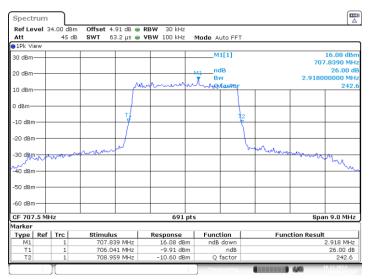
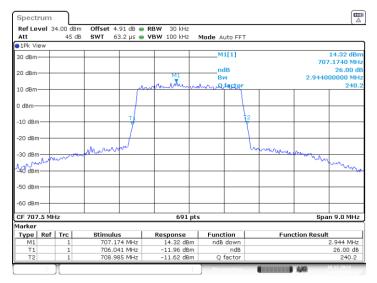

LTE band 12,1.4MHz(-26dBc)

Frequency(MHz)	Emission Bandwidth (-26dBc)(MHz)		
Frequency(MHZ)	QPSK	16QAM	
707.5	1.252	1.282	

LTE band 12 , 1.4MHz Bandwidth,MID,QPSK (-26dBc BW)

LTE band 12 , 1.4MHz Bandwidth,MID,16QAM (-26dBc BW)

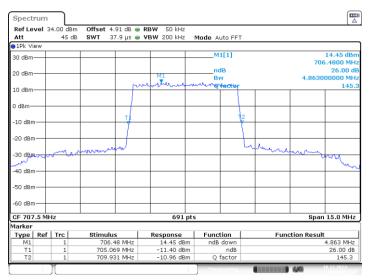


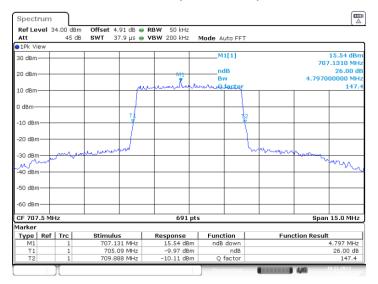

LTE band 12,3MHz(-26dBc)

Frequency(MHz)	Emission Bandwidth (-26dBc)(MHz)		
Frequency(MHZ)	QPSK	16QAM	
707.5	2.918	2.944	

LTE band 12, 3MHz Bandwidth, MID, QPSK (-26dBc BW)

LTE band 12, 3MHz Bandwidth, MID, 16QAM (-26dBc BW)

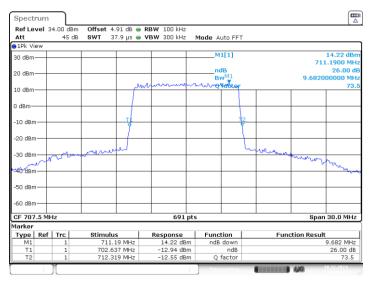


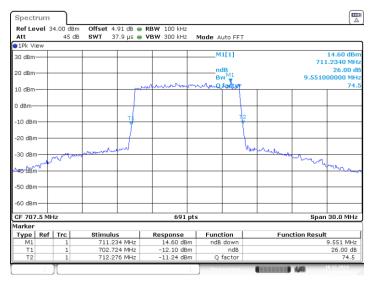

LTE band 12,5MHz(-26dBc)

Frequency(MHz)	Emission Bandwidth (-26dBc)(MHz)		
Frequency(MHZ)	QPSK	16QAM	
707.5	4.863	4.797	

LTE band 12, 5MHz Bandwidth, MID, QPSK (-26dBc BW)

LTE band 12, 5MHz Bandwidth, MID, 16QAM (-26dBc BW)

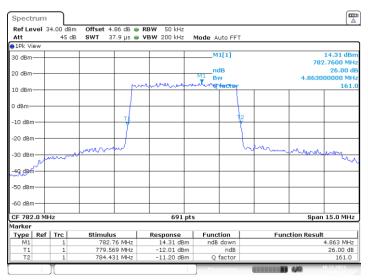


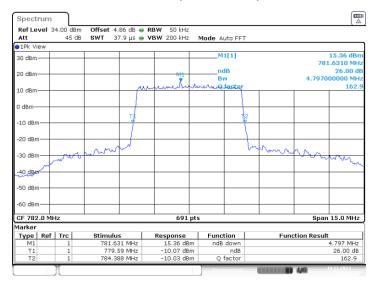

LTE band 12,10MHz(-26dBc)

Frequency(MHz)	Emission Bandwidth (-26dBc)(MHz)		
Frequency(MHZ)	QPSK	16QAM	
707.5	9.682	9.551	

LTE band 12 , 10MHz Bandwidth, MID, QPSK (-26dBc BW)

LTE band 12, 10MHz Bandwidth,MID,16QAM (-26dBc BW)

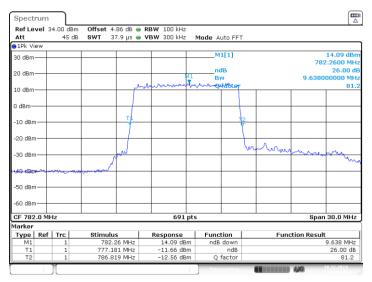



LTE band 13,5MHz(-26dBc)

Frequency(MHz)	Emission Bandwidth (-26dBc)(MHz)		
Frequency(MHZ)	QPSK	16QAM	
782	4.863	4.797	

LTE band 13 , 5MHz Bandwidth,MID,QPSK (-26dBc BW)

LTE band 13, 5MHz Bandwidth, MID, 16QAM (-26dBc BW)



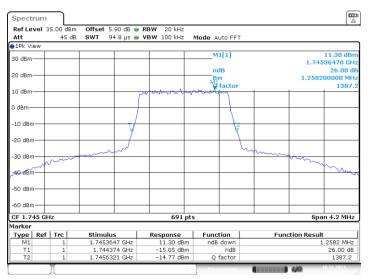
LTE band 13,10MHz(-26dBc)

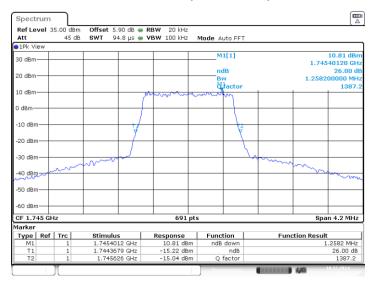
	Emission Bandwidth (-26dBc)(MHz)		
Frequency(MHz)	QPSK	16QAM	
782	9.638	9.508	

LTE band 13 , 10MHz Bandwidth, MID, QPSK (-26dBc BW)

LTE band 13, 10MHz Bandwidth,MID,16QAM (-26dBc BW)

Ref Lev	el 34	4.00 dBm	Offset 4	.86 dB 👄	RBW	100 kHz							
Att		45 dB	SWT 3	7.9 µs 👄	VBW	300 kHz	Mo	de Auto FF	т				
∋1Pk Vie	W												
30 dBm-	-				_			M1[1]					14.90 dBn
								In				78	5.7340 MH
20 dBm-	+				-			ndB Bw ^{M1} ▼					26.00 dl 00000 MH
						a retired of		maradio	-			9.0000	82.
10 dBm-	+			1 pm		of a colored	0.00	- Coller and s			—		02.0
0 dBm—													
-10 dBm				TI.				1.1	2				
-10 0500									Y				
-20 dBm-	_								\downarrow		_		
									10.00	A mar			
-30 dBm-	-			Jan J	_					ch . www	yar.	ma	www
			1 1	ſ									h
¥40,ø8m		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			-						+		
-50 dBm											+		
-60 dBm·													
-oo ubiii													
CF 782.	о мн	z				691	pts					Span	30.0 MHz
Marker													
Туре	Ref		Stimulu			sponse		Function		Fu	nction	Result	
M1		1		34 MHz		14.90 dBr		ndB down	-				9.508 MHz
T1 T2		1		68 MHz 76 MHz		10.91 dBr 12.05 dBr		Q factor	-				26.00 dB 82.6
12		1	/00./			12.05 UBI		Q ractor	1				02.0

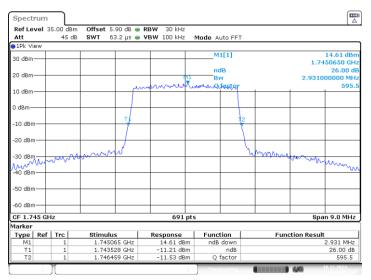


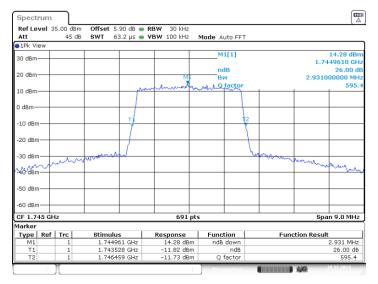

LTE band 66,1.4MHz(-26dBc)

Frequency(MHz)	Emission Bandwidth (-26dBc)(MHz)		
Frequency(MHZ)	QPSK	16QAM	
1745	1.258	1.258	

LTE band 66 , 1.4MHz Bandwidth,MID,QPSK (-26dBc BW)

LTE band 66 , 1.4MHz Bandwidth,MID,16QAM (-26dBc BW)

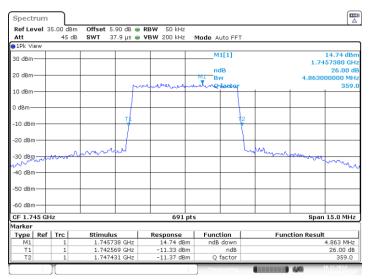


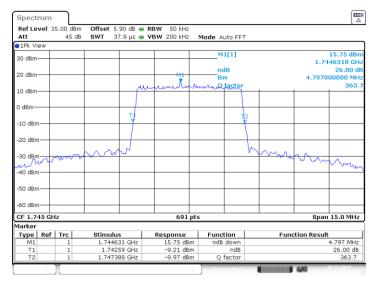

LTE band 66,3MHz(-26dBc)

	Emission Bandwidth (-26dBc)(MHz)		
Frequency(MHz)	QPSK	16QAM	
1745	2.931	2.931	

LTE band 66 , 3MHz Bandwidth, MID, QPSK (-26dBc BW)

LTE band 66 , 3MHz Bandwidth, MID, 16QAM (-26dBc BW)

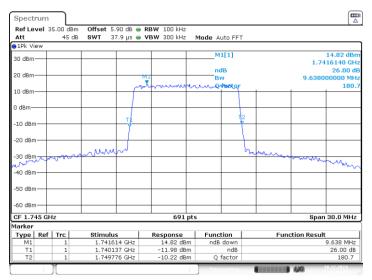


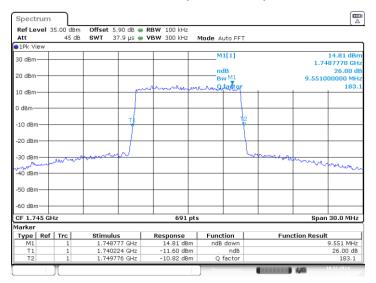

LTE band 66,5MHz(-26dBc)

	Emission Bandwidth (-26dBc)(MHz)		
Frequency(MHz)	QPSK	16QAM	
1745	4.863	4.797	

LTE band 66 , 5MHz Bandwidth,MID,QPSK (-26dBc BW)

LTE band 66 , 5MHz Bandwidth, MID, 16QAM (-26dBc BW)

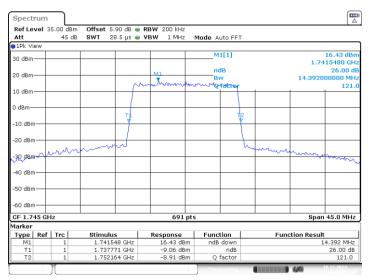



LTE band 66,10MHz(-26dBc)

Frequency(MHz)	Emission Bandwidth (-26dBc)(MHz)		
Frequency(MHZ)	QPSK	16QAM	
1745	9.638	9.551	

LTE band 66 , 10MHz Bandwidth, MID, QPSK (-26dBc BW)

LTE band 66 , 10MHz Bandwidth,MID,16QAM (-26dBc BW)



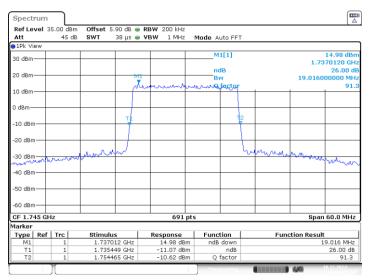
LTE band 66,15MHz(-26dBc)

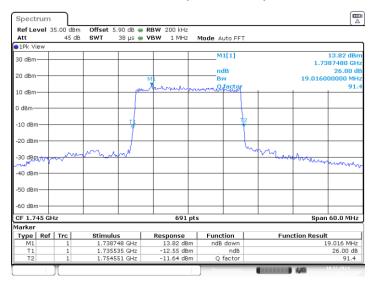
Eroguopov(MHz)	Emission Bandwidth (-26dBc)(MHz)		
Frequency(MHz)	QPSK	16QAM	
1745	14.392	14.457	

LTE band 66 , 15MHz Bandwidth, MID, QPSK (-26dBc BW)

LTE band 66 , 15MHz Bandwidth,MID,16QAM (-26dBc BW)

Ref Lev	el 35											
Att		45 dB	SWT 2	8.5 µs 😑	VBW	1 MHz	Mode A	uto FFT				
●1Pk Vie	w											
30 dBm-					_		M	1[1]				15.15 dBn
											1	.7390740 GH
20 dBm-				M1	_		B	dB				26.00 dl 7000000 MH
				T.			- march				14.45	120.
10 dBm-				- 0	-man	Ser and an	- Jan Sel	TOCLET	_			120.
0 dBm—	_				_	\rightarrow						
				т				1	_			
-10 dBm-				4	_			1	2			
-20 dBm-					_							_
				w.					40.0			
-30 dBm-	A	- Auro	m		_				V* 4	mm	- Ango	mmm
mun	- yes										1 "	manne
-40 dBm-	_				_				_			
-50 dBm-	_				_				_			
-60 dBm-	_		-		_				_			
GE 1.74	5 CH	7				691 pt	e				Sn	an 45.0 MHz
Marker	o ann	-				001 pc			_			
Type	Rof	Trc	Stimulu	c	Pos	ponse	Func	tion		Eu	nction Res	ult
M1		1	1.7390			5.15 dBm		down		1 41	10110111103	14.457 MHz
Τ1		1	1.7377		-1	0.78 dBm		ndB				26.00 dB
T2		1	1.7522	an cua	-1	1.63 dBm	0	factor				120.3




LTE band 66,20MHz(-26dBc)

	Emission Bandwidth (-26dBc)(MHz)				
Frequency(MHz)	QPSK	16QAM			
1745	19.016	19.016			

LTE band 66 , 20MHz Bandwidth, MID, QPSK (-26dBc BW)

LTE band 66 , 20MHz Bandwidth,MID,16QAM (-26dBc BW)

A.6 Band Edge Compliance

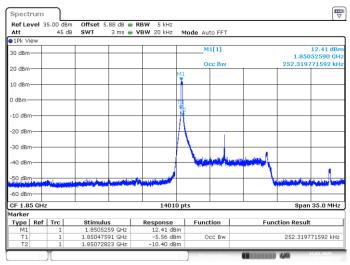
A.6.1 Measurement limit

Part 22.917, Part 24.238 and Part 27.53(h) specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

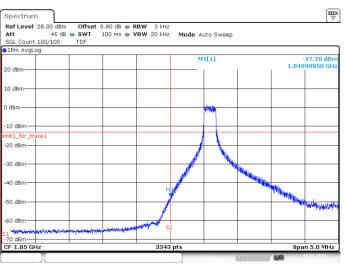
Part 27.53(m) specifies for mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

Part 27.53(c) states for operations in the 746-758 MHz band and the 776-788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:(1) On any frequency outside the 746-758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;(2) On any frequency outside the 776-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;(2) On any frequency outside the 776-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;(2) On any frequency outside the 776-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;(2) On any frequency outside the 776-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;(4) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 65 + 10 log (P) dB in a 6.25 kHz band segment, for mobile and portable stations.

Part 27.53(g) states for operations in the 600 MHz band and the 698–746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.



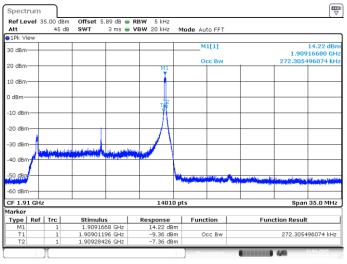
A.6.2 Measurement result


LTE band 2

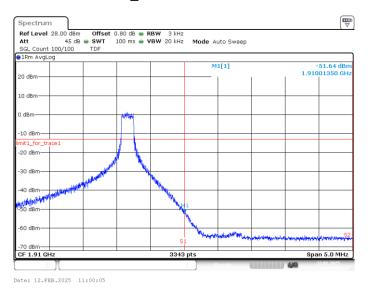
OBW: 1RB-LOW_offset

Date: 12.FEB.2025 10:58:00

LOW BAND EDGE BLOCK-1RB-LOW_offset

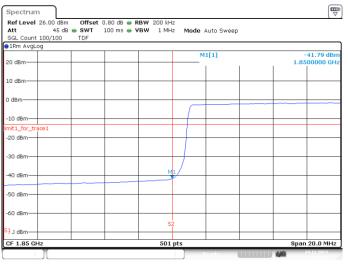


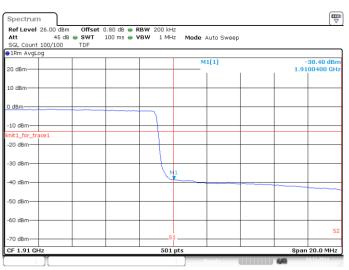
Date: 12.FEB.2025 10:58:50



OBW: 1RB-HIGH_offset

Date: 12.FEB.2025 10:59:16

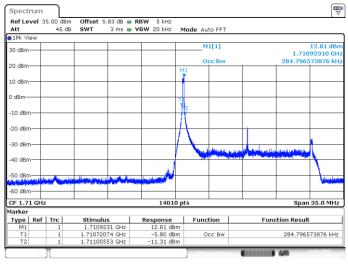

HIGH BAND EDGE BLOCK-1RB-HIGH_offset



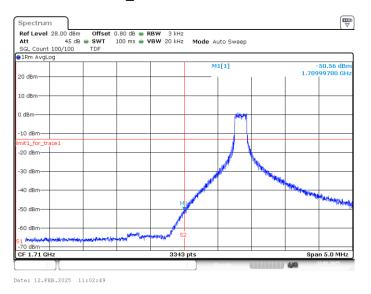
LOW BAND EDGE BLOCK-20MHz-100%RB

Date: 24.DEC.2024 17:00:26

HIGH BAND EDGE BLOCK-20MHz-100%RB

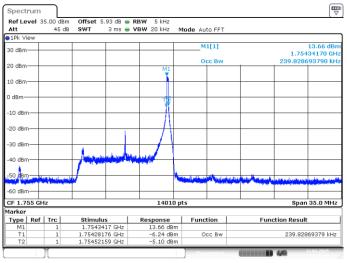


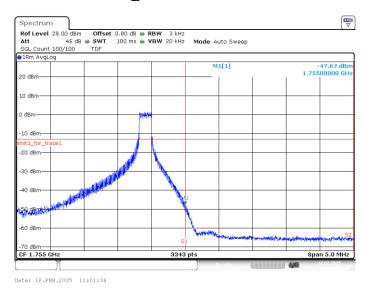
Date: 24.DEC.2024 17:01:23



LTE band 4 OBW: 1RB-LOW_offset

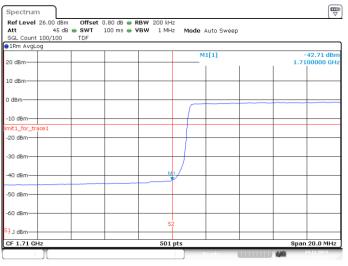
Date: 12.FEB.2025 11:01:59

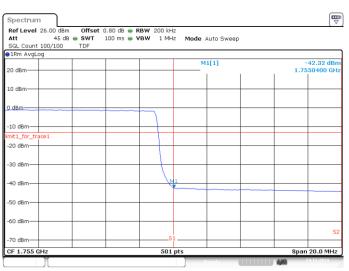

LOW BAND EDGE BLOCK-1RB-LOW_offset



OBW: 1RB-HIGH_offset

Date: 12.FEB.2025 11:00:44

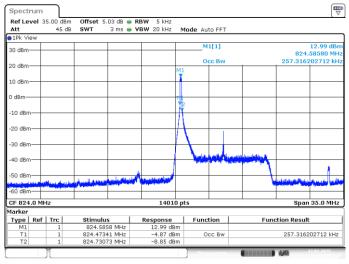

HIGH BAND EDGE BLOCK-1RB-HIGH_offset



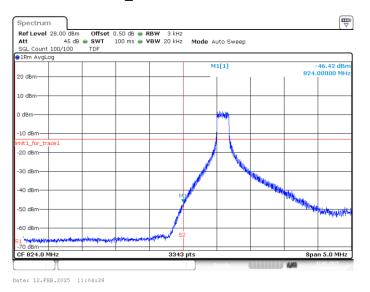
LOW BAND EDGE BLOCK-20MHz-100%RB

Date: 24.DEC.2024 17:02:20

HIGH BAND EDGE BLOCK-20MHz-100%RB

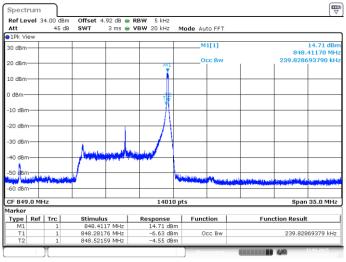


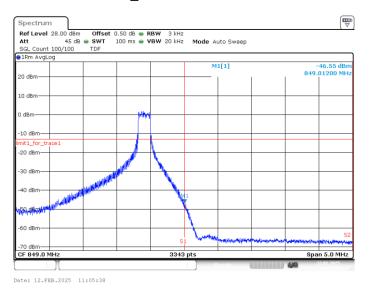
Date: 24.DEC.2024 17:03:15



LTE band 5 OBW: 1RB-LOW_offset

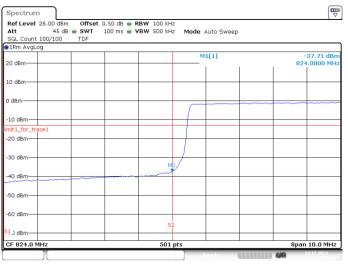
Date: 12.FEB.2025 11:03:39


LOW BAND EDGE BLOCK-1RB-LOW_offset



OBW: 1RB-HIGH_offset

Date: 12.FEB.2025 11:04:49

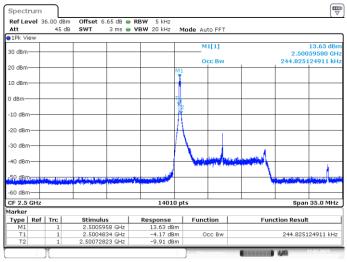

HIGH BAND EDGE BLOCK-1RB-HIGH_offset



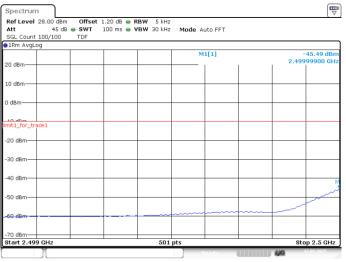
LOW BAND EDGE BLOCK-10MHz-100%RB

Date: 24.DEC.2024 17:04:48

HIGH BAND EDGE BLOCK-10MHz-100%RB



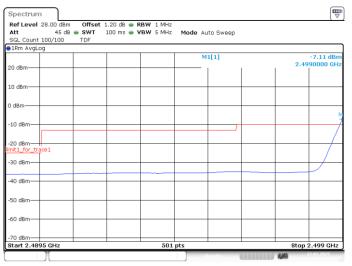
Date: 24.DEC.2024 17:05:42



LTE band 7 OBW: 1RB-LOW_offset

Date: 12.FEB.2025 13:23:38

LOW BAND EDGE BLOCK-1RB-LOW_offset

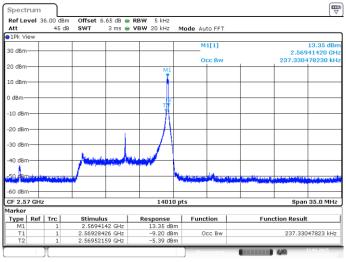


Date: 12.FEB.2025 13:24:35

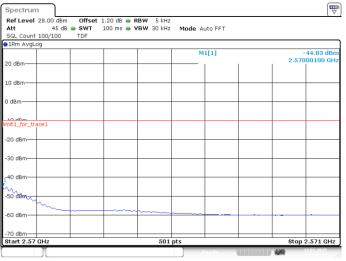
LOW BAND EDGE BLOCK-1RB-LOW_offset

Date: 12.FEB.2025 13:25:28

Channel power


Ref Level 30.00 dBr			
Att 45 dl		VBW 30 kHz Mode Auto Sweep	
SGL Count 100/100	TDF		
1Rm AvgLog			
20 dBm			+ + + +
.0 dBm		TX1	
) dBm			
10 dBm			
10 0000			
20 dBm			
30 dBm			+ + + +
40 dBm			
50 dBm			
-50 dBm			
60 dBm	-	mannen	man and a second
CF 2.499 GHz		500 pts	Span 2.0 MHz
hannel Power		000 pra	apan 2.0 MH2
Bandwidth 1.	~~	Power -39.73 dBm	Tx Total -39.73 dBm

Date: 12.FEB.2025 13:26:13



OBW: 1RB-HIGH_offset

Date: 12.FEB.2025 13:26:34

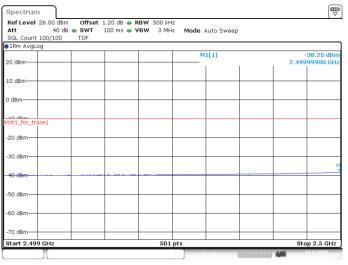
HIGH BAND EDGE BLOCK-1RB-HIGH_offset

Date: 12.FEB.2025 13:27:31

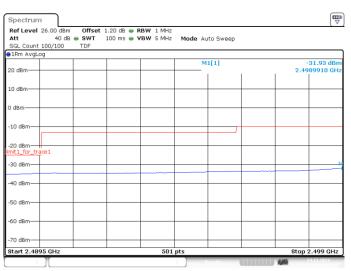
HIGH BAND EDGE BLOCK-1RB-HIGH_offset

Date: 12.FEB.2025 13:28:23

Channel power


	Offset 1.20 dB 🖷		
		VBW 30 kHz Mode Auto Sweep	
	TDF		
1Rm AvgLog			
20 dBm			
.0 dBm			
		TX1	
dBm			
abin			
10 dBm			
20 dBm			
20 0011			
30 dBm			
40 dBm			
50 dBm	_		
60 dBm	mmm	······································	han have been a second and the second s
CF 2.571 GHz		500 mb-	Span 2.0 MHz
H 2.571 GHZ		500 pts	span 2.0 MHz
Bandwidth 1.00	MHz	Power -39.61 dBm	Tx Total -39.61 dBm

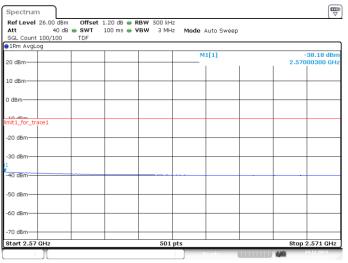
Date: 12.FEB.2025 13:29:08



LOW BAND EDGE BLOCK-20MHz-100%RB

Date: 24.DEC.2024 16:33:52

LOW BAND EDGE BLOCK-20MHz-100%RB



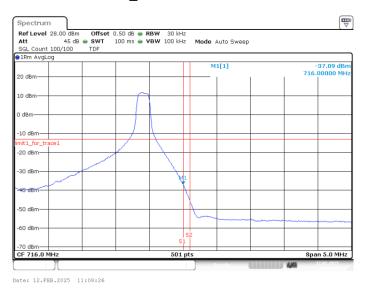
Date: 24.DEC.2024 16:34:44

HIGH BAND EDGE BLOCK-20MHz-100%RB

Date: 24.DEC.2024 16:35:42

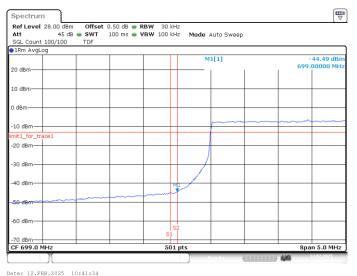
HIGH BAND EDGE BLOCK-20MHz-100%RB

Date: 24.DEC.2024 16:36:34



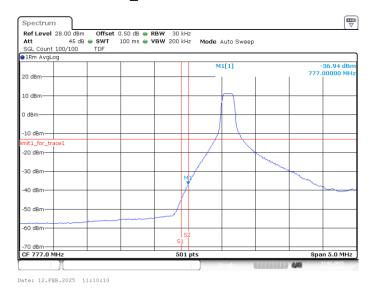
LTE band 12 LOW BAND EDGE BLOCK-1RB-LOW_offset

Date: 12.FEB.2025 11:06:36


HIGH BAND EDGE BLOCK-1RB-HIGH_offset

LOW BAND EDGE BLOCK-10MHz-100%RB

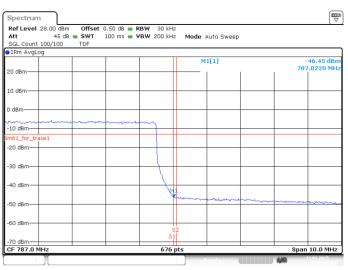
HIGH BAND EDGE BLOCK-10MHz-100%RB



Date: 12.FEB.2025 10:43:20

LTE band 13 LOW BAND EDGE BLOCK-1RB-LOW_offset

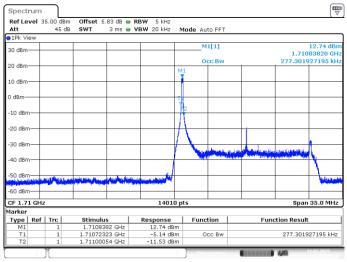
HIGH BAND EDGE BLOCK-1RB-HIGH_offset



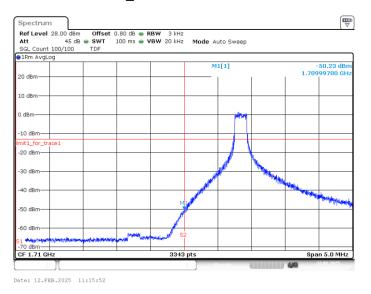
LOW BAND EDGE BLOCK-10MHz-100%RB

Date: 12.FEB.2025 10:45:04

HIGH BAND EDGE BLOCK-10MHz-100%RB

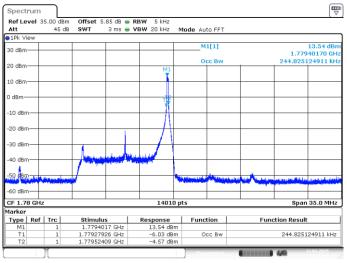


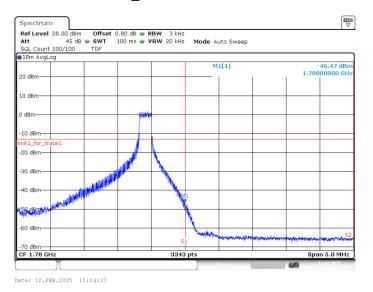
Date: 12.FEB.2025 10:47:06



LTE band 66 OBW: 1RB-LOW_offset

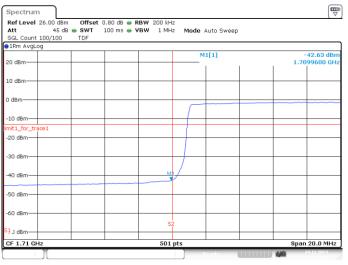
Date: 12.FEB.2025 11:15:02

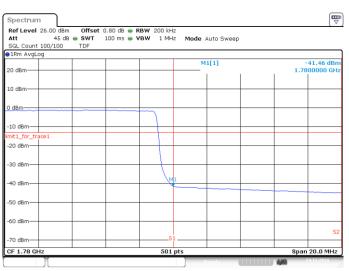

LOW BAND EDGE BLOCK-1RB-LOW_offset



OBW: 1RB-HIGH_offset

Date: 12.FEB.2025 11:13:47


HIGH BAND EDGE BLOCK-1RB-HIGH_offset



LOW BAND EDGE BLOCK-20MHz-100%RB

Date: 24.DEC.2024 17:23:45

HIGH BAND EDGE BLOCK-20MHz-100%RB

Date: 24.DEC.2024 17:24:40

A.7 Conducted Spurious Emission

A.7.1 Measurement Method

The following steps outline the procedure used to measure the conducted emissions from the EUT.

1. In measuring unwanted emissions, the spectrum shall be investigated from 30 MHz or the lowest radio frequency signal generated in the equipment, whichever is lower, without going below 9 kHz, up to at least the frequency given below:

(a) If the equipment operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

(b) If the equipment operates at or above 10 GHz: to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower.

- 2. Determine EUT transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.
- 3. The number of sweep points of spectrum analyzer is greater than $2 \times \text{span/RBW}$.

A. 7.2 Measurement Limit

Part 22.917, Part 24.238 and Part 27.53(h) specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

Part 27.53(m) specifies for mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

Part 27.53(c) states for operations in the 746-758 MHz band and the 776-788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:(1) On any frequency outside the 746-758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;(2) On any frequency outside the 776-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;(2) On any frequency outside the 776-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;(2) On any frequency outside the 776-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;(2) On any frequency outside the 776-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;(4) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 65 + 10 log (P) dB in a 6.25 kHz band segment, for mobile and portable stations.

Part 27.53(f) states for operations in the 746–758 MHz,775–788 MHz, and 805–806 MHz bands, emissions in the band 1559–1610 MHz shall be limited to -70dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals.

Part 27.53(g) states for operations in the 600 MHz band and the 698–746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

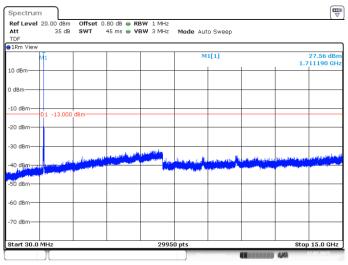


A.7.3 Measurement result

LTE band 2

NOTE: peak above the limit line is the carrier frequency.

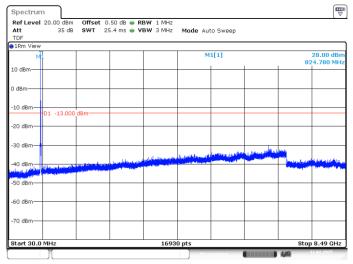
Date: 12.FEB.2025 12:17:38


Att TDF	20.00 dBm 35 dB		0.80 dB 👄 12.5 ms 👄		Mode Aut	to Sweep		
1Rm View					м	1[1]		31.64 dBr
10 dBm			_				10.2	02300 GH
0 dBm								
-10 dBm	-D1 -13.000	dBm						
-20 dBm								
-30 dBm			MI				r de st.	
-40 dBm								
-50 dBm								
-60 dBm								
-70 dBm								
Start 15.0	011-			8310			Otan	19.15 GHz

Date: 12.FEB.2025 12:18:17

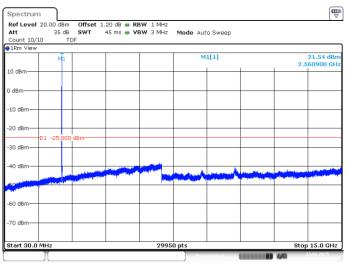
LTE band 4 NOTE: peak above the limit line is the carrier frequency.

Date: 12.FEB.2025 12:05:36


-31.87 dBn 16.010270 GH
والمساطرة والمتعادية والمعادية والمحاج

Date: 12.FEB.2025 12:06:15

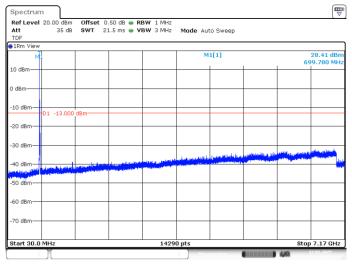
LTE band 5 NOTE: peak above the limit line is the carrier frequency.



Date: 12.FEB.2025 12:07:39

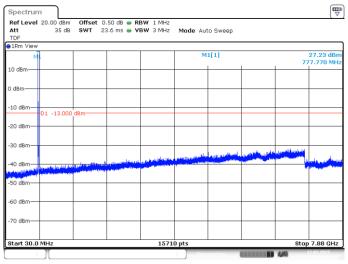
LTE band 7 NOTE: peak above the limit line is the carrier frequency.

Date: 12.FEB.2025 13:30:13


Ref Level Att Count 10/	20.00 dBm 35 dB		1.20 dB 👄 🖡 32.1 ms 👄 🛛		Mode Au	to Sweep			
1Rm View	10 11	<i>J</i> F							
					м	1[1]			-37.83 dBr 826160 GH
10 dBm								21.	
0 dBm									
10 dBm									
20 dBm									
30 dBm	D1 -25.000	dBm							
-30 ubii							and the states		M1
40,00	and the second se	and and the second s		a share of the superior	State of the second second		And the second second	a second system	
-50 dBm									
60 dBm—									
70 dBm									
Start 15.0				2141					p 25.7 GH:

Date: 12.FEB.2025 13:30:46

LTE band 12 NOTE: peak above the limit line is the carrier frequency.

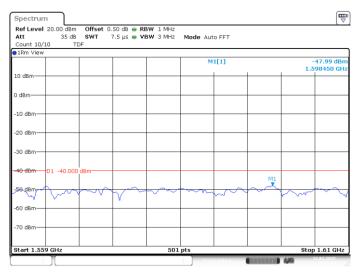


Date: 12.FEB.2025 12:08:25

LTE band 13 NOTE: peak above the limit line is the carrier frequency.

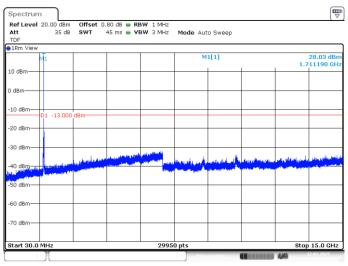
Date: 12.FEB.2025 12:10:47

Att		SWT		RBW 6.25 k VBW 30 k		Auto FFT			
Count 10/1 1Rm View	.0 TI	DF							
IKW VIEW					М	1[1]			-72.15 dBr .79065 MH
10 dBm									+
0 dBm									
-10 dBm									
-20 dBm			_						
30 dBm	D1 -35.000	10							
40 dBm	01 -35.000	UDIII							
50 dBm									
60 dBm									
70 dBm-						M1			
hell, Marinel Int	and a share	and the state of the	MARK MARKING	AN PHAN AN ANAL	the faith of the state	WHAT WHAT	a show on the	n water water	WHEN A MAN


Date: 12.FEB.2025 12:11:20

Spectrum Ref Level 20.00 dBm	Offset (1.50 dB 👄 B	BW 6.25 kHz				$\overline{\nabla}$
Att 35 dB		10.2 µs 🖷 V		Mode Auto FFT			
	DF						
1Rm View							
				M1[1]			53.05 dBn 00470 MHa
10 dBm						793.0	JU470 MH2
					1 1		
0 dBm							
o abiii							
10 dBm							
10 000							
-20 dBm							
20 0011							
-30 dBm							
D1 -35.000	dD es						
-40 dBm	ubili						
40 ubili							
-50 dBm							
-50 ubiii					1 1		
-60 dBm							
M							
Brown Milliam							
utivitaritificated in operation of	WW Water Man	White Incares	ويرابعهم والعرادي	CALIFORNIA - CARLANDARIA	والعرب معاذقا ومراعي ومدر	and the state of the state	al and the second states
	 Rarratic 	al and public	te black of the second of	Ale ale a le faite de la contra la contra de l	PARTY AND AND	History Balado a	and he had a second of
Start 793.0 MHz			4170 p	ts		Stop 8	06.0 MHz

Date: 12.FEB.2025 12:11:53



Date: 12.FEB.2025 12:12:25

LTE band 66 NOTE: peak above the limit line is the carrier frequency.

Date: 12.FEB.2025 12:13:17

Ref Level 2 Att TDF	35 dB	SWT	0.80 dB 👄 RI 8.4 ms 👄 VI		Mode Aut	to Sweep			
1Rm View					м	1[1]			31.61 dBr 56900 GH
10 dBm									
0 dBm									
-10 dBm	1 -13.000	dBm							
-20 dBm									
-30 dBm		M1							
all the state of the	المغاذ والأدر	A CONTRACTOR	al de la deplete de la deplete	A West And Andrews	فيجاه فالتحاديدان		فالوأد فحقص ومغاط	منابيه الم	line and line
40 dBm									
-50 dBm									
60 dBm									
-70 dBm									
	Hz			5610					17.8 GH

Date: 12.FEB.2025 12:13:56

A.8 Peak-to-Average Power Ratio

The peak-to-average ratio (PAR) of the transmission may not exceed 13 dB

a) Refer to instrument's analyzer instruction manual for details on how to use the power statistics/CCDF function;

- b) Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- c) Set the number of counts to a value that stabilizes the measured CCDF curve;
- d) Record the maximum PAPR level associated with a probability of 0.1%.

Measurement results LTE Band 2, 20MHz

	RB	PAPR (dB)				
Frequency (MHz)	ND	QPSK	16QAM	64QAM		
1880	100%,0	5.33	6.17	6.43		

LTE Band 4, 20MHz

Frequency (MHz)	RB	PAPR (dB)				
Frequency (MHZ)	ND	QPSK	16QAM	64QAM		
1732.5	100%,0	5.33	6.17	6.46		

LTE Band 7, 20MHz

	RB	PAPR (dB)		
Frequency (MHz)	RD	QPSK	QPSK 16QAM	64QAM
2535	100%,0	5.42	6.41	6.67

LTE Band 12, 10MHz

	RB	PAPR (dB)		
Frequency (MHz)	RD	QPSK 16QAM	64QAM	
707.5	100%,0	5.42	6.26	6.55

LTE Band 13, 10MHz

	RB	PAPR (dB)		
Frequency (MHz)	RD	PAPR (dB) QPSK 16QAM 5.48 6.23	64QAM	
782	100%,0	5.48	6.23	6.55

LTE Band 66, 20MHz

	RB	PAPR (dB)		
Frequency (MHz)	ND	QPSK	QPSK 16QAM	64QAM
1745	100%,0	5.16	6.09	6.38

Annex B: Accreditation Certificate

END OF REPORT

©Copyright. All rights reserved by CTTL.