

Shenzhen Huaxia Testing Technology Co., Ltd

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

Telephone:+86-75Fax:+86-75Website:www.

+86-755-26648640 +86-755-26648637 www.cqa-cert.com

Report Template Version: V03 Report Template Revision Date: Mar.1st, 2017

Test Report

Report No. :	CQASZ20201200039EX-01
Applicant:	Shenzhen Chuangquan Electronics Co., Ltd.
Address of Applicant:	No. 102, Building 2, Lane 18, Chilingtou Xinyi village Gaofeng Community, Dalang Street, Longhua District, Shenzhen, Guangdong, China
Manufacturer:	Shenzhen Chuangquan Electronics Co., Ltd.
Address of Manufacturer:	No. 102, Building 2, Lane 18, Chilingtou Xinyi village Gaofeng Community, Dalang Street, Longhua District, Shenzhen, Guangdong, China
Equipment Under Test (E	UT):
Product:	Keyboard
All Model No.:	CQ63, CQ84, CQ006, CQ008, CQ009, CQ010, CQ068, CQ082, CQ87, Z-88, CQ104, CQ088, CQ106, CQ108, CQ109, IK619, BT-815, BT-855, IK3381D, K-600, Z-727, Z-77, K-700, K-620, K-630, X-7100, K-610, EK6210
Test Model No.:	CQ63
Brand Name:	N/A
FCC ID:	2AYFJ-CQ63N
Standards:	47 CFR Part 15, Subpart C
Date of Test:	2020-11-30 to 2020-12-14
Date of Issue:	2020-12-28
Test Result :	PASS*

Tested By:	Juh Li	
	(Jun Li)	STATESTING TECHN
Reviewed By:	Ann lin	
-	(Ares Liu)	华夏准测 人
Approved By:	Shlek, Lwo (Sheek Luo)	37 + APPROVED +

* In the configuration tested, the EUT complied with the standards specified above.

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CQA, this report can't be reproduced except in full.

2 Version

Revision History Of Report

Report No.	Version	Description	Issue Date
CQASZ20201200039EX-01	Rev.01	Initial report	2020-12-28

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 2013	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10 2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10 2013	PASS
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10 2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS

4 Contents

Page

			1
2	VE	ERSION	
3	TE	ST SUMMARY	
4	СС	ONTENTS	4
5		ENERAL INFORMATION	
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF EUT	5
	5.3	Additional Instructions	7
	5.4	TEST ENVIRONMENT	
	5.5	DESCRIPTION OF SUPPORT UNITS	
	5.6	STATEMENT OF THE MEASUREMENT UNCERTAINTY	
	5.7	TEST LOCATION	
	5.8	TEST FACILITY	
	5.9 5.10	DEVIATION FROM STANDARDS Other Information Requested by the Customer	
	5.10	EQUIPMENT LIST	
6		EST RESULTS AND MEASUREMENT DATA	
-	6.1	ANTENNA REQUIREMENT	
	6.2	Conducted Emissions	
	6.3	CONDUCTED PEAK OUTPUT POWER	
	6.4	6DB OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND-EDGE FOR RF CONDUCTED EMISSIONS	
	6.7	Spurious RF Conducted Emissions	
	6.8	RADIATED SPURIOUS EMISSION & RESTRICTED BANDS	
		8.1 Spurious Emissions	
7	PH	IOTOGRAPHS - EUT TEST SETUP	
8	PH	IOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	

5 General Information

5.1 Client Information

Applicant:	Shenzhen Chuangquan Electronics Co., Ltd.
Address of Applicant:	No. 102, Building 2, Lane 18, Chilingtou Xinyi village Gaofeng Community, Dalang Street, Longhua District, Shenzhen, Guangdong, China
Manufacturer:	Shenzhen Chuangquan Electronics Co., Ltd.
Address of Manufacturer:	No. 102, Building 2, Lane 18, Chilingtou Xinyi village Gaofeng Community, Dalang Street, Longhua District, Shenzhen, Guangdong, China

5.2 General Description of EUT

Product Name:	Keyboard		
All Model No.:	CQ63, CQ84, CQ006, CQ008, CQ009, CQ010, CQ068, CQ082, CQ87, Z-88, CQ104, CQ088, CQ106, CQ108, CQ109, IK619, BT-815, BT-855, IK3381D, K-600, Z-727, Z-77, K-700, K-620, K-630, X-7100, K-610, EK6210		
Test Model No.:	CQ63		
Trade Mark:	N/A		
Hardware Version:	V2.0		
Software Version:	V1.0.10		
Operation Frequency:	2402MHz~2480MHz		
Bluetooth Version:	BLE		
Modulation Type:	GFSK		
Transfer Rate:	1Mbps		
Number of Channel:	40		
Product Type:	Mobile Portable Fix Location		
Test Software of EUT:	Pixart BLE Utility		
Antenna Type:	Pcb antenna		
Antenna Gain:	0dBi		
EUT Power Supply:	Supply: lithium battery:DC3.7V, Charge by DC5.0V		

Note: All model: CQ63, CQ84, CQ006, CQ008, CQ009, CQ010, CQ068, CQ082, CQ87, Z-88, CQ104, CQ088, CQ106, CQ108, CQ109, IK619, BT-815, BT-855, IK3381D, K-600, Z-727, Z-77, K-700, K-620, K-630, X-7100, K-610, EK6210

Only the model CQ63 was tested, since the electrical circuit design, layout, components used and internal wiring were identical for the above models, with difference being color of appearance and model name.

Operation F	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH00)	2402MHz
The middle channel (CH19)	2440MHz
The highest channel (CH39)	2480MHz

5.3 Additional Instructions

EUT Test Software Settings:				
Mode:	Special software is used.			
EUT Power level:		Through engineering command into the engineering mode. Class2 (Power level is built-in set parameters and cannot be changed and selected)		
Use test software to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT.				
Mode	Channel	Frequency(MHz)		
	СНО	2402		
GFSK(1Mbps)	CH19	2440		
	CH39	2480		

Run Software:

UART	N/1		2801 Eva			6
1	M1 Open		CIC)	se	Detect
Firmware	BLE Service	Setting	Protocol	BI	Direct Test	Mode
FW (Flas	sh)		FW	(Up	grade)	
Item	Con	tent		tem	C	ontent
Version						
Descripti	0					
Size						
Checksur	n					

5.4 Test Environment

Operating Environment	Operating Environment:		
Temperature:	25.0 °C		
Humidity:	53 % RH		
Atmospheric Pressure:	1010mbar		
Test Mode:	Use test software to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT. Note: In the process of transmitting of EUT, the duty cycle >98%.		

5.5 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	Remark	FCC certification
PC	Lenovo	ThinkPad E450C	Provide by lab	FCC ID
AC/DC Adapter	Lenovo	ADLX65NLC3A	Provide by lab	FCC SDOC

5.6 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate.

The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities.

The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the **Shenzhen Huaxia Testing Technology Co., Ltd.** quality system acc. to DIN EN ISO/IEC 17025.

Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

No.	Item	Uncertainty	Notes
1	Radiated Emission (Below 1GHz)	±5.12dB	(1)
2	Radiated Emission (Above 1GHz)	±4.60dB	(1)
3	Conducted Disturbance (0.15~30MHz)	±3.34dB	(1)
4	Radio Frequency	3×10 ⁻⁸	(1)
5	Duty cycle	0.6 %.	(1)
6	Occupied Bandwidth	1.1%	(1)
7	RF conducted power	0.86dB	(1)
8	RF power density	0.74	(1)
9	Conducted Spurious emissions	0.86dB	(1)
10	Temperature test	0.8°C	(1)
11	Humidity test	2.0%	(1)
12	Supply voltages	0.5 %.	(1)
13	time	0.6 %.	(1)
14	Frequency Error	5.5 Hz	(1)

Hereafter the best measurement capability for CQA laboratory is reported:

(1)This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

5.7 Test Location

Shenzhen Huaxia Testing Technology Co., Ltd,

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

5.8 Test Facility

• A2LA (Certificate No. 4742.01)

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 4742.01.

• FCC Registration No.: 522263

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.:522263

5.9 Deviation from Standards

None.

5.10Other Information Requested by the Customer

None.

5.11 Equipment List

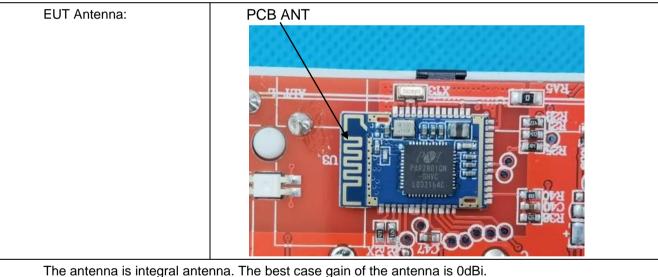
			Instrument	Calibration	Calibration
Test Equipment	Manufacturer	Model No.	No.	Date	Due Date
EMI Test Receiver	R&S	ESR7	CQA-005	2020/09/22	2021/09/21
Spectrum analyzer	R&S	FSU26	CQA-038	2020/10/24	2021/10/23
Spectrum analyzer	keysight	N9020A	CQA-105	2020/10/24	2021/10/23
Dreemplifier	MITEO	AFS4-00010300-18-10P-		2020/00/22	2021/00/21
Preamplifier	MITEQ	4	CQA-035	2020/09/22	2021/09/21
Preamplifier	MITEQ	AMF-6D-02001800-29- 20P	CQA-036	2020/10/29	2021/10/28
Loop antenna	Schwarzbeck	FMZB1516	CQA-087	2020/10/24	2021/10/23
Bilog Antenna	R&S	HL562	CQA-011	2020/09/22	2021/09/21
Horn Antenna	R&S	HF906	CQA-012	2020/09/22	2021/09/21
Horn Antenna	Schwarzbeck	BBHA 9170	CQA-088	2020/09/22	2021/09/21
Coaxial Cable (Above 1GHz)	CQA	N/A	C019	2020/09/22	2021/09/21
Coaxial Cable (Below 1GHz)	CQA	N/A	C020	2020/09/22	2021/09/21
Antenna Connector	CQA	RFC-01	CQA-080	2020/09/22	2021/09/21
RF cable(9KHz~40GHz)	CQA	RF-01	CQA-079	2020/09/22	2021/09/21
Power divider	MIDWEST	PWD-2533-02-SMA-79	CQA-067	2020/09/22	2021/09/21
EMI Test Receiver	R&S	ESPI3	CQA-013	2020/09/22	2021/09/21
LISN	R&S	ENV216	CQA-003	2020/11/01	2021/10/30
Coaxial cable	CQA	N/A	CQA-C009	2020/09/22	2021/09/21

Note:

The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

6 Test results and Measurement Data

6.1 Antenna Requirement

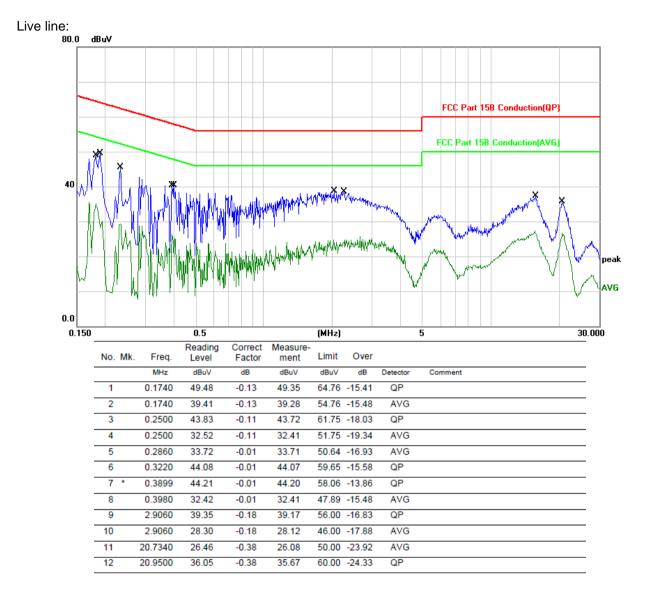

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

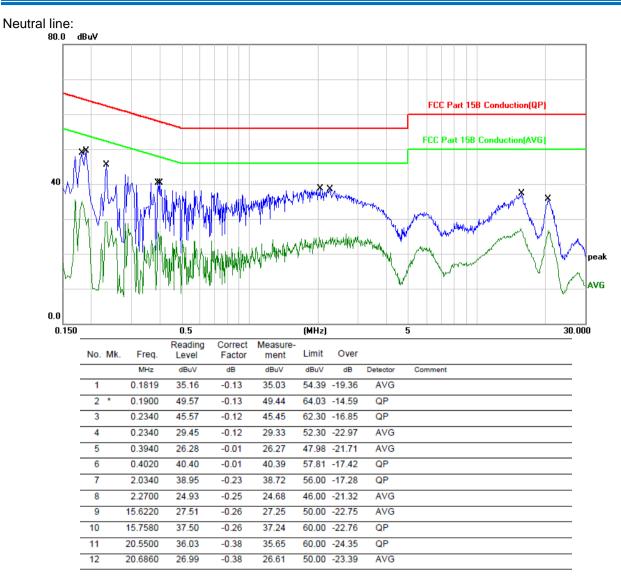
15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.



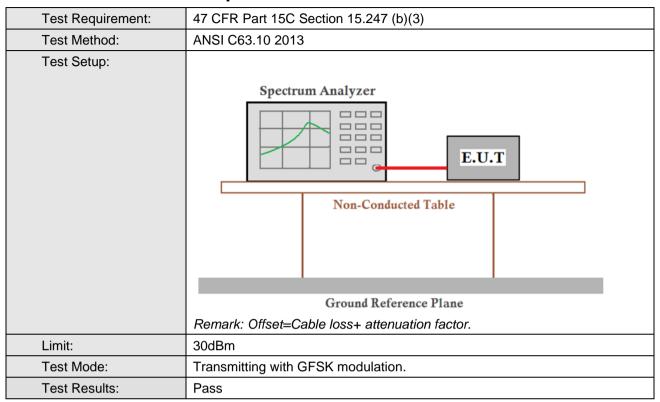
6.2	Conducted	Emissions
-----	-----------	-----------

Test Deguinement	17 OED Dort 150 Continue 15	207		
Test Requirement:	47 CFR Part 15C Section 15.207			
Test Method:	ANSI C63.10: 2013			
Test Frequency Range:	150kHz to 30MHz	1		
Limit:	Frequency range (MHz)	Limit (c	lBuV)	
		Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the logarithm	n of the frequency.		
Test Procedure:	 1) The mains terminal disturbance voltage test was conducted in a shielded room. 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50µH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane. 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of equipment 			
Test Setup:	and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement.			
Test Mode:	Transmitting with GFSK modulation. Charge +Transmitting mode.			
Test Results:	Pass			
	-			


Measurement Data

Remark:

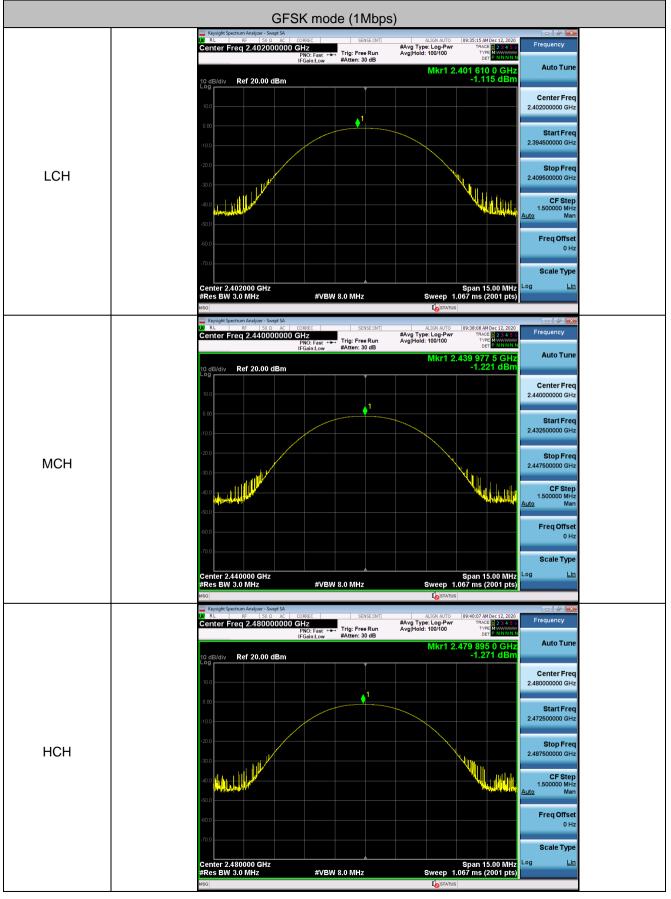
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.



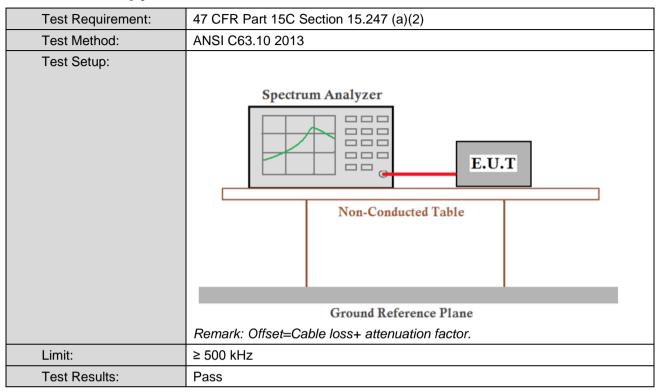
Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

6.3 Conducted Peak Output Power


Measurement Data

	GFSK mode (1	Mbps)	
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
Lowest	-1.115	30.00	Pass
Middle	-1.221	30.00	Pass
Highest	-1.271	30.00	Pass

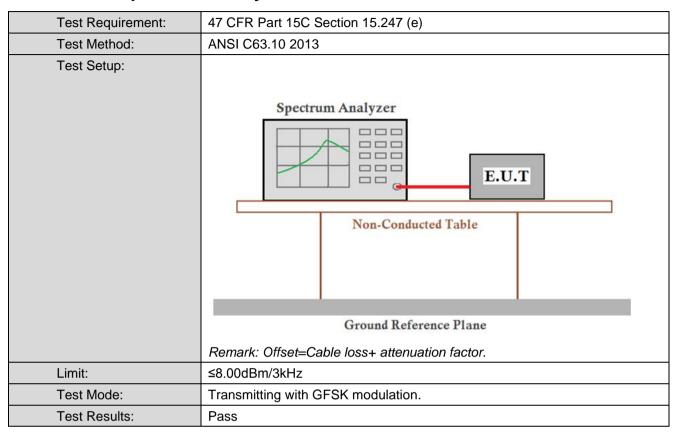


Test plot as follows:

6.4 6dB Occupy Bandwidth

Measurement Data

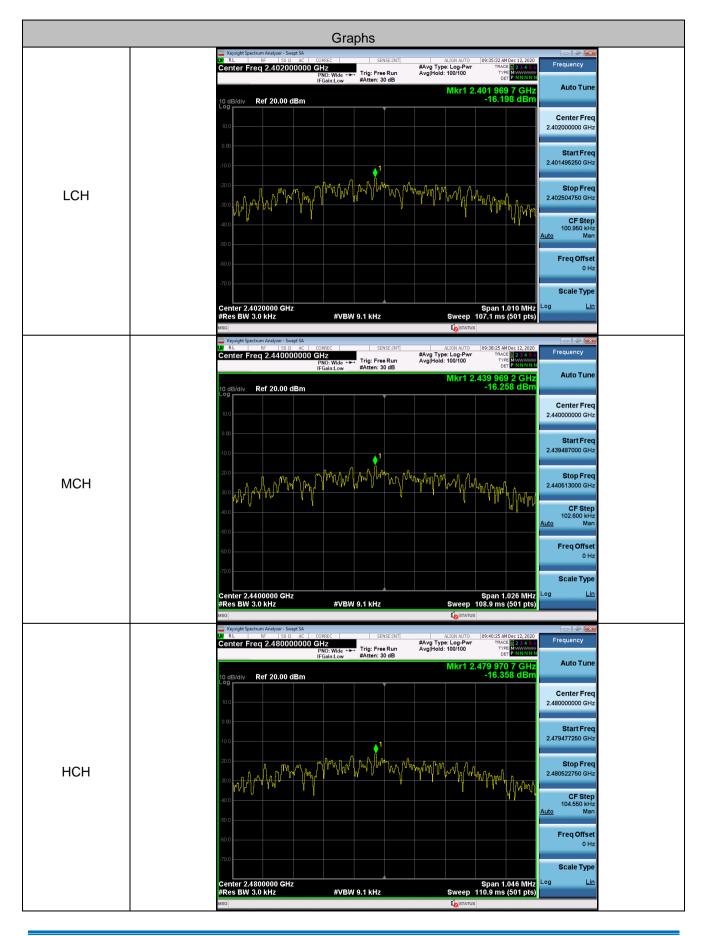
	GFSK mode		
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result
Lowest	0.6729	≥500	Pass
Middle	0.6842	≥500	Pass
Highest	0.6970	≥500	Pass



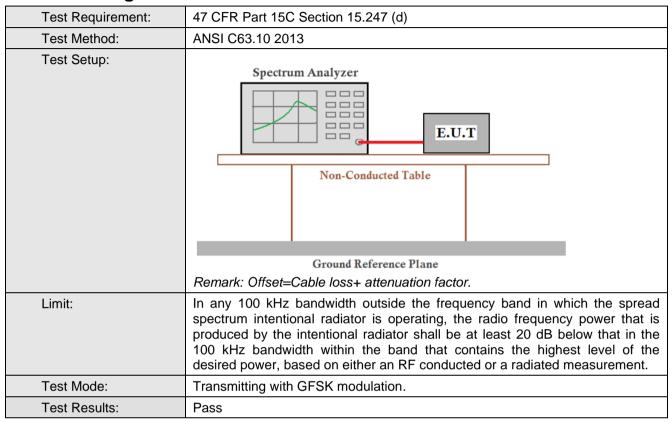
Test plot as follows:

lest plot as follows:	Graphs
	Keysight Spectrum Analyzer - Occupied BW W RL RF S0 Ω AC ORREC SetSE:INT ALIGN AUTO (09:35:19 AM Dec 12, 2020 ORREC Center Freq: 2.402000000 GHz Trig: Free Run Avg Hold: 100/100 Radio Device: BTS Radio Device: BTS
LCH	10 dB/div Ref 10.00 dBm 000 100 100 100 100 100 100 10
	Center 2.402 GHz #Res BW 100 kHz #VBW 300 kHz Span 3 MHz Sweep 1 ms CF Step 300,000 kHz Occupied Bandwidth Total Power 4.84 dBm
	1.0628 MHz Freq Offset Transmit Freq Error -7.342 kHz % of OBW Power 99.00 % x dB Bandwidth 672.9 kHz x dB -6.00 dB
	MSG LOGICATION
	Keydight Spectrum Analyzer - Occupied BW K Keydight Spectrum Analyzer - Occupied BW Keydight Spectrum Analyzer - Occupied BW Keydight Spectrum Analyzer - Occupied BW Center Freq 2.440000000 GHz Center Freq 2.440000000 GHz Frequency Frequency
	10 dB/div Ref 10.00 dBm 10 dB/div Ref 10.00 d
MCH	200 200 800 200 Center 2.44 GHz Span 3 MHz #Res BW 100 kHz #VBW 300 kHz
	Occupied Bandwidth Total Power 4.91 dBm 1.0659 MHz Freq Offset Transmit Freq Error -4.280 kHz % of OBW Power 99.00 %
	x dB Bandwidth 684.2 kHz x dB -6.00 dB
	MSG Iso status Keyright Spectrum Analyzer - Occupied BW Iso Service RL RF S00. A CORREC Center Freq. 2.480000000 GHz Radio Std: None Frequency
	Ing: Free Run Avg Hoid: 100/100 #FGaint_ow #Atten: 30 dB Radio Device: BTS
НСН	Log 600 150 260 360 460 2 49000000 GHz 2 49000000 GHz
	Center 2.48 GHz Span 3 MHz Span 3 MHz CF Step 300.00 kHz #Res BW 100 kHz #VBW 300 kHz Sweep 1 ms 300.000 kHz Occupied Bandwidth Total Power 4.86 dBm Man
	Occupied Bandwidth Total Power 4.86 dBm 1.0703 MHz Freq Offset Transmit Freq Error -3.921 kHz % of OBW Power 99.00 % x dB Bandwidth 697.0 kHz x dB -6.00 dB

6.5 Power Spectral Density


Measurement Data

	GFSK mode		
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
Lowest	-16.198	≤8.00	Pass
Middle	-16.258	≤8.00	Pass
Highest	-16.358	≤8.00	Pass



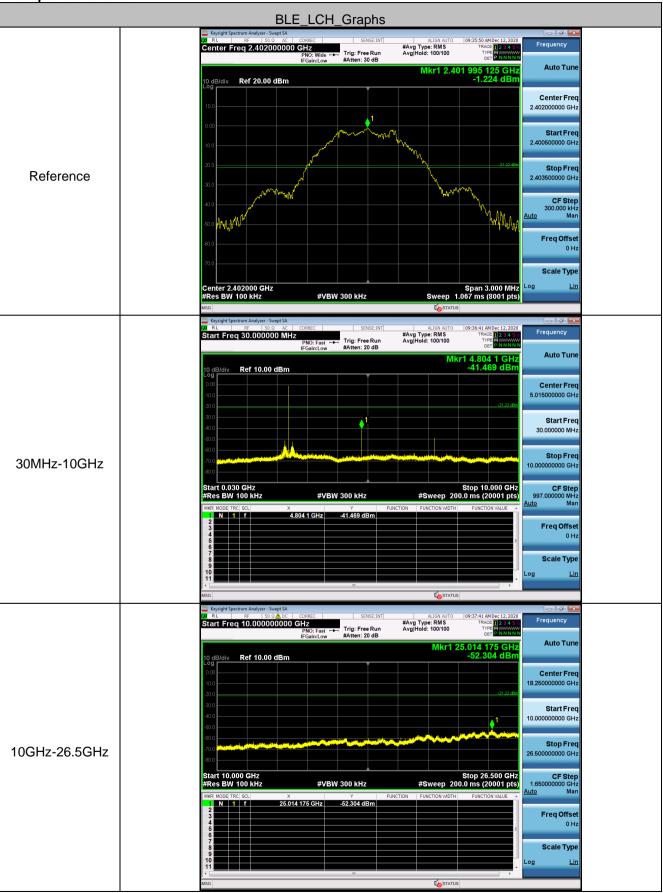
Test plot as follows:

6.6 Band-edge for RF Conducted Emissions

Test plot as follows:

	Graphs
	Keyligk Spectrum Analyzer - Swegt SA CORREC SENSE.INT ALIGN AUTO [09:35:35 AMDec 12, 2020] UR AL RF 500 AC CORREC SENSE.INT ALIGN AUTO [09:35:35 AMDec 12, 2020] Center Freq 2:357125000 GHZ IFGain:Low Trig: Free Run #Atten: 30 dB #Avg Type: RMS AvgIHold: 100/100 Trace IP 39:35 OF TO BE AUTO Frequency 0 dB/div Ref 20.00 dBm -57.480 dBm -57.480 dBm Auto Tune
	10 dB/div Ref 20.00 dBm -57.480 dBm 10 dB/div Ref 20.00 dBm -57.480 dBm 10 d 10 d
LCH	30 D 40 D 50 D 60 D 70 D
	Start 2.31000 GHz #Res BW 100 kHz Stop 2.40425 GHz #VBW 300 kHz CF Step Sweep 9.067 ms (2001 pts) IMRR MODE TRC SCI X Y FUNCTION FUNCTION WIDTH FUNCTION WIDTH FUNCTION WIDTH FUNCTION WIDTH Auto Man
	1 N 1 f 2.390.00 GHz -59.199.dBm 2 N 1 f 2.400.00 GHz -57.480.dBm 3 1 f 2.400.00 GHz -57.480.dBm Freq Offset 4 N 1 f 2.400.199 GHz -1.178.dBm 0 Hz 6 N 1 f 2.401.199 GHz -1.178.dBm 0 Hz
	7 9 9 9 10 9 11 9 12 1
	Keysight Spectrum Analyzer - Swept SA W RL RF IS 0.0 AC CORREC SENSE::NT ALIGN AUTO 109:40:27 AMDec 12, 2020 Center Freq 2.48887/5000 GHz PNO: Fast → IFGain:Low #Atten: 30 dB #VegHold: 100/100 Det ANDEC 12, 2020 #AvgHold: 100/100 Det ANDEC 12, 2020 AvgHold: 100/1
	Mkr2 2.500 000 GHz Auto Tune 10 dB/div Ref 20.00 dBm -60.005 dBm 100 -60.005 dBm -60.005 dBm 100 -4 -60.005 dBm
	100 200 300 400
НСН	50.0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	Start 2.47775 GHz Stop 2.50000 GHz CF Step 2.133 ms (2001 pts) #Res BW 100 kHz #VBW 300 kHz Sweep 2.133 ms (2001 pts) 2225000 MHz MR MODE TRC SCL X Y Function Function witoth Function witoth 1 N 1 f 2.433 500 GHz -58.835 dBm Man 2 N 1 f 2.430 GHz -58.006 dBm Function witoth Function witoth Function witoth
	3 N 1 f 2.479 997 GHz -1.211 dBm 0 Hz 0 Hz 5 - - - - - 0 Hz 7 - - - - - - 0 Hz
	Scale Type

6.7 Spurious RF Conducted Emissions


Test Requirement:	47 CFR Part 15C Section 15.247 (d)	
Test Method:	ANSI C63.10 2013	
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
	Remark: Offset=Cable loss+ attenuation factor.	
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.	
Test Mode:	Transmitting with GFSK modulation.	
Test Results:	Pass	

Shenzhen Huaxia Testing Technology Co., Ltd

Report No.: CQASZ20201200039EX-01

Test plot as follows:

Shenzhen Huaxia Testing Technology Co., Ltd

BLE_MCH_Graphs		
	Keysight Spectrum Analyzer - Swept SA Keysight Spectrum Set	
	Inc. Hub #Atten: 30 dB DEF P NHNN Mkr1 2.440 000 000 GHz Auto Tune 10 dB/dlv -1.415 dBm	
	100 Center Freq 2.44000000 GHz	
	a.co	
	-100 2.438500000 GHz	
Reference	300 2.441500000 GHz	
	-400	
	600 Freq Offset 014 Otz	
	700 Scale Type	
	Center 2.440000 GHz Span 3.000 MHz Log Lin #Res BW 100 kHz #VBW 300 kHz Sweep 1.067 ms (8001 pts)	
	Keysight Spectrum Analyzer - Swept SA Wr RL RF IS 0.0. AC CORREC SENSE:INT ALIGN AUTO 109:39:04 AM Dec 12, 2020 Frequency Start Freq 30.000000 MHz Trace Run Avg/Hold: 100/100 Trace Run Trace Run Frequency	
	PNO: Past #Atten: 20 dB per Philip del 100 per Phil	
	10 dB/div Ref 10.00 dBm -44.148 dBm	
	100	
	40.0	
30MHz-10GHz	 40.0 50.0 <li< td=""></li<>	
	Start 0.030 GHz Stop 10.000 GHz CF Step 997.00000 MHz #Res BW 100 kHz #VBW 300 kHz #Sweep 200.0 ms (20001 pts) 997.000000 MHz Auto	
	MRR Mode Hird; Stcl. X Y FUNCTION FUNCTION FUNCTION FUNCTION WIDTH FUNCTION VALUE F 1 1 1 1 4.879.9.GHz -44.148.dBm F <td< td=""></td<>	
	4 0 Hz 5 0 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
	usic Ustratus	
	UN RL RF 150 0 Ab OC CORREC SENSEINT ALLER AUTO [09:39:46 AMber 12, 2020] Start Freq 10.000000000 GHz PNO: Fast → Trig: Free Run Avg Hold: 100/100 OF Free Run Avg Hold: 100/100 OF Avg Hold: 100/1	
	10 dB/div Ref 10.00 dBm -52.556 dBm	
	000	
	300 Start Freq 40.0 Start Great 10.000000000 GHz	
10GHz-26.5GHz	500 500 700 700 700 700 700 700	
	Start 10.000 GHz CF Step	
	#Res BW 100 kHz #VBW 300 kHz #Sweep 200.0 ms (20001 pts) 1.65000000 GHz MNR MODE TRCI SCL X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE Auto Man 1 N 1 f 24.936 625 GHz -52.556 dBm FUNCTION FUNCTION VIDITH FUNCTION VALUE Auto Man	
	2 Freq Offset 4 6 0 0 Hz	
	7 Scale Type	

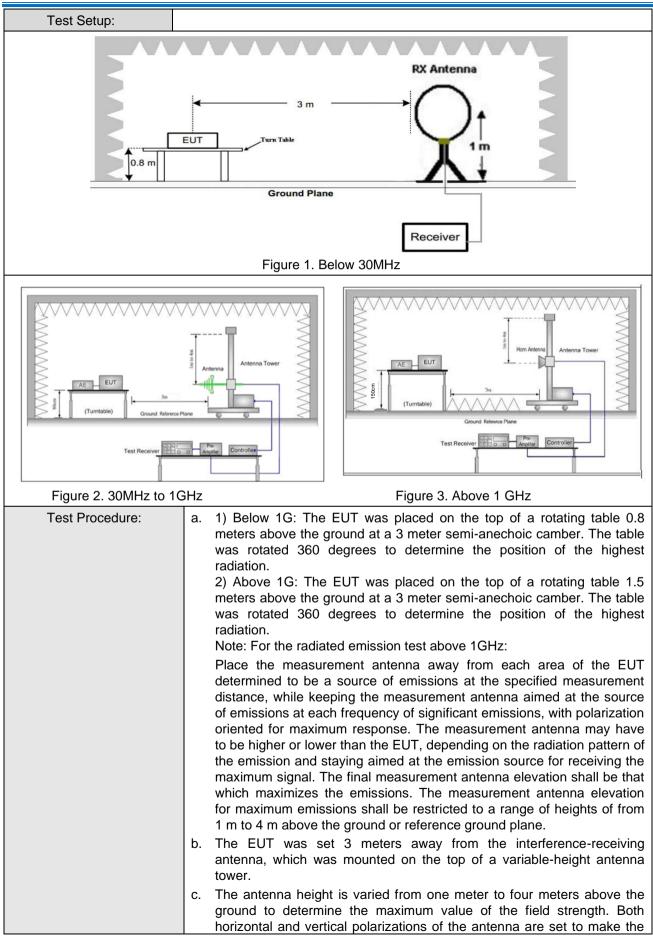
Shenzhen Huaxia Testing Technology Co., Ltd

Report No.: CQASZ20201200039EX-01

	Kysight Spectrum Analyzer - Swept SA CORPEC SEINSE: INIT ALLISI AUTO 09/42:00 AM Dec 12, 2020 Frequency XN RL BE S0.0 db OC CORPEC SEINSE: INIT ALLISI AUTO 09/42:00 AM Dec 12, 2020 Frequency Start Freq 10.00000000 GHz Trig: Free Run Avg[Hoid: 100/100 Trig: Automatication and the second automatication automaticat
	Mkr1 24.512 575 GHz 10 dB/div Ref 10.00 dBm -53.009 dBm 400 Tune
	0:00 1:00
	300 Start Freq -00 -0
10GHz-26.5GHz	Stop Stop Freq 70.0
	Start 10.000 GHz #Res BW 100 kHz #VBW 300 kHz Stop 26.500 GHz #Sweep 200.0 ms (20001 pts) CF Step 1.650000000 GHz Auto MRR_MODE TRC SCL X Y FUNCTION FUNCTION WOTH FUNCTION WOTH FUNCTION WOTH Man
	1 N 1 f 24.512 575 GHz -53.009 dBm 2
	7 8 9 10 11 11 12 10 10 10 10 10 10 10 10 10 10 10 10 10

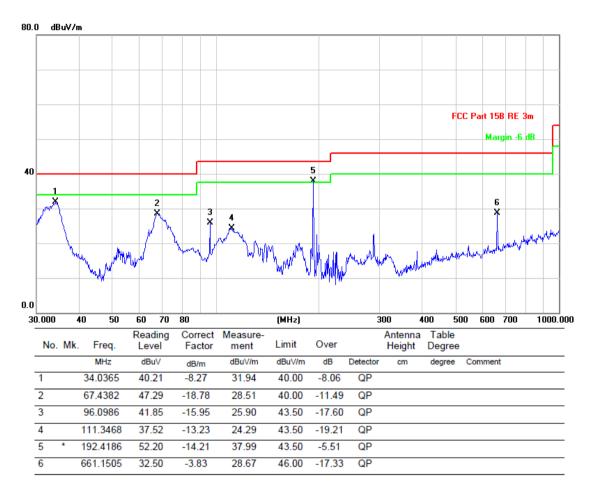
Remark:

Pretest 9kHz to 25GHz, find the highest point when testing, so only the worst data were shown in the test report. Per FCC Part 15.33 (a) and 15.31 (o) ,The amplitude of spurious emissions from intentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this part.



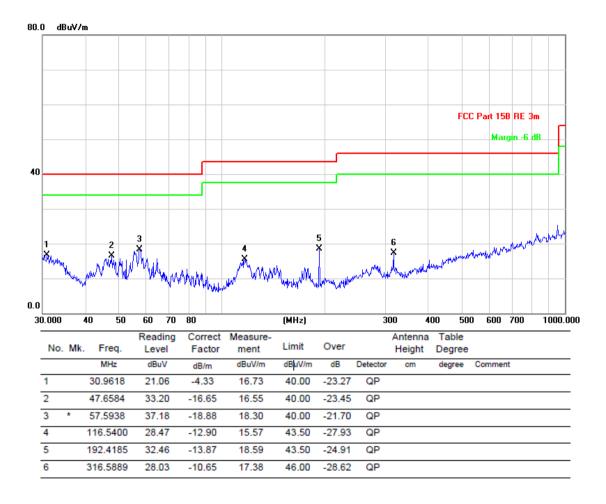
6.8 Radiated Spurious Emission & Restricted bands

6.8.1 Spurious Emissions									
Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205								
Test Method:	ANSI C63.10 2013								
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)								
Receiver Setup:	Frequency		Detector	RBW	VBW	Remark			
	0.009MHz-0.090MH	z	Peak	10kHz	z 30kHz	Peak			
	0.009MHz-0.090MH	z	Average	10kHz	z 30kHz	Average			
	0.090MHz-0.110MH	z	Quasi-peak	10kHz	z 30kHz	Quasi-peak			
	0.110MHz-0.490MH	z	Peak	10kHz	z 30kHz	Peak			
	0.110MHz-0.490MH	z	Average	10kHz	z 30kHz	Average			
	0.490MHz -30MHz		Quasi-peak	10kHz	z 30kHz	Quasi-peak			
	30MHz-1GHz		Quasi-peak	100 kH	lz 300kHz	Quasi-peak			
			Peak	1MHz	: 3MHz	Peak			
	Above 1GHz		Peak	1MHz	: 10Hz	Average			
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measuremer distance (m			
	0.009MHz-0.490MHz	2	400/F(kHz)	-	-	300			
	0.490MHz-1.705MHz	24	1000/F(kHz)	-	-	30			
	1.705MHz-30MHz		30	-	-	30			
	30MHz-88MHz		100 40.0		Quasi-peak	3			
	88MHz-216MHz		150	43.5	Quasi-peak	3			
	216MHz-960MHz		200	46.0	Quasi-peak	3			
	960MHz-1GHz		500	54.0	Quasi-peak	3			
	Above 1GHz		500	54.0	Average	3			
	Note: 15.35(b), frequency emissions is limit applicable to the e peak emission level rac	20c quip	B above the i	maximum est. This p	permitted ave	rage emission			



	measurement.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	i. Repeat above procedures until all frequencies measured was complete.
Exploratory Test	Transmitting with GFSK modulation.
Mode:	Transmitting mode, Charging mode.
Final Test Mode:	Transmitting with GFSK modulation.
	Pretest the EUT at Transmitting mode and Charging mode, found the Transmitting mode-low channel worse case.
	For below 1GHz part, through pre-scan, the worst case is the lowest channel.
	Only the worst case is recorded in the report.
Test Results:	Pass

Shenzhen Huaxia Testing Technology Co., Ltd


Radiated Emission below 1GHz						
30MHz~1GHz, the worst case						
Test mode: Transmitting mode Vertical						

Shenzhen Huaxia Testing Technology Co., Ltd

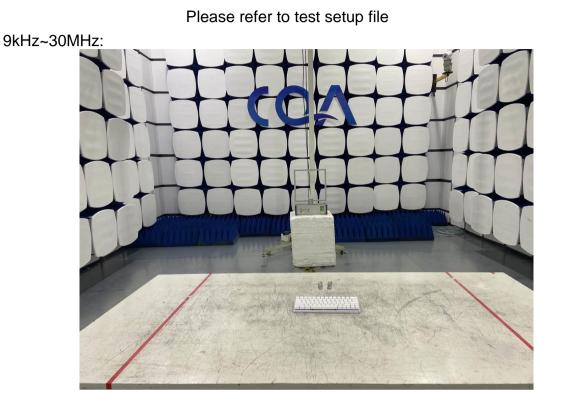
Transmitter Emission above 1GHz

Worse case m	ode: GFSK		Test channel:		Lowest		
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2390	57.86	-9.2	48.66	74	-25.34	Peak	н
2400	58.18	-9.39	48.79	74	-25.21	Peak	Н
4804	54.80	-4.33	50.47	74	-23.53	Peak	Н
7206	52.35	1.01	53.36	74	-20.64	Peak	Н
2390	57.77	-9.2	48.57	74	-25.43	Peak	V
2400	58.83	-9.39	49.44	74	-24.56	Peak	V
4804	54.86	-4.33	50.53	74	-23.47	Peak	V
7206	53.07	1.01	54.08	74	-19.92	Peak	V

Worse case m	mode: GFSK			Test channel:		Middle	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
4880	54.92	-4.11	50.81	74	-23.19	peak	Н
7320	48.33	1.51	49.84	74	-24.16	peak	Н
4880	56.68	-4.11	52.57	74	-21.43	peak	V
7320	48.76	1.51	50.27	74	-23.73	peak	V

Worse case m	Norse case mode: GFSK			Test channel:		Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2483.5	54.44	-9.29	45.15	74	-28.85	Peak	Н
4960	53.44	-4.04	49.40	74	-24.60	Peak	Н
7440	49.41	1.57	50.98	74	-23.02	Peak	Н
2483.5	55.22	-9.29	45.93	74	-28.07	Peak	V
4960	53.18	-4.04	49.14	74	-24.86	Peak	V
7440	50.39	1.57	51.96	74	-22.04	Peak	V

Remark:

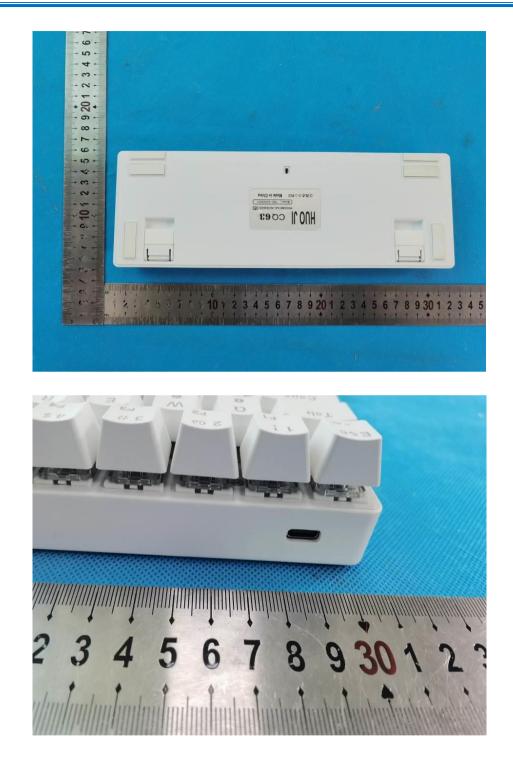

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

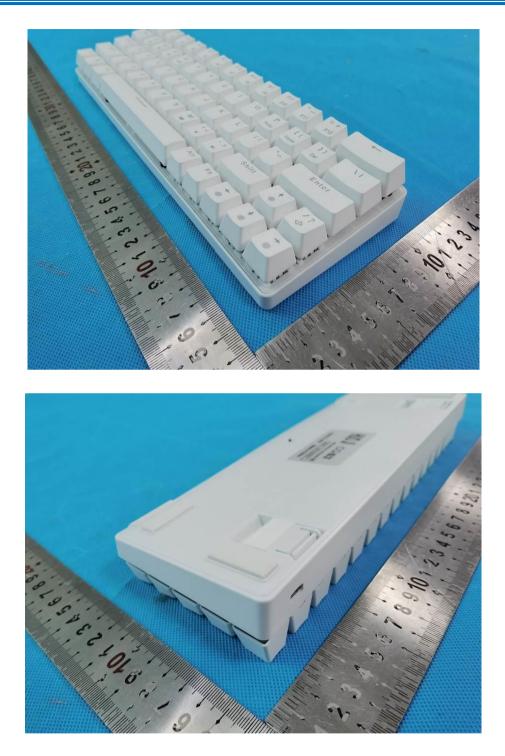
2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

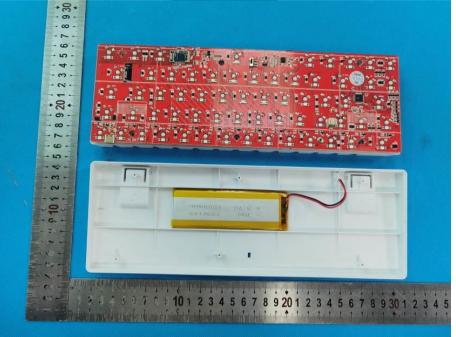
7 Photographs - EUT Test Setup

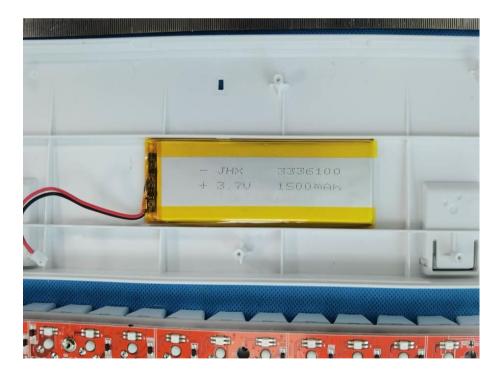
30MHz~1GHz:

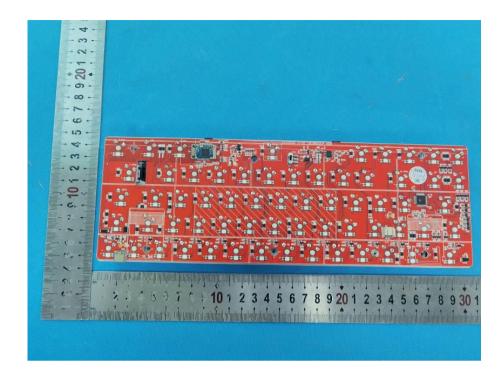


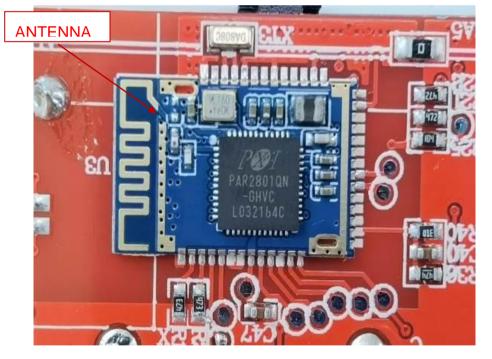
8 Photographs - EUT Constructional Details






Shenzhen Huaxia Testing Technology Co., Ltd




Internal photos

The End