Page: 1 of 50 # **Appendix C** # **Calibration certificate** | 1. Dipole | |--------------------------------| | D750V3 - SN 1188(2019/03/07) | | D835V2 - SN 4d114(2019/06/11) | | D1800V2 - SN 2d170(2019/06/11) | | D1900V2 - SN 5d136(2019/06/11) | | 2. DAE | | DAE4 - SN 1245(2021/05/19) | | 3. Probe | | EX3DV4 - SN 3798(2021/05/31) | Report No.: KSCR211000018101 Page: 2 of 50 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client CCS-CN (Auden) Certificate No: D750V3-1188_Mar19 | 511111 | | | | |---|---|--|--| | Object | D750V3 - SN:11 | 88 | | | Calibration procedure(s) | QA CAL-05.v11 | | | | | Calibration Proci | edure for SAR Validation Sources | s between 0.7-3 GHz | | Calibration date: | March 07, 2019 | | | | | | | | | This calibration certificate docume | nts the traceability to nat | tional standards, which realize the physical un | nits of measurements (SI). | | The measurements and the uncert | tainties with confidence p | probability are given on the following pages are | nd are part of the certificate. | | All calibrations have been conduct | ed in the closed laborato | ery facility: environment temperature (22 ± 3)°(| C and humidity < 70%. | | | | | a service contribution of the transfer | | Calibration Equipment used (M&TI | E critical for calibration) | | | | rimary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | SN: 104778 | 04-Apr-18 (No. 217-02672/02673) | Apr-19 | | | SN: 103244 | 04-Apr-18 (No. 217-02672) | Apr 10 | | ower sensor NRP-Z91 | 314, 103244 | 04-Apr-10 (No. 217-02072) | Apr-19 | | | SN: 103244 | | | | Power sensor NRP-Z91 | | 04-Apr-18 (No. 217-02673) | Apr-19 | | Power sensor NRP-Z91
Reference 20 dB Attenuator | SN: 103245 | 04-Apr-18 (No. 217-02673)
04-Apr-18 (No. 217-02682) | Apr-19
Apr-19 | | Power sensor NRP-Z91
Reference 20 dB Attenuator
Type-N mismatch combination | SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327 | 04-Apr-18 (No. 217-02673)
04-Apr-18 (No. 217-02682)
04-Apr-18 (No. 217-02683) | Apr-19
Apr-19
Apr-19 | | Power sensor NRP-Z91
Reference 20 dB Attenuator
Type-N mismatch combination
Reference Probe EX3DV4 | SN: 103245
SN: 5058 (20k) | 04-Apr-18 (No. 217-02673)
04-Apr-18 (No. 217-02682) | Apr-19
Apr-19 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards | SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349 | 04-Apr-18 (No. 217-02673)
04-Apr-18 (No. 217-02682)
04-Apr-18 (No. 217-02683)
31-Dec-18 (No. EX3-7349_Dec18)
04-Oct-18 (No. DAE4-601_Oct18) | Apr-19
Apr-19
Apr-19
Dec-19 | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 | SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601 | 04-Apr-18 (No. 217-02673)
04-Apr-18 (No. 217-02682)
04-Apr-18 (No. 217-02683)
31-Dec-18 (No. EX3-7349_Dec18) | Apr-19
Apr-19
Apr-19
Dec-19
Oct-19
Scheduled Check | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards | SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601 | 04-Apr-18 (No. 217-02673)
04-Apr-18 (No. 217-02682)
04-Apr-18 (No. 217-02683)
31-Dec-18 (No. EX3-7349_Dec18)
04-Oct-18 (No. DAE4-601_Oct18)
Check Date (in house)
07-Oct-15 (in house check Feb-19) | Apr-19 Apr-19 Apr-19 Dec-19 Oct-19 Scheduled Check In house check: Oct-20 | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A | SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601 | 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 31-Dec-18 (No. EX3-7349_Dec18) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) | Apr-19 Apr-19 Apr-19 Dec-19 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A | SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783 | 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 31-Dec-18 (No. EX3-7349_Dec18) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) | Apr-19 Apr-19 Apr-19 Dec-19 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06 | SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317 | 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 31-Dec-18 (No. EX3-7349_Dec18) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) | Apr-19 Apr-19 Apr-19 Dec-19 Oct-19 Scheduled Check In house check: Oct-20 | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B | SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317
SN: 100972 | 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 31-Dec-18 (No. EX3-7349_Dec18) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) | Apr-19 Apr-19 Apr-19 Dec-19 Oct-19 Scheduled Check In house check: Oct-20 | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06 | SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317
SN: 100972
SN: US41080477 | 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 31-Dec-18 (No. EX3-7349_Dec18) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18) | Apr-19 Apr-19 Apr-19 Dec-19 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-19 | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by: | SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317
SN: US41080477
Name
Jeton Kastrati | 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 31-Dec-18 (No. EX3-7349_Dec18) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18) Function Laboratory Technician | Apr-19 Apr-19 Apr-19 Dec-19 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-10 | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317
SN: 100972
SN: US41080477
Name | 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 31-Dec-18 (No. EX3-7349_Dec18) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18) | Apr-19 Apr-19 Apr-19 Dec-19 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
In house check: Oct-10 | Certificate No: D750V3-1188_Mar19 Page 1 of 8 Report No.: KSCR211000018101 Page: 3 of 50 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D750V3-1188_Mar19 Page 2 of 8 Report No.: KSCR211000018101 Page: 4 of 50 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.2 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 750 MHz ± 1 MHz | | # Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.3 ± 6 % | 0.90 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | **** | **** | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.07 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.23 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.36 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.41 W/kg ± 16.5 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.5 | 0.96 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.2 ± 6 % | 0.97 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | **** | **** | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.14 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 8.48 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.41 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 5.60 W/kg ± 16.5 % (k=2) | Report No.: KSCR211000018101 Page: 5 of 50 # Appendix (Additional assessments outside the scope of SCS 0108) # Antenna Parameters with Head TSL | Impedance, transformed to feed point | 53.9 Ω - 3.1 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 26.4 dB | | # Antenna Parameters with Body TSL | Impedance, transformed to feed point | 49.8 Ω - 4.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 27.0 dB | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.034 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| Report No.: KSCR211000018101 Page: 6 of 50 # **DASY5 Validation Report for Head TSL** Date: 07.03.2019 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1188 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; σ = 0.9 S/m; ϵ_r = 42.3; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(10.32, 10.32, 10.32) @ 750 MHz; Calibrated: 31.12.2018 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.10.2018 Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) # Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.36 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.06 W/kg SAR(1 g) = 2.07 W/kg; SAR(10 g) = 1.36 W/kg Maximum value of SAR (measured) = 2.72 W/kg 0 dB = 2.72 W/kg = 4.35 dBW/kg Page: 7 of 50 # Impedance Measurement Plot for Head TSL Report No.: KSCR211000018101 Page: 8 of 50 # **DASY5 Validation Report for Body TSL** Date: 07.03.2019 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1188 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.97 \text{ S/m}$; $\varepsilon_r = 55.2$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(10.29, 10.29, 10.29) @ 750 MHz; Calibrated: 31.12.2018 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) · Electronics: DAE4 Sn601; Calibrated: 04.10.2018 Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005 DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) # Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.26 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 3.13 W/kg SAR(1 g) = 2.14 W/kg; SAR(10 g) = 1.41 W/kg Maximum value of SAR (measured) = 2.81 W/kg 0 dB = 2.81 W/kg = 4.49 dBW/kg Page: 9 of 50 # Impedance Measurement Plot for Body TSL Report No.: KSCR211000018101 Page: 10 of 50 In Collaboration with Client CCS-CN Certificate No: Z19-60197 # **CALIBRATION CERTIFICATE** Object D835V2 - SN: 4d114 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: June 11, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment
temperature(22±3) To and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |------------|--|--| | 106277 | 20-Aug-18 (CTTL, No.J18X06862) | Aug-19 | | 104291 | 20-Aug-18 (CTTL, No.J18X06862) | Aug-19 | | SN 7514 | 27-Aug-18(SPEAG,No.EX3-7514_Aug18) | Aug-19 | | SN 1556 | 20-Aug-18(SPEAG,No.DAE4-1556_Aug18) | Aug-19 | | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | MY49071430 | 23-Jan-19 (CTTL, No.J19X00336) | Jan-20 | | MY46110673 | 24-Jan-19 (CTTL, No.J19X00547) | Jan-20 | | | 106277
104291
SN 7514
SN 1556
ID #
MY49071430 | 106277 20-Aug-18 (CTTL, No.J18X06862)
104291 20-Aug-18 (CTTL, No.J18X06862)
SN 7514 27-Aug-18(SPEAG,No.EX3-7514_Aug18)
SN 1556 20-Aug-18(SPEAG,No.DAE4-1556_Aug18)
ID# Cal Date(Calibrated by, Certificate No.)
MY49071430 23-Jan-19 (CTTL, No.J19X00336) | | | Name | Function | Signature | |----------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 老老 | | Reviewed by: | Lin Hao | SAR Test Engineer | 林始 | | Approved by: | Qi Dianyuan | SAR Project Leader | 20 | Issued: June 14, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z19-60197 Page 1 of 8 Report No.: KSCR211000018101 Page: 11 of 50 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Page 2 of 8 Certificate No: Z19-60197 Report No.: KSCR211000018101 Page: 12 of 50 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.2.1504 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | #### Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.1 ± 6 % | 0.89 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.33 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.41 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 1.55 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.25 W/kg ± 18.7 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.0 ± 6 % | 0.97 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 2.38 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 9.49 W /kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 1.57 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 6.27 W/kg ± 18.7 % (k=2) | Certificate No: Z19-60197 Page 3 of 8 Report No.: KSCR211000018101 Page: 13 of 50 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.6Ω- 4.01jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 27.9dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 47.1Ω- 5.05jΩ | |--------------------------------------|---------------| | Return Loss | - 24.5dB | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.263 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| | | | Certificate No: Z19-60197 Page: 14 of 50 Date: 06.11.2019 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d114 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.886$ S/m; $\epsilon_r = 41.12$; $\rho = 1000$ kg/m3 Phantom section: Right Section DASY5 Configuration: - Probe: EX3DV4 SN7514; ConvF(9.09, 9.09, 9.09) @ 835 MHz; Calibrated: 8/27/2018 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 8/20/2018 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) #### Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.65 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 3.44 W/kg SAR(1 g) = 2.33 W/kg; SAR(10 g) = 1.55 W/kg Maximum value of SAR (measured) = 3.08 W/kg 0 dB = 3.08 W/kg = 4.89 dBW/kg Report No.: KSCR211000018101 Page: 15 of 50 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn # Impedance Measurement Plot for Head TSL Page 6 of 8 Page: 16 of 50 Date: 06.11.2019 Add:
No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d114 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.973$ S/m; $\epsilon_r = 55$; $\rho = 1000$ kg/m3 Phantom section: Center Section DASY5 Configuration: - Probe: EX3DV4 SN7514; ConvF(9.47, 9.47, 9.47) @ 835 MHz; Calibrated: 8/27/2018 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 8/20/2018 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.56 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 3.63 W/kg SAR(1 g) = 2.38 W/kg; SAR(10 g) = 1.57 W/kg Maximum value of SAR (measured) = 3.18 W/kg 0 dB = 3.18 W/kg = 5.02 dBW/kg Page: 17 of 50 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### Impedance Measurement Plot for Body TSL Report No.: KSCR211000018101 Page: 18 of 50 In Collaboration with e CALIBRATION LABORATORY 中国认可 国际互认 CALIBRATION CNAS L0570 E-mail: cttl@chinattl.com Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn Client CCS-CN Certificate No: Z19-60199 # CALIBRATION CERTIFICATE Object D1800V2 - SN: 2d170 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: June 11, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|--|--|-----------------------| | Power Meter NRP2 | 106277 | 20-Aug-18 (CTTL, No.J18X06862) | Aug-19 | | Power sensor NRP8S | 104291 | 20-Aug-18 (CTTL, No.J18X06862) | Aug-19 | | Reference Probe EX3DV4 | SN 7514 | 27-Aug-18(SPEAG,No.EX3-7514_Aug18) | Aug-19 | | DAE4 | SN 1556 | 20-Aug-18(SPEAG,No.DAE4-1556_Aug18) | Aug-19 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 23-Jan-19 (CTTL, No.J19X00336) | Jan-20 | | NetworkAnalyzer E5071C | MY46110673 | 24-Jan-19 (CTTL, No.J19X00547) | Jan-20 | | | The state of s | | | | | Name | Function | Signature | |----------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 是 | | Reviewed by: | Lin Hao | SAR Test Engineer | 献格 | | Approved by: | Qi Dianyuan | SAR Project Leader | SOR | Issued: June 14, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z19-60199 Page 1 of 8 Report No.: KSCR211000018101 Page: 19 of 50 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn lossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Page 2 of 8 Certificate No: Z19-60199 Report No.: KSCR211000018101 Page: 20 of 50 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.2.1504 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1800 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.8 ± 6 % | 1.41 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.63 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 38.4 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 5.06 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.2 W/kg ± 18.7 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C |
53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.8 ± 6 % | 1.50 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.64 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 38.9 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 5.06 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.4 W/kg ± 18.7 % (k=2) | Certificate No: Z19-60199 Page 3 of 8 Report No.: KSCR211000018101 Page: 21 of 50 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn #### Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 49.1Ω- 3.26jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 29.4dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 44.9Ω- 3.03jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 24.2dB | | # General Antenna Parameters and Design | Electrical Delay (one direction) | 1.075 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. # **Additional EUT Data** | Manufacture d'Au | | |------------------|-------| | Manufactured by | SPEAG | Certificate No: Z19-60199 Page: 22 of 50 Date: 06.11.2019 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 2d170 Communication System: UID 0, CW; Frequency: 1800 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1800 MHz; $\sigma = 1.406$ S/m; $\varepsilon_r = 39.82$; $\rho = 1000$ kg/m³ Phantom section: Center Section DASY5 Configuration: - Probe: EX3DV4 SN7514; ConvF(7.82, 7.82, 7.82) @ 1800 MHz; Calibrated: 8/27/2018 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 8/20/2018 - Phantom: MFP V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) #### System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.33 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 18.2 W/kg SAR(1 g) = 9.63 W/kg; SAR(10 g) = 5.06 W/kg Maximum value of SAR (measured) = 15.1 W/kg 0 dB = 15.1 W/kg = 11.79 dBW/kg Certificate No: Z19-60199 Page 5 of 8 Page: 23 of 50 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn # Impedance Measurement Plot for Head TSL Report No.: KSCR211000018101 Page: 24 of 50 Date: 06.11.2019 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn # DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 2d170 Communication System: UID 0, CW; Frequency: 1800 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1800 MHz; $\sigma = 1.503$ S/m; $\epsilon_r = 53.75$; $\rho = 1000$ kg/m3 Phantom section: Right Section DASY5 Configuration: - Probe: EX3DV4 SN7514; ConvF(7.69, 7.69, 7.69) @ 1800 MHz; Calibrated: 8/27/2018 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 8/20/2018 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) #### System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 90.01 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 17.7 W/kg SAR(1 g) = 9.64 W/kg; SAR(10 g) = 5.06 W/kg Maximum value of SAR (measured) = 14.9 W/kg 0 dB = 14.9 W/kg = 11.73 dBW/kg Certificate No: Z19-60199 Page: 25 of 50 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn # Impedance Measurement Plot for Body TSL Report No.: KSCR211000018101 Page: 26 of 50 In Collaboration with e CALIBRATION LABORATORY E-mail: cttl@chinattl.com Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn CCS-CN Client Certificate No: Z19-60200 # CALIBRATION CERTIFICATE Object D1900V2 - SN: 5d136 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: June 11, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRP2 | 106277 | 20-Aug-18 (CTTL, No.J18X06862) | Aug-19 | | Power sensor NRP8S | 104291 | 20-Aug-18 (CTTL, No.J18X06862) | Aug-19 | | Reference Probe EX3DV4 | SN 7514 | 27-Aug-18(SPEAG,No.EX3-7514_Aug18) | Aug-19 | | DAE4 | SN 1556 | 20-Aug-18(SPEAG,No.DAE4-1556_Aug18) | Aug-19 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 23-Jan-19 (CTTL, No.J19X00336) | Jan-20 | | NetworkAnalyzer E5071C | MY46110673 | 24-Jan-19 (CTTL, No.J19X00547) | Jan-20 | | | Name | Function | Signature | |----------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | E. E. | | Reviewed by: | Lin Hao | SAR Test Engineer | in the | | Approved by: | Qi Dianyuan | SAR Project Leader | 2082 | Issued: June 14, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Report No.: KSCR211000018101 Page: 27 of 50 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn lossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage
probability of approximately 95%. Certificate No: Z19-60200 Page 2 of 8 Report No.: KSCR211000018101 Page: 28 of 50 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.2.1504 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | #### Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.2 ± 6 % | 1.39 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | **** | # SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.87 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 39.7 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 5.11 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.5 W/kg ± 18.7 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.2 ± 6 % | 1.50 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 10.0 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 40.1 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 5.21 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.9 W/kg ± 18.7 % (k=2) | Certificate No: Z19-60200 Page 3 of 8 Report No.: KSCR211000018101 Page: 29 of 50 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.5Ω+ 6.11jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 24.3dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 47.1Ω+ 6.51jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 22.7dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.067 ns | | |----------------------------------|----------|--| |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| | | | Certificate No: Z19-60200 Page 4 of 8 Page: 30 of 50 Date: 06.10.2019 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d136 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.387 S/m; ϵ_r = 40.2; ρ = 1000 kg/m3 Phantom section: Center Section DASY5 Configuration: - Probe: EX3DV4 SN7514; ConvF(7.73, 7.73, 7.73) @ 1900 MHz; Calibrated: 8/27/2018 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 8/20/2018 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) #### System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.84 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 19.1 W/kg SAR(1 g) = 9.87 W/kg; SAR(10 g) = 5.11 W/kg Maximum value of SAR (measured) = 15.7 W/kg 0 dB = 15.7 W/kg = 11.96 dBW/kg Certificate No: Z19-60200 Report No.: KSCR211000018101 Page: 31 of 50 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### Impedance Measurement Plot for Head TSL Page: 32 of 50 Date: 06.11.2019 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d136 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.499$ S/m; $\varepsilon_r = 52.18$; $\rho = 1000$ kg/m3 Phantom section: Right Section DASY5 Configuration: - Probe: EX3DV4 SN7514; ConvF(7.53, 7.53, 7.53) @ 1900 MHz; Calibrated: 8/27/2018 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 8/20/2018 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) # System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 87.94 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 18.7 W/kg SAR(1 g) = 10 W/kg; SAR(10 g) = 5.21 W/kg Maximum value of SAR (measured) = 15.6 W/kg 0 dB = 15.6 W/kg = 11.93 dBW/kg Certificate No: Z19-60200 Page 7 of 8 Page: 33 of 50 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn # Impedance Measurement Plot for Body TSL Report No.: KSCR211000018101 Page: 34 of 50 Schmid & Partner Engineering AG s p e a g Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 www.speag.swiss, info@speag.swiss # IMPORTANT NOTICE #### **USAGE OF THE DAE4** The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points: Battery Exchange: The battery cover of the DAE4 unit is fixed using a screw, over tightening the screw may cause the threads inside the DAE to wear out. Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside. E-Stop Failures: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements. Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect. **DASY Configuration Files:** Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file. #### Important Note: Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer. #### Important Note: Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the E-stop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure. #### Important Note: To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE. S C S Report No.: KSCR211000018101 Page: 35 of 50 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage
Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the sign. The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client SGS (Auden) Certificate No: DAE4-1245_May21 Accreditation No.: SCS 0108 # CALIBRATION CERTIFICATE Object DAE4 - SD 000 D04 BM - SN: 1245 Calibration procedure(s) QA CAL-06.v30 Calibration procedure for the data acquisition electronics (DAE) Calibration date: May 19, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-------------------------------|--------------------|----------------------------|------------------------| | Keithley Multimeter Type 2001 | SN: 0810278 | 07-Sep-20 (No:28647) | Sep-21 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Auto DAE Calibration Unit | SE UWS 053 AA 1001 | 07-Jan-21 (in house check) | In house check: Jan-22 | | Calibrator Box V2.1 | SE UMS 006 AA 1002 | 07-Jan-21 (in house check) | In house check: Jan-22 | Calibrated by: Name Adrian Ge Sven Kühn Function Adrian Gehring Laboratory Technician Approved by: Deputy Manager Issued: May 19, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: DAE4-1245 May21 Page 1 of 5 Report No.: KSCR211000018101 Page: 36 of 50 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kallbrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates # Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. # Methods Applied and Interpretation of Parameters - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. Certificate No: DAE4-1245_May21 Page 2 of 5 Page: 37 of 50 ## **DC Voltage Measurement** A/D - Converter Resolution nominal High Range: 1LSB = 6.1μV, full range = -100...+300 mV Low Range: 1LSB = 61nV, full range = -1.....+3mV DASY measurement paramoters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | Х | Y | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 405.369 ± 0.02% (k=2) | 404.064 ± 0.02% (k=2) | 405.201 ± 0.02% (k=2) | | Low Range | 3.99482 ± 1.50% (k=2) | 3.99459 ± 1.50% (k=2) | 4.00835 ± 1.50% (k=2) | ### **Connector Angle** | | T | |---|----------| | Connector Angle to be used in DASY system | 30.0°±1° | | | | Page: 38 of 50 ## Appendix (Additional assessments outside the scope of SCS0108) 1. DC Voltage Linearity | High Range | | Reading (µV) | Difference (µV) | Error (%) | |------------|---------|--------------|-----------------|-----------| | Channel X | + Input | 200026.72 | -3.38 | -0.00 | | Channel X | + Input | 20006.87 | 1,53 | 0.01 | | Channel X | - Input | -20004.76 | 0.53 | -0:00 | | Channel Y | + Input | 200026.70 | -3.70 | -0.00 | | Channel Y | + Input | 20003.62 | -1.47 | -0.01 | | Channel Y | - Input | -20004.72 | 0.78 | -0.00 | | Channel Z | + Input | 200029.75 | -0.97 | -0.00 | | Channel Z | + Input | 20004.45 | -0.64 | -0.00 | | Channel Z | - Input | -20005.04 | 0.43 | -0.00 | | Low Range | Reading (μV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 2001.27 | 0.14 | 0.01 | | Channel X + input | 201.62 | 0.30 | 0.15 | | Channel X - Input | -198.98 | -0.13 | 0.06 | | Channel Y + Input | 2001.69 | 0.56 | 0.03 | | Channel Y + Input | 199.86 | -1.20 | -0.60 | | Channel Y - Input | -199.87 | -0.88 | 0.44 | | Channel Z + Input | 2000.64 | -0.41 | -0.02 | | Channel Z + Input | 200.68 | -0.43 | -0.21 | | Channel Z - Input | -199.64 | -0.67 | 0.34 | 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | -1.69 | -2.92 | | | - 200 | 4.45 | 2.40 | | Channel Y | 200 | -5.48 | -5,33 | | | - 200 | 3.89 | 3.68 | | Channel Z | 200 | -4.85 | -4.83 | | | - 200 | 3.58 | 3.82 | ## 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | - | 2,96 | -2.80 | | Channel Y | 200 | 8.73 | | 4.02 | | Channel Z | 200 | 9,61 | 6.48 | N . | Report No.: KSCR211000018101 Page: 39 of 50 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 15956 | 16228 | | Channel Y | 16551 | 16717 | | Channel Z | 16011 | 15539 | ### 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MΩ | <u> </u> | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation (µV) | |-----------|--------------|------------------|------------------|---------------------| | Channel X | 0.70 | -0.49 | 1,91. | 0.47 | | Channel Y | -0.44 | -1.55 | 0.69 | 0.44 | | Channel Z | -0.36 | -1.53 | 0.63 | 0.47 | ### 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | .200 | 200 | | Channel Y | 200 | 200 | | Channel Z | 200 | 200 | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) | | |----------------|-------------------|--| | Supply (+ Vcc) | ÷7.9 | | | Supply (- Vcc) | -7.6 | | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.01 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 | Report No.: KSCR211000018101 Page: 40 of 50 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client SGS-CN (Auden) Certificate No: EX3-3798_May21 ### **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:3798 Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v6, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes Calibration date: May 31, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration |
----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Reference 20 dB Attenuator | SN: CC2552 (20x) | 09-Apr-21 (No. 217-03343) | Apr-22 | | DAE4 | SN: 660 | 23-Dec-20 (No. DAE4-660_Dec20) | Dec-21 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-20 (No. ES3-3013_Dec20) | Dec-21 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-20) | In house check: Jun-22 | | Network Analyzer F8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 | Name Function Signature Calibrated by: Jeffrey Katzman Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: June 1, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Page: 41 of 50 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: NORMx,y,z ConvF tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z DCP CF diode compression point crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters A. B. C. D Polarization of Polarization 9 φ rotation around probe axis 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF). - $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMX (no uncertainty required). Certificate No: EX3-3798 May21 Report No.: KSCR211000018101 Page: 42 of 50 EX3DV4 - SN:3798 May 31, 2021 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3798 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |-------------------------------|----------|----------|----------|-----------| | Norm (μV/(V/m)²) ^A | 0.52 | 0.50 | 0.58 | ± 10.1 % | | DCP (mV) ^s | 101.2 | . 101.9 | 98.4 | | Calibration Results for Modulation Response | UID | Communication System Name | | A
dB | B
dB√μV | C | D
dB | VR
mV | Max
dev. | Unc ^E
(k=2) | |-----|---------------------------|----|---------|------------|-----|---------|----------|-------------|---------------------------| | O. | CW | X. | 0.0 | 0.0 | 1.0 | 0.00 | 143.9 | ±2.5 % | ± 4.7 % | | | | Y. | 0.0 | 0.0 | 1.0 | | 139.2 | | | | | • | Z | 0.0 | 0.0 | 1.0 | | 134.6 | | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ^{*} The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 5). **Numerical linearization parameter; uncertainty not required. **Uncertainty is determined using the max. deviation from [inear response applying rectangular distribution and is expressed for the square of the Page: 43 of 50 EX3DV4 – \$N:3798 May 31, 2021 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3798 ### Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | -41.1 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1,4 mm | Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job. Certificate No: EX3-3798_May21 Page: 44 of 50 EX3DV4 - SN:3798 May 31, 2021 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3798 ### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 150 | 52.3 | 0.76 | 10.97 | 10.97 | 10.97 | 0.00 | 1.00 | ± 13,3 % | | 450 | 43.5 | 0.87 | 10.18 | 10.18 | 10.18 | 0.15 | 1.30 | ± 13:3:% | | 750 | 41.9 | 0.89 | 9.78 | 9.78 | 9.78 | 0.49 | 0.80 | ± 12.0 % | | 835 | 41.5 | 0.90 | 9.52 | 9.52 | 9.52 | 0.47 | 0.80 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.22 | 8.22 | 8.22 | 0.34 | 0.86 | ± 12.0 % | | 1900 | 40:0 | 1.40 | 7.89 | 7:89 | 7.89 | 0:33 | 0.86 | ± 12.0 % | | 2100 | 39.8 | 1.49 | 7.85 | 7.85 | 7.85 | 0.29 | 0.86 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 7.63 | 7.63 | 7.63 | 0.32 | 0.90 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.33 | 7.33 | 7.33 | 0.31 | 0.90 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.13 | 7.13 | 7.13 | 0.39 | 0.90 | ± 12.0 % | | ,5200 | 36.0 | 4.66 | 4.85 | 4.85 | 4.85 | 0.40 | 1.80 | ± 13.1 % | | 5300 | 35.9 | 4.76 | 4.75 | 4.75 | 4.75 | 0.40 | 1.80 | ± 13.1 % | | 5500 | 35.6 | 4.96 | 4:65 | 4,65 | 4.65 | 0.40 | 1.80 | ± 13.1 % | | 5600 | 35,5 | 5.07 | 4.50 | 4.50 | 4.50 | .0.40 | 1.80 | ± 13.1 % | | 5800 | 35.3 | 5.27 | 4.60 | 4.60 | 4,60 | 0.40 | 1.80 | ± 13.1 % | ^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. At frequencies below 3 GHz, the validity of tissue parameters (s and a) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and a) is restricted
to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated farcet tissue parameters. Certificate No: EX3-3798_May21 the Con/F uncertainty for indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Report No.: KSCR211000018101 Page: 45 of 50 EX3DV4 - SN:3798 May 31, 2021 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) Page: 46 of 50 EX3DV4 - SN:3798 May 31, 2021 ## Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) Page: 47 of 50 EX3DV4 - SN:3798 May 31, 2021 ## Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) Page: 48 of 50 EX3DV4 - SN:3798 May 31, 2021 ## **Conversion Factor Assessment** ## Deviation from Isotropy in Liquid Error (φ, ϑ), f = 900 MHz Report No.: KSCR211000018101 Page: 49 of 50 | Dipole D750V3 SN 1188 | | | | | | | | |-----------------------|-----------------|--------|---------------|------|--|--|--| | | Head Liquid | | | | | | | | Date of Measurement | Return Loss(dB) | Δ% | Impedance (Ω) | ΔΩ | | | | | 2019/3/7 | -26.4 | / | 53.9 | / | | | | | 2020/3/6 | -27 | -2.27% | 54.8 | 0.9Ω | | | | | 2021/3/5 | -27.2 | -3.03% | 54.2 | 0.3Ω | | | | | | Body I | Liquid | | , | | | | | Date of Measurement | Return Loss(dB) | Δ% | Impedance (Ω) | ΔΩ | | | | | 2019/3/7 | -27 | / | 49.8 | / | | | | | 2020/3/6 | -27.6 | -2.22% | 51.1 | 1.3Ω | | | | | 2021/3/5 | -27.3 | -1.11% | 51.5 | 1.7Ω | | | | | Dipole D835V2 SN 4d114 | | | | | | | | |------------------------|-----------------|--------|---------------|------|--|--|--| | Head Liquid | | | | | | | | | Date of Measurement | Return Loss(dB) | Δ% | Impedance (Ω) | ΔΩ | | | | | 2019/6/11 | -27.9 | / | 50.6 | / | | | | | 2020/6/10 | -28.3 | -1.43% | 51.7 | 1.1Ω | | | | | 2021/6/9 | -28.4 | -1.79% | 51.9 | 1.3Ω | | | | | | Body I | Liquid | | | | | | | Date of Measurement | Return Loss(dB) | Δ% | Impedance (Ω) | ΔΩ | | | | | 2019/6/11 | -24.5 | / | 47.1 | / | | | | | 2020/6/10 | -25.2 | -2.86% | 48.5 | 1.4Ω | | | | | 2021/6/9 | -25.3 | -3.27% | 48.7 | 1.6Ω | | | | | Dipole D1800V2 SN 2d170 | | | | | | | | |-------------------------|-----------------|----|---------------|----|--|--|--| | | · | | | | | | | | | Head Liquid | | | | | | | | Date of Measurement | Return Loss(dB) | Δ% | Impedance (Ω) | ΔΩ | | | | | 2019/6/11 | -29.4 | / | 49.1 | / | | | | Report No.: KSCR211000018101 Page: 50 of 50 | 2020/6/10 | -30.2 | -2.72% | 50.3 | 1.2Ω | | | | |---------------------|-----------------|--------|----------------------|------|--|--|--| | 2021/6/9 | -30 | -2.04% | 50.2 | 1.1Ω | | | | | | Body Liquid | | | | | | | | Date of Measurement | Return Loss(dB) | Δ% | Impedance (Ω) | ΔΩ | | | | | 2019/6/11 | -24.2 | / | 44.9 | / | | | | | 2020/6/10 | -24.7 | -2.07% | 45.6 | 0.7Ω | | | | | 2021/6/9 | -24.6 | -1.65% | 45.4 | 0.5Ω | | | | | Dipole D1900V2 SN 5d136 | | | | | | | | |-------------------------|-----------------|--------|---------------|------|--|--|--| | | Head Liquid | | | | | | | | Date of Measurement | Return Loss(dB) | Δ% | Impedance (Ω) | ΔΩ | | | | | 2019/6/11 | -24.3 | / | 50.5 | / | | | | | 2020/6/10 | -25.0 | -2.88% | 51.9 | 1.4Ω | | | | | 2021/6/9 | -25.1 | -3.29% | 52.1 | 1.6Ω | | | | | | Body I | Liquid | | | | | | | Date of Measurement | Return Loss(dB) | Δ% | Impedance (Ω) | ΔΩ | | | | | 2019/6/11 | -22.7 | / | 47.1 | / | | | | | 2020/6/10 | -23.1 | -1.76% | 48.2 | 1.1Ω | | | | | 2021/6/9 | -23.5 | -3.52% | 48.5 | 1.4Ω | | | |