

JianYan Testing Group Shenzhen Co., Ltd.

Report No: JYTSZB-R12-2100210

FCC REPORT

Applicant: SKY PHONE LLC

Address of Applicant: 1348 Washington Av. Suite 350, Miami Beach, FL 33139

Equipment Under Test (EUT)

Product Name: 4G Smart Phone

Model No.: Elite E55

Trade mark: SKY Devices

FCC ID: 2ABOSSKYELITEE55

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 21 Jan., 2021

Date of Test: 21 Jan., to 17 Mar., 2021

Date of report issued: 17 Mar., 2021

Test Result: PASS *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	17 Mar., 2021	Original

Tested by:	Tanet	Wei	Date:	17 Mar., 2021
	Test Engin			

Reviewed by:

Winner Thang
Date: 17 Mar., 2021

Project Engineer

Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4		T SUMMARY	
	_		
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	5
	5.3	TEST ENVIRONMENT AND MODE	6
	5.4	DESCRIPTION OF SUPPORT UNITS	6
	5.5	MEASUREMENT UNCERTAINTY	6
	5.6	LABORATORY FACILITY	6
	5.7	LABORATORY LOCATION	
	5.8	TEST INSTRUMENTS LIST	7
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	15
	6.6	BAND EDGE	
	6.6.1		
	6.6.2		
	6.7	Spurious Emission	
	6.7.1	00	
	6.7.2	Radiated Emission Method	23
7	TES	T SETUP PHOTO	28
Ω	EUT	CONSTRUCTIONAL DETAILS	20

4 Test Summary

Test Items	Section in CFR 47	Test Data	Result
Antenna requirement	15.203 & 15.247 (b)	See Section 6.1	Pass
AC Power Line Conducted Emission	15.207	See Section 6.2	Pass
Conducted Peak Output Power	15.247 (b)(3)	Appendix A - BLE	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Appendix A - BLE	Pass
Power Spectral Density	15.247 (e)	Appendix A - BLE	Pass
Conducted Band Edge	45.047.(4)	Appendix A - BLE	Pass
Radiated Band Edge	15.247 (d)	See Section 6.6.2	Pass
Conducted Spurious Emission	45.005.8.45.000	Appendix A - BLE	Pass
Radiated Spurious Emission	15.205 & 15.209	See Section 6.7.2	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method: ANSI C63.10-2013
KDB 558074 D01 15.247 Meas Guidance v05r02

5 General Information

5.1 Client Information

Applicant:	SKY PHONE LLC
Address:	1348 Washington Av. Suite 350, Miami Beach, FL 33139
Manufacturer:	SKY PHONE LLC
Address:	1348 Washington Av. Suite 350, Miami Beach, FL 33139

5.2 General Description of E.U.T.

OIZ CONOTAL DOCOMPER	2 General Description of E.G.T.				
Product Name:	4G Smart Phone				
Model No.:	Elite E55				
Operation Frequency:	2402-2480 MHz				
Channel numbers:	40				
Channel separation:	2 MHz				
Modulation technology:	GFSK				
Data speed :	1Mbps				
Antenna Type:	Internal Antenna				
Antenna gain:	0.5 dBi				
Power supply:	Rechargeable Li-ion Battery DC3.8V-2500mAh				
AC adapter:	Input: AC100-240V, 50/60Hz, 0.2A				
	Output: DC 5.0V, 1000mA				
Test Sample Condition:	The test samples were provided in good working order with no visible defects.				

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.3 Test environment and mode

Operating Environment:	Operating Environment:				
Temperature:	24.0 °C				
Humidity:	54 % RH				
Atmospheric Pressure:	1010 mbar				
Test mode:					
Transmitting mode	Keep the EUT in continuous transmitting with modulation				

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

JianYan Testing Group Shenzhen Co., Ltd.

No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

5.8 Test Instruments list

Radiated Emission:	Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
3m SAC	ETS	9m*6m*6m	966	01-19-2021	01-18-2024		
1 A - t	001111111111111111111111111111111111111	EMZD4540D	00044	03-03-2020	03-02-2021		
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-03-2021	03-02-2022		
PiCanil og Antonna	SCHWARZBECK	VULB9163	497	03-03-2020	03-02-2021		
BiConiLog Antenna	SCHWARZBECK	VULB9103	497	03-03-2021	03-02-2022		
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-03-2020	03-02-2021		
потп Апцеппа	SURWARZBEUK	DDNA9120D	910	03-03-2021	03-02-2022		
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2020	06-21-2021		
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2020	11-17-2021		
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919	b		
D	Ш	0447D	2944A09358	03-03-2020	03-02-2021		
Pre-amplifier	HP	8447D		03-03-2021	03-02-2022		
Due emplifier	CD	DAD 4040	44004	03-03-2020	03-02-2021		
Pre-amplifier	CD	PAP-1G18	11804	03-03-2021	03-02-2022		
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2020	03-02-2021		
Spectrum analyzer	Ronde & Schwarz	F3F30	101454	03-03-2021	03-02-2022		
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2020	11-17-2021		
ENUT (D.	D 1 1 0 0 1	50007	404070	03-03-2020	03-02-2021		
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022		
Cabla	7DE01	7400 NII NII 04	4000450	03-03-2020	03-02-2021		
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-03-2021	03-02-2022		
Cabla	MICDO COAY	MED64620	V40742 F	03-03-2020	03-02-2021		
Cable	MICRO-COAX	MFR64639	K10742-5	03-03-2021	03-02-2022		
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-03-2020	03-02-2021		
Cable	SUMNEK	SUCUFLEX 100	58193/4PE	03-03-2021	03-02-2022		
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A		
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0			

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Took Doooiyar	Dahala 9 Cabusara	F001	404400	03-03-2020	03-02-2021	
EMI Test Receiver	Rohde & Schwarz	ESCI 101189	03-03-2021	03-02-2022		
Dulas Limitar	CCLIMA DZDECK	OSRAM 2306	9731	03-03-2020	03-02-2021	
Pulse Limiter	SCHWARZBECK	USKAW 2300		03-03-2021	03-02-2022	
LICAL	CHASE	MNIOOFOD	4 4 4 7	03-03-2020	03-02-2021	
LISN		MN2050D	1447	03-03-2021	03-02-2022	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2020	07-20-2021	
Cabla	0.11	10503A	NI/A	03-03-2020	03-02-2021	
Cable	HP		N/A	03-03-2021	03-02-2022	
EMI Test Software	AUDIX	E3	Version: 6.110919b			

Conducted method:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
Spectrum Analyzer	Keysight	N9010B	MY60240202	11-27-2020	11-26-2021
Vector Signal Generator	Keysight	N5182B	MY59101009	11-27-2020	11-26-2021
Analog Signal Generator	Keysight	N5173B	MY59100765	11-27-2020	11-26-2021
Power Detector Box	MWRF-test	MW100-PSB	MW201020JYT	11-27-2020	11-26-2021
Simulated Station	Rohde & Schwarz	CMW270	102335	11-27-2020	11-26-2021

JianYan Testing Group Shenzhen Co., Ltd. No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community,

Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

	RF Control Box	MWRF-test	MW100-RFCB	MW200927JYT	N/A	N/A
	PDU	MWRF-test	XY-G10	N/A	N/A	N/A
I	Test Software	MWRF-tes	MTS 8310	,		
	DC Power Supply	Keysight	E3642A	MY60296194 11-27-20		11-26-2021

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is 0.5 dBi.

Page 9 of 29

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207							
Test Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz						
Class / Severity:	Class B							
Receiver setup:	RBW=9kHz, VBW=30kHz							
Limit:	·	Limit (dBuV)						
-	Frequency range (MHz)	Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
	5-30	60	50					
	* Decreases with the logarithn	n of the frequency.						
Test procedure:	 The E.U.T and simulators are connected to the main power through line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power thro LISN that provides a 500hm/50uH coupling impedance with 500hr termination. (Please refer to the block diagram of the test setup ar photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be characcording to ANSI C63.10(latest version) on conducted measuren 							
Test setup:	Reference Plane							
	AUX Equipment E.U.T Test table/Insulation plane Remarkc E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Ne	EMI Receiver	– AC power					
	Test table height=0.8m							
Test Instruments:	Refer to section 5.9 for details	· · · · · · · · · · · · · · · · · · ·						
Test mode:	Refer to section 5.3 for details	;						
Test results:	Passed							

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Measurement Data:

Product name:	4G Smart Phone	Product model:	Elite E55					
Test by:	Janet	Test mode:	BLE Tx mode			BLE Tx mode		
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line					
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%					

	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∜	<u>ab</u>	<u>d</u> B	<u>ab</u>	dBu∀	dBu√	<u>d</u> B	
1	0.154	35.56	-0.57	-0.06	10.78	45.71		-20.07	
2	0.154	21.49	-0.57		10.78	31.64			Average
3	0.166	33.69	-0.58	-0.09	10.77	43.79	65.16	-21.37	QP
4	0.174	18.62	-0.58	-0.11	10.77	28.70	54.77	-26.07	Average
5	0.194	30.22	-0.59	-0.15	10.76	40.24	63.84	-23.60	QP
4 5 6	0.211	28.21	-0.58	-0.17	10.76	38.22	63.18	-24.96	QP
	0.222	27.53	-0.58	-0.19	10.76	37.52	62.74	-25.22	QP
8	0.246	18.23	-0.57	-0.21	10.75	28.20		-23.71	Average
7 8 9	0.385	16.18	-0.49	0.33	10.72	26.74			Average
10	0.486	18.15	-0.44	-0.26	10.76	28.21			Average
11	0.739	20.54	-0.54	-0.28	10.79	30.51			Average
12	23.511	27.25	-1.01	0.95	10.89	38.08		-21.92	

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

Product name:	4G Smart Phone	Product model:	Elite E55			
Test by:	Janet	Test mode:	BLE Tx mode			
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral			
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%			

	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
<u>=</u>	MHz	dBu∀	<u>ab</u>	<u>d</u> B	<u>ab</u>	dBu∀	dBu∀	<u>ab</u>	
1	0.154	33.72	-0.69	0.01	10.78	43.82	65.78	-21.96	QP
2	0.154	18.61	-0.69	0.01	10.78	28.71	55.78	-27.07	Average
3	0.166	17.51	-0.68	0.01	10.77	27.61	55.16	-27.55	Average
4	0.174	16.18	-0.68	0.00	10.77	26.27	54.77	-28.50	Average
5	0.178	31.19	-0.68	0.00	10.77	41.28	64.59	-23.31	QP
6	0.198	28.34	-0.67	0.00	10.76	38.43	63.71	-25.28	QP
7	0.211	26.96	-0.67	0.00	10.76	37.05	63.18	-26.13	QP
1 2 3 4 5 6 7 8	0.234	25.58	-0.67	0.00	10.75	35.66	62.30	-26.64	QP
9	0.246	15.70	-0.67	0.01	10.75	25.79	51.91	-26.12	Average
10	0.497	14.30	-0.65	0.03	10.76	24.44			Average
11	0.739	25.07	-0.65	0.05	10.79	35.26		-20.74	
12	1.585	14.52	-0.70	0.14	10.93	24.89			Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

6.3 Conducted Output Power

Measurement Data: Refer to Appendix A - BLE

Page 13 of 29

6.4 Occupy Bandwidth

Measurement Data: Refer to Appendix A - BLE

Page 14 of 29

6.5 Power Spectral Density

Measurement Data: Refer to Appendix A - BLE

Page 15 of 29

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	NS102B NS10B NS102B NS10B NS102B NS10B NS1					
Test Instruments:	Refer to section 5.9 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data: Refer to Appendix A - BLE

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 16 of 29

Radiated Emission Method 6.6.2

Test Requirement:	FCC Part 15 C Section 15.205 and 15.209							
Test Frequency Range:	2310 MHz to 2	0 MHz to 2390 MHz and 2483.5MHz to 2500 MHz						
Test Distance:	3m							
Receiver setup:	Frequency	Detector	RBW	VBW	Remark			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
		RMS	1MHz .imit (dBuV/m @:	3MHz	Average Value			
Limit:	Frequer	Remark						
	Above 10	GHz —	54.00 74.00	<i>F</i>	Average Value Peak Value			
Test Procedure:	the groun to determ 2. The EUT antenna, tower. 3. The anter the groun Both horiz make the 4. For each case and meters ar to find the 5. The test-r Specified 6. If the emithe limits of the EU have 10 ce	ad at a 3 meterine the positive was set 3 meterine which was much and height is ad to determine zontal and vertical measurements aspected enter then the antereceiver system. Bandwidth was in level of specified, ther T would be red margin wo	on the top of a roter camber. The taken of the highest eters away from tounted on the top waried from one in the maximum etical polarization ont. Inission, the EUT enna was tuned to be was turned from was set to Perith Maximum Houthe EUT in peaken testing could be exported. Otherwise	able was rotal radiation. The interference of a variable meter to four value of the fas of the anteres of the arrange of the of the fast of the arrange of the arrange of the arrange of the arrange of the edgree at Detect Full Mode. The mode was a set the emissione by one united the arrange of the edgree at the edgree of th	.5 meters above ted 360 degrees ace-receiving le-height antenna meters above field strength. Enna are set to ed to its worst m 1 meter to 4 s to 360 degrees anction and 10 dB lower than d the peak values ions that did not using peak, quasi-			
Test setup:	AE (T	umtable) Grou Test Receive	Horn Antenna 3m Amplifer Con	Antenna Tower				
Test Instruments:	Refer to section	on 5.9 for deta	ails					
Test mode:	Refer to section	on 5.3 for deta	ails					
	Dagged	assed						

Product Name:	4G Smart Phone	Product Model:	Elite E55
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

5- 711 - 10 -	Freq	Read Level	Antenna Factor	Cable Loss	Aux Factor	Preamp Factor	Level	Limit Line	Over Limit	Remark
2	MHz	dBu∜	<u>dB</u> /m		<u>ab</u>	<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	
	2390.000 2390.000									

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	4G Smart Phone	Product Model:	Elite E55			
Test By:	Janet	Test mode:	BLE Tx mode			
Test Channel:	Lowest channel	Polarization:	Horizontal			
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%			

	Freq	Read/ Level	Antenna Factor	Cable Loss	Aux Factor	Preamp Factor	Level	Limit Line	Over Limit	
	MHz	dBu∀	<u>dB</u> /m	₫B	dB	<u>ab</u>	$\overline{dBuV/m}$	dBu∜/m	<u>dB</u>	
1 2	2390.000 2390.000									

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 19 of 29

Product Name:	4G Smart Phone	Product Model:	Elite E55
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor							
	MHz	dBu∜	<u>dB</u> /m	<u>d</u> B	<u>ab</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>ab</u>	
1 2	2483.500 2483.500									

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	4G Smart Phone	Product Model:	Elite E55
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq	Read/ Level	Antenna Factor	Cable Loss	Aux Factor	Preamp Factor	Level	Limit Line	Over Limit	Remark
£	MHz	dBu∇	<u>dB</u> /m	<u>ав</u>	<u>ab</u>	<u>ab</u>	dBuV/m	dBuV/m	<u>ab</u>	
	2483.500 2483.500									

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Measurement Data: Refer to Appendix A - BLE

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 22 of 29

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.205 and 15.209							
Test Frequency Range:	9kHz to 25GHz							
Test Distance:	3m							
Receiver setup:	Frequency	Detector	RBW	VB	3W	Remark		
	30MHz-1GHz	Quasi-peak	120KHz	3001	KHz	Quasi-peak Value		
	Above 1GHz	Peak	1MHz	3M	Hz	Peak Value		
	Above Toriz	RMS	1MHz	3M	Hz	Average Value		
Limit:	Frequency		imit (dBuV/m @	3m)		Remark		
	30MHz-88M		40.0			Quasi-peak Value		
	88MHz-216M		43.5		1	Quasi-peak Value		
	216MHz-960N		46.0			Quasi-peak Value		
	960MHz-1G	HZ	54.0 54.0		(Quasi-peak Value		
	Above 1GH	lz	74.0			Average Value Peak Value		
	highest rad The EUT antenna, w tower. The antenr the ground Both horize make the m For each s case and t meters and to find the r The test-re Specified B If the emiss the limit sp of the EUT have 10 dB	iation. was set 3 r hich was mo na height is to determine ontal and veneasurement suspected er hen the antel the rota tab maximum reaseceiver syste sandwidth with sion level of ecified, then would be re margin wou	neters away unted on the to varied from one the maximitical polarization. The entermination was tuned ading. The was turned ading. The was set the EUT in petesting could be ported. Other lid be re-tested	from the top of a me met um valutions of EUT was do not be from 0 to Pea old Mo ak more stop wise the done be	ne inter to the action of the	the position of the efference-receiving ble-height antenna four meters above the field strength. Antenna are set to anged to its worst from 1 meter to 4 ees to 360 degrees tect Function and as 10 dB lower than and the peak values ssions that did not using peak, quasi-reported in a data		
Test setup:	EUT	4m 4m 0.8m 1m			Antenna Search Antenn Test ceiver —	1		

Measurement Data (worst case):

Below 1GHz:

Product Name:	4G Smart Phone	Product Model:	Elite E55
Test By:	Janet	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Frea		Antenna Factor			Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBm	<u>dB</u> /m				_dBm/m			
1	49.187	45.54		0.38					-10.76	
2	78.413	48.48	7.575.7 (* 7.65.4) t	0.47			31.69			G-7-700
	79.521	48.36	200 D. C.	0.47			31.85			- 10 m
4	152.130	46.80		0.62			32.56			
5	153.739	47.03	14.38	0.62	0.00	29.19	32.84	43.50	-10.66	QP
6	252.948	42.12	18.51	0.79	0.00	28.53	32.89	46.00	-13.11	QP

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 25 of 29

Product Name:	4G Smart Phone	Product Model:	Elite E55
Test By:	Janet	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		ntenna Factor			Preamp Factor	Level	Limit Line	Over Limit	Remark
-	MHz	dBm	dB/π	dB	<u>d</u> B	<u>dB</u>	_dBm/m	dBm/m	<u>dB</u>	
1	152.130	44.49	14.34	0.62	0.00	29.20	30.25	43.50	-13.25	QP
2	154.279	45.03	14.39	0.62	0.00	29.18	30.86	43.50	-12.64	QP
2	204.238	44.00	18.32	0.72	0.00	28.80	34.24	43.50	-9.26	QP
4	240.830	45.88	18.47	0.76	0.00	28.59	36.52	46.00	-9.48	QP
5	254.728	48.82	18.52	0.79	0.00	28.53	39.60	46.00	-6.40	QP
6	266.609	46.84	18.57	0.81	0.00	28.51	37.71	46.00	-8.29	QP

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Above 1GHz

	Test channel: Lowest channel												
Detector: Peak Value													
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4804.00	46.85	30.78	6.80	2.44	41.81	45.06	74.00	-28.94	Vertical				
4804.00	47.26	30.78	6.80	2.44	41.81	45.47	74.00	-28.53	Horizontal				
				Detector:	Average Va	alue							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4804.00	40.23	30.78	6.80	2.44	41.81	38.44	54.00	-15.56	Vertical				
4804.00	39.86	30.78	6.80	2.44	41.81	38.07	54.00	-15.93	Horizontal				
		·					·						

	Test channel: Middle channel												
Detector: Peak Value													
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4884.00	46.24	30.96	6.86	2.47	41.84	44.69	74.00	-29.31	Vertical				
4884.00	46.81	30.96	6.86	2.47	41.84	45.26	74.00	-28.74	Horizontal				
				Detector:	Average Va	alue							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4884.00	39.41	30.96	6.86	2.47	41.84	37.86	54.00	-16.14	Vertical				
4884.00	39.20	30.96	6.86	2.47	41.84	37.65	54.00	-16.35	Horizontal				

Test channel: Highest channel													
Detector: Peak Value													
Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
46.84	31.11	6.91	2.49	41.87	45.48	74.00	-28.52	Vertical					
45.89	31.11	6.91	2.49	41.87	44.53	74.00	-29.47	Horizontal					
			Detector:	Average Va	alue								
Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
39.54	31.11	6.91	2.49	41.87	38.18	54.00	-15.82	Vertical					
39.11	31.11	6.91	2.49	41.87	37.75	54.00	-16.25	Horizontal					
	Level (dBuV) 46.84 45.89 Read Level (dBuV) 39.54	Level (dBuV) (dB/m) 46.84 31.11 45.89 31.11 Read Antenna Level Factor (dBuV) (dB/m) 39.54 31.11	Read Level (dBuV) Antenna (dB/m) Cable Loss (dB) 46.84 31.11 6.91 45.89 31.11 6.91 Read Level Factor (dBuV) Factor Loss (dB/m) (dB) 39.54 31.11 6.91	Read Level Factor (dBuV) Antenna (dB/m) Cable Loss Factor (dB) Aux Factor (dB) 46.84 31.11 6.91 2.49 45.89 31.11 6.91 2.49 Detector: Read Level Factor (dBuV) Cable Loss Factor (dB/m) Factor (dB) (dB) (dB) (dB) 39.54 31.11 6.91 2.49	Detector: Peak Value Read Antenna Cable Aux Preamp	Detector: Peak Value Read Level (dBuV) Antenna (dBw) Cable Loss (dB) Aux Factor (dB) Preamp Factor (dBwV/m) Level (dBwV/m) 46.84 31.11 6.91 2.49 41.87 45.48 45.89 31.11 6.91 2.49 41.87 44.53 Detector: Average Value Read Level Factor (dBuV) Cable Loss (dB) Aux Preamp Factor Factor (dBuV/m) Level (dBuV/m) (dBuV) (dB/m) (dB) (dB) 41.87 38.18	Detector: Peak Value Cable Aux Preamp Level (dBuV) (dB/m) (dB) (dB) (dB) (dB) (dB) (dB) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m)	Detector: Peak Value					

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss + Aux Factor - Preamplifier Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.