

Guangdong Hailea Group Co., Ltd. RF TEST REPORT

Report Type: FCC Part 15.231

Part no: 45041

REPORT NUMBER: 220302634SHA-001

ISSUE DATE: Aug 17, 2022

DOCUMENT CONTROL NUMBER: TTRF15.231_V1 © 2020 Intertek

Intertek Testing Services Shanghai Building No.86, 1198 Qinzhou Road (North) Caohejing Development Zone Shanghai 200233, China

> Telephone: 86 21 6127 8200 <u>www.intertek.com</u> Report no.: 220302634SHA-001

Applicant:	Guangdong Hailea Group Co., Ltd. Hailea Industrial Zone, Hailea Road, Raoping County, Chaozhou, Guangdong Province 515700, China.
Manufacturer:	Guangdong Hailea Group Co., Ltd. Hailea Industrial Zone, Hailea Road, Raoping County, Chaozhou, Guangdong Province 515700, China.
PRODUCT NAME:	Universal Remote for Adjustable Flow Pumps
TYPE/MODEL:	45041
FCC ID:	2AVM6-45041

SUMMARY:

The equipment complies with the requirements according to the following standard(s) or Specification: **47CFR Part 15 (2020):** Radio Frequency Devices (Subpart C)

ANSI C63.10 (2013): American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

PREPARED BY:

REVIEWED BY:

Scout Gong Project Engineer Wakeyou Wang

Reviewer

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Total Quality. Assured. TEST REPORT

Content

RE	VISI	ON HISTORY	. 4
М	EASL	UREMENT RESULT SUMMARY	. 5
1	C	GENERAL INFORMATION	. 6
	1.1	DESCRIPTION OF EQUIPMENT UNDER TEST (EUT)	6
	1.2		
	1.3	DESCRIPTION OF TEST FACILITY	7
2	٦	rest specifications	. 8
	2.1	Standards or specification	8
	2.2	Mode of operation during the test	8
	2.3	Test software list	8
	2.4	TEST PERIPHERALS LIST	8
	2.5	Test environment condition:	9
	2.6	INSTRUMENT LIST	10
	2.7	MEASUREMENT UNCERTAINTY	11
3	F	UNDAMENTAL & SPURIOUS EMISSION & RESTRICT BAND RADIATED EMISSION	12
	3.1		12
	3.2	Measurement Procedure	13
	3.3	TEST CONFIGURATION	14
	3.4	Test Results of Radiated Emissions	16
4	F	POWER LINE CONDUCTED EMISSION	22
	4.1		22
	4.2	Test Configuration	22
	4.3	Measurement Procedure	23
	4.4	Test Results of Power line conducted emission	24
5	E	EMISSION BANDWIDTH	25
	5.1	Test Configuration	25
	5.2	LIMIT	26
	5.3	Measurement Procedure	26
	5.4	THE RESULTS	27
6	[DEACTIVATING TIME	28
	6.1	Test limit	28
	6.2	Test Configuration	28
	6.3	Test procedure and test setup	29
	6.4	TEST PROTOCOL	29
7	Å	ANTENNA REQUIREMENT	30

Revision History

Report No.	Version Description		Issued Date
220302634SHA-001	Rev. 01	Initial issue of report	Aug 17, 2022

Measurement result summary

TEST ITEM	FCC REFERANCE	RESULT
Fundamental & spurious emission &Restrict band radiated emission	15.231(b) 15.209(a) 15.205	Pass
Power line conducted emission	15.207	NA
Emission bandwidth	15.231(c)	Pass
Transmission Time	15.231(a)(1)	Pass
Antenna requirement	15.203	Pass

Notes: 1: NA =Not Applicable

2. Determination of the test conclusion is based on IEC Guide 115 in consideration of measurement uncertainty.

3. Additions, Deviations and Exclusions from Standards: None.

Intertek Total Quality. Assured. TEST REPORT

1 GENERAL INFORMATION

1.1 Description of Equipment Under Test (EUT)

Product name:	Universal Remote for Adjustable Flow Pumps	
Part no:	45041	
Description of EUT:	The product covered by this report is a remote control for adjustable flow pumps. It works at 315MHz Frequency, there is only one model, the worst results were listed in this report.	
Rating:	DC 23A, 12V	
Category of EUT:	Class B	
EUT type: 🛛 Table top 🗌 Floor standing		
Software Version:	/	
Hardware Version:	/	
Sample Identification No.:	0220803-15-001	
Sample received date:	July 22, 2022	
Date of test:	July 23, 2022~August 10, 2022	

1.2 Technical Specification

Operation Frequency:	315MHz
Type of Modulation:	ASK
	Mobile
	🔀 Portable
Product Type:	Fix Location
Channel Number:	1
Antenna Designation:	Integral PCB antenna
Gain of Antenna:	0dBi max

Total Quality. Assured. TEST REPORT

1.3 Description of Test Facility

Name:	Intertek Testing Services Shanghai
Address:	Building 86, No. 1198 Qinzhou Road (North), Shanghai 200233, P.R. China
Telephone:	86 21 61278200
Telefax:	86 21 54262353

The test facility is recognized,	CNAS Accreditation Lab Registration No. CNAS L0139
certified, or accredited by these organizations:	FCC Accredited Lab Designation Number: CN1175
organizations.	IC Registration Lab Registration code No.: 2042B-1
	VCCI Registration Lab Registration No.: R-4243, G-845, C-4723, T-2252
	A2LA Accreditation Lab Certificate Number: 3309.02

2 TEST SPECIFICATIONS

2.1 Standards or specification

47CFR Part 15 (2020) ANSI C63.10 (2013)

2.2 Mode of operation during the test

Within this test report, EUT was tested with modulation and tested under its rating voltage and frequency.

The EUT is a handheld device, so three axes (X, Y, Z) were observed while the test receiver worked as "max hold" continuously and the highest reading among the whole test procedure was recorded. Compare with the test results that X axis is the worst case.

2.3 Test software list

Test Items	Software	Manufacturer	Version	
Conducted emission	ESxS-K1	R&S	V2.1.0	
Radiated emission	ES-K1	R&S	V1.71	

2.4 Test peripherals list

Item No.	Name	Name Band and Model	
-	-	-	-

Total Quality. Assured. TEST REPORT

2.5 Test environment condition:

Test items	Temperature	Humidity
Fundamental & spurious emission & Restrict band radiated emission	24°C	53% RH
Power line conducted emission	NA	NA
Emission bandwidth & Transmission Time	24°C	49% RH

TEST REPORT

2.6 Instrument list

Conducted Emission						
<mark>Used</mark>	Equipment	Manufacturer	Туре	Internal no.	Due date	
	Test Receiver	R&S	ESR7	EC 6194	2022-12-09	
	A.M.N.	R&S	ESH2-Z5	EC 3119	2022-11-09	
	Attenuator	Weinschel	68-6-44	EC 3043-9	2023-02-08	
	Shielded room	Zhongyu	-	EC 2838	2023-01-11	
	ated Emission	Manufacturer	Tura	Internal no.	Due date	
Used	Equipment	R&S	Type ESIB 26			
~	Test Receiver			EC 3045	2022-10-19	
~	Bilog Antenna	TESEQ	CBL 6112B	EC 6411	2022-11-05	
~	Pre-amplifier	tonscend	tap01018050	EC 6432-1	2022-12-26	
~	Horn antenna	tonscend	bha9120d	EC 6432-2	2023-01-09	
>	Horn antenna	ETS	3117	EC 4792-1	2023-03-27	
•	Horn antenna	ΤΟΥΟ	HAP18-26W	EC 4792-3	2023-07-08	
>	Pre-amplifier	R&S	AFS42-00101800 -25-S-42	EC 5262	2022-09-08	
•	Semi-anechoic chamber	Albatross project	-	EC 3048	2022-11-21	
<mark>RF te</mark>	st					
<mark>Used</mark>	Equipment	Manufacturer	Туре	Internal no.	Due date	
•	PXA Signal Analyzer	Keysight	N9030A	EC 5338	2023-03-14	
•	Power sensor	Agilent	U2021XA	EC 5338-1	2023-03-14	
>	Vector Signal Generator	Agilent	N5182B	EC 5175	2023-03-14	
~	MXG Analog Signal Generator	Agilent	N5181A	EC 5338-2	2023-03-14	
•	Test Receiver	R&S	ESCI 7	EC 4501	2022-12-09	
•	Climate chamber	GWS	MT3065	EC 6021	2023-03-06	
•	Spectrum Analyzer	Keysight	N9030b	EC 6078	2022-09-08	
•	Universal Radio Communication Tester	R&S	CMW500	EC 6209	2023-01-20	
>	Signal generator	Agilent	N5182A	EC 6172	2022-11-18	
>	Signal generator	Agilent	N5181A	EC 6171	2022-11-18	
Additional instrument						
<mark>Used</mark>	Equipment	Manufacturer	Туре	Internal no.	Due date	
~	Therom-Hygrograph	ZJ1-2A	S.M.I.F.	EC 3442	2023-01-03	
>	Pressure meter	YM3	Shanghai Mengde	EC 3320	2022-10-21	

2.7 Measurement uncertainty

The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Test item	Measurement uncertainty
Maximum peak output power	\pm 0.68dB
Radiated Emissions in restricted frequency bands below 1GHz	\pm 4.90dB
Radiated Emissions in restricted frequency bands above 1GHz	± 4.80dB
Emission outside the frequency band	\pm 4.80dB
Power line conducted emission	± 2.7dB

Total Quality. Assured.

3 Fundamental & Spurious Emission & Restrict band radiated emission

Test result: Pass

3.1 Limit

3.1.1 The emission shall test through the 10th harmonic or to 40GHz, whichever is lower. It must comply with the limits below:

Fundamental Frequency (MHz)	Fundamental limit (uV/m)	Spurious limit (uV/m)			
40.66 - 40.70	2250	225			
70 - 130	1250	125			
130 - 174	1250 to 3750	125 to 375			
174 - 260	3750	375			
260 - 470	3750 to 12500	375 to 1250			
Above 470	12500	1250			

The formulas for calculating the maximum permitted fundamental field strengths are as follows: for the band 130-174 MHz, uV/m at 3 meters = 56.81818(Frequency) - 6136.3636; for the band 260-470 MHz, uV/m at 3 meters = 41.6667(Frequency) - 7083.3333. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.

For that the EUT use fundamental frequency of 315MHz, after calculation, the limit is:

Fundamental limit = 41.6667 * 315 - 7083.3333 = 6041.6772uV/m = 75.60dBuV/m Spurious limit = 75.60 - 20 = 55.60dBuV/m

3.1.2 The radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) showed as below:

Frequency (MHz)	Field Strength (dBuV/m)	Measurement Distance (m)
30 - 88	40.0	3
88 - 216	43.5	3
216 - 960	46.0	3
Above 960	54.0	3

TEST REPORT

3.2 Measurement Procedure

For Radiated emission below 30MHz:

- a) The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c) Both X and Y axes of the antenna are set to make the measurement.
- d) For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e) The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

NOTE:

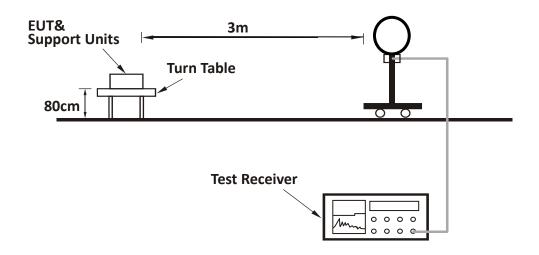
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz:

- a) The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c) The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e) The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f) The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 3 x RBW (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported

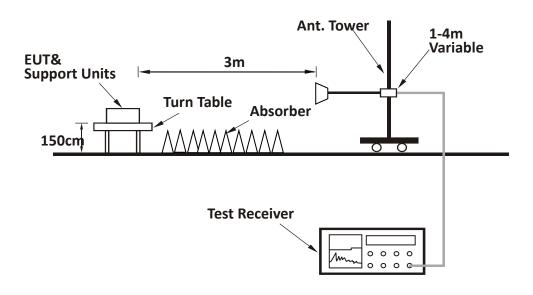

Report No.: 220302634SHA-001

intertek Total Quality. Assured. TEST REPORT

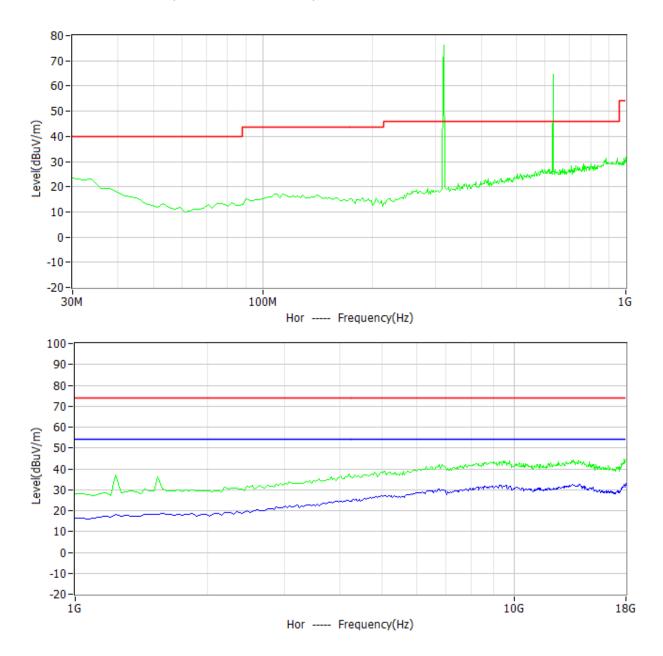
IESI REPORT

3.3 Test Configuration

For Radiated emission below 30MHz:



For Radiated emission 30MHz to 1GHz:


For Radiated emission above 1GHz:

intertek Total Quality. Assured. TEST REPORT

3.4 Test Results of Radiated Emissions

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

Total Quality. Assured.

80 70 **60 50** Level(dBuV/m) 40 30 20 10 0. -10 -20-30M 100M 1Ġ Ver ----- Frequency(Hz) 100 90· 80-70-60-Level(dBuV/m) **50** 40-30-20. 10 0--10--20-10G 1Ġ 18G Ver ----- Frequency(Hz)

Intertek Total Quality. Assured. TEST REPORT

Test data

Polarization	Frequency (MHz)	Corrected Reading (dBµV/m)	Correct Factor (dB/m)	Limits (dBµV/m)	Margin (dB)	Detector
	30.00	23.30	21.40	40.00	16.70	РК
	315.00	76.40	16.20	95.60	19.20	PK
	630.00	64.70	22.20	75.60	10.90	PK
н	803.66	29.00	23.70	46.00	17.00	PK
	881.42	31.20	24.20	46.00	14.80	PK
	1260.00	37.10	25.80	75.60	38.50	PK
	1575.00	36.30	24.80	75.60	39.30	PK
	30.00	23.80	21.40	40.00	16.20	PK
	315.00	64.50	16.20	95.60	31.10	PK
	630.00	54.30	22.20	75.60	21.30	PK
V	774.50	28.60	23.40	46.00	17.40	PK
	881.42	31.20	24.20	46.00	14.80	PK
	1260.00	34.90	25.80	75.60	40.70	PK
	1575.00	32.50	24.80	75.60	43.10	PK

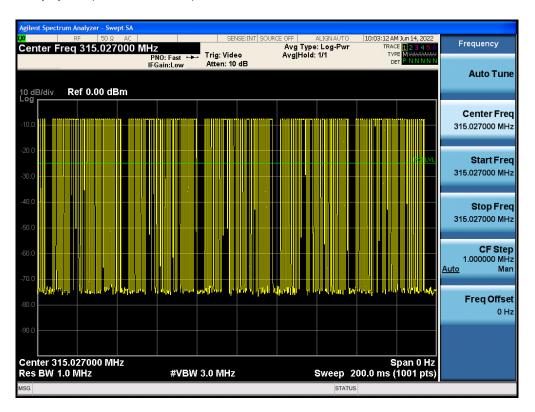
Remark:

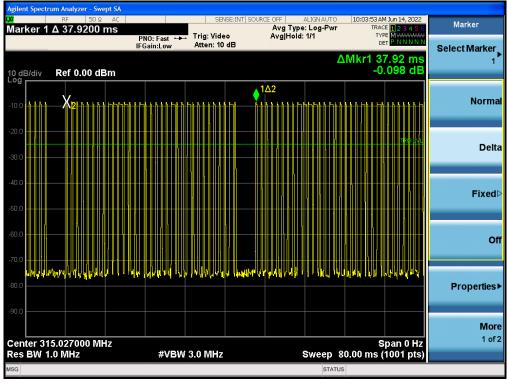
1. Correct Factor = Antenna Factor + Cable Loss (+ Amplifier, for higher than 1GHz), the value was added to Original Receiver Reading by the software automatically.

2. Corrected Reading = Original Receiver Reading + Correct Factor

3. Margin = Limit - Corrected Reading

4. If the PK Corrected Reading is lower than AV limit, the AV test can be elided.


Example:


Assuming Antenna Factor = 30.20dB/m, Cable Loss = 2.00dB, Gain of Preamplifier = 32.00dB, Original Receiver Reading = 10.00dBuV, Limit = 40.00dBuV/m. Then Correct Factor = 30.20 + 2.00 - 32.00 = 0.20dB/m; Corrected Reading = 10dBuV + 0.20dB/m = 10.20dBuV/m; Margin = 40.00dBuV/m - 10.20dBuV/m = 29.80dB.

TEST REPORT

Duty Cycle:

The test data with maximum duty cycle was listed below. The worst Duty cycle= (0.16*24+0.68*8)/37.92=9.28/37.92=24.47%

TEST REPORT

	RF	50 Ω							SENS	SE:IN	IT SO	DUR	CE OF			ALIG			1	0:05:			m 14,			Marker
arker 3	Δ 680	.000 µs	5	PN	0: Fa:	et ⊷l	Т	rig: \	/ideo							e: Lo : 1/1	g-P	wr			TY	PE N	23 1	www	÷.	warker
					ain:Lo		A	tten	: 10	dB											_		P N N	_	-	Select Marke
																		1	ΔN	kr	3 6	88	0.0 82	μs		3
dB/div g	Ref 0	0.00 dBr							<u>.</u> т										_		-0	.9	82	aE		
		X	×1∆2		b b		.γ		4		h	_					_	b b	╞		b 1			N		
.0		1	×2					1					1				Ц			Ш.						Norm
.0			کاک																							
.0																										
.0																				II,						De
													ļ	Í				Ň			ĺ					
				III						U	∥		ſ													
	hot you way	Anna anno	ابها لمها	64 (h	n Lyd	يبا بي	rel.) l	ŋ	Į	h		y ww	.	w	w lin	ļ	WH	W	U,	fee	ya,	4	4		Fire
1.0																										Fixe
J.U																										
enter 31			z																		S	spa	in O	Hz		
es BW 1	.0 MHz	2			#	VBV	V 3.	0 M	Ηz							Swe	eep) 4	0.0	0 m	is (10	01	pts)	c
R MODE TR			Х					Y			F	UNC	TION		FUI	чстіо	N W	IDTH		FU	NCTI	DN V	ALUE	^		
Δ2 1 2 F 1	t (2	<u>)</u>		8.36	1.0 μs 0 ms		-11	.002	<u>38 d</u> dB	m				\rightarrow												
Δ4 1 F 1	t (Δ	2)		680	1.0 μs 0 ms	s (Δ)	11	-0.9	82 d																	Properties
				10.0	U IIIS			.002	. uD																	
														\rightarrow												
																										Mo
																										1 0
																								>		1 0

TEST REPORT

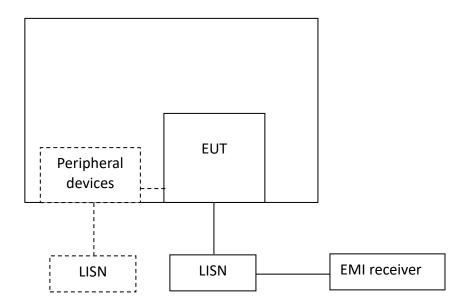
Antenna	Frequency (MHz)	PK Reading (dBuV/m)	Correct Factor (dB)	AV Reading (dBuV/m)	Limit (dBuV/m)	Margin (dB)
н	315.00	76.40		64.18	75.60	11.42
н	630.00	64.70		52.48	55.60	3.12
н	1260.00	34.90		22.68	55.60	32.92
н	1575.00	32.50	12.22	20.28	55.60	35.32
V	315.00	64.50	-12.22	52.28	75.60	23.32
V	630.00	54.30		42.08	55.60	13.52
V	1260.00	37.10		24.88	55.60	30.72
V	1575.00	36.30		24.08	55.60	31.52

Calculating the AV value according to the duty cycle

Remark:

- 1. Correct Factor = 20lg (duty cycle) = 20lg (0.2447) = -12.22;
- 2. AV Reading = PK Reading + Correct Factor;
- 3. Margin = limit AV Reading.

TEST REPORT


4 Power line conducted emission

Test result: NA

4.1 Limit

Frequency of Emission (MHz)	Conducted Limit (dBuV)							
	QP	AV						
0.15-0.5	66 to 56*	56 to 46 *						
0.5-5	56	46						
5-30	60	50						

4.2 Test Configuration

4.3 Measurement Procedure

Measured levels of ac power-line conducted emission shall be the emission voltages from the voltage probe, where permitted, or across the 50 Ω LISN port (to which the EUT is connected), where permitted, terminated into a 50 Ω measuring instrument. All emission voltage and current measurements shall be made on each current-carrying conductor at the plug end of the EUT power cord by the use of mating plugs and receptacles on the LISN, if used. Equipment shall be tested with power cords that are normally supplied or recommended by the manufacturer and that have electrical and shielding characteristics that are the same as those cords normally supplied or recommended by the manufacturer. For those measurements using a LISN, the 50 Ω measuring port is terminated by a measuring instrument having 50 Ω input impedance. All other ports are terminated in 50 Ω loads.

Tabletop devices shall be placed on a platform of nominal size 1 m by 1.5 m, raised 80 cm above the reference ground plane. The vertical conducting plane or wall of an RF-shielded (screened) room shall be located 40 cm to the rear of the EUT. Floor-standing devices shall be placed either directly on the reference ground-plane or on insulating material as described in ANSI C63.4. All other surfaces of tabletop or floor-standing EUTs shall be at least 80 cm from any other grounded conducting surface, including the case or cases of one or more LISNs.

The bandwidth of the test receiver is set at 9 kHz.

Intertek Total Quality. Assured. TEST REPORT

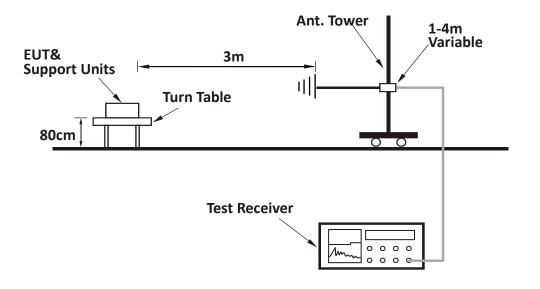
4.4 Test Results of Power line conducted emission

Test Data:										
Frequency		Quasi-peak		Average						
(MHz)	level dB(μV)	Limit dB(µV)	Margin (dB)	level dB(μV)	limit dB(μV)	Margin (dB)				
-	-	-	-	-	-	-				
-	-	-	-	-	-	-				
-	-	-	-	-	-	-				
-	-	-	-	-	-	-				
-	-	-	-	-	-	-				
-	-	-	-	-	-	-				

Remark: 1. Correct Factor = LISN Factor + Cable Loss, the value was added to Original Receiver Reading by the software automatically.

2. Corrected Reading = Original Receiver Reading + Correct Factor

3. Margin = Limit - Corrected Reading


4. If the PK Corrected Reading is lower than AV limit, the AV test can be elided.

TEST REPORT

5 Emission Bandwidth

Test result: Pass

5.1 Test Configuration

TEST REPORT

5.2 Limit

The bandwidth of the emission shall be no wider than 0.25 % of the center frequency for devices operating above 70MHz and below 900MHz. For devices operating above 900 MHz, the 99% bandwidth shall be less or equal to 0.5% of the center frequency.

The limit for the EUT = 0.25% * 315 MHz = 787.5 kHz

5.3 Measurement Procedure

The EUT and simulators were placed on a 0.8m high wooden turntable above the horizontal metal ground plane. The turn table rotated 360 degrees to determine the position of the maximum emission level. The EUT was set 3 meters away from the receiving antenna which was mounted on an antenna mast. The antenna moved up and down between from 1 meter to 4 meters to find out the maximum emission level.

The central frequency of test receiver was set near the operating frequency of EUT.

The test was conducted using the Spectrum Analyzer with the resolutions bandwidth set at 10kHz, the video bandwidth set at 30kHz.

Total Quality. Assured.

5.4 The results

Frequency (MHz)	20dB Bandwidth (kHz)	99% Bandwidth (kHz)
315	14.91	18.409
Limit	787.5	787.5
Result	Complied	Complied

Intertek

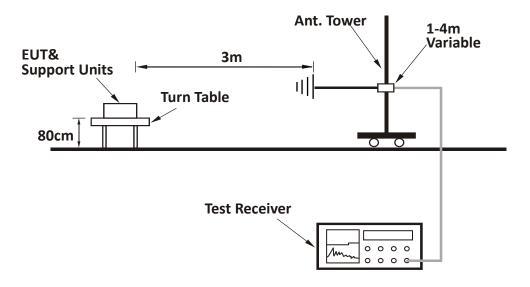
TEST REPORT

6 Deactivating time

Test result: Pass

6.1 Test limit

(1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.


(2) A transmitter activated automatically shall cease transmission within 5 seconds after activation.

(3) Periodic transmissions at regular predetermined intervals are not permitted. However, polling or supervision transmissions, including data, to determine system integrity of transmitters used in security or safety applications are allowed if the total duration of transmissions does not exceed more than two seconds per hour for each transmitter. There is no limit on the number of individual transmissions, provided the total transmission time does not exceed two seconds per hour.

(4) Intentional radiators which are employed for radio control purposes during emergencies involving fire, security, and safety of life, when activated to signal an alarm, may operate during the pendency of the alarm condition.

[(5) Transmission of set-up information for security systems may exceed the transmission duration limits in (1) and (2) above, provided such transmission are under the control of a professional installer and do not exceed ten seconds after a manually operated switch is released or a transmitter is activated automatically. Such set-up information may include data.

6.2 Test Configuration

TEST REPORT

6.3 Test procedure and test setup

The measurement was applied in a semi-anechoic chamber.

The central frequency of test receiver was set as the operating frequency of EUT and the Span was set as 0.

The EUT was switched once. The test receiver recorded the whole time from the triggered moment to the time of stopping radiating. For manual switching, to avoid uncertainty, the operating above would be repeated five times and the worst data is recorded.

6.4 Test protocol

Whole time from the triggered moment to the time of stopping radiating: 0.220s. As a result, the EUT complies with the limit of 5s' deactivating time.

Agilent Spectrum Analyzer - Swep	ot SA				
Center Freq 315.027		SENSE:INT SOUR	CE OFF ALIGNAUTO	10:00:16 AM Jun 14, 2022 TRACE 1 2 3 4 5 6	Frequency
	PNO: Fast ↔→ IFGain:Low	Trig: Free Run Atten: 10 dB	Avg Hold: 1/1	TYPE M WAAAAAAA DET P N N N N N	
	IFGain:Low	Attent. 10 db	Δ	Mkr1 220.0 ms	Auto Tune
10 dB/div Ref 0.00 dB	m			0.206 dB	
Log					
40.0					Center Freq
-10.0					315.027000 MHz
-20.0					
					Start Freq
-30.0					315.027000 MHz
-40.0					Stop Freq
					315.027000 MHz
-50.0					
					CF Step
-60.0					1.000000 MHz
-70.0	2				<u>Auto</u> Man
-70.0 Wanner When When 2 more	Alexant margh and started provided for a	way www. and extremely and	Marian abil mousingury	and the south and the second start of the seco	
-80.0					Freq Offset
					0 Hz
-90.0					
Center 315.027000 MH	7			Span 0 Hz	
Res BW 1.0 MHz		3.0 MHz	Sweep	10.00 s (1001 pts)	
MSG			STATUS		

7 Antenna requirement

Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Result:

EUT uses permanently attached antenna to the intentional radiator, so it can comply with the provisions of this section.