

22431 ANTONIO PARKWAY B160-417 RANCHO SANTA MARGARITA, CA 92688

160-417 T (949)459-2754

AegisLabsInc.com

Class II Permissive Change Test Report And Application for Grant of Equipment Authorization

TEST REPORT PERTAINING TO:

Equipment Under Test	Model Number(s)	
Intel PRO/Wireless 3945ABG Network Connection	WM3945ABG	

CONFIGURATION

802.11a / 802.11b / 802.11g with a set of Compal HDL20 Antennas

MEASUREMENTS PERFORMED IN ACCORDANCE WITH THE FOLLOWING STANDARD (S)

Regulatory Standard(s)

47 CFR Part 15, Subpart C Section 15.247

Test Method:

ANSI C63.4: 2003 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

Certificate Number: 1111.01

PREPARED FOR:

Intel Corporation 2111 NE 25th Avenue Hillsboro, Oregon 97124 Contact(s): Mr. Robert Paxman

Aegis Labs, Inc. 22431 Antonio Parkway B160-417 Rancho S. Margarita, CA 92688 Agent(s): Mr. Rick Candelas Mr. Johnny Candelas

Test Report #:

INTEL-060717F

Test Report Revision: NONE

	DEDODT DODY	APPENDICES		TOTAL DACES
	REPORT BODY	A	В	TOTAL PAGES
PAGES	14	29	1	44

The contents of this report shall not be reproduced except in full, without the written approval of Aegis Labs, Inc. The Intel logo is used for identification purposes only and is a registered trademark of Intel Corporation

> Page 1 of 14 Report Number: INTEL-060717F Revision Number: NONE

9)459-2754 AegisLabs

TABLE OF CONTENTS

SECTION	TITLE	PAGE
	COVER SHEET	01
	TABLE OF CONTENTS	02
1.0	REGULATORY COMPLIANCE GUIDELINES	03
1.1	Guidelines For Testing To Emissions Standards	03
2.0	SUMMARY OF REGULATORY LIMITS	04
3.0	ADMINISTRATIVE DATA AND TEST DESCRIPTION	07
4.0	DESCRIPTION OF EUT CONFIGURATION	08
4.1	EUT Description	08
4.2	EUT Configuration	09
4.3	List of EUT Sub-Assemblies and Host Equipment	10
4.4	I/O Cabling Diagram and Description	11
4.5	EMC Test Hardware and Software Measurement Equipment	12
5.0	CONDITIONS DURING EMISSIONS MEASUREMENTS	13
5.1	General	13
5.2	Conducted Emissions Test Setup	13
5.3	Radiated Emissions Test Setup	14

APPENDICES A Test Data B Modifications And Recommendations

Page 2 of 14 Report Number: INTEL-060717F Revision Number: NONE

É(G)|

Aegis Labs, Inc. operates as both a Nevada and California Corporation with no organizational or financial relationship with any company, institution, or private individual. Testing and engineering functions provided by Aegis Labs were furnished by RF technicians and engineers with accredited qualifications and training credentials to carry out their duties.

The object of this report was to publish verifiable test results of an EUT subjected to the tests outlined in the standard listed on the cover page of this report.

1.1 Guidelines For Testing To Emissions Standards

This standard for EMC emission requirements apply to electrical equipment for Information Technology Equipment (ITE). Compliance to these standards and in combination with the other standards listed in this test report can be used to demonstrate presumption of compliance with the protection requirements of the appropriate agency standard.

The purpose of this standard is to specify minimum requirements for emissions regarding electromagnetic compatibility (EMC) and protect the radio frequency spectrum 9 kHz. – 400 GHz. from unwanted interference generated from electrical/digital systems that intentionally or unintentionally generated RF energy. The emissions standards, normative documents and/or publications were used to conduct all tests performed on the equipment herein referred to as "Equipment Under Test".

17 T (949)459-2754 2688 F (949)459-2759 AegisLabsInc.com

2.0 SUMMARY OF TEST RESULTS

802.11a Mode (5745-5825 MHz) EMISSIONS STANDARD

FCC Part 15 Section	Description	Results	Comments
15.247(a)(2)	The minimum 6dB bandwidth shall be at least 500 kHz.	PASSED	5745 MHz = 16.58 MHz 5785 MHz = 16.67 MHz 5825 MHz = 16.67 MHz <i>Per Original Filing</i>
15.247(b)(3)	The maximum peak output power of the intentional radiator shall not exceed 1 watt.	PASSED	5745 MHz = 19.40 dBm = 87.10 mW 5785 MHz = 19.90 dBm = 97.72 mW 5825 MHz = 19.50 dBm = 89.13 mW
15.247(b)(5)	The intentional radiator shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the FCC guidelines per Section 1.1307(b)(1).	PASSED	Refer to MPE Calculations Exhibit
15.247(c)	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.	PASSED	See Data Sheets
15.247(c)	Radiated emissions, which fall in the restricted bands, as defined in Sec. 15.205(a), must also comply with the radiated emission limits specified in Sec. 15.209(a). All others must be < -20dBc.	PASSED	See Data Sheets
15.247(d)	The peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.	PASSED	5745 MHz = -8.50 dB 5785 MHz = -9.50 dB 5825 MHz = -9.83 dB <i>Per Original Filing</i>
15.207	AC Conducted Emissions	PASSED	See Original Filing
15.209	Radiated Emissions (30-1000 MHz)	PASSED	See Original Filing

Page 4 of 14 Report Number: INTEL-060717F Revision Number: NONE

AegisLabsInc.com

2.0 Summary of Test Results (Continued)

802.11b Mode (2400-2483.5 MHz) EMISSIONS STANDARD

FCC Part 15 Section	Description	Results	Comments
15.247(a)(2)	The minimum 6dB bandwidth shall be at least 500 kHz.	PASSED	2412 MHz = 8.33 MHz 2437 MHz = 8.83 MHz 2462 MHz = 9.17 MHz <i>Per Original Filing</i>
15.247(b)(3)	The maximum peak output power of the intentional radiator shall not exceed 1 watt.	PASSED	2412 MHz = 19.90 dBm = 97.72 mW 2437 MHz = 20.69 dBm = 117.22 mW 2462 MHz = 20.76 dBm = 119.12 mW
15.247(b)(5)	The intentional radiator shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the FCC guidelines per Section 1.1307(b)(1).	PASSED	Refer to MPE Calculations Exhibit
15.247(c)	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.	PASSED	See Data Sheets
15.247(c)	Radiated emissions, which fall in the restricted bands, as defined in Sec. 15.205(a), must also comply with the radiated emission limits specified in Sec. 15.209(a). All others must be < -20dBc.	PASSED	See Data Sheets
15.247(d)	The peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.	PASSED	2412 MHz = -10.33 dB 2437 MHz = -7.83 dB 2462 MHz = -8.83 dB <i>Per Original Filing</i>
15.207	AC Conducted Emissions	PASSED	See Original Filing
15.209	Radiated Emissions (30-1000 MHz)	PASSED	See Original Filing

Page 5 of 14 Report Number: INTEL-060717F Revision Number: NONE

B160-417 T (949)459-A CA 92688 F (949)459AegisLabsInc.com

2.0 Summary of Test Results (Continued)

802.11g Mode (2400-2483.5 MHz) EMISSIONS STANDARD

FCC Part 15 Section	Description	Results	Comments
15.247(a)(2)	The minimum 6dB bandwidth shall be at least 500 kHz.	PASSED	2412 MHz = 16.58 MHz 2437 MHz = 16.67 MHz 2462 MHz = 16.67 MHz <i>Per Original Filing</i>
15.247(b)(3)	The maximum peak output power of the intentional radiator shall not exceed 1 watt.	PASSED	2412 MHz = 24.35 dBm = 272.27 mW 2437 MHz = 24.76 dBm = 299.23 mW 2462 MHz = 24.34 dBm = 271.64 mW
15.247(b)(5)	The intentional radiator shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the FCC guidelines per Section 1.1307(b)(1).	PASSED	Refer to MPE Calculations Exhibit
15.247(c)	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.	PASSED	See Data Sheets
15.247(c)	Radiated emissions, which fall in the restricted bands, as defined in Sec. 15.205(a), must also comply with the radiated emission limits specified in Sec. 15.209(a). All others must be < -20dBc.	PASSED	See Data Sheets
15.247(d)	The peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.	PASSED	2412 MHz = -9.17 dB 2437 MHz = -8.17 dB 2462 MHz = -9.17 dB <i>Per Original Filing</i>
15.207	AC Conducted Emissions	PASSED	See Original Filing
15.209	Radiated Emissions (30-1000 MHz)	PASSED	See Original Filing

ANALYSIS AND CONCLUSIONS

Based upon the measurement results we find that this equipment is within the limits of the global standards listed on the cover page of this test report. All results are based on a test of one sample. If any significant changes are made to the unit, the changes shall be evaluated and a retest may be required.

Approval Signatories

Test and Report Completed By:

Johnny Candelas Test Technician Aegis Labs, Inc.

07/21/06 Date:

Report Approved By:

07/21/06

Rick Candelas Date: Quality Assurance Manager Aegis Labs, Inc.

> Page 6 of 14 Report Number: INTEL-060717F Revision Number: NONE

3.0 ADMINISTRATIVE DATA AND TEST DESCRIPTION

DEVICE TESTED:	ITE Type: Intel PRO/Wireless 3945ABG Network Connection Model Number(s): WM3945ABG Serial Number: 00B11A295CVD26965002 FCC ID: PD9LEN3945ABG
DATE EUT RECEIVED:	July 17 th , 2006
TEST DATE(S):	July 17 th – 19 th , 2006
TEST DATE(5):	July 17 – 19, 2000
ORIGIN OF TEST SAMPLE(S):	Production
EQUIPMENT CLASS:	EUT tested as CLASS B device
RESPONSIBLE PARTY:	Intel Corporation 2111 NE 25 th Avenue Hillsboro, Oregon 97124
CLIENT CONTACT:	Mr. Robert Paxman
	Intel Corporation
MANUFACTURER:	Inter Corporation
TEST LOCATION:	Aegis Labs, Inc. 32231 Trabuco Creek Road Trabuco Canyon, CA 92678 Open Area Test Site #2
ACCREDITATION CERTIFICATE(s):	A2LA Certificate Number: 1111.01, Valid through February 28, 2008
PURPOSE OF TEST:	To demonstrate compliance with the standards as described in Sections 1.0 & 2.0 of this report.
UNCERTAINTY BUDGET:	Proficiency Testing and Uncertainty Calculations for all tests indicated in this report have been conducted in accordance with ISO 17025: 2005 requirements Section 5.4.6, and 5.9. Uncertainty Budgets and Proficiency Test results available upon request.
STATEMENT OF CALIBRATION:	All accredited equipment calibrations were performed by Liberty Labs, Inc. and World Cal. with typical calibration uncertainty estimates derived from ISO Guide to the determination of uncertainties with a Coverage Factor of $k=2$ for 95% level of confidence.

4.0 DESCRIPTION OF EUT CONFIGURATION

4.1 EUT Description

Equipment Under Test (EUT)			
Trade Name:	Intel PRO/Wireless 3945ABG Network Connection		
Model Number:	WM3945ABG		
Frequency Range:	802.11a = 5745 - 5825 MHz 802.11b/g = 2412 - 2462MHz		
Type of Transmission:	Direct Sequence Spread Spectrum		
Transfer Rate:	1/5.5/11 Mbps for 802.11b mode 6/36/54 Mbps for 802.11g and 802.11a modes		
Number of Channels:	802.11a mode (5725-5850 MHz) = 5 802.11b mode (2400-2483.5 MHz) = 11 802.11g mode (2400-2483.5 MHz)= 11		
Modulation Type: DBPSK, DQPSK, CCK, OFDM			
Antenna Type:	PIFA (Main/Aux)		
Antenna Gain (See Note 2):	2.4 GHz = 2.74 (Main), 2.96 (Aux) dBi 5 GHz = 1.29 (Main), -0.17 (Aux) dBi		
Transmit Output Power:	 18-20 dBm (Typical) for 802.11a mode 20 dBm (Typical) for 802.11b mode 24-25 dBm (Typical) for 802.11g mode Please see Appendix A (Data Sheets) for actual output power. 		
Power Supply:	3.3VDC from computer MPCI slot.		
Number of External Test Ports Exercised:	2 Antenna Ports (1 Main & 1 Auxiliary)		

The Intel PRO/Wireless 3945ABG Network Connection is an embedded 802.11a/b/g network adapter operating in the 2.4 GHz and 5 GHz spectrum. The EUT is based on the Mini Card form factor designed to meet the space and size requirements for thin and light notebook PCs. It is capable of a data rate of up to 52 Mbps.

NOTE 1: For a more detailed description, please refer to the manufacture's specifications or User's Manual.

NOTE 2: The EUT was tested with a set of Compal HDL20 Antennas. (Refer to the antenna specifications exhibits).

4.2 EUT Configuration

The EUT was tested installed in the Mini PCI-E slot of the host computer as a modular device using a PCI extender board to extend the EUT outside the computer chassis. The EUT was then connected to a set of antennas via its Main and Aux antenna ports. Data for a set of Compal HDL20 Antennas can be found in Appendix A (Data Sheets)

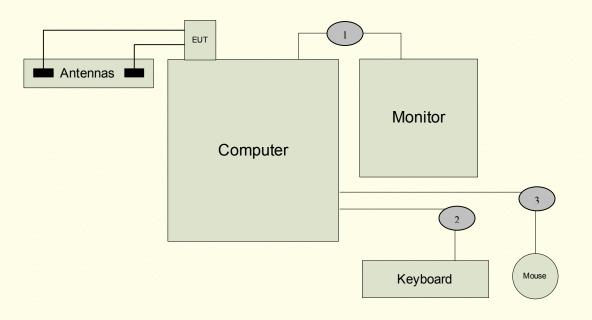
The low, middle, and high channels were tested in 802.11a, b, & g modes. Also, the EUT was tested once transmitting from the Main antenna port and once transmitting from the Aux antenna port. The EUT was placed in either continuous transmit or continuous receive mode by a program provided by the manufacturer (GRTT *Version 1.1.1*).

Page 9 of 14 Report Number: INTEL-060717F Revision Number: NONE

4.3 List of EUT, Sub-Assemblies and Host Equipment

Equipment Under Test				
Manufacturer Equipment Name		Model or Part Number	Serial Number	
Intel Corporation	Intel PRO/Wireless 3945ABG Network Connection	WM3945ABG	00B11A295CVD26965002	

EUT Sub Assemblies					
Manufacturer	Equipment Name	Model or Part Number	Serial Number		
SmartAnt	Main Multi Band Antenna	CPL06-220530 (B)	N/A		
SmartAnt	Auxiliary Multi Band Antenna	CPL06-220530 (G)	N/A		


HOST EQUIPMENT LIST				
Manufacturer	Equipment Name	Model or Part Number	Serial Number	

		1 (unito ci	
Computer	Intel	Generic	IZTGVV4312035
Monitor	Compaq	473A	545AF16AD243
Keyboard	Logitech	Y-BF37	MCTZ5200581
Mouse	Logitech	M-BJ58	LZE14759424

NOTE: All the power cords of the above support equipment are standard and non-shielded.

4.4 I/O Cabling Diagram and Description

	Signal Line Cable Description											
Cable	Length	Construction	Source Connector	Destination Connector	Bundled Length	Ferrite Attached	Note					
1	1.5m	Round, Braid & Foil Shielded	Host Computer: Metallic DB-15	Monitor: Hardwired	N/A	N/A	N/A					
2	1.5m	Round, Braid & Foil Shielded	Host Computer: Metallic 8-pin Mini DIN	Keyboard: Hardwired	N/A	N/A	N/A					
3	1.5m	Round, Braid & Foil Shielded	Host Computer: Metallic 8-pin Mini DIN	Mouse: Hardwired	N/A	N/A	N/A					

4.5 EMC Test Hardware and Software Measurement Equipment

	TE	ST EQUIPMENT	LIST - Emissions	5	
Equipment Name	Manufacturer	Model Number	Serial Number	Calibration Due Date	Maintenance Calibration Cycle
Spectrum Analyzer	Agilent	8564EC	4046A00387	08/15/06	1 Year
Antenna - Horn	EMCO	3115	2230	05/15/07	1 Year
Preamp	Agilent	8449B	3008A01573	12/08/06	1 Year
18 Foot Coax	Semflex	X116BFSX10216	546	12/14/06	1 Year
2.4 GHz Notch Filter	Micro-Tronics	BRM50702-02	003	10/21/06	1.5 Years
5.15-5.35 GHz Notch Filter	Microwave Circuits	N0452502	3173-01	10/21/06	1.5 Years
5.725-5.850 GHz Notch Filter	Microwave Circuits	N0257881	3173-01	10/21/06	1.5 Years
Antenna - 18-26.5 GHz Pre-amplified Horn	Aegis Labs, Inc.	H042	SLK-35-3W	02/08/07	1 Year
Power Meter	Anritsu	ML2487A	6K00001785	05/30/07	1 Year
Wide Bandwidth Sensor	Anritsu	MA2491A	31193	05/30/07	1 Year
12dB Attenuator	Narda	4779-12	203	12/09/06	1.5 Year
Temperature/Humidity Monitor	Dickson	TH550	7255185	03/24/07	1 Year

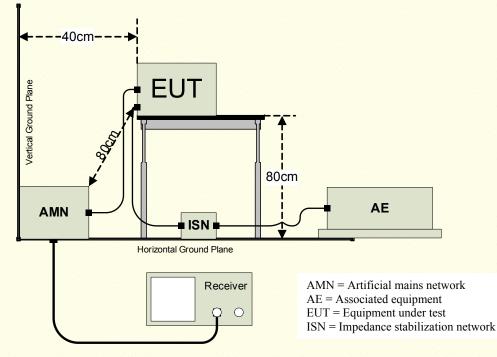
Page 12 of 14 Report Number: INTEL-060717F Revision Number: NONE

5.0 CONDITIONS DURING EMISSIONS MEASUREMENTS

5.1 General

All measurements were made according to the procedures defined in or referred to by the standard listed on the cover page of this report. The measurements were made in the operating mode producing the largest emissions consistent with normal operation and connected to the minimum configuration of auxiliary devices.

5.2 Conducted Emissions Test Setup


The following was the test configuration.

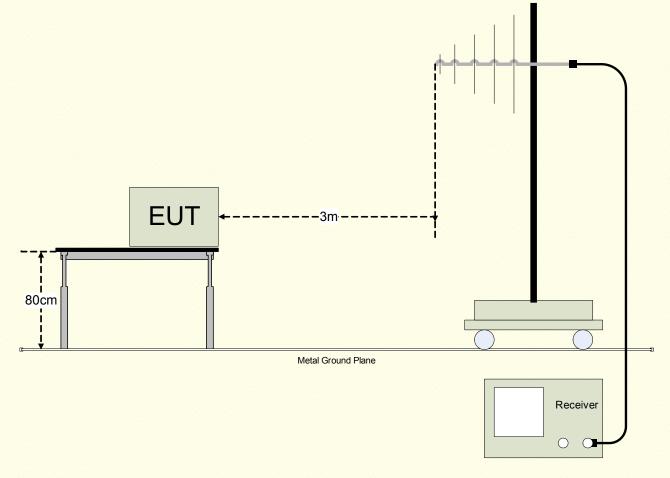
EUT signal cables that hung closer than 40 cm to the horizontal metal ground plane were folded back and forth forming a bundle 30 cm to 40 cm long. The power cord of the EUT was also bundled in the center and plugged into one of the artificial mains network (AMN). All peripheral equipment was powered from a second AMN via a multiple outlet strip placed at a distance on 10cm from each other. The AMN and ISN were positioned 80cm from the EUT. Signal cables that were not connected to an AE were terminated using the correct termination. If applicable, the current probe was placed at 0.1 m from the ISN.

Peak, quasi-peak and/or average detectors were used for testing performed between 150 kHz and 30 MHz. A swept frequency scan was performed for both Line 1 and Line 2. The six highest readings were compared against the limit and recorded in the data sheet along with a snapshot image of the sweep scan. The graphical scans in Appendix A only reflect peak readings while the tabulated data sheets reflect peak, average, and/or quasi-peak measurements.

Climatic Conditions:

The EUT was tested within its intended operating and climatic conditions.

Page 13 of 14 Report Number: INTEL-060717F Revision Number: NONE


5.3 Radiated Emissions Test Setup

The Open Area Test Site (OATS) was used for radiated emission testing. The receiving (Rx) antenna(s) was placed 10m from the nearest side of the EUT facing the Rx antenna. The EUT (if floor-standing) was placed directly on the flush-mounted 360 degree rotating turntable. The EUT (if table-top) was placed directly on an 80cm high non-metallic table, and the table was placed on the rotating turntable. During the initial EMI scan, all the suspect frequencies, i.e.; harmonics, broadband signals were checked with the Rx broadband antennas in both vertical and horizontal polarities. The biconical Rx, log periodic Rx, and horn Rx antennas were used from 30MHz - 299.99MHz, 300MHz - 1000MHz, and 1GHz - 18GHz respectively.

Upon completion of all harmonic and broadband measurements, the balance of any remaining frequencies was checked between 30MHz - 18GHz. Any signals appearing within 20 dB of the classification limit was measured. Each signal was maximized by first rotating the turntable at least 360 degrees and recording the azimuth in the data sheet. Lastly, the Rx antenna was raised and/or lowered to maximize the signal elevation. If the measured signal was obtained using the peak detector and that signal appeared within 3 dB of the regulatory limit line, then the same signal was re-measured using the quasi-peak detector on the EMI receiver. Both meter readings if necessary were recorded on the data sheet.

Climatic Conditions:

The EUT was tested within its intended operating and climatic conditions.

Page 14 of 14 Report Number: INTEL-060717F Revision Number: NONE

22431 ANTONIO PARKWAY B160-417 RANCHO SANTA MARGARITA, CA 92688 T (949)459-2754

AegisLabsInc.com

APPENDIX A

TEST DATA

Page 1 of 29 (Appendix A) Report Number: INTEL-060717F Revision Number: N/A

RADIATED EMISSIONS TEST RESULTS

CLIENT:	Intel Corporation	DATE:	07/17/06
EUT:	Intel PRO/Wireless 3945ABG Network Connection	PROJECT NUMBER:	INTEL-060717
MODEL NUMBER:	WM3945ABG	TEST ENGINEER:	ВМ
SERIAL NUMBER:	00B11A295CVD26965002	SITE #:	2
CONFIGURATION:	Tested installed in the host computer's mini PCI slot in 802.11a	TEMPERATURE: HUMIDITY:	24 deg. C 68% RH
	(5745-5825 MHz) mode with Compal HDL20 Antennas.	TIME:	4:00 PM

Description:	Radiated RF Emissions (1 GHz – 18 GHz)
Results:	PASSED Horizontal and Vertical Antenna Polarizations Class B Limits
Note:	 Radiated Emissions Measurements were performed on the EUT with power supply set at the following voltage and frequency. 120VAC / 60 Hz.

		Unwanted Spurious Emissions I	Limits
Frequency (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m) (Emissions in the restricted bands)	Field Strength (dBm/MHz) (Emissions outside the restricted bands)
Above 960	500	54.00 (Average) 74.00 (Peak)	< -20 dBc

Radiated Emissions Sample Calculations

Corrected Meter Reading = Meter Reading + F + C - D

Where, F = Antenna Factor

- C = Cable Factor
- G = Amplifier Gain
- D = Distance Factor (if applicable)

Therefore, the equation for determining the Corrected Meter Reading Limit (CML) is:

CML = Specification Limit - F - C + D

Fundamental Measurements in **802.11a mode (5745-5825 MHz)** Channels 149, 157, & 165 **Continuous TX** at MAIN Antenna port with **Compal HDL20 Antennas** Aegis Labs, Inc. File #: INTEL-060717-02

	RADIATED EMISSIONS - Horizontal Antenna Polarization														
Freq.	Meter	Antenna	Azimuth	Quasi pk	or	Cable	Ant.	Corrected	Limits	Diff(dB)	Comments				
(MHz)	Reading	Height	(degrees)	AVG (dBuV)		Factor	Factor	Reading	(dBuV)	+=FAIL					
	(dBuV)	(cm)				(dB)	(<i>dB</i>)	(dBuV)							
5745.00	65.17	125	225				35.25	105.41			Ch. 149				
5745.00				56.15	Α	4.99	35.25	96.39							
5785.00	66.50	100	225			5.01	35.26	106.76			Ch. 157				
5785.00				57.63	Α	5.01	35.26	97.89							
5825.00	66.83	100	225			5.02	35.27	107.12			Ch. 165				
5825.00				58.71	Α	5.02	35.27	99.00							

	RADIATED EMISSIONS – Vertical Antenna Polarization													
Freq.	Meter	Antenna	Azimuth	Quasi pk	Quasi pk or		Ant.	Corrected	Limits	Diff(dB)	Comments			
(MHz)	Reading	Height	(degrees)	AVG (dBuV)		Factor	Factor	Reading	(dBuV)	+=FAIL				
	(dBuV)	(cm)				(dB)	(dB)	(dBuV)						
5745.00	67.00	100	225			4.99	35.05	107.03			Ch. 149			
5745.00				57.88	Α	4.99	35.05	97.91						
5785.00	68.17	100	225			5.01	35.07	108.25			Ch. 157			
5785.00				59.25	Α	5.01	35.07	99.33						
5825.00	69.17	125	225			5.02	35.10	109.29			Ch. 165			
5825.00				60.28	Α	5.02	35.10	100.40						

NOTE: Fundamental signals measured to calculate the band edge field strengths using the "Marker Delta Method".

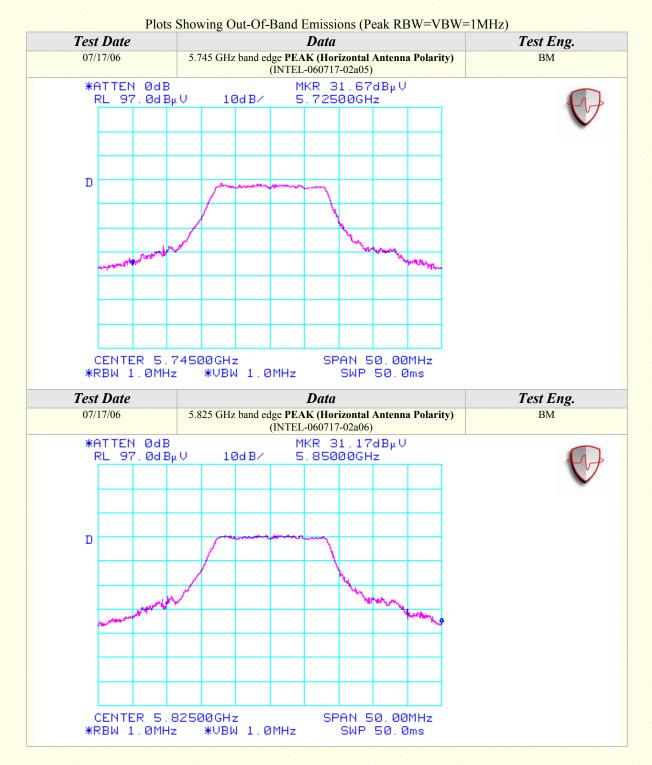
Band Edge Field Strength Measurements in 802.11a mode (5745-5825 MHz) Channels 149 & 165 Continuous TX at MAIN Antenna port with Compal HDL20 Antennas Aegis Labs, Inc. File #: INTEL-060717-02

	RADIATED EMISSIONS - Horizontal Antenna Polarization													
Freq.	Meter	Antenna	Azimuth	Quasi pk or	Cable	Ant.	Corrected	Limits	Diff (dB)	Comments				
(MHz)	Reading	Height	(degrees)	AVG (dBuV)	Factor	Factor	Reading	(dBuV)	+=FAIL					
	(dBuV)	(cm)			(dB)	(<i>dB</i>)	(dBuV)							
5725.00	31.67	125	225		4.98	35.25	71.89	85.41	-13.51	Ch. 149				
5850.00	31.17	100	225		5.03	35.27	71.47	87.12	-15.64	Ch. 165				

		RAD	IATED	EMISSION	NS – Ver	tical Aı	ntenna Po	larizatio	n					
Freq.	Freq. Meter Antenna Azimuth Quasi pk or Cable Ant. Corrected Limits Diff (dB) Comments													
(MHz)	Reading	Height	(degrees)	AVG (dBuV)	Factor	Factor	Reading	(dBuV)	+=FAIL					
	(dBuV)	(<i>cm</i>)			(dB)	(<i>dB</i>)	(dBuV)							
5725.00	33.17	100	225		4.98	35.04	73.18	87.03	-13.85	Ch. 149				
5850.00	30.50	125	225		5.03	35.11	70.64	89.29	-18.64	Ch. 165				

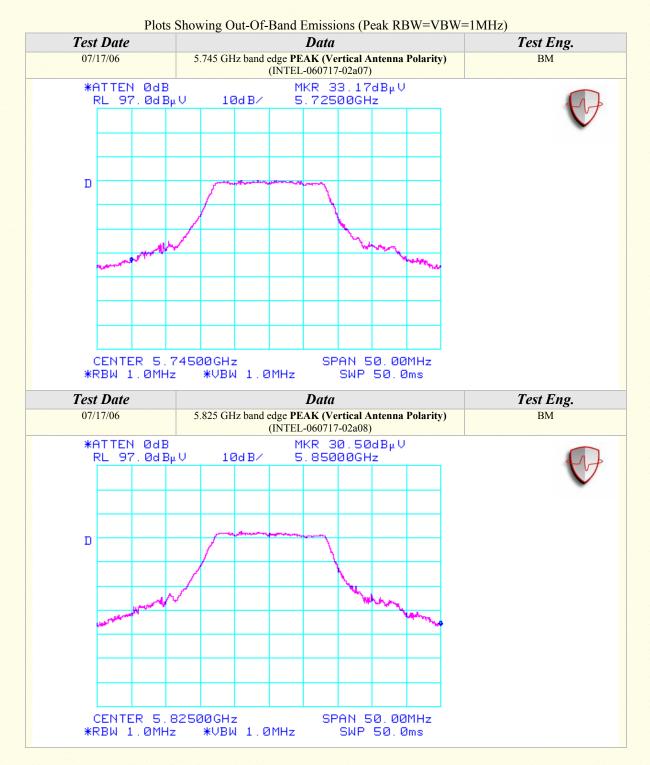
NOTE: The "Band Edge Field Strength" was calculated using the "Fundamental" and "Conducted Band Edge" measurements per the "Marker-Delta Method" with the following formula:

 $BE = Fm - \Delta m$


Where

BE = Band Edge Field Strength

Fm = Measured Fundamental (Peak or Average)


 Δm = Measured Conducted Band Edge Delta (Peak or Average)

Page 5 of 29 (Appendix A) Report Number: INTEL-060717F Revision Number: N/A

Page 6 of 29 (Appendix A) Report Number: INTEL-060717F Revision Number: N/A

-2754 AegisLabsInc.co

Radiated Emissions Test Results (Continued)

Spurious Emissions Measurements in **802.11a mode (5745-5825 MHz)** Channels 149, 157, & 165 **Continuous TX** at MAIN Antenna port with **Compal HDL20 Antennas** Aegis Labs, Inc. File #: INTEL-060717-06

	RADIATED EMISSIONS - Horizontal Antenna Polarization													
		RADIA	TED EN	IISSIO	NS -	Horizon	ital Ant	tenna Po	larization	l				
Freq.	Meter	Antenna	Azimuth	Quasi pk	c or	Preamp	Cable	Ant.	Corrected	Limits	Diff (dB)			
(MHz)	Reading	Height	(degrees)	AVG (dB	uV)	Factor	Factor	Factor	Reading	(dBuV)	+=FAIL			
	(dBuV)	(cm)				(dB)	(<i>dB</i>)	(dB)	(dBuV)					
EUT in Cont	tinuous T	ransmit N	lode on Ch	annel 14	9 (5.	745 GHz)								
3830.00	45.17	100	225			36.33	4.05	33.13	46.02	74.00	-27.98			
3830.00				33.19	Α	36.33	4.05	33.13	34.04	54.00	-19.96			
11490.00	45.67	100	225			36.38	7.41	39.19	55.90	74.00	-18.10			
11490.00				32.19	Α	36.38	7.41	39.19	42.42	54.00	-11.58			
17235.00	47.50	100	225			35.43	9.09	42.48	63.64	85.41	-21.77			
EUT in Cont	EUT in Continuous Transmit Mode on Channel 157 (5.785 GHz)													
3856.66	45.50	100	225			36.31	4.07	33.18	46.45	74.00	-27.55			
3856.66				33.54	Α	36.31	4.07	33.18	34.49	54.00	-19.51			
11570.00	50.50	100	180			36.42	7.42	39.23	60.72	74.00	-13.28			
11570.00				37.54	Α	36.42	7.42	39.23	47.76	54.00	-6.24			
17355.00	47.83	100	225			35.46	9.11	43.08	64.55	86.76	-22.21			
EUT in Cont	tinuous T	ransmit N	lode on Ch	annel 16	5 (5.	825 GHz)								
3883.33	45.00	100	225			36.28	4.08	33.24	46.05	74.00	-27.95			
3883.33				32.66	Α	36.28	4.08	33.24	33.71	54.00	-20.29			
11650.00	48.83	100	180			36.47	7.42	39.26	59.04	74.00	-14.96			
11650.00				35.63	Α	36.47	7.42	39.26	45.84	54.00	-8.16			
17355.00	44.17	100	225			35.46	9.11	43.08	60.89	87.12	-26.23			

		RADL	ATED E	MISSIC	DNS	- Vertic	al Ante	nna Pola	arization			
Freq.	Meter	Antenna	Azimuth	Quasi pk	, or	Preamp	Cable	Ant.	Corrected	Limits	Diff (dB)	
(MHz)	Reading	Height	(degrees)	ÃVG (dB		Factor	Factor	Factor	Reading	(dBuV)	+=FAIL	
	(dBuV)	(cm)				(<i>dB</i>)	(dB)	(dB)	(dBuV)			
EUT in Con	tinuous T	ransmit M	lode on Ch	annel 14	9 (5.	745 GHz)						
3830.00	44.67	100	180			36.33	4.05	32.76	45.15	74.00	-28.85	
3830.00				32.37	Α	36.33	4.05	32.76	32.85	54.00	-21.15	
11490.00	48.67	100	180			36.38	7.41	39.19	58.89	74.00	-15.11	
11490.00				33.71	Α	36.38	7.41	39.19	43.93	54.00	-10.07	
17235.00	47.50	100	225			35.43	9.09	42.58	63.74	87.03	-23.29	
EUT in Con	EUT in Continuous Transmit Mode on Channel 157 (5.785 GHz)											
3856.66	45.33	100	180			36.31	4.07	32.83	45.92	74.00	-28.08	
3856.66				33.30	Α	36.31	4.07	32.83	33.89	54.00	-20.11	
11570.00	47.33	100	135			36.42	7.42	39.23	57.55	74.00	-16.45	
11570.00				34.23	Α	36.42	7.42	39.23	44.45	54.00	-9.55	
17355.00	48.00	100	225			35.46	9.11	43.18	64.82	88.25	-23.43	
EUT in Con	tinuous T	ransmit M	lode on Ch	annel 16	5 (5.	825 GHz)						
3883.33	44.67	100	225			36.28	4.08	32.90	45.37	74.00	-28.63	
3883.33				31.67	Α	36.28	4.08	32.90	32.37	54.00	-21.63	
11650.00	47.67	100	135			36.47	7.42	39.26	57.88	74.00	-16.12	
11650.00				34.52	Α	36.47	7.42	39.26	44.73	54.00	-9.27	
17475.00	46.83	100	225			35.49	9.12	43.78	64.23	89.29	-25.06	

Spurious Emissions Measurements in **802.11a mode (5745-5825 MHz)** Channels 149, 157, & 165 **Continuous TX** at MAIN Antenna port with **Compal HDL20 Antennas** Aegis Labs, Inc. File #: INTEL-060717-05

	RADIATED EMISSIONS - Horizontal Antenna Polarization													
Freq.	Meter	Antenna	Azimuth	Quasi pk	t or	Cable Factor	Antenna/	Corrected	Limits	Diff(dB)				
(MHz)	Reading	Height	(degrees)	ÃVG (dBuV)		(<i>dB</i>)	Preamp	Reading	(dBuV/m)	+=FAIL				
	(dBuV)	(<i>cm</i>)					Factor (dB)	(dBuV/m)						
EUT in Cont	CUT in Continuous Transmit Mode on Channel 149 (5745 MHz)													
22980.00	51.83	100	225			10.62	-5.02	57.43	74.00	-16.57				
22980.00				38.48	Α	10.62	-5.02	44.08	54.00	-9.92				
EUT in Cont	tinuous Tr	ransmit	Mode on	Channel	157	(5785 MHz)								
23140.00	49.17	100	225			10.66	-5.12	54.72	86.76	-32.04				
EUT in Cont	tinuous Tr	ransmit	Mode on	Channel	165	(5825 MHz)								
23300.00	49.67	100	225			10.71	-5.20	55.18	87.12	-31.94				

	I	RADIA	TED E	MISSIO	NS	- Vertical	Antenna l	Polarizati	on						
Freq.	Meter	Antenna	Azimuth	Quasi pk	k or	Cable Factor	Antenna/	Corrected	Limits	Diff(dB)					
(MHz)	Reading	Height	(degrees)	AVG (dBuV)		(dB)	Preamp	Reading	(dBuV/m)	+=FAIL					
	(dBuV)	(<i>cm</i>)					Factor (dB)	(dBuV/m)							
EUT in Cont	EUT in Continuous Transmit Mode on Channel 149 (5745 MHz)														
22980.00	46.83	100	225			10.62	-4.99	52.46	74.00	-21.55					
22980.00				32.82	Α	10.62	-4.99	38.45	54.00	-15.56					
EUT in Cont	tinuous Ti	ransmit 1	Mode on	Channel	157	(5785 MHz)									
23140.00	45.83	100	135			10.66	-5.09	51.40	88.25	-36.85					
EUT in Cont	tinuous Ti	ransmit	Mode on	Channel	165	(5825 MHz)									
23300.00	48.50	100	180			10.71	-5.16	54.04	89.29	-35.25					

Spurious Emissions Measurements in **802.11a mode (5745-5825 MHz)** Channels 149, 157, & 165 **Continuous RX** at MAIN Antenna port with **Compal HDL20 Antennas** Aegis Labs, Inc. File #: INTEL-060717-04

	RADIATED EMISSIONS - Horizontal Antenna Polarization														
Freq.	Meter	Antenna	Azimuth	Quasi pk		Preamp	Cable	Ant.	Corrected	Limits	Diff (dB)				
(MHz)	Reading	Height	(degrees)	AVG (dB		Factor	Factor	Factor	Reading	(dBuV)	+=FAIL				
(11112)	(dBuV)	(cm)	(uegrees)	11, 0 (ub	,	(dB)	(dB)	(dB)	(dBuV)	(ubur)					
EUT in Con	CUT in Continuous Receive Mode on Channel 149 (5.745 GHz)														
3830.00	50.33	100	225			46.75	4.05	33.13	40.76	74.00	-33.24				
3830.00				37.76	Α	46.75	4.05	33.13	28.19	54.00	-25.81				
7660.00	48.67	100	180			45.56	5.81	37.40	46.32	74.00	-27.68				
7660.00				36.59	Α	45.56	5.81	37.40	34.24	54.00	-19.76				
EUT in Con	EUT in Continuous Receive Mode on Channel 157 (5.785 GHz)														
3856.62	50.50	100	225			46.74	4.07	33.18	41.01	74.00	-32.99				
3856.62				38.28	Α	46.74	4.07	33.18	28.79	54.00	-25.21				
7713.32	48.17	100	135			45.52	5.83	37.43	45.91	74.00	-28.09				
7713.32				37.10	Α	45.52	5.83	37.43	34.84	54.00	-19.16				
EUT in Con	tinuous R	eceive Mo	de on Cha	nnel 165	(5.82	25 GHz)									
3883.34	50.67	100	180			46.73	4.08	33.24	41.26	74.00	-32.74				
3883.34				38.52	Α	46.73	4.08	33.24	29.11	54.00	-24.89				
7766.62	49.17	100	180			45.48	5.85	37.46	47.00	74.00	-27.00				
7766.62				37.10	Α	45.48	5.85	37.46	34.93	54.00	-19.07				

		RADL	ATED E	MISSIC	DNS	- Vertic	al Ante	nna Pola	arization						
Freq.	Meter	Antenna	Azimuth	Quasi pk	k or	Preamp	Cable	Ant.	Corrected	Limits	Diff (dB)				
(MHz)	Reading	Height	(degrees)	AVG (dB	uV)	Factor	Factor	Factor	Reading	(dBuV)	+=FAIL				
	(dBuV)	(cm)				(dB)	(dB)	(dB)	(dBuV)						
EUT in Continuous Receive Mode on Channel 149 (5.745 GHz)															
3830.00															
3830.00				37.71	Α	46.75	4.05	33.13	28.14	54.00	-25.86				
7660.00	48.17	100	180			45.56	5.81	37.40	45.82	74.00	-28.18				
7660.00				36.04	Α	45.56	5.81	37.40	33.69	54.00	-20.31				
EUT in Con	tinuous R	eceive Mo	de on Cha	nnel 157	(5.78	85 GHz)									
3856.65	51.17	100	180			46.74	4.07	32.83	41.32	74.00	-32.68				
3856.65				38.32	Α	46.74	4.07	32.83	28.47	54.00	-25.53				
7713.29	48.33	100	180			45.52	5.83	37.29	45.92	74.00	-28.08				
7713.29				36.30	Α	45.52	5.83	37.29	33.89	54.00	-20.11				
EUT in Con	tinuous R	eceive Mo	de on Cha	nnel 165	(5.82	25 GHz)									
3883.35	51.17	100	135			46.73	4.08	32.90	41.42	74.00	-32.58				
3883.35				38.52	Α	46.73	4.08	32.90	28.77	54.00	-25.23				
7766.63	48.17	100	135			45.48	5.85	37.31	45.85	74.00	-28.15				
7766.63				36.44	Α	45.48	5.85	37.31	34.12	54.00	-19.88				

RADIATED EMISSIONS TEST RESULTS

CLIENT:	Intel Corporation	DATE:	07/17/06
EUT:	Intel PRO/Wireless 3945ABG Network Connection	PROJECT NUMBER:	INTEL-060717
MODEL NUMBER:	WM3945ABG	TEST ENGINEER:	ВМ
SERIAL NUMBER:	00B11A295CVD26965002	SITE #:	2
CONFIGURATION:	Tested installed in the host computer's mini PCI slot in 802.11b	TEMPERATURE: HUMIDITY:	24 deg. C 68% RH
	(2400-2483.5 MHz) mode with Compal HDL20 Antennas.	TIME:	4:00 PM

Description:	Radiated RF Emissions (1 GHz – 18 GHz)
Results:	PASSED Horizontal and Vertical Antenna Polarizations Class B Limits
Note:	 Radiated Emissions Measurements were performed on the EUT with power supply set at the following voltage and frequency. 120VAC / 60 Hz.

		Unwanted Spurious Emissions I	Limits
Frequency (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m) (Emissions in the restricted bands)	Field Strength (dBm/MHz) (Emissions outside the restricted bands)
Above 960	500	54.00 (Average) 74.00 (Peak)	< -20 dBc

Radiated Emissions Sample Calculations

Corrected Meter Reading = Meter Reading + F + C - D

Where, F = Antenna Factor

- C = Cable Factor
- G = Amplifier Gain
- D = Distance Factor (if applicable)

Therefore, the equation for determining the Corrected Meter Reading Limit (CML) is:

CML = Specification Limit - F - C + D

Fundamental Measurements in 802.11b mode (2400-2483.5 MHz) Channels 1, 6, & 11 Continuous TX at MAIN Antenna port with Compal HDL20 Antennas Aegis Labs, Inc. File #: INTEL-060717-02

	RADIATED EMISSIONS - Horizontal Antenna Polarization														
Freq.	Meter	Antenna	Azimuth	Quasi pk	Quasi pk or		Ant.	Corrected	Limits	Diff(dB)	Comments				
(MHz)	Reading	Height	(degrees)	AVG (dBı	AVG (dBuV)		Factor	Reading	(dBuV)	+=FAIL					
	(dBuV)	(cm)					(dB)	(dBuV)							
2412.00	74.00	100	180			3.19	29.50	106.69			Ch. 1				
2412.00				70.56	Α	3.19	29.50	103.25							
2437.00	76.33	125	180			3.20	29.59	109.12			Ch. 6				
2437.00				72.99	Α	3.20	29.59	105.78							
2462.00	75.83	100	180			3.22	29.67	108.72			Ch. 11				
2462.00				72.39	Α	3.22	29.67	105.28							

	RADIATED EMISSIONS – Vertical Antenna Polarization														
Freq.	Meter	Antenna	Azimuth	Quasi pk	Quasi pk or		Ant.	Corrected	Limits	Diff(dB)	Comments				
(MHz)	Reading	Height	(degrees)	AVG (dBı	AVG (dBuV)		Factor	Reading	(dBuV)	+=FAIL					
	(dBuV)	(cm)					(<i>dB</i>)	(dBuV)							
2412.00	71.83	100	180			3.19	29.04	104.05			Ch. 1				
2412.00				68.52	Α	3.19	29.04	100.74							
2437.00	72.17	100	180			3.20	29.11	104.49			Ch. 6				
2437.00				68.89	Α	3.20	29.11	101.21							
2462.00	72.17	100	180			3.22	29.19	104.58			Ch. 11				
2462.00				68.75	Α	3.22	29.19	101.16							

NOTE: Fundamental signals measured to calculate the band edge field strengths using the "Marker Delta Method".

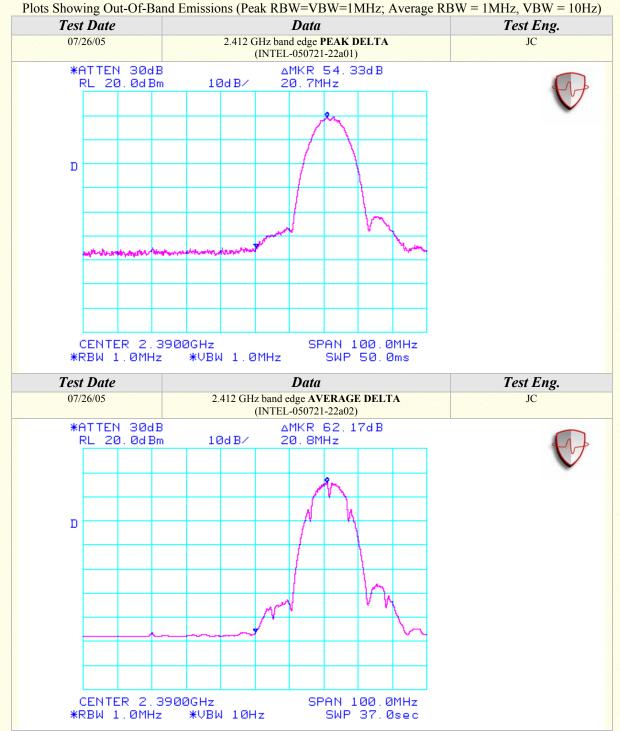
Band Edge Field Strength Measurements in 802.11b mode (2400-2483.5 MHz) Channels 1 & 11 Continuous TX at MAIN Antenna port with Compal HDL20 Antennas Aegis Labs, Inc. File #: INTEL-060717-02

	RADIATED EMISSIONS - Horizontal Antenna Polarization														
Freq.	Meter	Antenna	Azimuth	Quasi pk	Quasi pk or		Ant.	Corrected	Limits	Diff(dB)	Comments				
(MHz)	Reading	Height	(degrees)	AVG (dBu	AVG (dBuV)		Factor	Reading	(dBuV)	+=FAIL					
	(dBuV)	(cm)				(dB)	(<i>dB</i>)	(dBuV)							
2390.00								52.36	74.00	-21.64	Ch. 1				
2390.00					Α			41.08	54.00	-12.92					
2400.00	32.33	100	180			3.18	29.46	64.97	86.69	-21.72					
2483.50								54.39	74.00	-19.61	Ch. 11				
2483.50					Α			43.78	54.00	-10.22					
2487.00								55.22	74.00	-18.78					
2487.00					Α			43.94	54.00	-10.06					

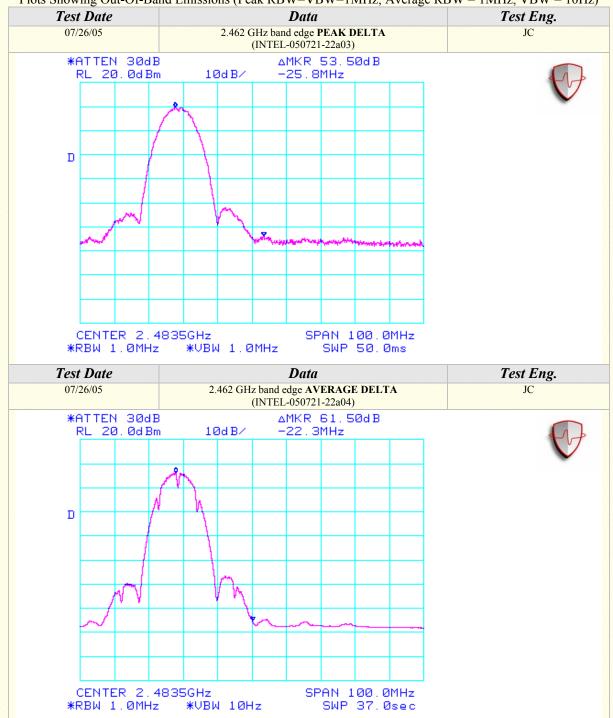
	RADIATED EMISSIONS – Vertical Antenna Polarization														
Freq.	Meter	Antenna	Azimuth	Quasi pk	Quasi pk or		Ant.	Corrected	Limits	Diff(dB)	Comments				
(MHz)	Reading	Height	(degrees)	AVG (dBı	ÃVG (dBuV)		Factor	Reading	(dBuV)	+=FAIL					
	(dBuV)	(cm)					(dB)	(dBuV)							
2390.00								49.72	74.00	-24.28	Ch. 1				
2390.00					Α			38.57	54.00	-15.43					
2400.00	31.67	100	180			3.18	29.00	63.85	84.05	-20.20					
2483.50								50.25	74.00	-23.75	Ch. 11				
2483.50					Α			39.66	54.00	-14.34					
2487.00								51.08	74.00	-22.92					
2487.00					Α			39.82	54.00	-14.18					

NOTE: The "Band Edge Field Strength" was calculated using the "Fundamental" and "Conducted Band Edge" measurements per the "Marker-Delta Method" with the following formula:

 $BE = Fm - \Delta m$


Where

BE = Band Edge Field Strength


Fm = Measured Fundamental (Peak or Average)

 Δm = Measured Conducted Band Edge Delta (Peak or Average)

Plots Showing Out-Of-Band Emissions (Peak RBW=VBW=1MHz; Average RBW = 1MHz, VBW = 10Hz)

Page 15 of 29 (Appendix A) Report Number: INTEL-060717F Revision Number: N/A

Spurious Emissions Measurements in 802.11b mode (2400-2483.5 MHz) Channels 1, 6, & 11 Continuous TX at MAIN Antenna port with Compal HDL20 Antennas Aegis Labs, Inc. File #: INTEL-060717-03

RADIATED EMISSIONS - Horizontal Antenna Polarization													
											D (00 (1D)		
Freq.	Meter	Antenna	Azimuth	Quasi pl		1 Meter	Cable	Ant.	Corrected	Limits	Diff (dB)		
(MHz)	Reading	Height	(degrees)	AVG (dB	BuV)	Distance	Factor	Factor	Reading	(dBuV)	+=FAIL		
	(dBuV)	(cm)				Factor	(dB)	(dB)	(dBuV)				
						(dB)							
EUT in Co	ontinuous	Transmit	Mode on (Channel 1	1 (2.4	412 GHz)							
2312.00	31.17	100	180			9.54	3.11	29.16	53.91	74.00	-20.09		
2312.00				14.23	Α	9.54	3.11	29.16	36.97	54.00	-17.03		
2360.00	31.17	100	180			9.54	3.15	29.32	54.10	74.00	-19.90		
2360.00				14.60	Α	9.54	3.15	29.32	37.53	54.00	-16.47		
EUT in Co	ontinuous	Transmit	Mode on	Channel (6 (2.4	437 GHz)							
2336.00	31.00	100	225			9.54	3.13	29.24	53.83	74.00	-20.17		
2336.00				14.66	Α	9.54	3.13	29.24	37.49	54.00	-16.51		
2360.00	31.83	100	225			9.54	3.15	29.32	54.76	74.00	-19.24		
2360.00				14.54	Α	9.54	3.15	29.32	37.47	54.00	-16.53		
EUT in Co	ontinuous	Transmit	Mode on (Channel 1	11 (2	.462 GHz)							
2358.66	31.50	100	225			9.54	3.15	29.32	54.43	74.00	-19.57		
2358.66				14.66	Α	9.54	3.15	29.32	37.59	54.00	-16.41		
2360.00	31.17	100	225			9.54	3.15	29.32	54.10	74.00	-19.90		
2360.00				13.76	Α	9.54	3.15	29.32	36.69	54.00	-17.31		

	RADIATED EMISSIONS - Vertical Antenna Polarization														
Freq. (MHz)	Meter Reading (dBuV)	Antenna Height (cm)	Azimuth (degrees)	Quasi pk or AVG (dBuV)		1 Meter Distance Factor (dB)	Cable Factor (dB)	Ant. Factor (dB)	Corrected Reading (dBuV)	Limits (dBuV)	Diff (dB) +=FAIL				
EUT in Co	ntinuous	Transmit	Mode on (Channel 1	(2.4	12 GHz)									
2312.00	31.83	100	180			9.54	3.11	28.74	54.14	74.00	-19.86				
2312.00				13.39	Α	9.54	3.11	28.74	35.70	54.00	-18.30				
2360.00	30.83	100	180			9.54	3.15	28.88	53.32	74.00	-20.68				
2360.00				13.65	Α	9.54	3.15	28.88	36.14	54.00	-17.86				
EUT in Co	ntinuous	Transmit	Mode on (Channel 6	6 (2.4	37 GHz)									
2336.00	31.67	100	225			9.54	3.13	28.81	54.07	74.00	-19.93				
2336.00				15.68	Α	9.54	3.13	28.81	38.08	54.00	-15.92				
2360.00	31.00	100	225			9.54	3.15	28.88	53.49	74.00	-20.51				
2360.00				14.96	Α	9.54	3.15	28.88	37.45	54.00	-16.55				
EUT in Co	ntinuous	Transmit	Mode on (Channel 1	1 (2.	.462 GHz)									
2358.66	31.82	100	225			9.54	3.15	28.88	54.30	74.00	-19.70				
2358.66				13.82	Α	9.54	3.15	28.88	36.30	54.00	-17.70				
2360.00	31.50	100	225			9.54	3.15	28.88	53.99	74.00	-20.01				
2360.00				13.67	Α	9.54	3.15	28.88	36.16	54.00	-17.84				

NOTE: These spurious emissions measurements were taken without a preamp at a distance on 1 meter to avoid saturating the preamp and analyzer because the signals were close to the fundamental frequency. The readings were extrapolated to 3 meters.

Page 16 of 29 (Appendix A) Report Number: INTEL-060717F Revision Number: N/A

-2754 AegisLabsInc.co

Radiated Emissions Test Results (Continued)

Spurious Emissions Measurements in **802.11b mode (2400-2483.5 MHz)** Channels 1, 6, & 11 **Continuous TX** at MAIN Antenna port with **Compal HDL20 Antennas** Aegis Labs, Inc. File #: INTEL-060717-06

	RADIATED EMISSIONS - Horizontal Antenna Polarization													
Freq.	Meter	Antenna	Azimuth	Quasi pl	k or	Preamp	Cable	Ant.	Corrected	Limits	Diff (dB)			
(MHz)	Reading	Height	(degrees)	AVG (dB		Factor	Factor	Factor	Reading	(dBuV)	+=FAIL			
	(dBuV)	(cm)				(dB)	(dB)	(dB)	(dBuV)					
EUT in Con	tinuous T	ransmit M	lode on Ch	annel 1 (2.41	2 GHz)								
3216.00	50.00	100	180			36.69	3.71	31.72	48.73	86.69	-37.96			
4824.00	45.17	100	180			36.28	4.57	33.91	47.36	74.00	-26.64			
4824.00				32.94	Α	36.28	4.57	33.91	35.13	54.00	-18.87			
9648.01	51.17	100	225			37.17	6.56	38.12	58.68	86.69	-28.01			
EUT in Con	tinuous T	ransmit M	lode on Cl	annel 6 (2.43	7 GHz)								
3249.32	46.67	100	180			36.69	3.72	31.80	45.51	89.12	-43.61			
4873.99	45.17	100	135			36.28	4.59	34.02	47.50	74.00	-26.50			
4873.99				35.79	Α	36.28	4.59	34.02	38.12	54.00	-15.88			
9747.96	53.83	100	135			37.17	6.60	38.20	61.45	89.12	-27.67			
12185.00	47.83	100	225			36.49	7.48	39.22	58.03	74.00	-15.97			
12185.00				36.44	Α	36.49	7.48	39.22	46.64	54.00	-7.36			
EUT in Con	tinuous T	ransmit M	lode on Ch	annel 11	(2.4	62 GHz)								
3282.66	47.00	100	180			36.68	3.74	31.88	45.95	88.72	-42.77			
4924.00	52.17	100	135			36.27	4.61	34.13	54.65	74.00	-19.35			
4924.00				42.09	Α	36.27	4.61	34.13	44.57	54.00	-9.43			
9848.01	56.00	125	180			37.18	6.64	38.28	63.74	88.72	-24.98			
12310.00	48.33	100	180			36.36	7.53	39.09	58.58	74.00	-15.42			
12310.00				37.01	Α	36.36	7.53	39.09	47.26	54.00	-6.74			

Page 17 of 29 (Appendix A) Report Number: INTEL-060717F Revision Number: N/A

	RADIATED EMISSIONS - Vertical Antenna Polarization													
Freq.	Meter	Antenna	Azimuth	Quasi pk		Preamp	Cable	Ant.	Corrected	Limits	Diff (dB)			
(MHz)	Reading (dBuV)	Height (cm)	(degrees)	AVG (dB	uV)	Factor (dB)	Factor (dB)	Factor (dB)	Reading (dBuV)	(dBuV)	+=FAIL			
EUT in Con			lode on Cl	annel 1 (2.41	(/								
3216.00	47.83	100	180	Ň		36.69	3.71	31.28	46.12	84.05	-37.93			
4824.01	46.67	100	180			36.28	4.57	33.78	48.73	74.00	-25.27			
4824.01				35.59	Α	36.28	4.57	33.78	37.65	54.00	-16.35			
9648.01	48.33	100	180			37.17	6.56	38.09	55.81	84.05	-28.24			
EUT in Con	tinuous T	ransmit M	lode on Ch	annel 6 (2.43	7 GHz)								
3249.32	45.67	100	180			36.69	3.72	31.35	44.06	84.49	-40.43			
4873.99	48.00	100	135			36.28	4.59	33.87	50.19	74.00	-23.81			
4873.99				39.22	Α	36.28	4.59	33.87	41.41	54.00	-12.59			
9747.96	51.83	100	180			37.17	6.60	38.15	59.40	84.49	-25.09			
12185.00	45.17	100	180			36.49	7.48	39.22	55.37	74.00	-18.63			
12185.00				31.78	Α	36.49	7.48	39.22	41.98	54.00	-12.02			
EUT in Con	tinuous T	ransmit M	lode on Ch	annel 11	(2.4	62 GHz)								
3282.66	46.17	100	180			36.68	3.74	31.42	44.66	84.58	-39.92			
4924.00	55.67	100	180			36.27	4.61	33.96	57.98	74.00	-16.02			
4924.00				47.54	Α	36.27	4.61	33.96	49.85	54.00	-4.15			
9848.01	56.17	100	135			37.18	6.64	38.21	63.84	84.58	-20.74			
12310.00	45.00	100	135			36.36	7.53	39.09	55.25	74.00	-18.75			
12310.00				32.59	Α	36.36	7.53	39.09	42.84	54.00	-11.16			

Spurious Emissions Measurements in **802.11b mode (2400-2483.5 MHz)** Channels 1, 6, & 11 **Continuous RX** at MAIN Antenna port with **Compal HDL20 Antennas** Aegis Labs, Inc. File #: INTEL-060717-04

									and the second						
	RADIATED EMISSIONS - Horizontal Antenna Polarization														
Freq.	Meter	Antenna	Azimuth	Quasi pl	k or	Preamp	Cable	Ant.	Corrected	Limits	Diff (dB)				
(MHz)	Reading	Height	(degrees)	AVG (dBuV)		Factor	Factor	Factor	Reading	(dBuV)	+=FAIL				
	(dBuV)	(cm)				(dB)	(dB)	(dB)	(dBuV)						
EUT in Con	CUT in Continuous Receive Mode on Channel 1 (2.412 GHz)														
3216.02	51.83	100	180			46.82	3.71	31.72	40.44	74.00	-33.56				
3216.02				38.04	Α	46.82	3.71	31.72	26.65	54.00	-27.35				
EUT in Con	tinuous R	eceive Mo	de on Cha	nnel 6 (2.	.437	GHz)									
3249.32	51.33	100	180			46.82	3.72	31.80	40.03	74.00	-33.97				
3249.32				38.56	Α	46.82	3.72	31.80	27.26	54.00	-26.74				
EUT in Con	tinuous R	eceive Mo	de on Cha	nnel 11 (2	2.462	2 GHz)									
3282.66	51.83	100	180			46.82	3.74	31.88	40.63	74.00	-33.37				
3282.66				38.82	Α	46.82	3.74	31.88	27.62	54.00	-26.38				

· · · · · · · · · · · · · · · · · · ·															
	RADIATED EMISSIONS - Vertical Antenna Polarization														
Freq.	Meter	Antenna	Azimuth	Quasi pk	k or	Preamp	Cable	Ant.	Corrected	Limits	Diff (dB)				
(MHz)	Reading	Height	(degrees)	AVG (dBuV)		Factor	Factor	Factor	Reading	(dBuV)	+=FAIL				
	(dBuV)	(cm)					(dB)	(dB)	(dBuV)						
EUT in Continuous Receive Mode on Channel 1 (2.412 GHz)															
3216.00	52.67	100	180			46.82	3.71	31.28	40.83	74.00	-33.17				
3216.00				38.17	Α	46.82	3.71	31.28	26.33	54.00	-27.67				
EUT in Con	tinuous R	eceive Mo	de on Cha	nnel 6 (2.	437	GHz)									
3249.32	51.00	100	180			46.82	3.72	31.35	39.25	74.00	-34.75				
3249.32				38.75	Α	46.82	3.72	31.35	27.00	54.00	-27.00				
EUT in Con	tinuous R	eceive Mo	de on Cha	nnel 11 (2	2.462	2 GHz)									
3282.67	51.17	100	180			46.82	3.74	31.42	39.51	74.00	-34.49				
3282.67				39.11	Α	46.82	3.74	31.42	27.45	54.00	-26.55				

RADIATED EMISSIONS TEST RESULTS

CLIENT:	Intel Corporation	DATE:	07/17/06
EUT:	Intel PRO/Wireless 3945ABG Network Connection	PROJECT NUMBER:	INTEL-060717
MODEL NUMBER:	WM3945ABG	TEST ENGINEER:	ВМ
SERIAL NUMBER:	00B11A295CVD26965002	SITE #:	2
CONFIGURATION:	Tested installed in the host computer's mini PCI slot in 802.11g	TEMPERATURE: HUMIDITY:	24 deg. C 68% RH
	(2400-2483.5 MHz) mode with Compal HDL20 Antennas.	TIME:	4:00 PM

Description:	Radiated RF Emissions (1 GHz – 18 GHz)
Results:	PASSED Horizontal and Vertical Antenna Polarizations Class B Limits
Note:	 Radiated Emissions Measurements were performed on the EUT with power supply set at the following voltage and frequency. 120VAC / 60 Hz.

		Unwanted Spurious Emissions I	Limits
Frequency (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m) (Emissions in the restricted bands)	Field Strength (dBm/MHz) (Emissions outside the restricted bands)
Above 960	500	54.00 (Average) 74.00 (Peak)	< -20 dBc

Radiated Emissions Sample Calculations

Corrected Meter Reading = Meter Reading + F + C - D

Where, F = Antenna Factor

- C = Cable Factor
- G = Amplifier Gain
- D = Distance Factor (if applicable)

Therefore, the equation for determining the Corrected Meter Reading Limit (CML) is:

CML = Specification Limit - F - C + D

Fundamental Measurements in 802.11g mode (2400-2483.5 MHz) Channels 1, 6, & 11 Continuous TX at MAIN Antenna port with Compal HDL20 Antennas Aegis Labs, Inc. File #: INTEL-060717-02

	RADIATED EMISSIONS - Horizontal Antenna Polarization														
Freq.	Meter	Antenna	Azimuth	Quasi pk	Quasi pk or		Ant.	Corrected	Limits	Diff(dB)	Comments				
(MHz)	Reading	Height	(degrees)	AVG (dBi	AVG (dBuV)		Factor	Reading	(dBuV)	+=FAIL					
	(dBuV)	(cm)					(<i>dB</i>)	(dBuV)							
2412.00	74.17	100	225			3.19	29.50	106.86			Ch. 1				
2412.00				64.90	Α	3.19	29.50	97.59							
2437.00	73.83	100	225			3.20	29.59	106.62			Ch. 6				
2437.00				65.26	Α	3.20	29.59	98.05							
2462.00	73.83	125	225			3.22	29.67	106.72			Ch. 11				
2462.00				65.06	Α	3.22	29.67	97.95							

	RADIATED EMISSIONS – Vertical Antenna Polarization														
Freq.	Meter	Antenna	Azimuth	Quasi pk	Quasi pk or		Ant.	Corrected	Limits	Diff(dB)	Comments				
(MHz)	Reading	Height	(degrees)	AVG (dBı	AVG (dBuV)		Factor	Reading	(dBuV)	+=FAIL					
	(dBuV)	(cm)					(<i>dB</i>)	(dBuV)							
2412.00	71.67	100	180			3.19	29.04	103.89			Ch. 1				
2412.00				63.26	Α	3.19	29.04	95.48							
2437.00	72.50	100	180			3.20	29.11	104.82			Ch. 6				
2437.00				62.82	Α	3.20	29.11	95.14							
2462.00	68.83	100	180			3.22	29.19	101.24			Ch. 11				
2462.00				60.65	Α	3.22	29.19	93.06							

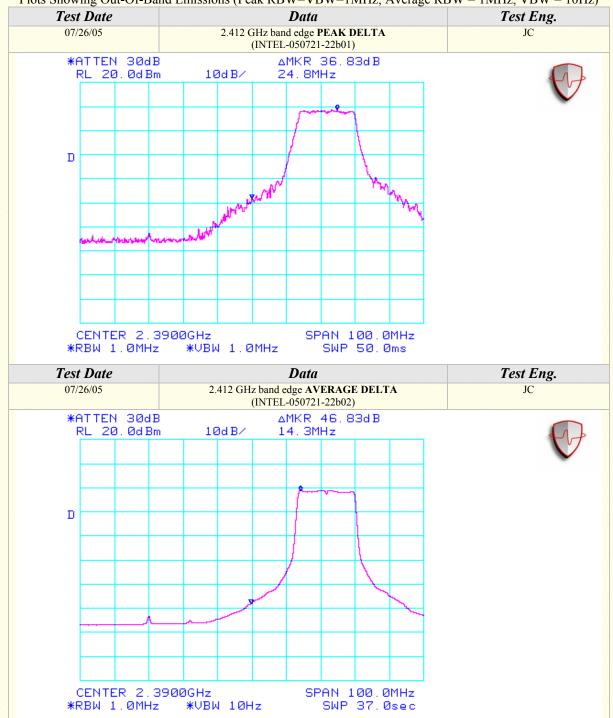
NOTE: Fundamental signals measured to calculate the band edge field strengths using the "Marker Delta Method".

Band Edge Field Strength Measurements in 802.11g mode (2400-2483.5 MHz) Channels 1 & 11 Continuous TX at MAIN Antenna port with Compal HDL20 Antennas Aegis Labs, Inc. File #: INTEL-060717-02

	RADIATED EMISSIONS - Horizontal Antenna Polarization														
Freq.	Meter	Antenna	Azimuth	Quasi pk or	Cable	Ant.	Corrected	Limits	Diff (dB)	Comments					
(MHz)	Reading	Height	(degrees)	AVG (dBuV)	Factor	Factor	Reading	(dBuV)	+=FAIL						
	(dBuV)	(cm)			(<i>dB</i>)	(dB)	(dBuV)								
2390.00							70.03	74.00	-3.97	Ch. 1					
2390.00				Α			50.76	54.00	-3.24						
2400.00	48.50	100	225		3.18	29.46	81.14	86.86	-5.72						
2483.50							66.55	74.00	-7.45	Ch. 11					
2483.50				A			48.45	54.00	-5.55						

RADIATED EMISSIONS – Vertical Antenna Polarization

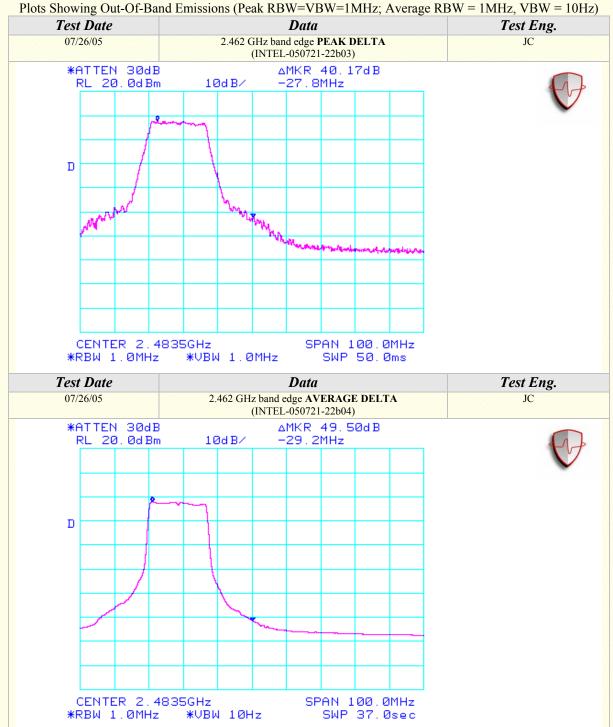
·	RADIATED EN1ISSIONS – Vertical Antenna i olarization													
Freq.	Meter	Antenna	Azimuth	Quasi pk or	r	Cable	Ant.	Corrected	Limits	Diff(dB)	Comments			
(MHz)	Reading	Height	(degrees)	AVG (dBuV)		AVG (dBuV)		Factor	Factor	Reading	(dBuV)	+=FAIL		
	(dBuV)	(cm)				(dB)	(<i>dB</i>)	(dBuV)						
2390.00								67.06	74.00	-6.94	Ch. 1			
2390.00				1	A			48.65	54.00	-5.35				
2400.00	46.83	100	180			3.18	29.00	79.01	83.89	-4.88				
2483.50								61.07	74.00	-12.93	Ch. 11			
2483.50				1	A			43.56	54.00	-10.44				


NOTE: The "Band Edge Field Strength" was calculated using the "Fundamental" and "Conducted Band Edge" measurements per the "Marker-Delta Method" with the following formula:

 $BE = Fm - \Delta m$

Where

- BE = Band Edge Field Strength
- Fm = Measured Fundamental (Peak or Average)
- Δm = Measured Conducted Band Edge Delta (Peak or Average)



Plots Showing Out-Of-Band Emissions (Peak RBW=VBW=1MHz; Average RBW = 1MHz, VBW = 10Hz)

Page 23 of 29 (Appendix A) Report Number: INTEL-060717F Revision Number: N/A

Page 24 of 29 (Appendix A) Report Number: INTEL-060717F Revision Number: N/A

Spurious Emissions Measurements in **802.11g mode (2400-2483.5 MHz)** Channels 1, 6, & 11 **Continuous TX** at MAIN Antenna port with **Compal HDL20 Antennas** Aegis Labs, Inc. File #: INTEL-060717-03

	RADIATED EMISSIONS - Horizontal Antenna Polarization														
Freq.	Meter	Antenna	Azimuth	Quasi pl	k or	1 Meter	Cable	Ant.	Corrected	Limits	Diff (dB)				
(MHz)	Reading	Height	(degrees)	AVG (dB	AVG (dBuV)		Factor	Factor	Reading	(dBuV)	+=FAIL				
	(dBuV)	(<i>cm</i>)					(<i>dB</i>)	(dB)	(dBuV)						
						(dB)									
EUT in Co	ontinuous	Transmit	Mode on (Channel 1	1 (2.4	412 GHz)									
2312.00	32.17	100	225			9.54	3.11	29.16	54.91	74.00	-19.09				
2312.00				18.59	Α	9.54	3.11	29.16	41.33	54.00	-12.67				
EUT in Co	ontinuous	Transmit	Mode on (Channel (6 (2.4	437 GHz)									
2336.00	32.33	100	225			9.54	3.13	29.24	55.16	74.00	-18.84				
2336.00				20.66	Α	9.54	3.13	29.24	43.49	54.00	-10.51				
EUT in Co	ontinuous	Transmit	Mode on (Channel 1	11 (2	.462 GHz)									
2358.66	32.67	100	225			9.54	3.15	29.32	55.60	74.00	-18.40				
2358.66				18.78	Α	9.54	3.15	29.32	41.71	54.00	-12.29				

		RADI	ATED E	MISSIC	DNS	- Vertic	al Ante	enna Pol	arization		
Freq. (MHz)	Meter Reading	Antenna Height	Azimuth (degrees)	Quasi pl AVG (dB	k or	1 Meter Distance	Cable Factor	Ant. Factor	Corrected Reading	Limits (dBuV)	Diff (dB) +=FAIL
	(dBuV)	(cm)				Factor (dB)	(<i>dB</i>)	(dB)	(dBuV)		
EUT in Co	EUT in Continuous Transmit Mode on Channel 1 (2.412 GHz)										
2312.00	32.50	100	225			9.54	3.11	28.74	54.81	74.00	-19.19
2312.00				19.93	Α	9.54	3.11	28.74	42.24	54.00	-11.76
EUT in Co	ontinuous	Transmit	Mode on (Channel 6	6 (2.4	37 GHz)					
2336.00	33.67	100	225			9.54	3.13	28.81	56.07	74.00	-17.93
2336.00				19.18	Α	9.54	3.13	28.81	41.58	54.00	-12.42
EUT in Co	ontinuous	Transmit	Mode on (Channel 1	1 (2.	.462 GHz)					
2358.66	32.17	100	225			9.54	3.15	28.88	54.65	74.00	-19.35
2358.66				18.56	Α	9.54	3.15	28.88	41.04	54.00	-12.96

NOTE: These spurious emissions measurements were taken without a preamp at a distance on 1 meter to avoid saturating the preamp and analyzer because the signals were close to the fundamental frequency. The readings were extrapolated to 3 meters.

Spurious Emissions Measurements in **802.11g mode (2400-2483.5 MHz)** Channels 1, 6, & 11 **Continuous TX** at MAIN Antenna port with **Compal HDL20 Antennas** Aegis Labs, Inc. File #: INTEL-060717-06

]	RADIA	FED EM	ISSIONS -	Horizon	tal Anto	enna Pol	arization		
Freq.	Meter	Antenna	Azimuth	Quasi pk or	Preamp	Cable	Ant.	Corrected	Limits	Diff (dB)
(MHz)	Reading	Height	(degrees)	AVG (dBuV)	Factor	Factor	Factor	Reading	(dBuV)	+=FAIL
	(dBuV)	(cm)			(dB)	(<i>dB</i>)	(dB)	(dBuV)		
EUT in Cont	UT in Continuous Transmit Mode on Channel 1 (2.412 GHz)									
3216.00	46.50	100	180		36.69	3.71	31.72	45.23	86.86	-41.63
EUT in Cont	tinuous T	ransmit M	lode on Ch	nannel 6 (2.43	7 GHz)					
3249.32	45.33	100	225		36.69	3.72	31.80	44.17	86.62	-42.45
9747.96	53.50	125	225		37.17	6.60	38.20	61.12	86.62	-25.50
EUT in Cont	UT in Continuous Transmit Mode on Channel 11 (2.462 GHz)									
3282.66	47.33	100	180		36.68	3.74	31.88	46.28	86.72	-40.44
9848.01	50.33	100	135		37.18	6.64	38.28	58.07	86.72	-28.65

		RADIA	TED EN	AISSIONS	- Vertica	l Anter	ına Pola	rization		
Freq.	Meter	Antenna	Azimuth	Quasi pk or	Preamp	Cable	Ant.	Corrected	Limits	Diff (dB)
(MHz)	Reading	Height	(degrees)	AVG (dBuV)	Factor	Factor	Factor	Reading	(dBuV)	+=FAIL
	(dBuV)	(cm)			(dB)	(<i>dB</i>)	(dB)	(dBuV)		
EUT in Con	UT in Continuous Transmit Mode on Channel 1 (2.412 GHz)									
3216.00	46.83	100	135		36.69	3.71	31.28	45.12	83.89	-38.77
EUT in Con	tinuous T	ransmit M	lode on Cl	nannel 6 (2.43	7 GHz)					
3249.32	47.67	100	135		36.69	3.72	31.35	46.06	84.82	-38.76
9747.96	49.67	100	135		37.17	6.60	38.15	57.24	84.82	-27.58
EUT in Con	UT in Continuous Transmit Mode on Channel 11 (2.462 GHz)									
3282.66	45.50	100	135		36.68	3.74	31.42	43.99	81.24	-37.25
9848.01	49.67	100	180		37.18	6.64	38.21	57.34	81.24	-23.90

Spurious Emissions Measurements in **802.11g mode (2400-2483.5 MHz)** Channels 1, 6, & 11 **Continuous RX** at MAIN Antenna port with **Compal HDL20 Antennas** Aegis Labs, Inc. File #: INTEL-060717-04

-	RADIA	FED EM	ISSION	S - 1	Horizon	tal Anto	enna Pol	arization		
Meter	Antenna	Azimuth	Quasi pl	k or	Preamp	Cable	Ant.	Corrected	Limits	Diff (dB)
Reading	Height	(degrees)	AVG (dB	AVG (dBuV)		Factor	Factor	Reading	(dBuV)	+=FAIL
(dBuV)	(cm)				(dB)	(<i>dB</i>)	(dB)	(dBuV)		
UT in Continuous Receive Mode on Channel 1 (2.412 GHz)										
50.17	100	180			46.82	3.71	31.72	38.78	74.00	-35.22
			38.24	Α	46.82	3.71	31.72	26.85	54.00	-27.15
tinuous R	eceive Mo	de on Cha	nnel 6 (2.	437	GHz)					
53.17	100	180			46.82	3.72	31.80	41.87	74.00	-32.13
			38.82	Α	46.82	3.72	31.80	27.52	54.00	-26.48
EUT in Continuous Receive Mode on Channel 11 (2.462 GHz)										
51.33	100	180			46.82	3.74	31.88	40.13	74.00	-33.87
			38.86	Α	46.82	3.74	31.88	27.66	54.00	-26.34
	Meter Reading (dBuV) tinuous R 50.17 tinuous R 53.17 tinuous R	Meter Reading (dBuV)Antenna Height (cm)tinuous Receive Mo50.17100tinuous Receive Mo53.17100tinuous Receive Mo	Meter Reading (dBuV)Antenna Height (cm)Azimuth (degrees)tinuous Receive Mode on Cha50.17100180tinuous Receive Mode on Cha53.17100180tinuous Receive Mode on Cha53.17100180tinuous Receive Mode on Cha	Meter Reading (dBuV)Antenna Height (cm)Azimuth (degrees)Quasi ph AVG (dBtinuous Receive Mode on Channel 1 (2.50.1710018050.1710018053.1710018053.1710018051.33100180	Meter Reading (dBuV)Antenna Height (cm)Azimuth (degrees)Quasi pk or AVG (dBuV)tinuous Receive Mode on Channel 1 (2.41250.1710018053.1710018053.1710018053.1710018053.1710018053.1710018053.1710018051.33100180	Meter Reading (dBuV)Antenna Height (cm)Azimuth (degrees)Quasi pk or AVG (dBuV)Preamp Factor (dB)tinuous Receive Mode on Channel 1 (2.412 GHz)50.1710018046.8250.1710018046.8253.1710018046.8253.1710018046.8253.1710018046.8253.1710018046.8251.3310018046.82	Meter Reading (dBuV)Antenna Height (cm)Azimuth (degrees)Quasi pk or AVG (dBuV)Preamp Factor (dB)Cable Factor (dB)tinuous Receive Mode on Channel 1 (2.412 GHz)50.1710018046.823.7150.1710018046.823.71tinuous Receive Mode on Channel 6 (2.437 GHz)53.1710018046.823.7253.1710018046.823.7251.3310018046.823.74	Meter Reading (dBuV) Antenna Height (cm) Azimuth (degrees) Quasi pk or AVG (dBuV) Preamp Factor (dB) Cable Factor (dB) Ant. Factor (dB) 50.17 100 180 46.82 3.71 31.72 50.17 100 180 46.82 3.71 31.72 tinuous Receive Mode on Channel 6 (2.437 GHz) 38.24 A 46.82 3.71 31.72 53.17 100 180 46.82 3.72 31.80 53.17 100 180 46.82 3.72 31.80 51.33 100 180 46.82 3.74 31.88	Reading (dBuV)Height (cm)(degrees) \widetilde{AVG} ($dBuV$) $Factor(dB)V$	Meter Reading (dBuV)Antenna Height (cm)Azimuth (degrees)Quasi pk or AVG (dBuV)Preamp Factor (dB)Cable Factor (dB)Ant. Factor (dB)Corrected Reading (dB)Limits (dBuV)tinuous Receive Mode on Channel 1 (2.412 GHz) 46.82 3.71 31.72 38.78 74.00 50.17 100 180 46.82 3.71 31.72 26.85 54.00 tinuous Receive Mode on Channel 6 (2.437 GHz) 53.17 100 180 46.82 3.72 31.80 41.87 74.00 53.17 100 180 46.82 3.72 31.80 41.87 74.00 53.17 100 180 46.82 3.72 31.80 41.87 74.00 53.17 100 180 46.82 3.72 31.80 41.87 74.00 51.33 100 180 46.82 3.74 31.88 40.13 74.00

		RADIA	TED EN	AISSIO	NS ·	- Vertica	l Anter	ına Pola	rization		
Freq.	Meter	Antenna	Azimuth	Quasi pl	k or	Preamp	Cable	Ant.	Corrected	Limits	Diff (dB)
(MHz)	Reading	Height	(degrees)	AVG (dB	uV)	Factor	Factor	Factor	Reading	(dBuV)	+=FAIL
	(dBuV)	(cm)				(dB)	(<i>dB</i>)	(dB)	(dBuV)		
EUT in Con	UT in Continuous Receive Mode on Channel 1 (2.412 GHz)										
3216.00	52.33	100	180			46.82	3.71	31.28	40.49	74.00	-33.51
3216.00				38.82	Α	46.82	3.71	31.28	26.98	54.00	-27.02
EUT in Con	tinuous R	eceive Mo	de on Cha	nnel 6 (2.	.437	GHz)					
3249.33	51.33	100	180			46.82	3.72	31.35	39.58	74.00	-34.42
3249.33				38.86	Α	46.82	3.72	31.35	27.11	54.00	-26.89
EUT in Con	EUT in Continuous Receive Mode on Channel 11 (2.462 GHz)										
3282.67	51.33	100	180			46.82	3.74	31.42	39.67	74.00	-34.33
3282.67				39.00	Α	46.82	3.74	31.42	27.34	54.00	-26.66

PEAK TRANSMIT POWER

CLIENT:	Intel Corporation	DATE:	07/17/06
EUT:	Intel PRO/Wireless 3945ABG Network Connection	PROJECT NUMBER:	INTEL-060717
MODEL NUMBER:	WM3945ABG	TEST ENGINEER:	ВМ
SERIAL NUMBER:	00B11A295CVD26965002	SITE #:	2
	Traded in della dia des hard	TEMPERATURE:	24 deg. C
CONFIGURATION:	Tested installed in the host computer's mini PCI slot.	HUMIDITY:	68% RH
	computer 5 min r er slot.	TIME:	4:00 PM

Description:	The maximum peak output power of the intentional radiator shall not exceed 1 watt.
Results:	See Data Sheet
Note:	 Conducted Emissions Measurements were performed on the EUT with power supply set at the following voltage and frequency. 120VAC / 60 Hz.

Output Power (W)
1
1

Peak Transmit Power (Continued)

Mode	Channel	Frequency (MHz)	Rate (Mbps)	Average Power (dBm)	Average Power (mW)	Peak Power (dBm)	Peak Power (mW)
802.11a	149	5745	6	17.26	53.21	19.40	87.10
802.11a	157	5785	6	17.04	50.58	19.90	97.72
802.11a	165	5825	6	17.11	51.40	19.50	89.13
802.11b	1	2412	1	17.32	53.95	19.90	97.72
802.11b	6	2437	1	18.13	65.01	20.69	117.22
802.11b	11	2462	1	18.21	66.22	20.76	119.12
802.11g	1	2412	6	16.15	41.21	24.35	272.27
802.11g	6	2437	6	16.80	47.86	24.76	299.23
802.11g	11	2462	6	15.32	34.04	24.34	271.64

NOTE: The output power measurement is conducted.

Page 29 of 29 (Appendix A) Report Number: INTEL-060717F Revision Number: N/A

22431 ANTONIO PARKWAY B160-417 RANCHO SANTA MARGARITA, CA 92688 T (949)459-2754 F (949)459-2759 AegisLabsInc.com

APPENDIX B

MODIFICATIONS AND RECOMMENDATIONS

1.0	NONE

Page 1 of 1 (Appendix B) Report Number: INTEL-060717F Revision Number: N/A