Shenzhen Huatongwei International Inspection Co., Ltd.

1/F,Bldg 3,Hongfa Hi-tech Industrial Park,Genyu Road,Tianliao,Gongming,Shenzhen,China Phone: 86-755-26748019 Fax: 86-755-26748089 http://www.szhtw.com.cn

TEST REPORT

R/C....: 49459 Report Reference No.....:: TRE1709017503

FCC ID.....:: ZSW-30-048

Applicant's name.....:: b mobile HK Limited

Address....: Flat 18; 14/F Block 1; Golden Industrial Building; 16-26 Kwai Tak

Street; Kwai Chung; New Territories; Hong Kong.

Manufacturer....: b mobile HK Limited

Flat 18; 14/F Block 1; Golden Industrial Building; 16-26 Kwai Tak Address....:

Street; Kwai Chung; New Territories; Hong Kong.

Test item description: **Mobile Phone**

Trade Mark: **Bmobile**

Model/Type reference.....: AX1015

Listed Model(s)....:

Standard:: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of receipt of test sample.....: Sep.20, 2017

Date of testing..... Sep.21, 2017 - Oct.10, 2017

Date of issue.....: Oct.11, 2017

Result....: **PASS**

Compiled by

(position+printedname+signature)...: File administrators Candy Liu

Supervised by

(position+printedname+signature)....: Project Engineer: Edward Pan Candy Liu Bolward. Pan Homst-W

Approved by

(position+printedname+signature)....: RF Manager Hans Hu

Testing Laboratory Name: Shenzhen Huatongwei International Inspection Co., Ltd.

1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Address.....:

Tianliao, Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely correspond to the test sample.

Report No.: TRE1709017503 Page: 2 of 52 Issued: 2017-10-11

Contents

<u>1.</u>	TEST STANDARDS AND REPORT VERSION	3
1.1.	Test Standards	3
1.2.	Report version	3
<u>2.</u>	TEST DESCRIPTION	4
<u>3.</u>	SUMMARY	5
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Operation state	6
3.4.	EUT configuration	6
3.5.	Modifications	6
<u>4.</u>	TEST ENVIRONMENT	7
4.1.	Address of the test laboratory	7
4.2.	Test Facility	7
4.3.	Environmental conditions	8
4.4.	Statement of the measurement uncertainty	8
4.5.	Equipments Used during the Test	9
<u>5.</u>	TEST CONDITIONS AND RESULTS	10
5.1.	Antenna requirement	10
5.2.	Conducted Emissions (AC Main)	11
5.3.	Conducted Peak Output Power	14
5.4.	Power Spectral Density	15
5.5.	6dB bandwidth	19
5.6.	Restricted band	23
5.7.	Band edge and Spurious Emissions (conducted)	32
5.8.	Spurious Emissions (radiated)	45
<u>6.</u>	TEST SETUP PHOTOS	51
7.	EXTERANAL AND INTERNAL PHOTOS	52

Report No.: TRE1709017503 Page: 3 of 52 Issued: 2017-10-11

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

<u>FCC Rules Part 15.247:</u> Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

ANSI C63.10:2013: American National Standard for Testing Unlicensed Wireless Devices

<u>KDB 558074 D01 DTS Meas Guidance v04:</u> Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating under §15.247

1.2. Report version

Version No.	Date of issue	Description	
00	Oct.11, 2017	Original	

Report No.: TRE1709017503 Page: 4 of 52 Issued: 2017-10-11

2. TEST DESCRIPTION

Test Item	FCC Rule	Result	Test Engineer
Antenna requirement	15.203/15.247(c)	Pass	William Wang
Line Conducted Emissions (AC Main)	15.207	Pass	William Wang
Conducted Peak Output Power	15.247(b)(3)	Pass	William Wang
Power Spectral Density	15.247(e)	Pass	William Wang
6dB Bandwidth	15.247(a)(2)	Pass	William Wang
Restricted band	15.247(d)/15.205	Pass	William Wang
Spurious Emissions	15.247(d)/15.209	Pass	William Wang

Note: The measurement uncertainty is not included in the test result.

Report No.: TRE1709017503 Page: 5 of 52 Issued: 2017-10-11

3. **SUMMARY**

3.1. Client Information

Applicant:	b mobile HK Limited
Address: Flat 18; 14/F Block 1; Golden Industrial Building;16-26 Kwai Tak Stree Chung; New Territories; Hong Kong.	
Manufacturer:	b mobile HK Limited
Address:	Flat 18; 14/F Block 1; Golden Industrial Building;16-26 Kwai Tak Street; Kwai Chung; New Territories; Hong Kong.

3.2. Product Description

5.2. Floduct Description			
Name of EUT:	Mobile Phone		
Trade Mark:	Bmobile		
Model No.:	AX1015		
Listed Model(s):	-		
IMEI 1:	861638031655405		
IMEI 2:	861638031655413		
Power supply:	DC 3.8V From exchange battery		
Adapter information:	Input: 100-240Va.c., 50/60Hz, 0.2A Output: 5Vd.c., 500mA		
Hardware version:	SPR_S3215_V4.0		
Software version:	Bmobile_AX1015_TIGO_V004		
WIFI			
Supported type:	802.11b/802.11g/802.11n(HT20)		
Modulation:	DSSS for 802.11b OFDM for 802.11g/802.11n(HT20)		
Operation frequency:	2412MHz~2462MHz		
Channel number:	11		
Channel separation:	5MHz		
Antenna type:	PIFA Antenna		
Antenna gain:	0.8 dBi		

Report No.: TRE1709017503 Page: 6 of 52 Issued: 2017-10-11

3.3. Operation state

> Test frequency list

According to section 15.31(m), regards to the operating frequency range over 10 MHz, must select three channel which were tested. the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the above gray bottom.

802.11b/g/n(HT20)				
Channel	Frequency (MHz)			
01	2412			
02	2417			
03	2422			
04	2427			
05	2432			
06	2437			
07	2442			
08	2447			
09	2452			
10	2457			
11	2462			

> Test mode

_			
⊢∩r	RF	teet	items

The engineering test program was provided and enabled to make EUT continuous transmit (duty cycle>98%).

For AC power line conducted emissions:

The EUT was set to connect with the WLAN AP under large package sizes transmission.

For RF test axis

EUT in each of three orthogonal axis emissions had been tested ,but only the worst case (X axis) data Recorded in the report.

3.4. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

supplied by the manufacturer

0	- CIII	boilgo	hν	the	lah
U	- Sui	JUIICU	ν	เมเต	ıav

0		Manufacturer:	1	
)	1	Model No.:	1
	,		Manufacturer:	1
)	7	Model No.:	1

3.5. Modifications

No modifications were implemented to meet testing criteria.

Report No.: TRE1709017503 Page: 7 of 52 Issued: 2017-10-11

4. TEST ENVIRONMENT

4.1. Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd. Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China

4.2. Test Facility

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 762235

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files.

IC-Registration No.:5377B-1

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No.: 5377B-1.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

Report No.: TRE1709017503 Page: 8 of 52 Issued: 2017-10-11

4.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C	
Relative Humidity:	30~60 %	
Air Pressure:	950~1050mba	

4.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors in calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report according to TR-100028-01 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2" and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd. quality system according to ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Here after the best measurement capability for Shenzhen Huatongwei International Inspection Co., Ltd. is reported:

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.57 dB	(1)
Transmitter power Radiated	2.20 dB	(1)
Conducted spurious emissions 9kHz~40GHz	1.60 dB	(1)
Radiated spurious emissions 9kHz~40GHz	2.20 dB	(1)
Conducted Emissions 9kHz~30MHz	3.39 dB	(1)
Radiated Emissions 30~1000MHz	4.24 dB	(1)
Radiated Emissions 1~18GHz	5.16 dB	(1)
Radiated Emissions 18~40GHz	5.54 dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Report No.: TRE1709017503 Page: 9 of 52 Issued: 2017-10-11

4.5. Equipments Used during the Test

Cond	Conducted Emissions					
Item	Test Equipment	Serial No.	Last Cal.			
1	Artificial Mains	Rohde&Schwarz	ESH2-Z5	100028	2016/11/13	
2	EMI Test Receiver	Rohde&Schwarz	ESCI3	100038	2016/11/13	
3	Pulse Limiter	Rohde&Schwarz	ESHSZ2	100044	2016/11/13	
4	EMI Test Software	Rohde&Schwarz	ES-K1 V1.71	-	-	

Radia	ted Emissions				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	EMI test receiver	Rohde&Schwarz	ESI 26	100009	2016/11/13
2	Loop Antenna	Rohde&Schwarz	HFH2-Z2	100020	2016/11/13
3	Ultra-Broadband Antenna	ShwarzBeck	VULB9163	538	2016/11/13
4	Horn antenna	ShwarzBeck	9120D	1011	2016/11/13
5	Horn Antenna	SCHWARZBECK	BBHA9170	25841	2016/11/13
6	Amplifier	Sonoma	310N	E009-13	2016/11/13
7	JS Amplifier	Rohde&Schwarz	JS4-00101800- 28-5A	F201504	2016/11/13
8	Amplifier	Compliance Direction systems	PAP1-4060	120	2016/11/13
9	High pass filter	Compliance Direction systems	BSU-6	34202	2016/11/13
10	EMI test Software	Rohde&Schwarz	ESK1	-	-
11	EMI test Software	Audix	E3	-	-
12	TURNTABLE	MATURO	TT2.0	-	-
13	ANTENNA MAST	MATURO	TAM-4.0-P	-	-

RF Co	RF Conducted methods									
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.					
1	Spectrum Analyzer	Rohde&Schwarz	FSP	1164.4391.40	2016/11/13					
2	MXA Signal Analyzer	Agilent Technologies	N9020A	MY5050187	2016/11/13					

The Cal.Interval was one year.

Report No.: TRE1709017503 Page: 10 of 52 Issued: 2017-10-11

5. TEST CONDITIONS AND RESULTS

5.1. Antenna requirement

REQUIREMENT:

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of anantenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

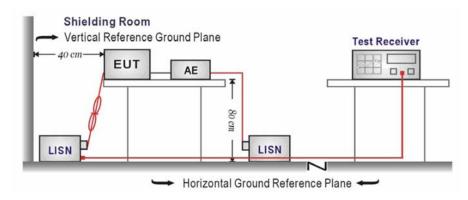
TEST RESULTS

oxtimes Passed	☐ Not Applicable
----------------	------------------

The directional gain of the antenna less than 6 dBi, please refer to the below antenna photo.

Report No.: TRE1709017503 Page: 11 of 52 Issued: 2017-10-11

5.2. Conducted Emissions (AC Main)


LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.207:

Fraguenov rango (MHz)	Limit (d	BuV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor,was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Note:

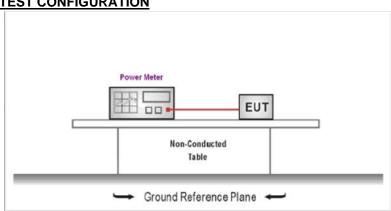
- 1) Transd=Cable lose+ Pulse Limiter Factor + Artificial Mains Factor
- 2) Margin= Limit -Level

Report No.: TRE1709017503 Page: 12 of 52 Issued: 2017-10-11

ne:			L				
Level [dBµV]							
80			,	,	,		₁
70		ļ - ļ - ļ - ļ					ļ
60		·					
50 /2							
40 - 1 - 1							i i
LINI LINI LINI	Mulliphilan	professioners.	ر بر المرافقة الم	order Laboratoria			أر المعماليان
30		L - L - H - H - H - H	National Assessment	deligation of the second		and the later of t	and the same
20 - 1 - 1 - 1	/W, ,/W, ,/////////////////////////////	Palada Alan Alah Alah Aran	AND PERSONS ASSESSED.	ATTENNEY TO SERVICE			
10		·};;;'-'**	مرادرات بي بي ا			The second	; ;
0 150k 300k	400k 600k	800k 1M	2M	3M 4M 5	M 6M 8M 10M	20	OM 30M
			Frequency	[Hz]			
x x x MES GM170725	5058_fin						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dBµV	dB	dBuV	dB	Detector	птие	FE
	G.D.P.		a.p.				
0.177000	39.60	10.4	65	25.0	QP	L1	GND
0.208500	42.70	10.3	63	20.6	QP	L1	GND
0.253500	39.40	10.3	62	22.2	QP	L1	GND
0.325500	32.30	10.2	60	27.3	QP	L1	GND
0.478500	34.50	10.2	56	21.9	QP	L1	GND
0.546000	31.00	10.2	56	25.0	QP	L1	GND
0.820500	31.90	10.2	56	24.1	QP	L1	GND
	T	m	T 2 2 4	1/	Dotostor	Line	PE
Frequency	Level	Transd	Limit	Margin	Detector	22.10	
Frequency MHz	dBµV	Transq dB	dBµV	Margin dB	Detector	22110	
MHz	dΒμV	dB	dΒμV	dB	AV	L1	GND
MHz 0.195000	dBμV 25.50	dB 10.3	dΒμV 54	dB 28.3		L1	GND
MHz	dΒμV	dB	dΒμV	dB	AV		
MHz 0.195000 0.474000	dBμV 25.50 20.90	dB 10.3 10.2	dВµV 54 46	dB 28.3 25.5	AV AV	L1 L1	GND GND
MHz 0.195000 0.474000 0.564000	dBμV 25.50 20.90 19.10	dB 10.3 10.2 10.2	dВµV 54 46 46	dB 28.3 25.5 26.9	AV AV AV	L1 L1 L1	GND GND GND

Report No.: TRE1709017503 Page: 13 of 52 Issued: 2017-10-11

ne:			N				
Level [dBµV]							
80							
70							<u>.</u>
60			!				!
50	 			- 			i
TIIII M	AL A		<u></u> ;				
40	WWW.MAN	Name of the second			4		†
30 - 7- 1- 10E	[†] ⋌ [₩] ҳѾ [‡] ҳѾҳ [¥] ″¥	THE RESIDENCE OF THE PARTY NAMED IN		Marie Marie		description of the	hat the liter
20	₹ [₽] \	NIP I VA HAMPIN AND AND AND AND AND AND AND AND AND AN	Land Martin Martin	The state of the s	ii-i-i-i-i		nin il
10							portion,
0 150k 300k	400k 600k	800k 1M	2M	3M 4M 5	M 6M 8M 10M	2	OM 30M
			Frequency			_	
x x x MES GM170725	55057 fin						
			-1 1			- •	
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dΒμ∇	dB	dΒμV	dB			
0.154500	38.00	10.4	66	27.8	OP	N	GND
0.267000	29.00	10.3	61	32.2	QP	N	GND
0.294000	28.70	10.2	60	31.7	QP	N	GND
0.357000	22.70	10.2	59	36.1	QP	N	GND
0.474000	32.40	10.2	56	24.0	QP	N	GND
0.604500	28.00	10.2	56	28.0	QP	N	GND
0.667500	24.80	10.2	56	31.2	QP	N	GND
0.00/300							
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
						Line	PE
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector		
Frequency	Level	Transd	Limit	Margin		Line N N	PE GND GND
Frequency MHz	Level dBµV 23.40	Transd dB	Limit dBµV 55	Margin dB 31.2	Detector AV	N	GND
Frequency MHz 0.177000 0.235500	Level dBµV 23.40 22.00	Transd dB 10.4 10.3	Limit dBµV 55 52	Margin dB 31.2 30.3	Detector AV AV	N N	GND GND
0.177000 0.235500 0.298500	Level dBµV 23.40 22.00 21.20	Transd dB 10.4 10.3 10.2	Limit dBµV 55 52 50	Margin dB 31.2 30.3 29.1	Detector AV AV AV	N N N	GND GND GND
0.177000 0.235500 0.298500 0.415500	Level dBµV 23.40 22.00 21.20 19.40	Transd dB 10.4 10.3 10.2 10.2	Limit dBµV 55 52 50 48	Margin dB 31.2 30.3 29.1 28.1	Detector AV AV AV AV	N N N	GND GND GND GND


Report No.: TRE1709017503 Page: 14 of 52 Issued: 2017-10-11

5.3. Conducted Peak Output Power

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(3): 30dBm:

TEST CONFIGURATION

TEST PROCEDURE

- The EUT was tested according to ANSI C63.10: 2013 and KDB 558074 D01 for compliance to FCC 47 CFR 15.247 requirements.
- 2. The maximum peak conducted output power may be measured using a broadband peak RF power meter.
- The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and 3. shall utilize a fast-responding diode detector
- Record the measurement data.

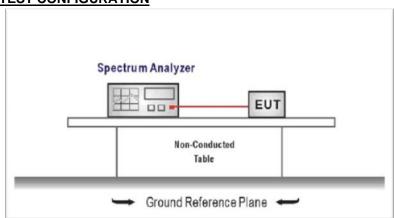
TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

 □ Passed ■ Not Applicable

Туре	Channel	Output power (dBm)	Limit (dBm)	Result
	01	17.81		
802.11b	06	17.63	≤30.00	Pass
	11	17.92		
	01	16.56		
802.11g	06	15.09	≤30.00	Pass
	11	16.48		
	01	15.44		
802.11n(HT20)	06	14.56	≤30.00	Pass
	11	14.92		


Report No.: TRE1709017503 Page: 15 of 52 Issued: 2017-10-11

5.4. Power Spectral Density

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (e):For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input,
- 2. Configure the spectrum analyzer as shown below:

Center frequency=DTS channel center frequency

Span =1.5 times the DTS bandwidth

RBW = 3 kHz ≤ RBW ≤ 100 kHz, VBW ≥ 3 × RBW

Sweep time = auto couple

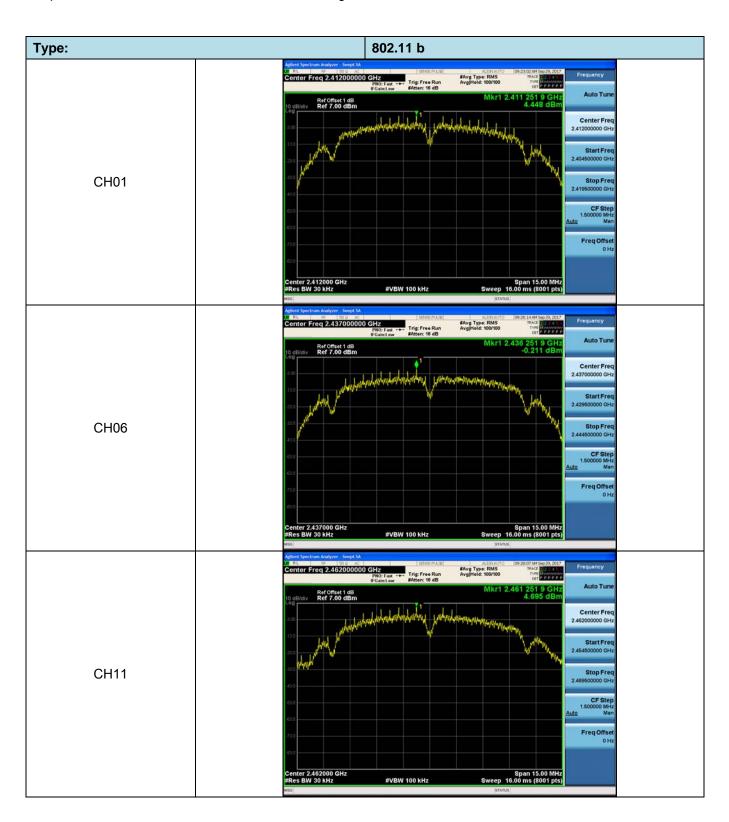
Detector = peak

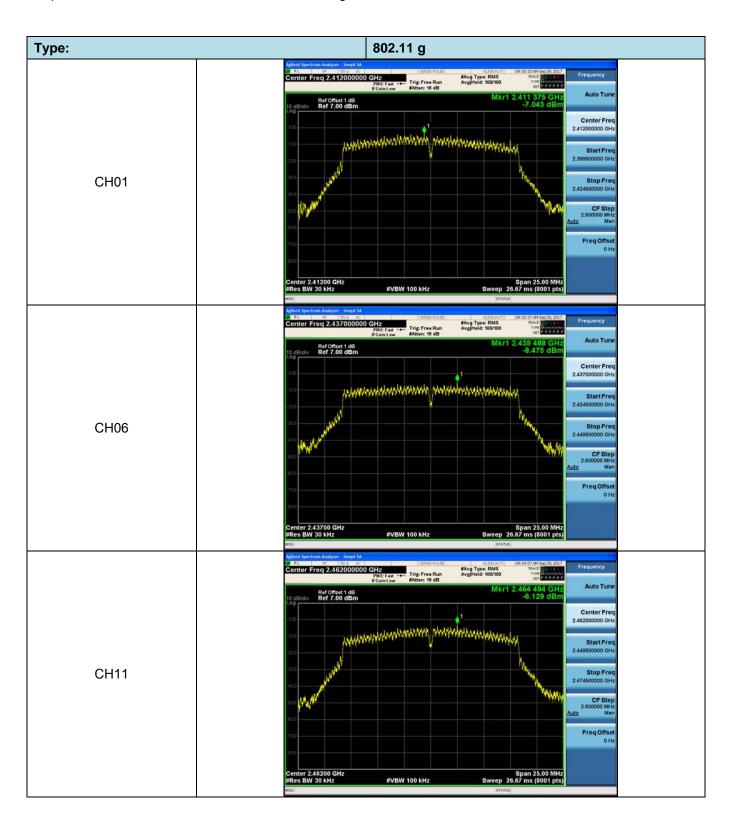
Trace mode = max hold

- 3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter wave form on the spectrum analyzer.
- 4. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 5. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

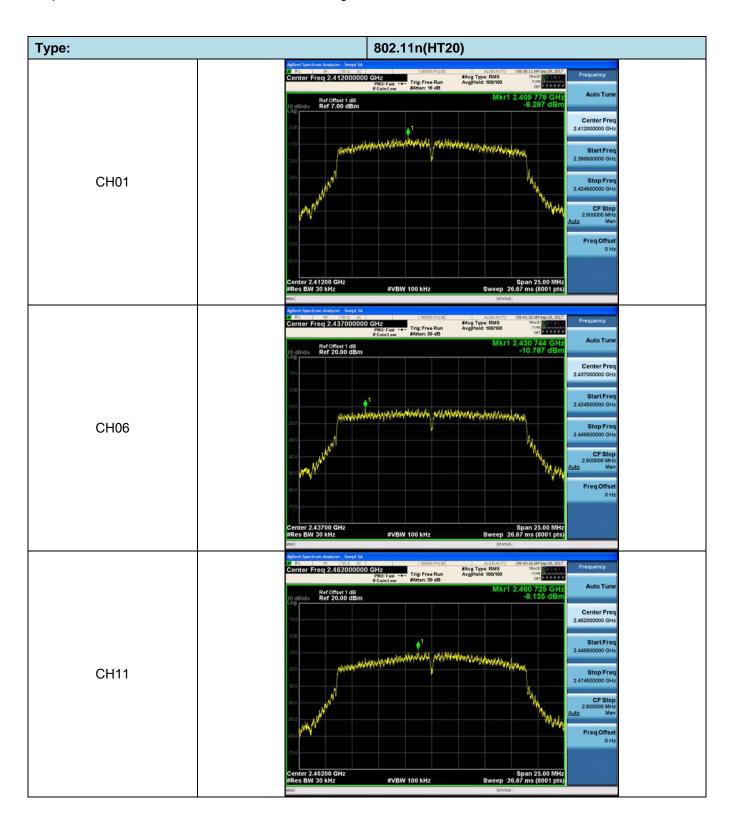
TEST MODE:

Please refer to the clause 3.3


TEST RESULTS

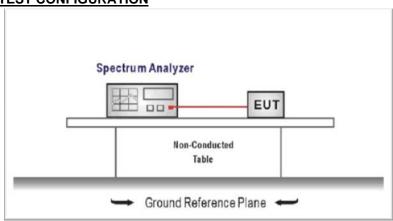

Туре	Channel	Power Spectral Density (dBm/RBW)	Limit (dBm/RBW)	Result
	01	4.448		
802.11b	06	-0.211	≤8.00	Pass
	11	4.695		
	01	-7.043		
802.11g	06	-8.475	≤8.00	Pass
	11	-6.129		
	01	-8.297		
802.11n(HT20)	06	-10.787	≤8.00	Pass
	11	-8.135		

Test plot as follows:


Report No.: TRE1709017503 Page: 16 of 52 Issued: 2017-10-11

Report No.: TRE1709017503 Page: 17 of 52 Issued: 2017-10-11

Report No.: TRE1709017503 Page: 18 of 52 Issued: 2017-10-11


Report No.: TRE1709017503 Page: 19 of 52 Issued: 2017-10-11

5.5. 6dB bandwidth

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(2):For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- Configure the spectrum analyzer as shown below (enter all losses between the transmitter output and the spectrum analyzer).

Center Frequency =DTS channel center frequency

Span=2 x DTS bandwidth

RBW = 100 kHz, VBW ≥ 3 × RBW

Sweep time= auto couple

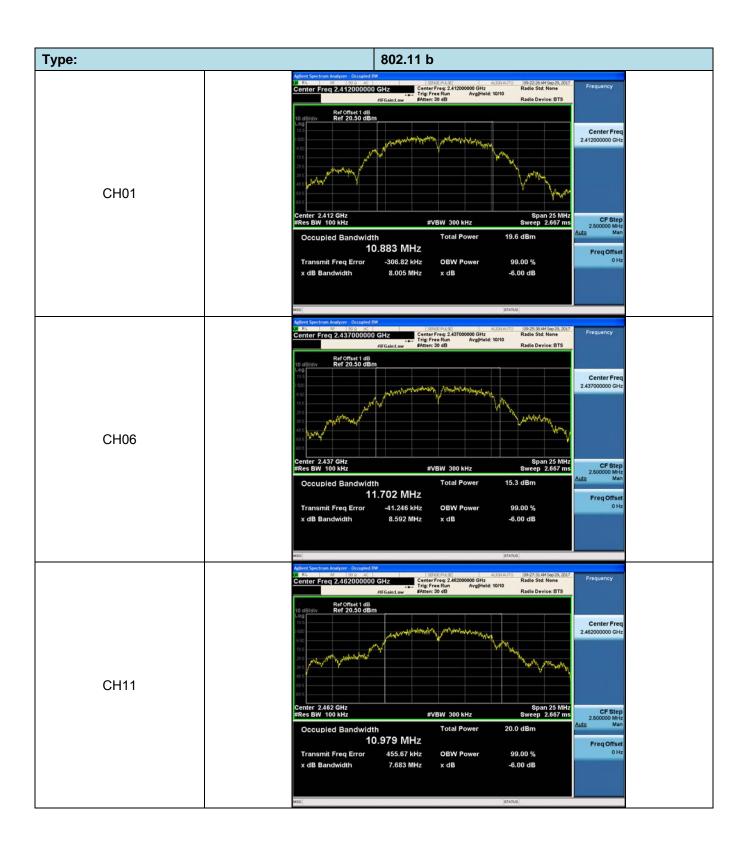
Detector = Peak

Trace mode = max hold

- 3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter wave form on the spectrum analyzer.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission, and record the pertinent measurements.

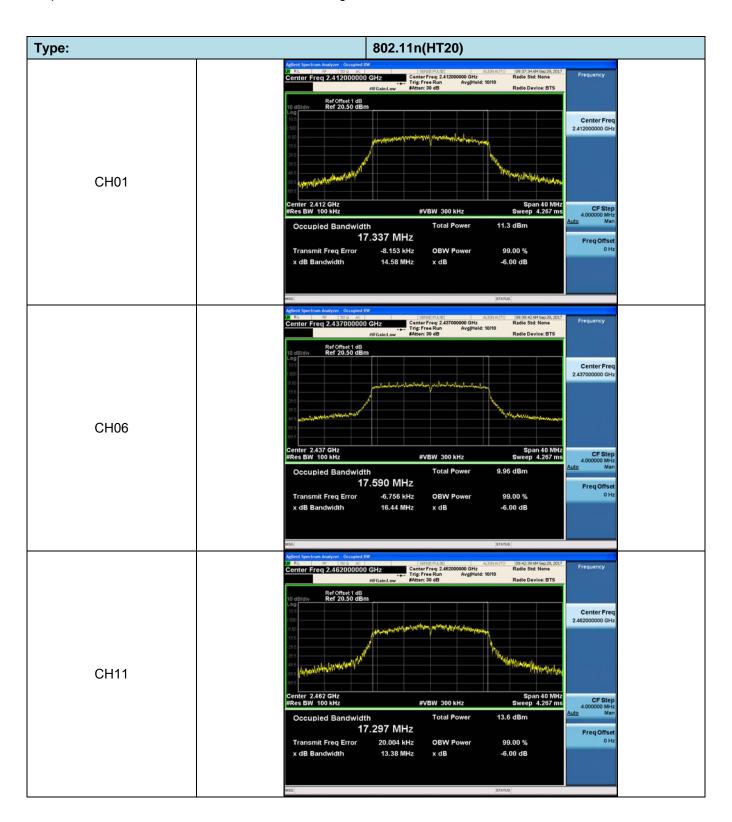
TEST MODE:

Please refer to the clause 3.3


TEST RESULTS

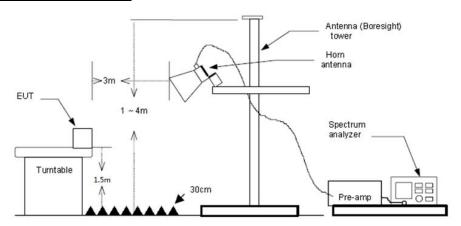
Туре	Channel	6dB Bandwidth (MHz)	Limit (kHz)	Result	
	01	8.005			
802.11b	06	8.592	≥500	Pass	
	11	7.683			
	01	15.06			
802.11g	06	16.42	≥500	Pass	
	11	13.05			
	01	14.58			
802.11n(HT20)	06	16.44	≥500	Pass	
	11	13.38			

Test plot as follows:


Report No.: TRE1709017503 Page: 20 of 52 Issued: 2017-10-11

Report No.: TRE1709017503 Page: 21 of 52 Issued: 2017-10-11

Report No.: TRE1709017503 Page: 22 of 52 Issued: 2017-10-11


Report No.: TRE1709017503 Page: 23 of 52 Issued: 2017-10-11

5.6. Restricted band

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, Radiated Emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the Radiated Emissions limits specified in §15.209(a) (see §15.205(c)).

TEST CONFIGURATION

TEST PROCEDURE

- The EUT was setup and tested according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2) The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3) The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 4) The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. Thisis repeated for both horizontal and vertical polarization of the antenna. In order to find themaximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- 5) The receiver set as follow: RBW=1MHz, VBW=3MHz PEAK detector for Peak value. RBW=1MHz, VBW=3MHz RMS detector for Average value.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Note:

1) Final level= Read level + Antenna Factor+ Cable Loss- Preamp Factor

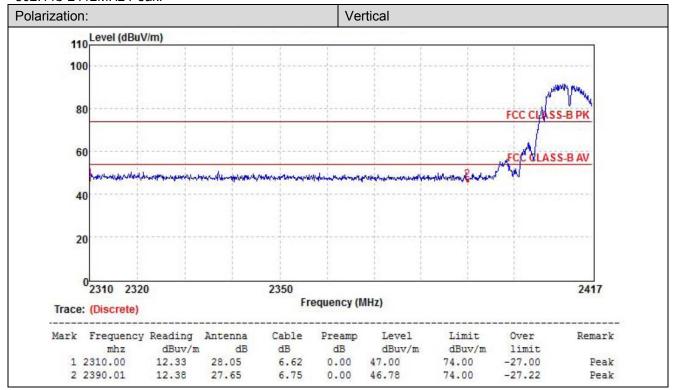
Report No.: TRE1709017503 Page: 24 of 52 Issued: 2017-10-11

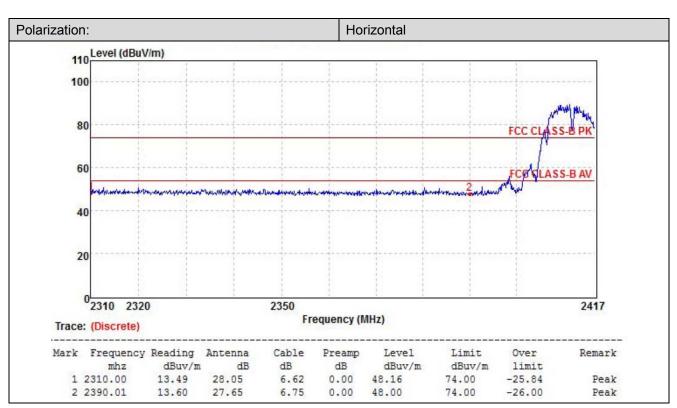
802.11b					CH01				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
2310.00	12.33	28.05	6.62	0.00	47.00	74.00	-27.00	Vertical	Peak
2390.01	12.38	27.65	6.75	0.00	46.78	74.00	-27.22	Vertical	Peak
2310.00	13.49	28.05	6.62	0.00	48.16	74.00	-25.84	Horizontal	Peak
2390.01	13.60	27.65	6.75	0.00	48.00	74.00	-26.00	Horizontal	Peak

802.11b CH11										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value	
2483.49	13.78	27.26	6.83	0.00	47.87	74.00	-26.13	Vertical	Peak	
2500.00	13.43	27.20	6.84	0.00	47.47	74.00	-26.53	Vertical	Peak	
2483.49	12.65	27.26	6.83	0.00	46.74	74.00	-27.26	Horizontal	Peak	
2500.00	13.97	27.20	6.84	0.00	48.01	74.00	-25.99	Horizontal	Peak	

802.11g CH01										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value	
2310.00	13.70	28.05	6.62	0.00	48.37	74.00	-25.63	Vertical	Peak	
2390.01	13.32	27.65	6.75	0.00	47.72	74.00	-26.28	Vertical	Peak	
2310.00	15.38	28.05	6.62	0.00	50.05	74.00	-23.95	Horizontal	Peak	
2390.01	12.71	27.65	6.75	0.00	47.11	74.00	-26.89	Horizontal	Peak	

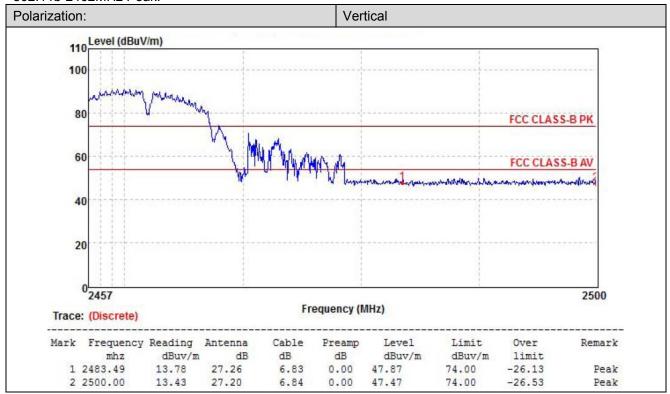
802.11g CH11									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
2483.49	13.65	27.26	6.83	0.00	47.74	74.00	-26.26	Vertical	Peak
2500.00	14.35	27.20	6.84	0.00	48.39	74.00	-25.61	Vertical	Peak
2483.49	14.72	27.26	6.83	0.00	48.81	74.00	-25.19	Horizontal	Peak
2500.00	14.32	27.20	6.84	0.00	48.36	74.00	-25.64	Horizontal	Peak

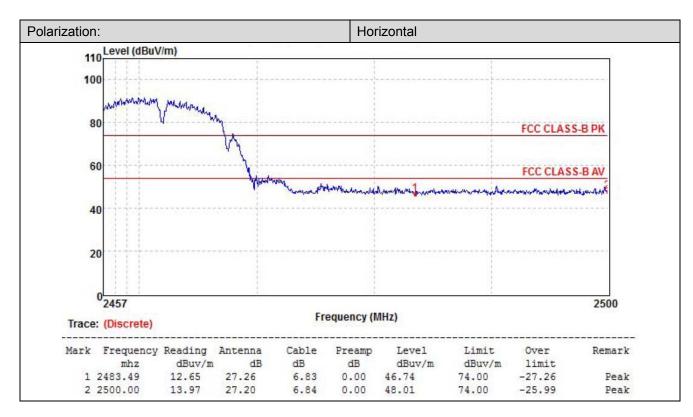

Report No.: TRE1709017503 Page: 25 of 52 Issued: 2017-10-11


802.11n(HT20) CH01									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
2310.00	13.87	28.05	6.62	0.00	48.54	74.00	-25.46	Vertical	Peak
2390.01	14.64	27.65	6.75	0.00	49.04	74.00	-24.96	Vertical	Peak
2310.00	14.09	28.05	6.62	0.00	48.76	74.00	-25.24	Horizontal	Peak
2390.01	13.61	27.65	6.75	0.00	48.01	74.00	-25.99	Horizontal	Peak

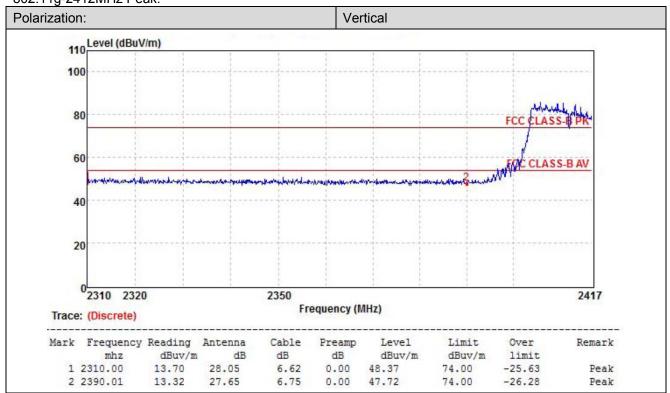
802.11n(HT	20)				CH11					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value	
2483.49	13.80	27.26	6.83	0.00	47.89	74.00	-26.11	Vertical	Peak	
2500.00	11.93	27.20	6.84	0.00	45.97	74.00	-28.03	Vertical	Peak	
2483.49	13.56	27.26	6.83	0.00	47.65	74.00	-26.35	Horizontal	Peak	
2500.00	14.27	27.20	6.84	0.00	48.31	74.00	-25.69	Horizontal	Peak	

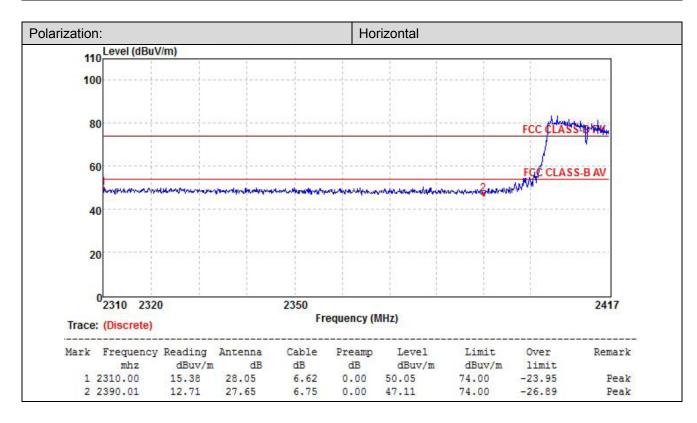
Report No.: TRE1709017503 Page: 26 of 52 Issued: 2017-10-11


802.11b-2412MHz Peak:

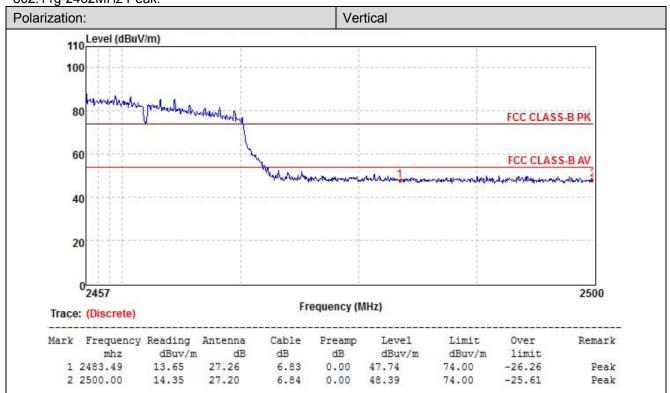


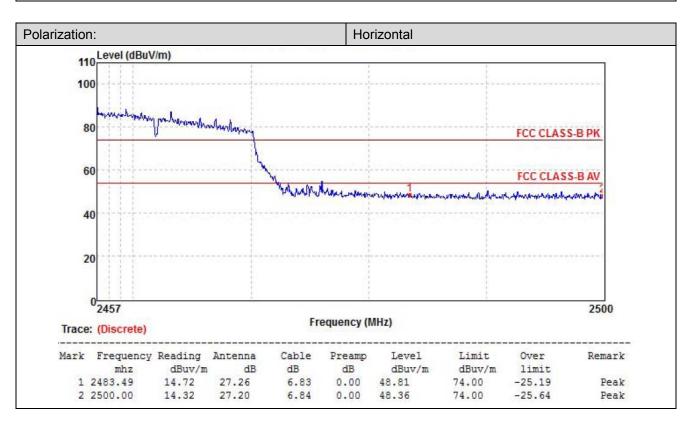
Report No.: TRE1709017503 Page: 27 of 52 Issued: 2017-10-11


802.11b-2462MHz Peak:

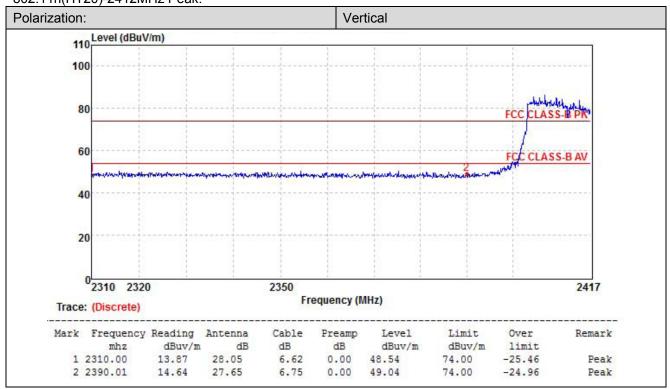


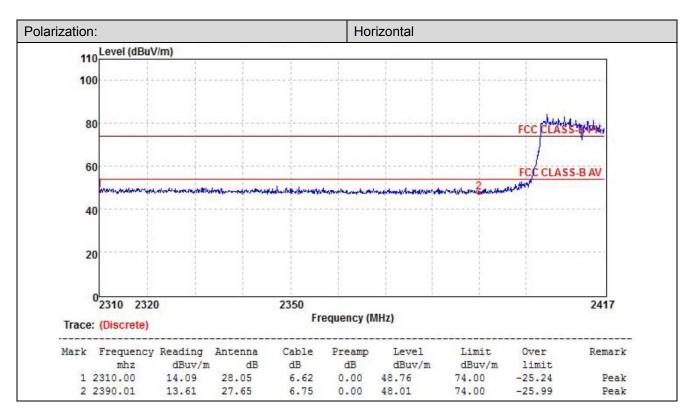
Report No.: TRE1709017503 Page: 28 of 52 Issued: 2017-10-11


802.11g-2412MHz Peak:

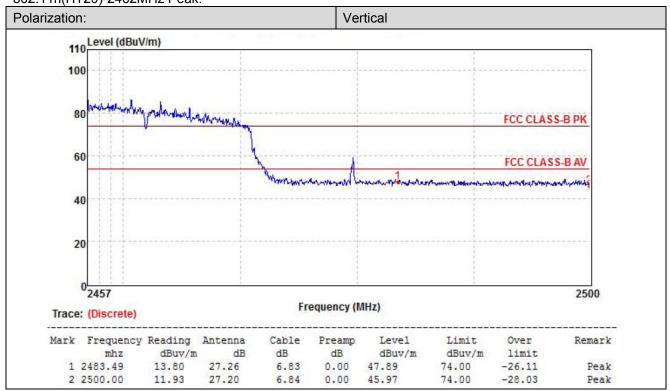


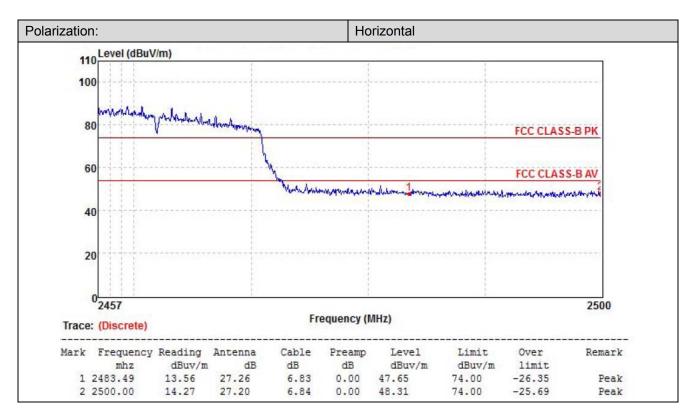
Report No.: TRE1709017503 Page: 29 of 52 Issued: 2017-10-11


802.11g-2462MHz Peak:



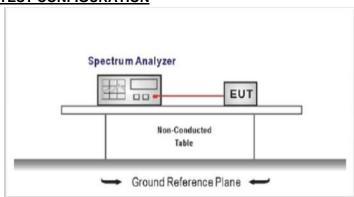
Report No.: TRE1709017503 Page: 30 of 52 Issued: 2017-10-11


802.11n(HT20)-2412MHz Peak:



Report No.: TRE1709017503 Page: 31 of 52 Issued: 2017-10-11

802.11n(HT20)-2462MHz Peak:


Report No.: TRE1709017503 Page: 32 of 52 Issued: 2017-10-11

5.7. Band edge and Spurious Emissions (conducted)

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section15.247 (d):In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- 2. Establish a reference level by using the following procedure

Center frequency=DTS channel center frequency

The span = 1.5 times the DTS bandwidth.

RBW = 100 kHz, VBW ≥ 3 x RBW

Detector = peak, Sweep time = auto couple, Trace mode = max hold

Allow trace to fully stabilize

Use the peak marker function to determine the maximum PSD level

Note: the channel found to contain the maximum PSD level can be used to establish the reference level.

3. Emission level measurement

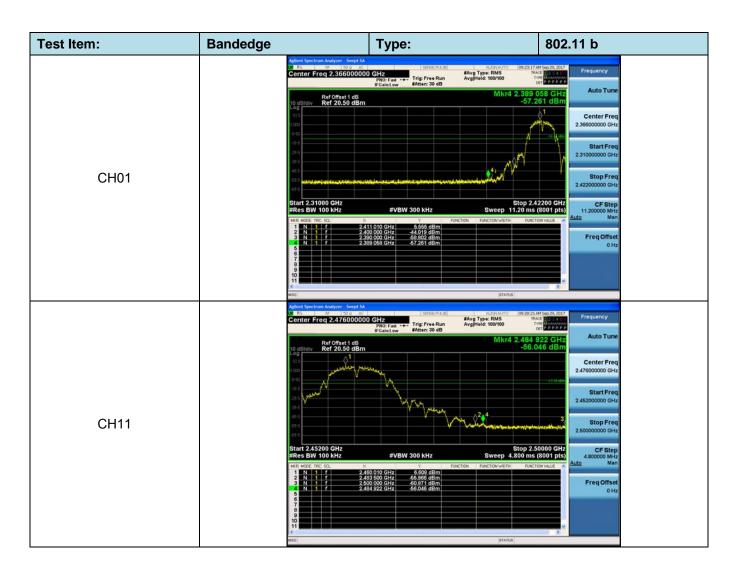
Set the center frequency and span to encompass frequency range to be measured

RBW = 100 kHz, VBW ≥ 3 x RBW

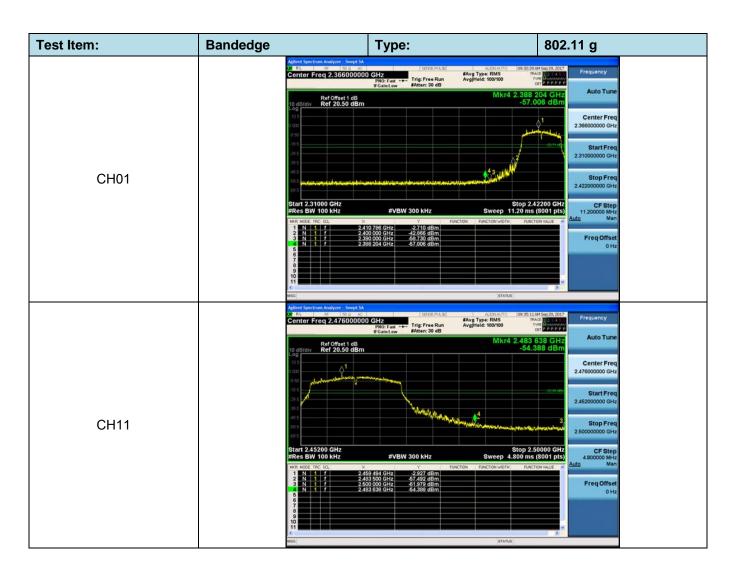
Detector = peak, Sweep time = auto couple, Trace mode = max hold

Allow trace to fully stabilize

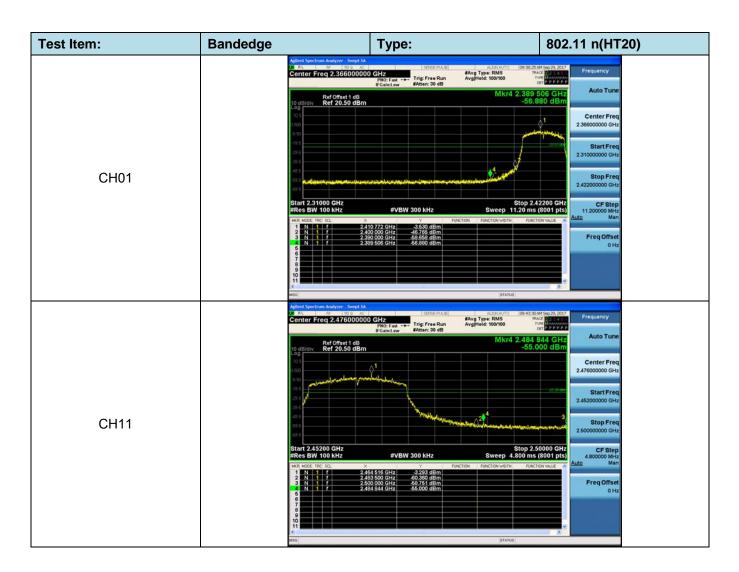
Use the peak marker function to determine the maximum amplitude level.

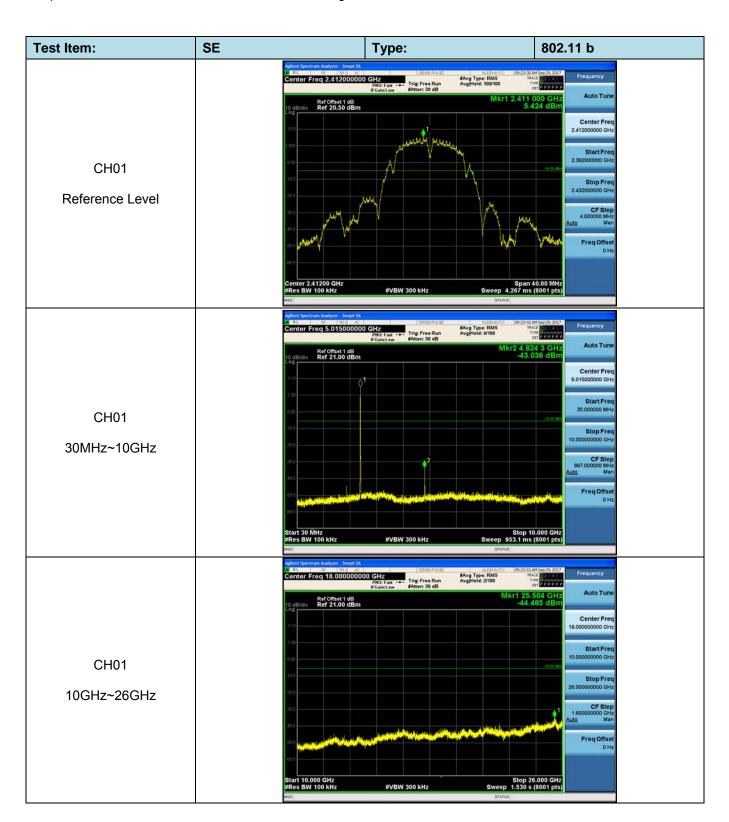

- 4. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.
- Ensure that the amplitude of all unwanted emission outside of the authorized frequency band excluding restricted frequency bands) are attenuated by at least the minimum requirements specified (at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz). Report the three highest emission relative to the limit.

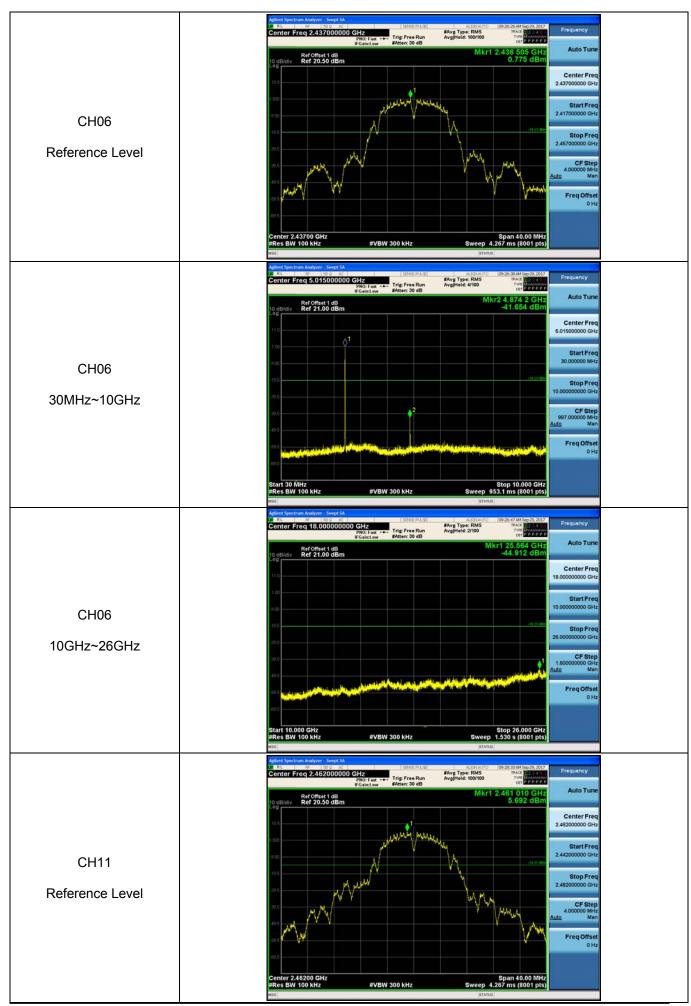
TEST MODE:

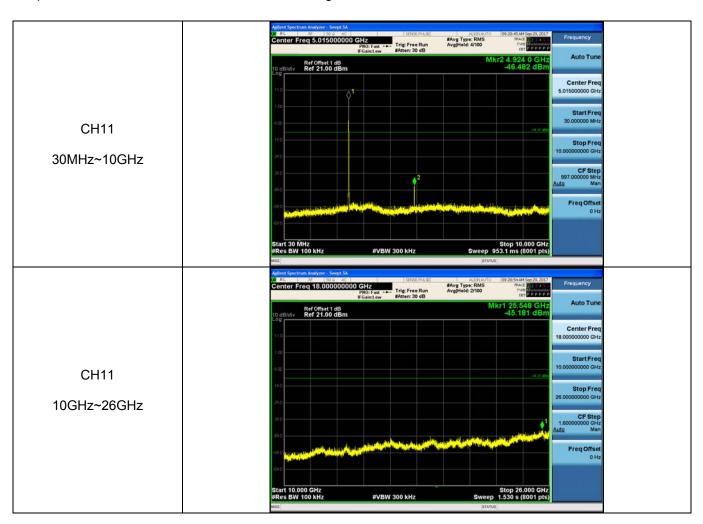

Please refer to the clause 3.3

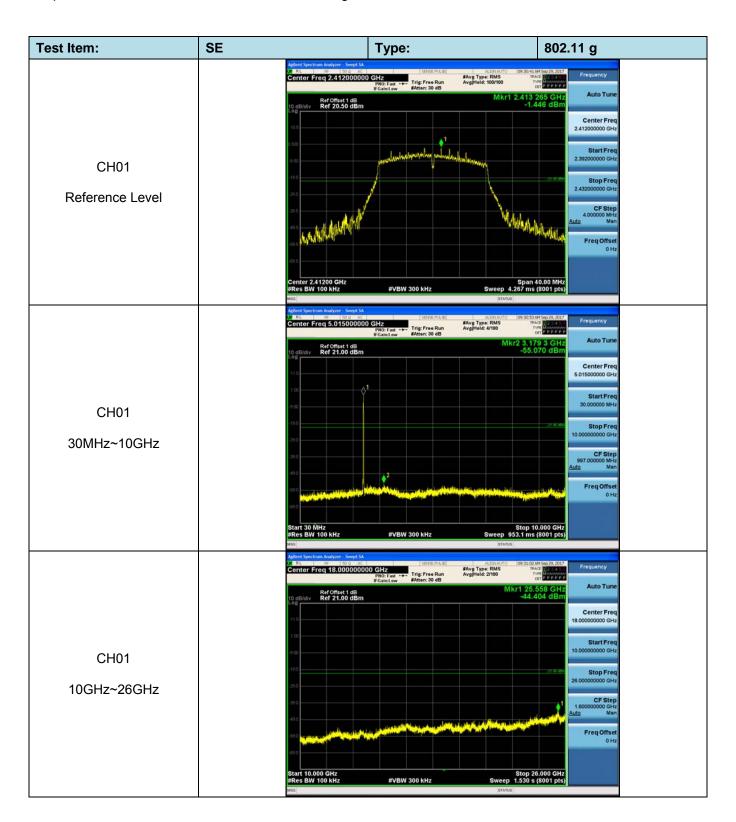
TEST RESULTS

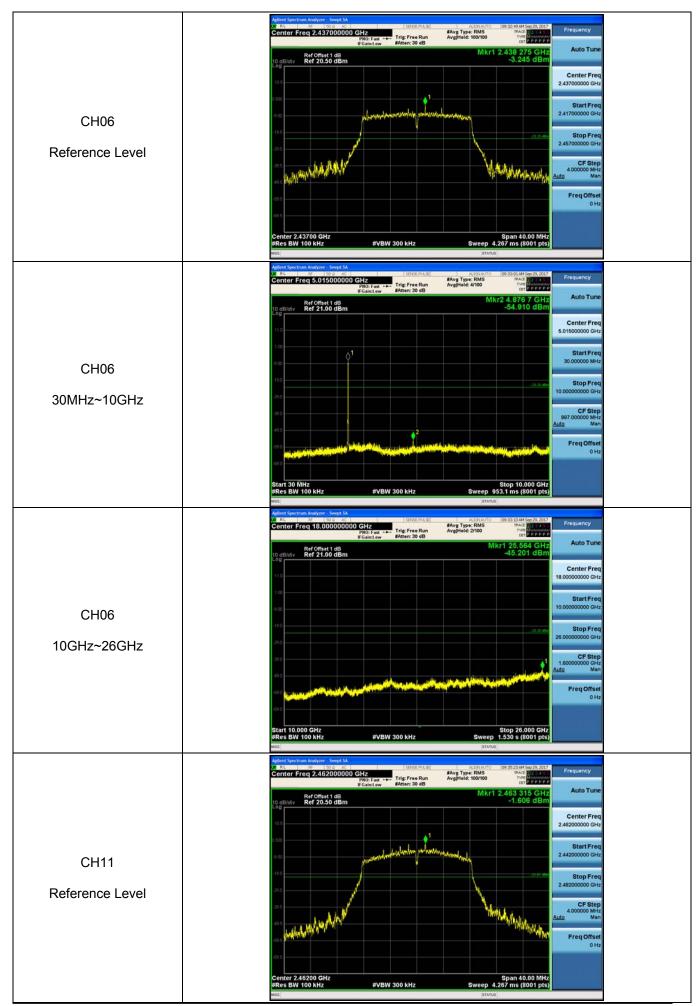

 Report No.: TRE1709017503 Page: 33 of 52 Issued: 2017-10-11

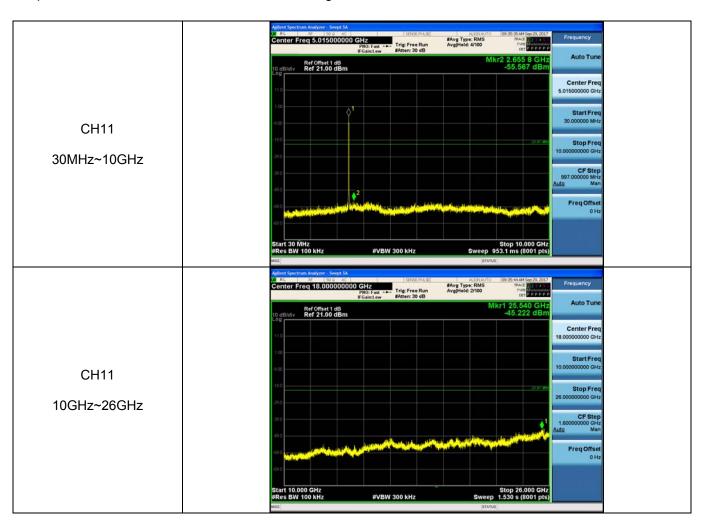

Report No.: TRE1709017503 Page: 34 of 52 Issued: 2017-10-11

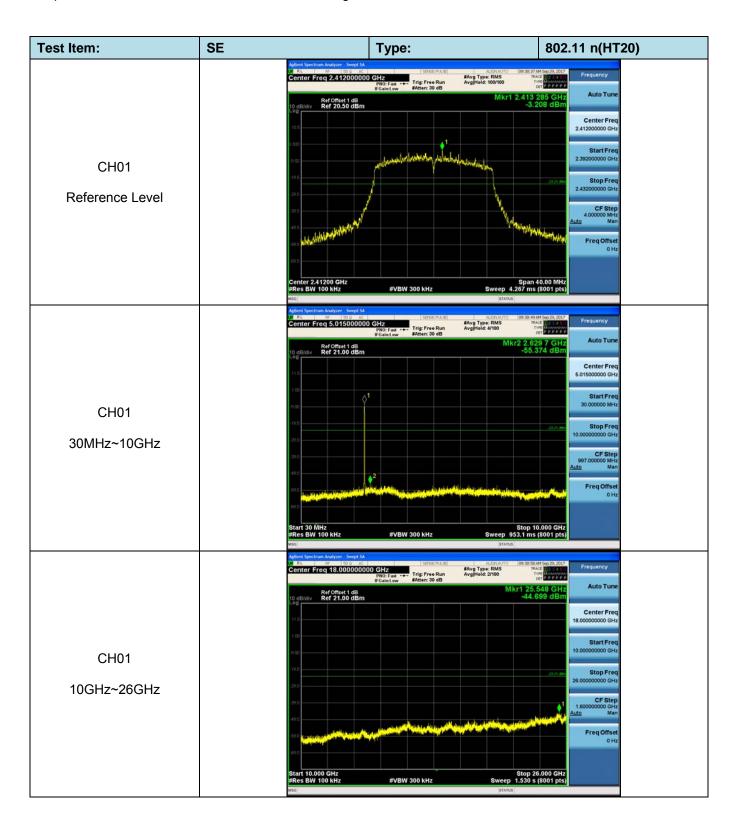

Report No.: TRE1709017503 Page: 35 of 52 Issued: 2017-10-11

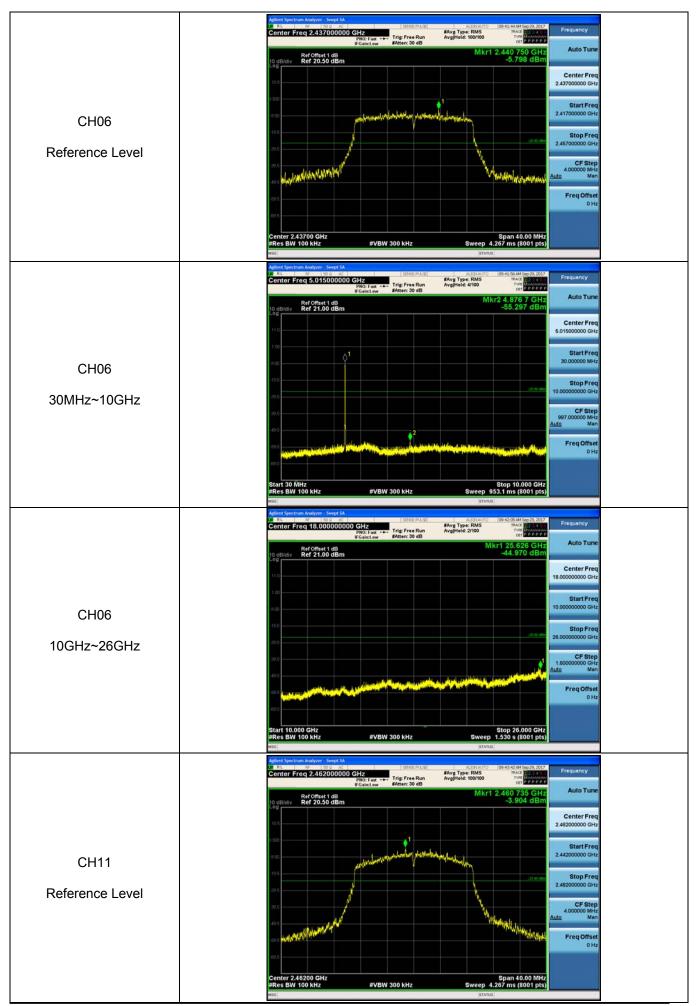

Report No.: TRE1709017503 Page: 36 of 52 Issued: 2017-10-11

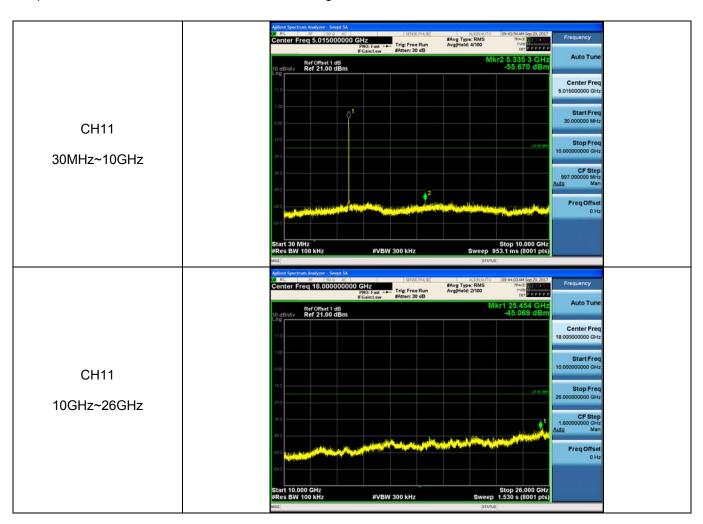

Report No.: TRE1709017503 Page: 37 of 52 Issued: 2017-10-11


Report No.: TRE1709017503 Page: 38 of 52 Issued: 2017-10-11


Report No.: TRE1709017503 Page: 39 of 52 Issued: 2017-10-11


Report No.: TRE1709017503 Page: 40 of 52 Issued: 2017-10-11


Report No.: TRE1709017503 Page: 41 of 52 Issued: 2017-10-11

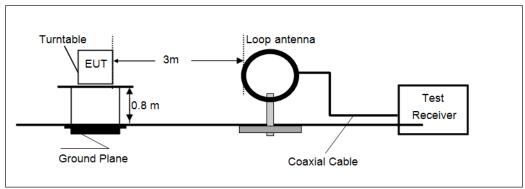

Report No.: TRE1709017503 Page: 42 of 52 Issued: 2017-10-11

Report No.: TRE1709017503 Page: 43 of 52 Issued: 2017-10-11

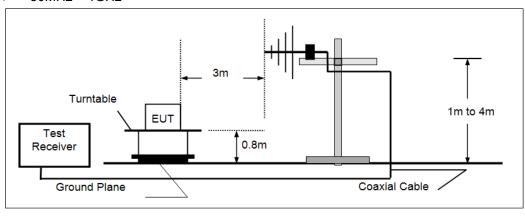
Report No.: TRE1709017503 Page: 44 of 52 Issued: 2017-10-11

Report No.: TRE1709017503 Page: 45 of 52 Issued: 2017-10-11

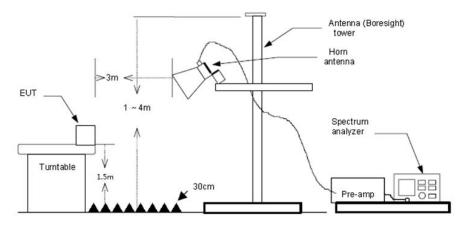
5.8. Spurious Emissions (radiated)


LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.209


Frequency	Limit (dBuV/m @3m)	Value
30MHz-88MHz	40.00	Quasi-peak
88MHz-216MHz	43.50	Quasi-peak
216MHz-960MHz	46.00	Quasi-peak
960MHz-1GHz	54.00	Quasi-peak
Above 1GHz	54.00	Average
Above Toriz	74.00	Peak

TEST CONFIGURATION


➤ 9kHz ~30MHz

➤ 30MHz ~ 1GHz

Above 1GHz

Report No.: TRE1709017503 Page: 46 of 52 Issued: 2017-10-11

TEST PROCEDURE

- 1. The EUT was tested according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna.
- 5. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1GHz, RBW=120kHz, VBW=300kHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
 - (3) Above 1GHz, RBW=1MHz, VBW=3MHz PEAK detector for Peak value. RBW=1MHz, VBW=3MHz RMS detector for Average value.

TEST MODE:

Please refer to the clause 3.3

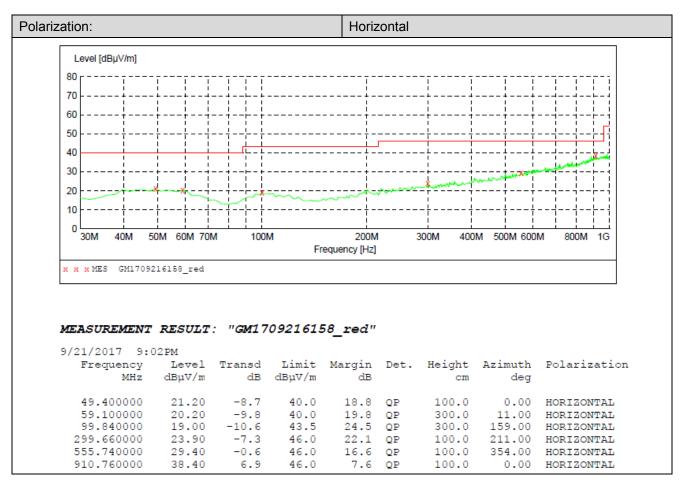
⊠ Passed	□ Not Applicable

Note:

- 1) Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2) The emission levels of other frequencies are very lower than the limit and not show in test report.

➢ 9kHz ~ 30MHz

The EUT was pre-scanned the frequency band (9kHz~30MHz), found the radiated level lower than the limit, so don't show on the report.


> 30MHz ~1000MHz

Have pre-scan all modulation mode, found the 802.11b mode CH01 which it was worst case, so only the worst case's data on the test report.

Report No.: TRE1709017503 Page: 47 of 52 Issued: 2017-10-11

> 30MHz ~ 1GHz

zation:				Vert	ical			
Level [dBµV/m]								
80								
70								
				İ		i		
60	- + + +						†	
50	-						 	
40	1 1 1							
30								Annaharan and a second
!	· · · · · · · · · · · · · · · · · · ·					L. LOWER	Property and the Party of the P	
20	* - * †			~~~~	-American	~ * * +		
10	· -			 		- -		
0	<u> </u>			İ		į į	ii	
				equency [Hz]				
x x x MES GM1709	216157_red							
MEASUREMENT 9/21/2017 8:3 Frequency MHz	RESULT	: " GM17 Transd dB	10921615 Limit dBµV/m	_		Height cm	Azimuth deg	Polarization
MEASUREMENT 9/21/2017 8:8 Frequency MHz	RESULT 59PM Level dBµV/m	Transd dB	Limit dBµV/m	- Margin dB	Det.	cm	deg	
MEASUREMENT 9/21/2017 8:5 Frequency MHz 51.340000	RESULT 59PM Level dBµV/m 21.00	Transd dB -8.8	Limit dBµV/m 40.0	Margin dB	Det.	cm 100.0	deg 329.00	VERTICAL
MEASUREMENT 9/21/2017 8:8 Frequency MHz	RESULT 59PM Level dBµV/m	Transd dB	Limit dBµV/m	- Margin dB	Det.	cm	deg	
MEASUREMENT 9/21/2017 8:5 Frequency MHz 51.340000 59.100000 115.360000 301.600000	### RESULT 59PM Level dBµV/m 21.00 19.40 19.10 22.20	Transd dB -8.8 -9.8 -11.6 -7.2	Limit dBµV/m 40.0 40.0 43.5 46.0	Margin dB 19.0 20.6 24.4 23.8	Det. QP QP QP QP	100.0 100.0 100.0 100.0	329.00 277.00 46.00 110.00	VERTICAL VERTICAL VERTICAL VERTICAL
MEASUREMENT 9/21/2017 8:5 Frequency MHz 51.340000 59.100000 115.360000	### RESULT 59PM Level dBµV/m 21.00 19.40 19.10	Transd dB -8.8 -9.8 -11.6	Limit dBµV/m 40.0 40.0 43.5	Margin dB 19.0 20.6 24.4	Det. QP QP QP	100.0 100.0 100.0	deg 329.00 277.00 46.00	VERTICAL VERTICAL VERTICAL

Report No.: TRE1709017503 Page: 48 of 52 Issued: 2017-10-11

> Above 1 GHz

802.11b					CH01				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
1953.21	42.94	25.84	6.20	37.26	37.72	74.00	-36.28	Vertical	Peak
3844.28	36.79	29.64	8.56	38.20	36.79	74.00	-37.21	Vertical	Peak
4821.76	38.47	31.56	9.55	36.90	42.68	74.00	-31.32	Vertical	Peak
6561.03	34.19	34.12	11.29	35.35	44.25	74.00	-29.75	Vertical	Peak
1953.21	42.94	25.84	6.20	37.26	37.72	74.00	-36.28	Horizontal	Peak
3844.28	36.79	29.64	8.56	38.20	36.79	74.00	-37.21	Horizontal	Peak
4821.76	38.47	31.56	9.55	36.90	42.68	74.00	-31.32	Horizontal	Peak
7338.62	33.15	36.30	12.01	34.90	46.56	74.00	-27.44	Horizontal	Peak

802.11b					CH06				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
1943.29	46.73	25.74	6.18	37.25	41.40	74.00	-32.60	Vertical	Peak
3824.76	37.12	29.62	8.53	38.22	37.05	74.00	-36.95	Vertical	Peak
4871.10	36.54	31.46	9.59	36.76	40.83	74.00	-33.17	Vertical	Peak
6379.86	32.28	33.26	10.99	35.31	41.22	74.00	-32.78	Vertical	Peak
1943.29	46.73	25.74	6.18	37.25	41.40	74.00	-32.60	Horizontal	Peak
3128.01	37.24	28.80	7.63	38.21	35.46	74.00	-38.54	Horizontal	Peak
4871.10	34.76	31.46	9.59	36.76	39.05	74.00	-34.95	Horizontal	Peak
6379.86	32.28	33.26	10.99	35.31	41.22	74.00	-32.78	Horizontal	Peak

802.11b					CH11				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
1244.73	36.54	26.25	4.74	36.55	30.98	74.00	-43.02	Vertical	Peak
2328.25	42.84	27.96	6.65	37.70	39.75	74.00	-34.25	Vertical	Peak
4871.10	38.47	31.46	9.59	36.76	42.76	74.00	-31.24	Vertical	Peak
7451.57	31.99	36.20	12.24	34.86	45.57	74.00	-28.43	Vertical	Peak
2328.25	42.84	27.96	6.65	37.70	39.75	74.00	-34.25	Horizontal	Peak
3634.91	37.28	29.30	8.31	38.26	36.63	74.00	-37.37	Horizontal	Peak
4871.10	38.47	31.46	9.59	36.76	42.76	74.00	-31.24	Horizontal	Peak
7027.82	32.07	35.38	11.85	34.83	44.47	74.00	-29.53	Horizontal	Peak

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Report No.: TRE1709017503 Page: 49 of 52 Issued: 2017-10-11

802.11g					CH01				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
1948.25	41.51	25.79	6.19	37.26	36.23	74.00	-37.77	Vertical	Peak
3644.18	37.14	29.30	8.32	38.26	36.50	74.00	-37.50	Vertical	Peak
6172.20	32.57	32.79	10.96	35.31	41.01	74.00	-32.99	Vertical	Peak
6903.71	32.31	34.72	11.73	34.89	43.87	74.00	-30.13	Vertical	Peak
1343.51	35.64	26.07	4.90	36.49	30.12	74.00	-43.88	Horizontal	Peak
3933.37	35.94	29.70	8.69	38.15	36.18	74.00	-37.82	Horizontal	Peak
5560.50	32.68	31.84	10.24	36.05	38.71	74.00	-35.29	Horizontal	Peak
7376.08	31.36	36.30	12.04	34.85	44.85	74.00	-29.15	Horizontal	Peak

802.11g					CH06				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
1353.80	36.36	26.04	4.92	36.49	30.83	74.00	-43.17	Vertical	Peak
3525.56	36.91	29.08	8.15	38.37	35.77	74.00	-38.23	Vertical	Peak
5151.68	33.86	31.69	9.79	36.25	39.09	74.00	-34.91	Vertical	Peak
6938.94	32.61	34.93	11.77	34.85	44.46	74.00	-29.54	Vertical	Peak
1659.57	38.00	25.08	5.69	36.85	31.92	74.00	-42.08	Horizontal	Peak
3525.56	36.91	29.08	8.15	38.37	35.77	74.00	-38.23	Horizontal	Peak
4971.32	33.38	31.47	9.65	36.48	38.02	74.00	-35.98	Horizontal	Peak
6544.35	33.32	34.09	11.26	35.35	43.32	74.00	-30.68	Horizontal	Peak

802.11g					CH11				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
1943.29	44.32	25.74	6.18	37.25	38.99	74.00	-35.01	Vertical	Peak
3192.37	38.95	28.80	7.71	38.20	37.26	74.00	-36.74	Vertical	Peak
4920.96	35.56	31.42	9.62	36.62	39.98	74.00	-34.02	Vertical	Peak
7045.74	32.41	35.44	11.85	34.86	44.84	74.00	-29.16	Vertical	Peak
1746.25	36.48	25.29	5.86	37.03	30.60	74.00	-43.40	Horizontal	Peak
3033.91	37.05	28.67	7.52	38.22	35.02	74.00	-38.98	Horizontal	Peak
4045.06	35.61	29.79	8.82	38.01	36.21	74.00	-37.79	Horizontal	Peak
6267.19	32.25	33.03	11.00	35.30	40.98	74.00	-33.02	Horizontal	Peak

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Report No.: TRE1709017503 Page: 50 of 52 Issued: 2017-10-11

802.11n(HT	20)				CH01				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
2252.46	37.28	27.82	6.53	37.49	34.14	74.00	-39.86	Vertical	Peak
3672.11	36.42	29.30	8.35	38.26	35.81	74.00	-38.19	Vertical	Peak
5125.52	33.51	31.80	9.77	36.27	38.81	74.00	-35.19	Vertical	Peak
7432.62	31.98	36.23	12.18	34.85	45.54	74.00	-28.46	Vertical	Peak
2252.46	35.44	27.82	6.53	37.49	32.30	74.00	-41.70	Horizontal	Peak
3738.13	35.35	29.42	8.43	38.24	34.96	74.00	-39.04	Horizontal	Peak
4920.96	33.86	31.42	9.62	36.62	38.28	74.00	-35.72	Horizontal	Peak
7527.83	32.57	36.13	12.49	34.92	46.27	74.00	-27.73	Horizontal	Peak

802.11n(HT	20)				CH06				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
1768.62	36.92	25.34	5.90	37.07	31.09	74.00	-42.91	Vertical	Peak
4045.06	36.59	29.79	8.82	38.01	37.19	74.00	-36.81	Vertical	Peak
4871.10	38.89	31.46	9.59	36.76	43.18	74.00	-30.82	Vertical	Peak
7527.83	32.57	36.13	12.49	34.92	46.27	74.00	-27.73	Vertical	Peak
1728.56	36.62	25.26	5.82	36.99	30.71	74.00	-43.29	Horizontal	Peak
3049.39	37.16	28.70	7.54	38.22	35.18	74.00	-38.82	Horizontal	Peak
4920.96	35.10	31.42	9.62	36.62	39.52	74.00	-34.48	Horizontal	Peak
7721.91	32.78	36.10	13.05	35.03	46.90	74.00	-27.10	Horizontal	Peak

802.11n(HT	20)				CH11				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
1795.84	36.33	25.39	5.95	37.13	30.54	74.00	-43.46	Vertical	Peak
3049.39	37.09	28.70	7.54	38.22	35.11	74.00	-38.89	Vertical	Peak
5560.50	33.42	31.84	10.24	36.05	39.45	74.00	-34.55	Vertical	Peak
7081.70	32.11	35.55	11.85	34.91	44.60	74.00	-29.40	Vertical	Peak
1346.93	36.35	26.06	4.91	36.49	30.83	74.00	-43.17	Horizontal	Peak
2965.19	36.57	28.57	7.46	38.25	34.35	74.00	-39.65	Horizontal	Peak
4501.49	34.60	30.70	9.30	37.39	37.21	74.00	-36.79	Horizontal	Peak
5747.59	33.73	31.84	10.51	35.46	40.62	74.00	-33.38	Horizontal	Peak

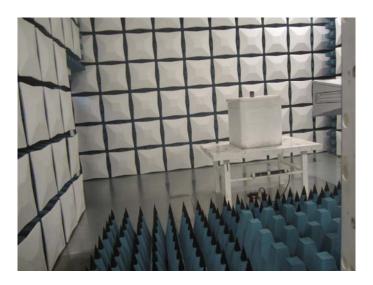
Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Report No.: TRE1709017503 Page: 51 of 52 Issued: 2017-10-11

6. TEST SETUP PHOTOS

Conducted Emissions



Radiated Emissions

Report No.: TRE1709017503 Page: 52 of 52 Issued: 2017-10-11

7. EXTERANAL AND INTERNAL PHOTOS

Reference to the test report No.: TRE1709017501.

End of Report
