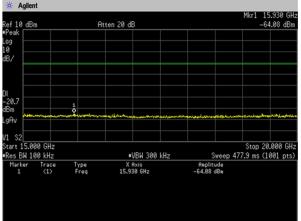

4.7.3 Measurement result

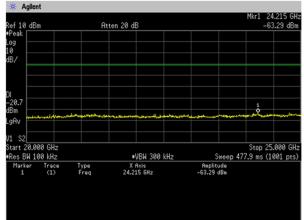
Date	:	1-August-2023			
Temperature	:	24.2 [°C]			
Humidity	:	56.7 [%]	Test engineer	:	
Test place	:	Shielded room No.4			Nobuyuki Toda


Channel	Frequency [MHz]	Limit [dB]	Results Chart	Result
Low	2402	At least 20dB below from peak of RF	See the trace Data	PASS
Middle	2441	At least 20dB below from peak of RF	See the trace Data	PASS
High	2480	At least 20dB below from peak of RF	See the trace Data	PASS


4.7.4 Trace data


1 GHz-5 GHz

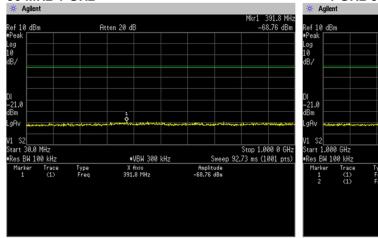

5 GHz-10 GHz


10 GHz-15 GHz

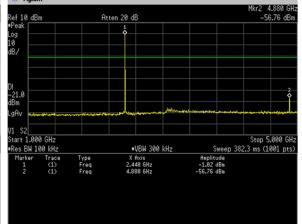
15 GHz-20 GHz

20 GHz-25 GHz

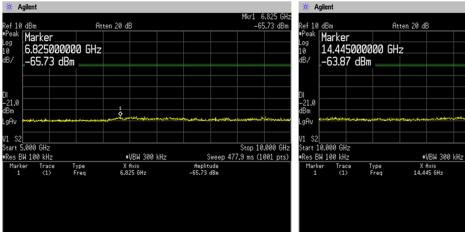
[DH5] Channel Middle 30 MHz-1 GHz


Japan

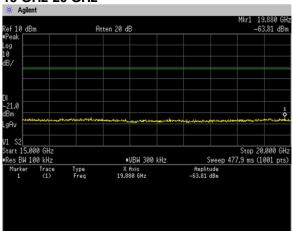
14.445 G


1

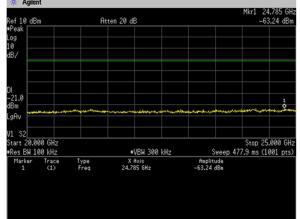
Stop 15.000 GHz Sweep 477.9 ms (1001 pts) Amplitude -63.87 dBm


-63.87 dBn

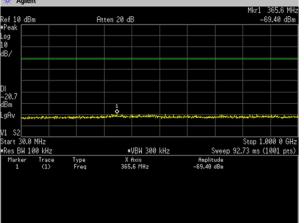
1 GHz-5 GHz



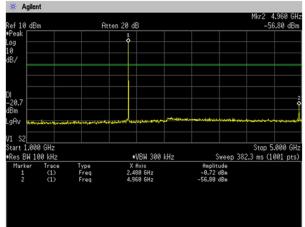
5 GHz-10 GHz



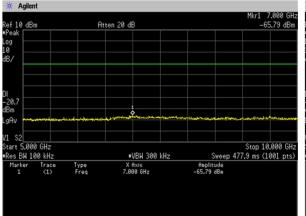
10 GHz-15 GHz

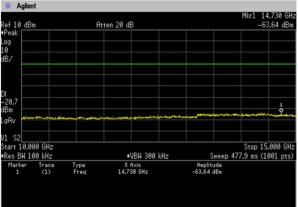


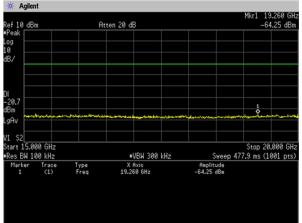
20 GHz-25 GHz

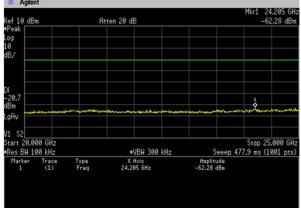


<u>TÜV SÜD Japan Ltd.</u>

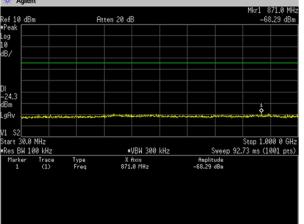

[DH5] **Channel High** 30 MHz-1 GHz Agiler


1 GHz-5 GHz

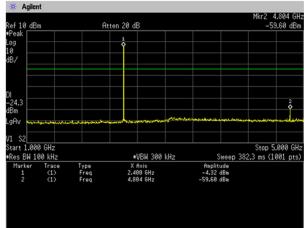

5 GHz-10 GHz

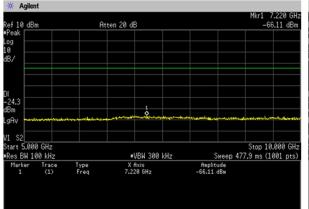

10 GHz-15 GHz

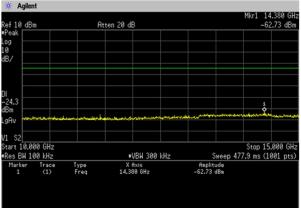
15 GHz-20 GHz

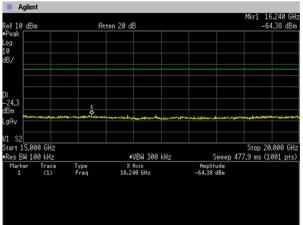


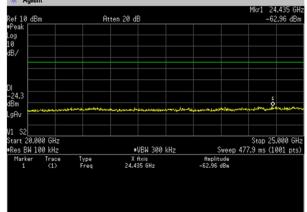
20 GHz-25 GHz



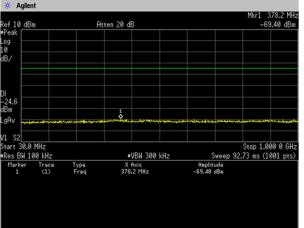

[3-DH5] **Channel Low** 30 MHz-1 GHz Agiler


1 GHz-5 GHz

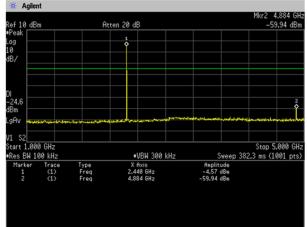

5 GHz-10 GHz

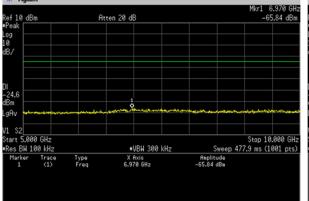

10 GHz-15 GHz

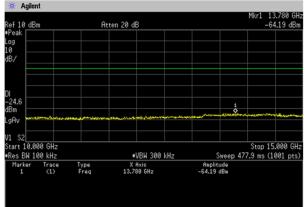
15 GHz-20 GHz

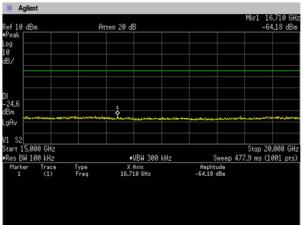


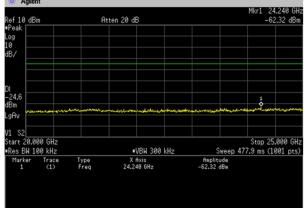
20 GHz-25 GHz



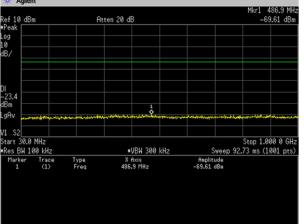

[3-DH5] Channel Middle 30 MHz-1 GHz


1 GHz-5 GHz

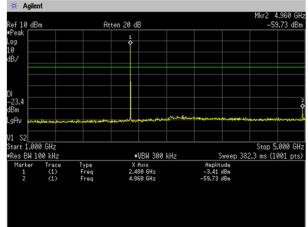

5 GHz-10 GHz

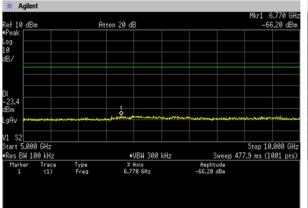

10 GHz-15 GHz

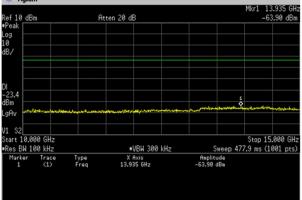
15 GHz-20 GHz

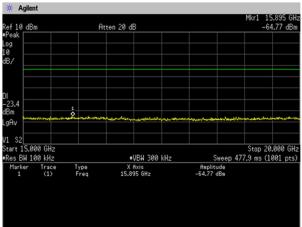


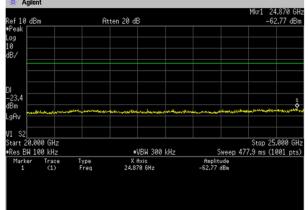
20 GHz-25 GHz




[3-DH5] Channel High 30 MHz-1 GHz Aglient


1 GHz-5 GHz


5 GHz-10 GHz


10 GHz-15 GHz

15 GHz-20 GHz

20 GHz-25 GHz

4.8 Spurious Emissions - Radiated -

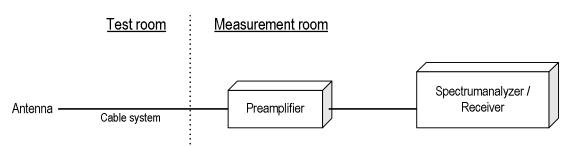
4.8.1 Measurement procedure

[FCC 15.247(d), 15.205, 15.209]

Test was applied by following conditions.

Test method Frequency range Test place EUT was placed on	:	ANSI C63.10 9kHz to 25GHz 3m Semi-anechoic chamber Styrofoam table / (W)1.0m × (D)0.8m × (H)0.8m (below 1GHz) Styrofoam table / (W)0.6m × (D)0.6m ×(H)1.5m (above 1GHz)
Antenna distance	:	3m
Test receiver setting - Detector - Bandwidth Spectrum analyzer setting - Peak - Average		Below 1GHz Average (9kHz-90kHz, 110kHz-490kHz), Quasi-peak 200Hz, 120kHz Above 1GHz RBW=1MHz, VBW=3MHz, Span=0Hz, Sweep=auto RBW=1MHz, VBW=1kHz, Span=0Hz, Sweep=auto Display mode=Linear

Average Measurement Setting [VBW]


Mode	Duty Cycle (%)	T _{on} (us)	T _{off} (us)	1/T _{on} (kHz)	Determined VBW Setting
Bluetooth 5.3 BDR	76.80	2.88	0.87	0.347	1kHz
Bluetooth 5.3 EDR	76.80	2.88	0.87	0.347	1kHz

Although these tests were performed other than open area test site,

adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 937606.

Radiated emission measurements are performed at 3m distance with the broadband antenna (Loop antenna, Biconical antenna, Log periodic antenna, Double ridged guide antenna and Broad-band horn Antenna). The antenna is positioned both the horizontal and vertical planes of polarization and height is varied 1m to 4m and stopped at height producing the maximum emission. As for the Loop antenna, it is positioned with its plane vertical, and the center of the Loop antenna is 1m above the ground plane. The EUT is Placed on a turntable, which is 0.8m/1.5m above ground plane. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. The test results represent the worst case emission for each emission with manipulating the EUT, support equipment, interconnecting cables and varying the mode of operation. Sufficient time for the EUT, support equipment, and test equipment are allowed in order for them to warm up to their normal operating condition.

- Test configuration

4.8.2 Calculation method

[9kHz to 150kHz] Emission level = Reading + (Ant factor + Cable system loss) Margin = Limit – Emission level

[150kHz to 25GHz] Emission level = Reading + (Ant factor + Cable system loss - Amp. Gain) Margin = Limit – Emission level

Example:

Limit @ 4804.0MHz : 74.0dBuV/m (Peak Limit) S.A Reading = 49.0dBuV Cable system loss = 8.3dB Result = 49.0 + 8.3 = 57.3dBuV/m Margin = 74.0 - 57.3 = 16.7dB

4.8.3 Limit

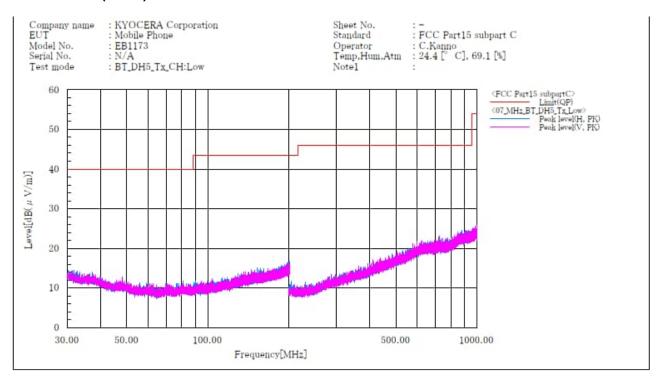
Frequency	Field s	Distance	
[MHz]	[uV/m]	[dBuV/m]	[m]
0.009-0.490	2400 / F [kHz]	20logE [uV/m]	300
0.490-1.705	24000 / F [kHz]	20logE [uV/m]	30
1.705-30	30	29.5	30
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

Note:

1. The lower limit shall apply at the transition frequencies.

2. Emission level [dBuV/m] = 20log Emission [uV/m]

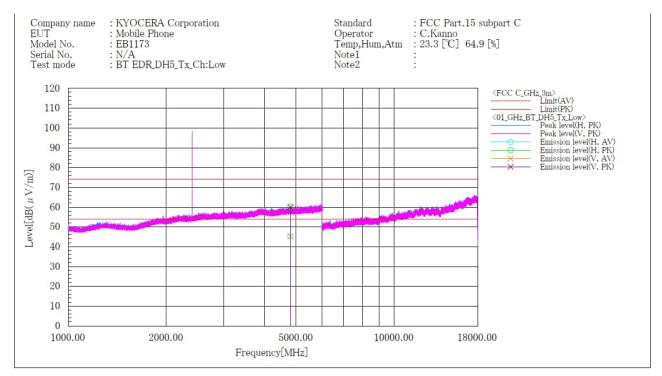
3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition modulation.



4.8.4 Test data

Date Temperature Humidity Test place	: 23. : 64.	July-2023 3 [°C] 9 [%] Semi-anechoic chamber	Test engineer	:	Chiaki Kanno
Date Temperature Humidity Test place	: 24. : 69.	August-2023 4 [°C] 1 [%] Semi-anechoic chamber	Test engineer	:	Chiaki Kanno

[Transmission mode] [DH5] Channel: Low BELOW 1 GHz(Worst)


Final Result

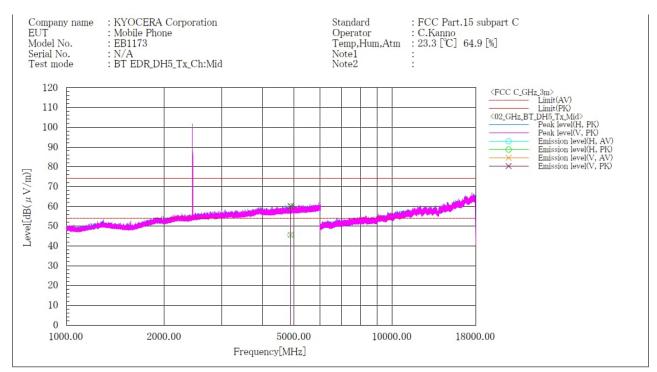
Note:

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 30MHz at the 3 meters distance.

[DH5] Channel: Low ABOVE 1 GHz

Final Result

No.	Frequency	Po1	Reading	Reading PK	c.f	Result	Result PK	Limit	Limit PK	Margin	Margin PK	Height	Angle
	[MHz]		$[dB(\mu V)]$	$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[dB]	[cm]	[deg]
1	4804.000	Н	34.7	49.4	10.7	45.4	60.1	54.0	74.0	8.6	13.9	100.0	192.0
2	4804.000	v	34.6	49.3	10.7	45.3	60.0	54.0	74.0	8.7	14.0	100.0	69.0


Note:

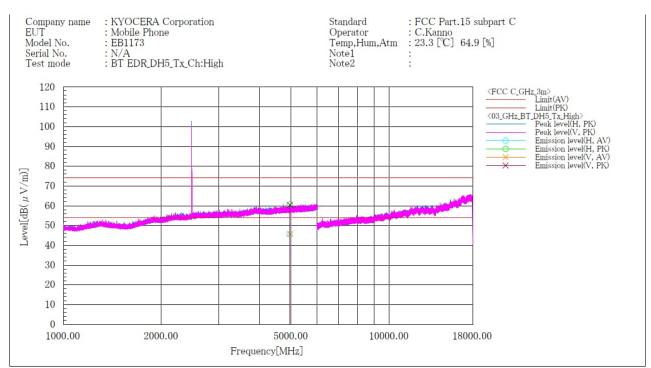
1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.

[DH5] Channel: Middle ABOVE 1 GHz

Final Result

No.	Frequency	Pol	Reading AV	Reading PK	c.f	Result AV	Result PK	Limit	Limit PK	Margin AV	Margin PK	Height	Angle
	[MHz]		$[dB(\mu V)]$	$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[dB]	[cm]	[deg]
1	4882.000	H	34.8	49.3	10.7	45.5	60.0	54.0	74.0	8.5	14.0	100.0	195.0
2	4882.000	V	34.9	49.4	10.7	45.6	60.1	54.0	74.0	8.4	13.9	178.0	315.0


Note:

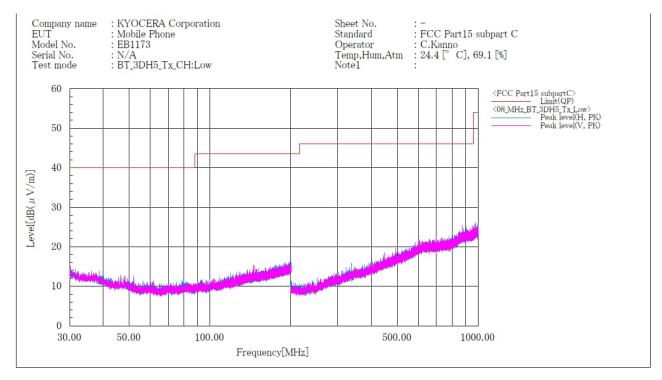
1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.

[DH5] Channel: High ABOVE 1 GHz

Final Result

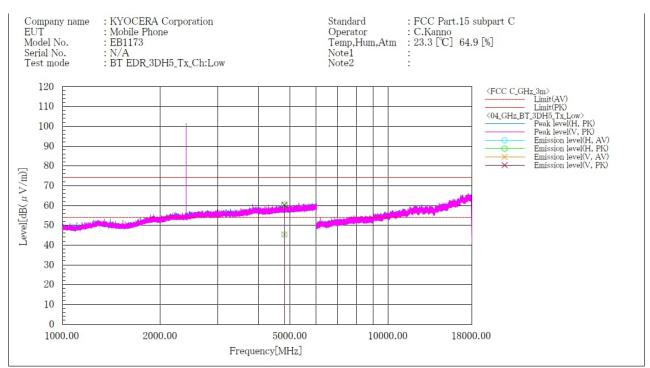
No.	Frequency	Pol	Reading AV	Reading PK	c.f	Result AV	Result PK	Limit	Limit PK	Margin AV	Margin PK	Height	Angle
	[MHz]		$[dB(\mu V)]$	$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[dB]	[cm]	[deg]
1	4960.000	Н	34.6	49.7	10.9	45.5	60.6	54.0	74.0	8.5	13.4	100.0	186.0
2	4960.000	V	34.9	49.5	10.9	45.8	60.4	54.0	74.0	8.2	13.6	100.0	328.0


Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable – Amp)]

2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.

[3-DH5] Channel: Low BELOW 1 GHz(Worst)


Final Result

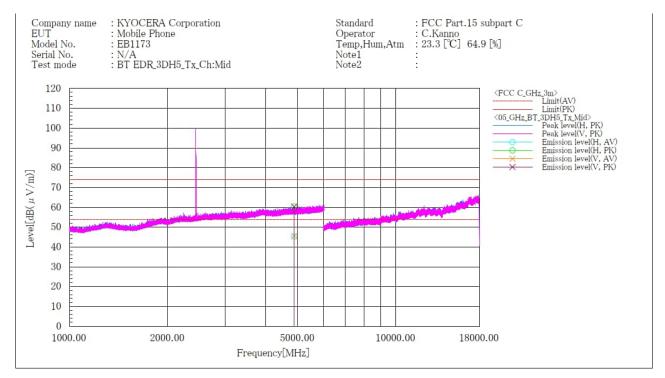
Note:

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 30MHz at the 3 meters distance.

[3-DH5] Channel: Low ABOVE 1 GHz

Final Result

No. Fre		Pol	Reading AV	Reading PK	c. f	Result AV	Result PK	Limit AV	Limit PK	Margin AV	Margin PK	Height	Angle
	[MHz] 4804.000 4804.000	H	[dB(μV)] 34.7 34.7	[dB(μV)] 49.8 49.6	[dB(1/m)] 10.7 10.7	[dB(µV/m)] 45.4 45.4	[dB(µV/m)] 60.5 60.3	[dB(µV/m)] 54.0 54.0	[dB(µV/m)] 74.0 74.0	[dB] 8.6 8.6	[dB] 13.5 13.7	[cm] 100.0 100.0	[deg] 189.0 322.0

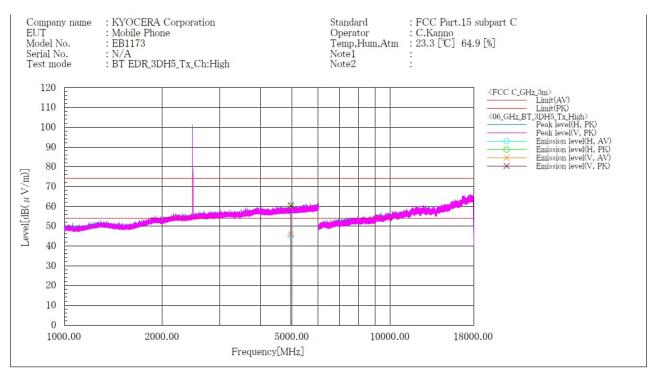

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.

[3-DH5] Channel: Middle ABOVE 1 GHz

Final Result


No.	Frequency	Pol	Reading AV	Reading PK	c.f	Result AV	Result PK	Limit	Limit PK	Margin	Margin PK	Height	Angle
1	[MHz] 4882,000	Н	[dB(µV)] 34.7	[dB(µV)] 49.8	[dB(1/m)] 10.7	[dB(µV/m)] 45.4	[dB(µV/m)] 60.5	[dB(µV/m)] 54.0	$\begin{bmatrix} dB(\mu V/m) \end{bmatrix}$ 74.0	[dB] 8.6	[dB] 13.5	[cm] 100,0	[deg] 141.0
2	4882.000	Ÿ	34.8	49.7	10.7	45.5	60.4	54.0	74.0	8.5	13.6	100.0	323.0

Note:

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.

[3-DH5] Channel: High ABOVE 1 GHz

Final Result

No.	Frequency	Pol	Reading AV	Reading PK	c.f	Result AV	Result PK	Limit	Limit PK	Margin AV	Margin PK	Height	Angle
	[MHz]		$[dB(\mu V)]$	$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[dB]	[cm]	[deg]
1	4960.000	H	34.5	49.6	10.9	45.4	60.5	54.0	74.0	8.6	13.5	100.0	182.0
2	4960.000	V	35.0	49.6	10.9	45.9	60.5	54.0	74.0	8.1	13.5	100.0	85.0

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.

4.9 Restricted Band of Operation

4.9.1 Measurement procedure

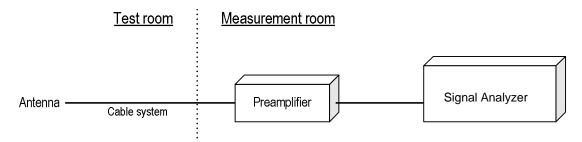
[FCC 15.247(d), 15.205, 15.209]

Test was applied by following conditions.

Test method Test place EUT was placed on Antenna distance	:	ANSI C63.10 3m Semi-anechoic chamber Styrofoam table / (W)1.0m × (D)0.8m × (H)0.8m (below 1GHz) Styrofoam table / (W)0.6m × (D)0.6m ×(H)1.5m (above 1GHz) 3m
Spectrum analyzer setting - Peak - Average	:	RBW=1MHz, VBW=3MHz, Span=Arbitrary setting, Sweep=auto RBW=1MHz, VBW=1kHz, Span=Arbitrary setting, Sweep=auto Display mode=Linear

Average Measurement Setting [VBW]

Mode	Duty Cycle (%)	T _{on} (us)	T _{off} (us)	1/T _{on} (kHz)	Determined VBW Setting
Bluetooth 5.3 BDR	76.80	2.88	0.87	0.347	1kHz
Bluetooth 5.3 EDR	76.80	2.88	0.87	0.347	1kHz


Although these tests were performed other than open area test site,

adequate comparison measurements were confirmed against 30 m open are test site. Therefore, sufficient tests were made to demonstrate that the alternative site produces results that

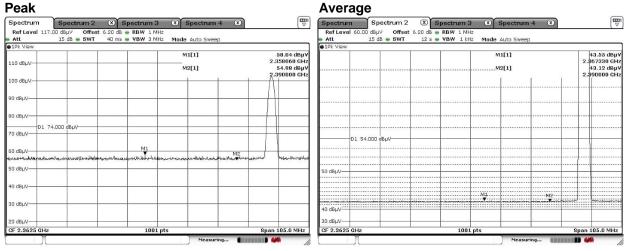
correlate with the ones of tests made in an open field based on KDB 937606.

Radiated emission measurements are performed at 3m distance with the broadband antenna (Loop antenna, Biconical antenna, Log periodic antenna, Double ridged guide antenna and Broad-band horn Antenna). The antenna is positioned both the horizontal and vertical planes of polarization and height is varied 1m to 4m and stopped at height producing the maximum emission. As for the Loop antenna, it is positioned with its plane vertical, and the center of the Loop antenna is 1m above the ground plane. The EUT is Placed on a turntable, which is 0.8m/1.5m above ground plane. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. The test results represent the worst case emission for each emission with manipulating the EUT, support equipment, interconnecting cables and varying the mode of operation. Sufficient time for the EUT, support equipment, and test equipment are allowed in order for them to warm up to their normal operating condition.

- Test configuration

4.9.2 Limit

Emission at the boundary of the restricted band provided by 15.205 shall be lower than 15.209 limit.

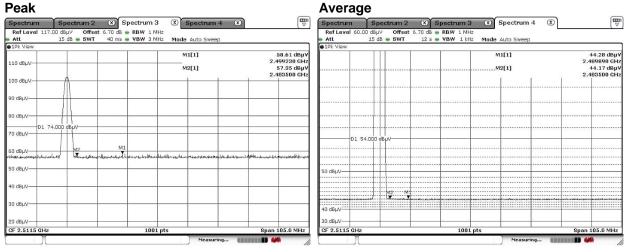

4.9.3 Measurement result

Channel	Frequency [MHz]	Results Chart	Result
Low	2402	See the Trace Data	Pass
High	2480	See the Trace Data	Pass

4.9.4 Test data

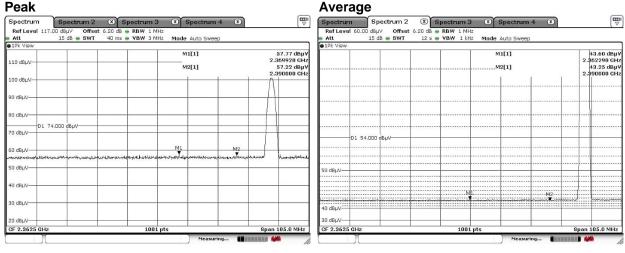
Date	:	21-August-2023			
Temperature	:	24.2 [[°] C]			
Humidity	:	68.3 [%]	Test engineer	:	
Test place	:	3m Semi-anechoic chamber			Chiaki Kanno

[DH5] Channel: Low Horizontal Book



Vertical Peak

Peak	Average
Spectrum Spectrum 2 8 Spectrum 3 8 Spectrum 4 8	Spectrum Spectrum 2 (8) Spectrum 3 (8) Spectrum 4 (8)
Ref Level 117.00 dBµV Offset 6.20 dB . RBW 1 MHz	Ref Level 60.00 dBµV Offset 6.20 dB
Att 15 dB SWT 40 ms VBW 3 MHz Mode Auto Sweep 10k View	Att 15 dB SWT 12 s VBW 1 kHz Mode Auto Sweep
M1[1] 57.39 d 2.381140	17 M1[1] 43.48 dE 42 2.387050 C
M2[1] 55.68 d 2.390000	
100 dBµV-	
00 dBµV	-
D1 74.000 dBµV	
70 dBµV	D1 54.000 dBµV
50 dBUV M1 N12 M1 N12	
onder under mit det eine eine eine eine eine eine eine ei	
	50 dBµV
40 dBµV	
30 dBµV-	M1.M2
	40 dBµV
20 dBµV CF 2.3625 GHz 1001 pts Span 105.0 M	z CF 2.3625 GHz 1001 pts Span 105.0 Mi
CF 2.3625 GHz 1001 pts Span 105.0 M Measuring	z CF 2.3625 GHz 1001 pts Span 105.0 M

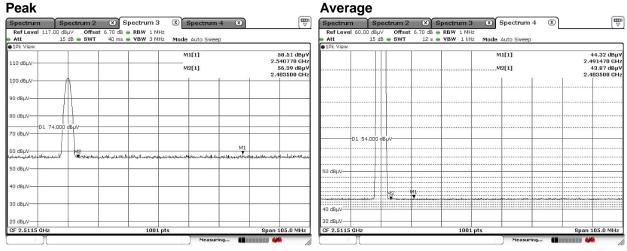

[DH5] Channel: High Horizontal Peak

Vertical Peak

Peak		Avera	ge			
Spectrum Spectrum 2 Spectrum 3 Spectrum	m 4 🗴 🕎	Spectrum	Spectrum 2	Spectrum 3	Spectrum 4 🕱	
Ref Level 117.00 dBµV Offset 6.70 dB = RBW 1 MHz		Ref Level 6		6.70 dB 🖶 RBW 1 MHz		
Att 15 dB SWT 40 ms VBW 3 MHz Mode Auto Sw		Att	15 dB 🖷 SWT	12 s 👜 YBW 1 kHz	Mode Auto Sweep	
10k View		●1Pk View				
M1[1]	58.79 dBµV 2.510030 GHz				M1[1]	44.26 dBµ 2.484860 GH
110 dBµV	56.94 dBµV				M2[1]	44.16 dBµ
	2.483500 GHz				10 E	2.483500 GH
100 dBµV						
90 dBµV	+ + + - +					
80 dBµV						
D1 74.000 dBuV						
70 dBuV						
		DI	1 54.000 dBµV			-
50 dBµV M2 M1	· · · · · ·			•••••••		••••
investigation and in the second s	وهرغر فالمرد ومردانا في الاستعالية والمراجعة المالية المراجع والمراجع والأرو					
50 dBµV						
50 0814		50 dBµV				
40 dBµV						
			annaha			
30 dBµV		40 dBuV				
		40 UBHV				
20 dBµV		30 dBµV				
CF 2.5115 GHz 1001 pts	Span 105.0 MHz	CF 2.5115 G	Hz	1001 p	ts	Span 105.0 MHz
Meas	uring				Measuring	

[3-DH5] Channel: Low Horizontal

Vertical Peak


Spectrum	Spectrum 2	Spect		Spectru	m 4 🙁		₩
Ref Level 117. Att	.00 dBµV Offset 15 dB	6.20 dB - RB 40 ms - VB		Mode Auto Sw			
1Pk View	15 UD 🖷 3W1	40 ms 🖷 ¥D	W 3 MINZ	MODE AUTO SW	eep		-
110 dBµV				M1[1]			57.77 dBµV 351040 GHz 55.83 dBµV 390000 GHz
100 dBµV					1	Δ.	390000 GH2
90 dBµV						$-\Lambda$	<u> </u>
80 dBµV					_		
70 dBµV	4.000 dBµV				-	-	
60 dBµV	والمتعول والمراجع والمراجع والمراجع	MI			M2		1-Wayangarday
50 dBµV	(10)-10-10-10-10-10-10-10-10-10-10-10-10-10-	and a new production	annin na fraitheann	a distantia	and the state of the second states	-Company	Proventional
40 dBμV					-		
30 dBµV					-		-
20 dBµV							
CF 2.3625 GHz			1001 pts			Span	105.0 MHz

Spectrum Spectrum 2 Spectrum 3 Spectrum 4 Image: Constraint of the system of th

Average

[3-DH5] Channel: High Horizontal Peak

Vertical Peak

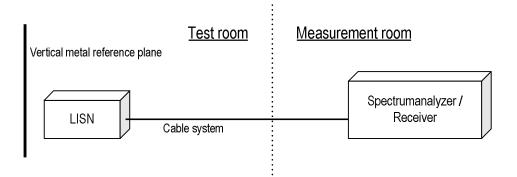
Peak				Avera	ge			
Spectrum Spectr	rum 2 🙁 Spectrum 3	Spectrum 4 🗴		Spectrum	Spectrum 2	Spectrum 3	Spectrum 4	
	Offset 6.70 dB 🖷 RBW 1 M			Ref Level		6.70 dB 曼 RBW 1 MHz		
Att 15 dB	SWT 40 ms 📾 VBW 3 M	Hz Mode Auto Sweep		Att	15 dB 🖷 SWT	12 s 🗰 VBW 1 kHz	Mode Auto Sweep	
●1Pk View				●1Pk View				
110 dBµV		M1[1] M2[1]	58.61 dBµV 2.504470 GHz 56.31 dBµV 2.483500 GHz				M1[1] M2[1]	44.29 dBμ 2.488530 GH 44.10 dBμ 2.483500 GH
100 dBµV								
90 dBµV								
80 dBµV								
70 dBµV					1 54.000 dBuV			
60 dBµV	м1	m-lady with an advanding many mere						
50 dBUV	and a she was had a she was a s	qara-dahedalahi dadakan kangada yaka yaka yaka yaka yaka yaka yaka y	ماليكونة رمينة من عالية المربوع ماليك المالية المربوع المربوع المالية. المراجع المراجع					
30 0000				50 dBµV				
40 dBµV-					M2 M1			
30 dBµV				40 dBµV	annound			aan ah la ah
20 dBµV				30 dBµV				
CF 2.5115 GHz	1001	pts	Span 105.0 MHz	CF 2.5115 G	Hz	1001	ots	Span 105.0 MHz
CF 2.3113 GH2	1001		span 103.0 MH2	CF 2.3113 G	Hz	1001	Measuring	Span 103.0 MH

4.10 AC Power Line Conducted Emissions

4.10.1 Measurement procedure

[FCC 15.207]

Test was applied by following conditions.


Test method Frequency range Test place EUT was placed on Vertical Metal Reference Plane Test receiver setting	:	ANSI C63.10 0.15 MHz to 30 MHz 3 m Semi-anechoic chamber Styrofoam table / (W)1.0m × (D)0.8m × (H)0.8m (W)2.0 m × (H)2.0 m 0.4 m away from EUT
- Detector - Bandwidth		Quasi-peak, Average 9 kHz

EUT and peripherals are connected to $50\Omega/50\mu$ H Line Impedance Stabilization Network (LISN) which are connected to reference ground plane, and are placed 80cm away from EUT. Excess of AC power cable is bundled in center.

LISN for peripheral is terminated in 50Ω .

EUT operating mode is selected to emit the maximum noise. Overall frequency range is investigated with spectrum analyzer using peak detector. Maximum emission configuration is determined by manipulating the EUT, peripherals, interconnecting cables. Then, emission measurements are performed with test receiver in above setting to each current-carrying conductor of the mains port. Sufficient time for EUT, peripherals and test equipment is provided in order for them to warm up to their normal operating condition. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits.

- Test configuration

4.10.2 Calculation method

Emission level = Reading + (LISN. Factor + Cable system loss) Margin = Limit – Emission level

Example:

Limit @ 6.770 MHz: $60.0 dB\mu V(Quasi-peak)$: $50.0 dB\mu V(Average)$ (Quasi peak) Reading = $41.2 dB\mu V$ c.f = 10.3 dBEmission level = $41.2 + 10.3 = 51.5 dB\mu V$ Margin = 60.0 - 51.5 = 8.5 dB(Average) Reading = $35.0 dB\mu V$ c.f = 10.3 dBEmission level = $35.0 + 10.3 = 45.3 dB\mu V$ Margin = 50.0 - 45.3 = 4.7 dB

4.10.3 Limit

Frequency	Lii	nit
[MHz]	QP [dBuV]	AV [dBuV]
0.15-0.5	66-56*	56-46*
0.5-5	56	46
5-30	60	50

*: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.5MHz.

4.10.4 Test data

Date Temperature Humidity Test place	 7-September-2023 23.7 [°C] 66.5 [%] Test engineer : 3m Semi-anechoic chamber Tadahiro Seino
EUT Model No. Serial No. Test mode	KYOCERA CorporationStandard: FCC Part 15 Subpart CMobile PhoneOperator: T.SeinoEB1173Temp,Hum,Atm: 23.7 [° C], 66.5 [%]N/ANote1:BT_EDR_TxNote2:
80 70 60 50 40 20 10 0 0.150	0 0
	Frequency[MHz]

Fina	l Result									
No.	Frequency	Reading QP	Reading CAV	c.f	Result	Result CAV	Limit QP	Limit AV	Margin	Margin CAV
1 2 3	[MHz] 0.150 0.200		[dB(µV)] 21.0 15.1	[dB] 10.5 10.4	[dB(µV)] 56.6 52.2	[dB(µV)] 31.5 25.5	[dB(µV)] 66.0 63.6	[dB(μV)] 56.0 53.6	[dB] 9.4 11.4	[dB] 24.5 28.1
3 4 5 6	0.558 0.693 4.042	31.1 30.9 23.1	21.1 21.3 11.9	10.3 10.3 10.6	41.4 41.2 33.7	31.4 31.6 22.5	56.0 56.0 56.0	46.0 46.0 46.0	14.6 14.8 22.3	14.6 14.4 23.5
	6.742 L2 Frequency	26.4 Reading	14.2 Reading	10.8 c.f	37.2 Result	25.0 Result	60.0 Limit	50.0 Limit	22.8 Margin	25.0 Margin
1 2	[MHz] 0.150	QP	CAV [dB(μV)] 20.9	[dB] 10.5	QP [dB(μV)] 57.1	CAV	QP [dB(μV)] 66.0	AV [dB(μV)] 56,0	QP [dB] 8.9	CAV [dB] 24.6
2 3 4 5	0.200 0.554 0.698	42.4 29.6 29.0	16.1 20.0 20.2	10.4 10.3 10.3	52.8 39.9 39.3	26.5 30.3 30.5	63.6 56.0 56.0	53.6 46.0 46.0	10.8 16.1 16.7	27.1 15.7 15.5
5	4.053 6.802	26.4 24.8	$12.6 \\ 13.4$	10.6 10.8	37.0 35.6	23.2 24.2	56.0 60.0	46.0 50.0	19.0 24.4	22.8 25.8

5 Antenna requirement

According to FCC section 15.203, an intentional radiator shall be designed to ensure that no antenna other than furnished by the responsible party shall be used with the device. The antenna is a special antenna mounted inside of the EUT. Therefore, the EUT complies with the antenna requirement of FCC section 15.203.

6 Measurement Uncertainty

Expanded uncertainties stated are calculated with a coverage Factor k=2. Please note that these results are not taken into account when measurement uncertainty considerations contained in ETSI TR 100 028 Parts 1 and 2 determining compliance or non-compliance with test result.

Test item	Measurement uncertainty
Conducted emission, AMN (9 kHz – 150 kHz)	±3.7 dB
Conducted emission, AMN (150 kHz – 30 MHz)	±3.3 dB
Radiated emission (9kHz – 30 MHz)	±3.8 dB
Radiated emission (30 MHz – 1000 MHz)	±5.4 dB
Radiated emission (1 GHz – 6 GHz)	±4.6 dB
Radiated emission (6 GHz – 18 GHz)	±4.7 dB
Radiated emission (18 GHz – 40 GHz)	±6.4 dB
Radio Frequency	±1.3 * 10 ⁻⁸
RF power, conducted	±0.7 dB
Adjacent channel power	±1.5 dB
Temperature	±0.6 °C
Humidity	±1.2 %
Voltage (DC)	±0.4 %
Voltage (AC, <10kHz)	±0.2 %

Judge		Measured value and standard limit value
PASS	Case1	alue ertainty -Uncertainty Even if it takes uncertainty into consideration, Measured value a standard limit value is fulfilled. Although measured value is in a standard limit value, a limit value won't be fulfilled if uncertainty is taken into consideration.
FAIL	Case3	Although measured value exceeds a standard limit value, a limit value will be fulfilled if uncertainty is taken into consideration. Even if it takes uncertainty into consideration, a standard limit value isn't fulfilled.

7 Laboratory Information

Testing was performed and the report was issued at:

TÜV SÜD Japan Ltd. Yonezawa Testing Center

Address:5-4149-7 Hachimanpara, Yonezawa-shi, Yamagata, 992-1128 JapanPhone:+81-238-28-2881

Accreditation and Registration A2LA

Certificate #3686.03

VLAC Accreditation No.: VLAC-013

BSMI Laboratory Code: SL2-IN-E-6018, SL2-A1-E-6018

Innovation, Science and Economic Development Canada ISED#: 4224A

VCCI Council Registration number: A-0166

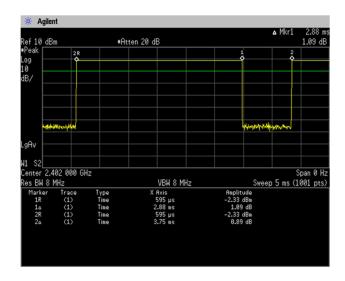
Appendix A. Test Equipment

Antenna port conducted test

Equipment	Company	Model No.	Serial No.	Cal. Due	Cal. Date
Spectrum analyzer	Agilent Technologies	E4440A	US44302655	30-Sep-2023	05-Sep-2022
Attenuator	HUBER+SUHNER	6810.19.A	N/A(S450)	31-Dec-2023	19-Dec-2022
Power meter	ROHDE&SCHWARZ	NRP2	103269	31-Mar-2024	13-Mar-2023
Power sensor	ROHDE&SCHWARZ	NRP-Z81	102467	31-Mar-2024	13-Mar-2023
Radiated emission					
Equipment	Company	Model No.	Serial No.	Cal. Due	Cal. Date
EMI receiver	ROHDE&SCHWARZ	ESW44	103171	30-Sep-2023	20-Sep-2022
Spectrum analyzer	ROHDE&SCHWARZ	FSV40	101731	31-Aug-2024	16-Aug-2023
Preamplifier	SONOMA	310	372170	30-Sep-2023	28-Sep-2022
Loop antenna	ROHDE&SCHWARZ	HFH2-Z2	100515	30-Apr-2024	21-Apr-2023
Attenuator	TOYO Connector	NA-PJ-6	N/A(S507)	31-Mar-2024	15-Mar-2023
Biconical antenna	Schwarzbeck	VHBB9124/BBA9106	1145	31-Jul-2024	14-Jul-2023
Log periodic antenna	Schwarzbeck	VUSLP9111B	346	30-Nov-2023	16-Nov-2022
Attenuator	TOYO Connector	NA-PJ-6/6dB	N/A(S541)	30-Sep-2023	28-Sep-2022
Attenuator	TAMAGAWA.ELEC	CFA-10/3dB	N/A(S503)	31-Jul-2024	20-Jul-2023
Preamplifier	TSJ	MLA-100M18-B02-40	1929118	31-Dec-2023	22-Dec-2022
Attenuator	AEROFLEX	26A-10	081217-08	31-Dec-2023	19-Dec-2022
Double ridged guide antenna	ETS LINDGREN	3117	00052315	30-Jun-2024	22-Jun-2023
Attenuator	HUBER+SUHNER	6803.17.B	N/A(2340)	31-Dec-2023	22-Dec-2022
Double ridged guide antenna	A.H.Systems Inc.	SAS-574	469	31-Aug-2023	19-Aug-2022
Preamplifier	TSJ	MLA-1840-B03-35	1240332	31-Aug-2023	19-Aug-2022
Notch Filter	Micro-Tronics	BRM50702	G433	30-Sep-2023	28-Sep-2022
		SUCOFLEX104/9m	800690/4	31-Oct-2023	26-Oct-2022
		SUCOFLEX104/1m	my24610/4	31-Dec-2023	19-Dec-2022
Manager and a		SUCOFLEX104/9m	2001099/4	31-Dec-2023	22-Dec-2022
Microwave cable	HUBER+SUHNER	SUCOFLEX104/1m	MY32976/4	31-Dec-2023	22-Dec-2022
		SUCOFLEX104/2m	SN MY28404/4	31-Dec-2023	19-Dec-2022
		SUCOFLEX104/7m	41625/6	31-Dec-2023	22-Dec-2022
Software	TOYO Technica	ES10/RE-AJ	Ver.2021.10.001	N/A	N/A
Absorber	RIKEN	PFP30	N/A	N/A	N/A
3m Semi an-echoic Chamber	TOKIN	N/A	N/A(9002-NSA)	31-May-2024	28-May-2023
3m Semi an-echoic Chamber	TOKIN	N/A	N/A(9002-SVSWR)	31-May-2024	28-May-2023

Conducted emission at mains port

Equipment	Company	Model No.	Serial No.	Cal. Due	Cal. Date
EMI receiver	ROHDE&SCHWARZ	ESW44	103171	30-Sep-2023	20-Sep-2022
Attenuator	HUBER+SUHNER	6810.01.A	N/A (S411)	31-Dec-2023	20-Dec-2022
Line impedance stabilization network	Kyoritsu Electrical Works, Ltd.	TNW-407F2	12-17-110-2	30-Jun-2024	22-Jun-2023
Microwave cable	HUBER+SUHNER	SUCOFLEX104/5m	MY33601/4	31-Oct-2023	27-Oct-2022
Microwave cable	HUBER+SUHNER	SUCOFLEX104/2m	MY37268/4	31-Oct-2023	27-Oct-2022
Coaxial cable	HUBER+SUHNER	RG214/U/10m	N/A (S194)	31-Dec-2023	22-Dec-2022
Software	TOYO Technica	ES10/RE-AJ	Ver.2021.10.001	N/A	N/A


*: The calibrations of the above equipment are traceable to NIST or equivalent standards of the reference organizations.

Appendix B. Duty Cycle

[Plot & Calculation]

DH5

Duty Cycle = Ton / (Ton + Toff) = 2.88[ms] / (2.88[ms] + 0.87[ms]) = 76.8[%]

	🔆 Agilen	t					
09 09 09 09 09 09 09 00 00 00		n	•A	tten 20 dB		▲ Mkr1	2.88 -0.49 d
99 B/ B/ gRv 1 S2 enter 2.402 000 GHz s BH 8 MHz 1 S2 Inter 5 MBZ Inter 5 MBZ Span 0 SBH 8 MHz Span 0 SPS ps Span 0 Span 0 SPS ps Span 0 Span 0					1	2	
B/ gRv gRv 1 S2 enter 2.402 000 GHz es BH 8 MHz WBH 8 MHz VBH 8 MHz VBH 8 MHz Sweep 5 ms (1001 pr Marker Trace 1 Sype 1 S 2 Sweep 5 ms (1001 pr Marker Trace 1 Sype 1 S 2 Sweep 5 ms (1001 pr Marker Trace 1 Sype 1 S 2 Sweep 5 ms (1001 pr Marker Trace 1 Sype 2 R dta 1 Time 2 Sys e 2.33 dbm 1 a dta 2 Time 5 Sp s 2.33 dbm 2 R dta 2 Time 5 Sp s 2.33 dbm 2 R dta 2 R dta 2 Sweep 5 ms (1001 pr 2.33 dbm 2 R dta 2 R dta 2 Sweep 5 ms (1001 pr 2.33 dbm 2 R dta 2 R dta 2 R dta 2 R dta 2 R dta 2.33 dbm		<u>م</u>			Ŷ	^	
gRv graduation graduation <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
gRv Image: Constraint of the second sec	B/						
gRv Image: Constraint of the second sec							
gRv Image: Constraint of the second sec							
gRv Image: Constraint of the second sec							
gRv Image: Constraint of the second sec							
I S2 Span 0 enter 2.402 000 GHz Span 0 es BH 8 MHz VBN 8 MHz Sweep 5 ms (1001 pr Marker Trace Type X fixis Amplitude 1R (1) Time 595 µs -0.49 dB 2R (1) Time 595 µs -0.43 dB	~****	and the second second			With the second	himtoryst	
I S2 Span 0 enter 2.402 000 GHz Span 0 es BH 8 MHz VBN 8 MHz Sweep 5 ms (1001 pr Marker Trace Type X fixis Amplitude 1R (1) Time 595 µs -0.49 dB 2R (1) Time 595 µs -0.43 dB							
enter 2.402 000 GHz Span 0 es BM 8 MHz VBN 8 MHz Sweep 5 ms (1001 pr Marker Trace Type X Axis Amplitude 1R (1) Time 595 ps -2.33 dBm 1a (1) Time 2.88 ms -0.49 dB 2R (1) Time 555 ps -2.33 dBm	gAv 📉						
enter 2.402 000 GHz Span 0 es BM 8 MHz VBN 8 MHz Sweep 5 ms (1001 pr Marker Trace Type X Axis Amplitude 1R (1) Time 595 ps -2.33 dBm 1a (1) Time 2.88 ms -0.49 dB 2R (1) Time 555 ps -2.33 dBm							
es BH 8 MHz VBH 8 MHz Sweep 5 ms (1.001 pr Marker Trace Type X fixis Amplitude 1R (1) Time 595 µs -2.33 dBm 1a (1) Time 2.88 ms -0.49 dB 2R (1) Time 595 µs -2.33 dBm							<u> </u>
Marker Trace Type X Axis Amplitude 1R (1) Time 595 µs -2.33 dBm 1a (1) Time 2.88 ms -0.49 dB 2R (1) Time 595 µs -2.33 dBm			z				
1R (1) Time 595µs -2.33 dBm 1a (1) Time 2.88 ms -0.49 dB 2R (1) Time 595µs -2.33 dBm	es BWI8 №	1Hz		VBW 8 MHz	Swe	ep 5 ms (1	001 pt
1α (1) Time 2.88 ms -0.49 dB 2R (1) Time 595 μs -2.33 dBm			Type				
2R (1) Time 595 µs -2.33 dBm							
	16						
26 (1) Time 3.75 ms -0.09 dB							
	28	(1)	line	3.75 MS	-0.09 dB		

3-DH5

Duty Cycle = Ton / (Ton + Toff) = 2.88[ms] / (2.88[ms] + 0.87[ms]) = 76.8[%]