

TEST REPORT

Product Name	:	LED Bulb T2
Model Number	:	LB-L03D
FCC ID	:	2AKIT-LBL03D

Prepared for Address	::	Lumi United Technology Co., Ltd. Room 801-804, Building 1, Chongwen Park, Nanshan iPark, No. 3370, Liuxian Avenue, Fuguang Community, Taoyuan Residential District, Nanshan District, Shenzhen, China
Prepared by Address	:	EMTEK (DONGGUAN) CO., LTD. -1&2/F.,Building 2, Zone A, Zhongda Marine Biotechnology Research and Development Base, No.9, Xincheng Avenue, Songshanhu High-technology Industrial Development Zone, Dongguan, Guangdong, China
		TEL: +86-0769-22807078 FAX: +86-0769-22807079

Report Number	:	EDG2407300092E00103R
Date(s) of Tests	:	August 01, 2024 to November 23, 2024
Date of issue	:	November 23, 2024

TABLE OF CONTENTS

1 TEST RESULT CERTIFICATION	3
2 EUT TECHNICAL DESCRIPTION	5
3 SUMMARY OF TEST RESULT	6
4 TEST METHODOLOGY	7
4.1 GENERAL DESCRIPTION OF APPLIED STANDARDS	
4.2 MEASUREMENT EQUIPMENT USED 4.3 DESCRIPTION OF TEST MODES	7
5 FACILITIES AND ACCREDITATIONS	
5.1 FACILITIES	9
5.2 LABORATORY ACCREDITATIONS AND LISTINGS	
6 TEST SYSTEM UNCERTAINTY	
7 SETUP OF EQUIPMENT UNDER TEST	
7.1 RADIO FREQUENCY TEST SETUP 1	11
7.2 RADIO FREQUENCY TEST SETUP 2 7.3 CONDUCTED EMISSION TEST SETUP	11
7.4 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	
7.5 SUPPORT EQUIPMENT	
8 TEST REQUIREMENTS	
8.1 DTS (6DB) BANDWIDTH	
8.2 DTS 99% BANDWIDTH	
8.3 MAXIMUM PEAK CONDUCTED OUTPUT POWER	
8.4 MAXIMUM POWER SPECTRAL DENSITY	
8.5 UNWANTED EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS 8.6 RADIATED SPURIOUS EMISSION	
8.7 CONDUCTED EMISSIONS TEST	
8.8 ANTENNA APPLICATION	

TEST RESULT CERTIFICATION 1

Applicant	: Lumi United Technology Co., Ltd.
Address	Room 801-804, Building 1, Chongwen Park, Nanshan iPark, No. 3370, LiuxianAvenue, Fuguang Community, Taoyuan Residential District, Nanshan District, Shenzhen, China
Manufacturer	: Lumi United Technology Co., Ltd.
Address	Room 801-804, Building 1, Chongwen Park, Nanshan iPark, No. 3370, Liuxian : Avenue, Fuguang Community, Taoyuan Residential District, Nanshan District, Shenzhen, China
Factory	NINGBO SIYING OPTOELECTRONIC LIGHTING SCIENCE&TECHNOLOGY CO, LTD
Address	No.9 Anda road, Fengshan street, Yuyao city, ZIP code 315400, Zhejiang Province, China
EUT	: LED Bulb T2
Model Name	: LB-L03D
Trademark	: Aqara

Measurement Procedure Used:

APPLICABLE STANDARDS			
STANDARD TEST RESUL			
FCC 47 CFR Part 2 , Subpart J FCC 47 CFR Part 15, Subpart C	PASS		
IC RSS-GEN, Issue 5(04-2018)+A1(03-2019)+A2(02-2021) IC RSS-247 Issue 3(08-2023)	PASS		

The above equipment was tested by EMTEK(DONGGUAN) CO., LTD. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 2, Part 15.247, IC RSS-247 Issue 3 and IC RSS-GEN, Issue 5.

The test results of this report relate only to the tested sample identified in this report.

Date of Test :	August 01, 2024 to November 23, 2024			
Prepared by :	Warren Deng			
	Warren Deng /Editor			
Reviewer :	Galen Xra.			
	Galen Xiao /Supervisor			
Approve & Authorized Signer :	Sam Ly /Manager			
	ESTIN			

Modified History

Version	Report No.	Revision Date	Summary
	EDG2407300092E00103R	/	Original Report

2 EUT TECHNICAL DESCRIPTION

Characteristics	Description
Device Type:	2.4G ISM Band
Standards:	IEEE802.15.4
Modulation:	O-QPSK
Operating Frequency Range(s):	2405-2480MHz
Number of Channels:	16 Channels
Channel Separation:	5MHz
Transmit Power Max:	6.36 dBm(0.004325 W)
Antenna Type :	FPC Antenna
Antenna Gain:	1.78 dBi
Product SW/HW version:	SW:0.0.5.4 HW:V1.35
Radio SW/HW version:	SW:0.0.5.4 HW:V1.35
	⊠ : 100-240V, 50/60Hz
Power supply:	Adapter : Model: Input: Output:

Note: for more details, please refer to the User's manual of the EUT.

SUMMARY OF TEST RESULT 3

FCC Part Clause	Test Parameter	Verdict	Remark	
15.247(a)(2)	DTS (6dB) Bandwidth	PASS		
15.247(b)(3)	Maximum Peak Conducted Output Power	PASS		
15.247(e)	Maximum Power Spectral Density Level	PASS		
15.247(d)	Unwanted Emission Into Non-Restricted Frequency Bands	PASS		
15.247(d)	Unwanted Emission Into Restricted Frequency Bands	PASS		
15.209	(conducted)			
15.247(d)	Radiated Spurious Emission	PASS		
15.209				
15.207	Conducted Emission Test	PASS		
15.247(b)	Antenna Application	PASS		
NOTE1: N/A (Not Applicable)				

NOTE2: According to FCC OET KDB 558074, the report use radiated measurements in the restricted frequency bands. In addition, the radiated test is also performed to ensure the emissions emanating from the device cabinet also comply with the applicable limits.

RELATED SUBMITTAL(S) / GRANT(S):

This submittal(s) (test report) is intended for FCC ID: 2AKIT-LBL03D filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

The system is compliance with Subpart B is authorized under a DOC procedure

4 TEST METHODOLOGY

4.1 GENERAL DESCRIPTION OF APPLIED STANDARDS

According to its specifications, the EUT must comply with the requirements of the following standards: FCC 47 CFR Part 2, Subpart J

FCC 47 CFR Part 15, Subpart C

FCC KDB 558074 D01 DTS Meas Guidance v04

4.2 MEASUREMENT EQUIPMENT USED

Conducted Emission Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
EMI Test Receiver	Rohde&Schwarz	ESCI	100137	2024/4/29	1Year
Signal Analyzer	R&S	FSV30	103039	2024/4/28	1 Year
AMN	Rohde&Schwarz	ENV216	101209	2024/4/28	1Year
AMN	Rohde&Schwarz	ENV216	100017	2024/4/28	1Year
RF Switching Unit	CDS	RSU-M2	38401	2024/4/28	1Year
AMN	Schwarzbeck	NNLK8121	8121-641	2024/4/28	1Year
AMN	Rohde&Schwarz	ESH3-Z6	101101	2024/4/28	1Year
AMN	Rohde&Schwarz	ESH3-Z6	101102	2024/4/28	1Year
Power Splitters & Dividers	Weinschel Associates	WA1506A	A1066	2024/4/28	1Year
Current Probe	FCC	F-52	8377	2024/4/28	1Year
Passive voltage probe	Rohde&Schwarz	ESH2-Z3	100122	2024/4/28	1Year

For Spurious Emissions Test

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
EMI Test Receiver	Rohde&Schwarz	ESCI	101415	2024/4/28	1Year
Signal Analyzer	R&S	FSV30	103039	2024/4/28	1 Year
Bi-log Hybrid Antenna	Schwarzbeck	VULB9163	141	2024/5/5	1Year
Pre-Amplifie	HP	8447F	OPTH64	2024/4/28	1 Year
Signal Analyzer	R&S	FSV30	103039	2024/4/28	1 Year
Horn Antenna	Schwarzbeck	BBHA9120D	1272	2024/5/5	1Year
Horn Antenna	Schwarzbeck	BBHA9170	9170-567	2024/5/5	1Year
Pre-Amplifie	LUNAR EM	PM1-18-40	J1010000081	2024/4/28	1Year
Loop antenna	Schwarzbeck	FMZB1519	1519-012	2024/5/5	1Year

For other test items:

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
Wireless Connectivity Tester	R&S	CMW270	102543	2024/4/29	1Year
Automatic Control Unit	Tonscend	JS0806-2	2118060480	2024/4/29	1Year
Signal Analyzer	KEYSIGHT	N9010B	MY60242456	2024/4/29	1Year
Analog Signal Generator	KEYSIGHT	N5173B	MY61252625	2024/4/29	1Year
UP/DOWN-Converter	R&S	CMW-Z800A	100274	2024/4/29	1Year
Vector Signal Generator	KEYSIGHT	N5182B	MY61252674	2024/4/29	1Year
Frequency Extender	KEYSIGHT	N5182BX07	MY59362541	2024/4/29	1Year
Temperature&Humidity test chamber	ESPEC	EL-02KA	12107166	2024/4/29	1 Year

Remark: Each piece of equipment is scheduled for calibration once a year.

4.3 DESCRIPTION OF TEST MODES

The EUT has been tested under its typical operating condition.

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

⊠ Frequency and Channel list:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2405	7	2435	13	2465
2	2410	8	2440	14	2470
3	2415	9	2445	15	2475
4	2420	10	2450	16	2480
5	2425	11	2455		
6	2430	12	2460		

⊠ Test Frequency and Channel:

Lowest	Frequency	Middle F	requency	Highe	st Frequency
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2405	8	2440	16	2480

FACILITIES AND ACCREDITATIONS 5

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at:

EMTEK (DONGGUAN) CO., LTD.

-1&2/F.,Building 2, Zone A, Zhongda Marine Biotechnology Research and Development Base, No.9, Xincheng Avenue, Songshanhu High-technology Industrial Development Zone, Dongguan, Guangdong, China

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

5.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
EMC Lab.	: Accredited by CNAS
	The Laboratory has been assessed and proved to be in compliance with
	CNAS-CL01:2018
	The Certificate Registration Number is L3150
	Accredited by FCC
	Designation Number: CN1300
	Test Firm Registration Number: 945551
	Accredited by A2LA
	The Certificate Registration Number is 4321.02
	Accredited by Industry Canada
	The Certificate Registration Number is CN0113
Name of Firm	: EMTEK (DONGGUAN) CO., LTD.
Site Location	 -1&2/F.,Building 2, Zone A, Zhongda Marine Biotechnology Research and Development Base, No.9, Xincheng Avenue, Songshanhu High-technology Industrial Development Zone, Dongguan, Guangdong, China

6 **TEST SYSTEM UNCERTAINTY**

The following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty
Radio Frequency	±1x10^-5
Maximum Peak Output Power Test	±1.0dB
Conducted Emissions Test	±2.0dB
Radiated Emission Test	±2.0dB
Power Density	±2.0dB
Occupied Bandwidth Test	±1.0dB
Band Edge Test	±3dB
All emission, radiated	±3dB
Antenna Port Emission	±3dB
Temperature	±0.5°C
Humidity	±3%

Measurement Uncertainty for a level of Confidence of 95%

SETUP OF EQUIPMENT UNDER TEST 7

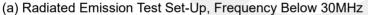
7.1 RADIO FREQUENCY TEST SETUP 1

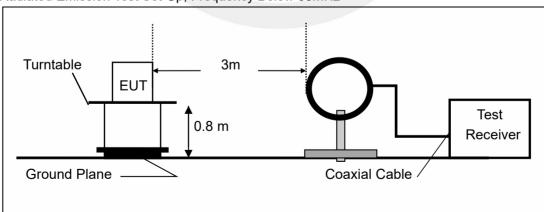
The WLAN component's antenna ports(s) of the EUT are connected to the measurement instrument per an appropriate attenuator. The EUT is controlled by PC/software to emit the specified signals for the purpose of measurements.

7.2 RADIO FREQUENCY TEST SETUP 2

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.4. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.4-2014 and CAN/CSA-CEI/IEC CISPR 22.

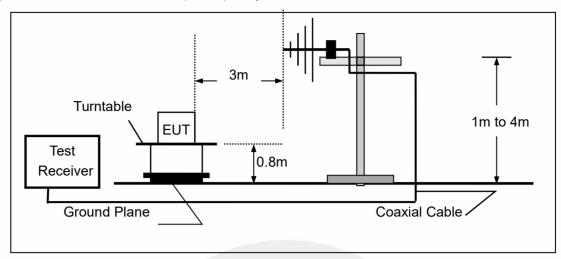
Below 30MHz:

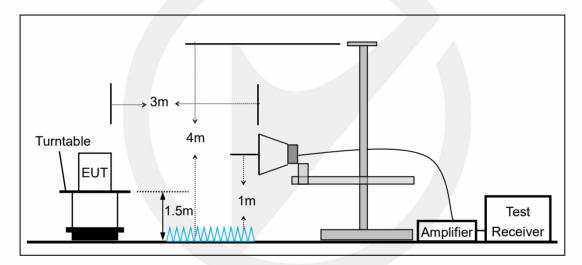

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna (loop antenna). The Antenna should be positioned with its plane vertical at the specified distance from the EUT and rotated about its vertical axis for maximum response at each azimuth about the EUT. The center of the loop shall be 1 m above the ground. For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT.


Above 30MHz:

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

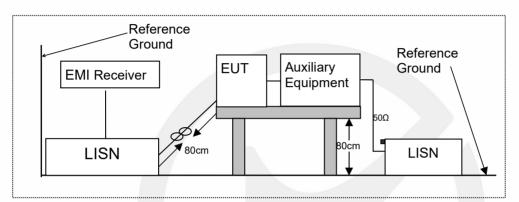
Above 1GHz:


(Note: the FCC's permission to use 1.5m as an alternative per TCBC Conf call of Dec. 2, 2014.) The EUT is placed on a turntable 1.5 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).



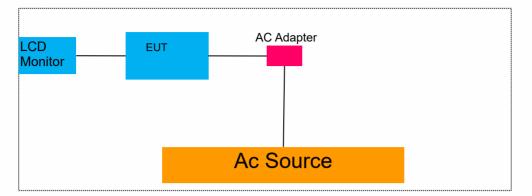
(b) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(c) Radiated Emission Test Set-Up, Frequency above 1000MHz



7.3 CONDUCTED EMISSION TEST SETUP

The mains cable of the EUT (maybe per AC/DC Adapter) must be connected to LISN. The LISN shall be placed 0.8 m from the boundary of EUT and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance is between the closest points of the LISN and the EUT. All other units of the EUT and associated equipment shall be at least 0.8m from the LISN.


Ground connections, where required for safety purposes, shall be connected to the reference ground point of the LISN and, where not otherwise provided or specified by the manufacturer, shall be of same length as the mains cable and run parallel to the mains connection at a separation distance of not more than 0.1 m.

According to the requirements in Section 13.1.4.1 of ANSI C63.4-2014 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

7.4 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM

7.5 SUPPORT EQUIPMENT

EUT Cable List and Details			
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite
1	1	1	/

Auxiliary Cable List and Details							
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite				

Auxiliary Equipment List and Details							
Description	Manufacturer	Model	Serial Number				
Notebook	Lenovo	E46L	11S168003748Z0LR0 6E0HG				
	1	1	/				

Notes:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

8 **TEST REQUIREMENTS**

8.1 DTS (6DB) BANDWIDTH

Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 DTS 01 Meas. Guidance v04

Conformance Limit

The minimum -6 dB bandwidth shall be at least 500 kHz.

Test Configuration

Test according to clause 7.1 radio frequency test setup 1

Test Procedure

The EUT was operating in O-QPSK mode and controlled its channel. Printed out the test result from the spectrum by hard copy function.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously

Set RBW = 100 kHz.

Set the video bandwidth (VBW) =300 kHz.

Set Span=2 times OBW

Set Detector = Peak.

Set Trace mode = max hold.

Set Sweep = auto couple.

Allow the trace to stabilize.

Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Measure and record the results in the test report.

Test Results

Temperature:	26° C		
Relative Humidity:	54%		
ATM Pressure:	1011 mbar		

TestMode	Antenna	Frequency[MHz]	DTS BW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
ZIGB	Ant1	2405	1.610	2404.220	2405.830	0.5	PASS
ZIGB	Ant1	2440	1.660	2439.190	2440.850	0.5	PASS
ZIGB	Ant1	2480	1.590	2479.230	2480.820	0.5	PASS

Spectrum Analyzer 1	+		Frequency v	
KEYSIGHT Input: RF R L →→ Coupling: DC Align: Auto	Input Z: 50 Ω #Atten: 40 dB PNO Best Wide Corr CCorr μW Path: Standard Gate. Off Freq Ref. Int (S) IF Gain: Low Sig Track: Off	#Avg Type: Power (RMS 12 3 4 5 6 Avg Hold: 100/100 Trig: Free Run P P P P P	Center Frequency 2.48000000 GHz	
1 Spectrum V Scale/Div 10 dB	Ref LvI Offset 12.17 dB Ref Level 30.00 dBm	ΔMkr3 1.59 MHz 0.10 dB	10.0000000 MHz	
20.0 10.0 0.00	<u>∂1</u> 3∆1	DL1-4.93 dBm	Full Span	
-10.0 -20.0 -30.0			Start Freq 2.475000000 GHz	
-40.0			Stop Freq 2.485000000 GHz	
Center 2.480000 GHz #Res BW 100 kHz	#Video BW 300 kHz	Span 10.00 MHz Sweep 1.00 ms (1001 pts)		
5 Marker Table 🛛 🔻			1.000000 MHz	
Mode Trace Scale 1 N 1 f 2 N 1 f 3 Δ1 1 f	X Y Function Fu 2.479 23 GHz -4.575 dBm - - 2.480 28 GHz 1.071 dBm - - (Δ) 1.59 MHz (Δ) 0.09615 dB - -	Inction Width Function Value	Man Freq Offset 0 Hz	
			X Axis Scale Log Lin	
	Nov 20, 2024 💬 🛆		Signal Track (Span Zoom)	
	ZIGB-Ant1-248	BO-PASS		

8.2 DTS 99% BANDWIDTH

Applicable Standard

According to RSS-Gen 6.7 and KDB 558074 D01 DTS Meas Guidance v05r02

Test Configuration

Test according to clause 7.1 radio frequency test setup 1

Test Procedure

The EUT was operating in Bluetooth mode and controlled its channel. Printed out the test result from the spectrum by hard copy function.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously

Set RBW = 1%-5% OBW(43 KHz).

Set the video bandwidth (VBW) =130 kHz.

Set Span=4 MHz

Set Detector = Peak.

Set Trace mode = max hold.

Set Sweep = auto couple.

Allow the trace to stabilize.

Use the 99 % power bandwidth function of the instrument

Measure the maximum width of the emission.

Measure and record the results in the test report.

Test Results

Temperature:	25°C
Relative Humidity:	45%
ATM Pressure:	1011 mbar

Note: N/A

TestMode	Antenna	Frequency[MHz]	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
ZIGB	Ant1	2405	2.2299	2403.9140	2406.1439		
ZIGB	Ant1	2440	2.2228	2438.9094	2441.1322		
ZIGB	Ant1	2480	2.2529	2478.9063	2481.1592		

Spectrum Analyzer 1			Frequency v
Coupling: DC Corr C	Z 50 Ω Atten: 40 dB Trig: Free Run μW Path: Standard Gate: Off Ref: Int (S) #IF Gain: Low	Center Freq: 2.480000000 GHz Avg Hold: 100/100 Radio Std: None	Center Frequency 2.480000000 GHz
1 Graph v Scale/Div 10.0 dB	Ref LvI Offset 12.17 dB Ref Value 30.00 dBm	Mkr1 2.480530000 GHz 0.79 dBm	10.000 11112
			CF Step 1.000000 MHz
10.0	1		Auto Man
-10.0 -20.0 -30.0	mm h	V1	Freq Offset 0 Hz
-40.0 -50.0		mannen	
-60.0 Center 2.480000 GHz	#Video BW 330.00 kHz	Span 10 MHz	
#Res BW 100.00 kHz		Sweep 1.00 ms (1001 pts)	
2 Metrics			
	Measure Trac	e Trace 1	
Occupied Bandwidth 2.2529 MHz	Total Power	10.5 dBm	
Transmit Freq Error x dB Bandwidth	32.752 kHz % of OBW Po 2.658 MHz x dB	wer 99.00 % -26.00 dB	Local
	20, 2024 1:01 PM		
	ZIGB-Ant1	-2480	

8.3 MAXIMUM PEAK CONDUCTED OUTPUT POWER

8.3.1 **Applicable Standard**

According to FCC Part 15.247(b)(3) and KDB 558074 DTS 01 Meas. Guidance v04

Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm).

8.3.2 **Test Configuration**

Test according to clause 7.1 radio frequency test setup 1

8.3.3 Test Procedure

According to FCC Part15.247(b)(3)

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

The testing follows FCC public Notice DA 00-705 Measurement Guidelines.

The RF output of EUT was connected to the power meter by RF cable and attnuator. The path loss was compensated to the results for each measurement.

Set to the maximum output power setting and enable the EUT transmit continuously.

Measure the conducted output power with cable loss and record the results in the test report.

Measure and record the results in the report.

According to FCC Part 15.247(b)(4):

Conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.


Note: If antenna Gain exceeds 6 dBi, then Output power Limit=30-(Gain - 6)

8.3.4 Test Results

Temperature:	26° C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

TestMode	Antenna	Frequency[MHz]	Result[dBm]	Limit[dBm]	Verdict
ZIGB	Ant1	2405	6.34	≤30	PASS
ZIGB	Ant1	2440	6.36	≤30	PASS
ZIGB	Ant1	2480	5.04	≤30	PASS

8.4 MAXIMUM POWER SPECTRAL DENSITY

8.4.1 **Applicable Standard**

According to FCC Part 15.247(e) and KDB 558074 DTS 01 Meas. Guidance v04

8.4.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

8.4.3 **Test Configuration**

Test according to clause 7.1 radio frequency test setup 1

8.4.4 **Test Procedure**

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance

The transmitter output (antenna port) was connected to the spectrum analyzer Set analyzer center frequency to DTS channel center frequency. Set the span to 1.5 times the DTS bandwidth. Set the RBW to: 3 kHz Set the VBW to: 10 kHz. Set Detector = peak. Set Sweep time = auto couple. Set Trace mode = max hold. Allow trace to fully stabilize. Use the peak marker function to determine the maximum amplitude level within the RBW. Note: If antenna Gain exceeds 6 dBi, then PSD Limit=8-(Gain - 6)

Test Results 8.4.5

Temperature:	26° C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

TestMode	Antenna	Frequency[MHz]	Result[dBm/3-100kHz]	Limit[dBm/3kHz]	Verdict
ZIGB	Ant1	2405	-9.26	≤8.00	PASS
ZIGB	Ant1	2440	-8.99	≤8.00	PASS
ZIGB	Ant1	2480	-10.47	≤8.00	PASS

8.5 UNWANTED EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS

8.5.1 **Applicable Standard**

According to FCC Part 15.247(d) and KDB 558074 DTS 01 Meas. Guidance v04

8.5.2 Conformance Limit

According to FCC Part 15.247(d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

8.5.3 **Test Configuration**

Test according to clause 7.1 radio frequency test setup 1

8.5.4 Test Procedure

The transmitter output (antenna port) was connected to the spectrum analyzer

Reference level measurement

Establish a reference level by using the following procedure: Set instrument center frequency to DTS channel center frequency. Set the span to \geq 1.5 times the DTS bandwidth. Set the RBW = 100 kHz. Set the VBW \geq 3 x RBW. Set Detector = peak. Set Sweep time = auto couple. Set Trace mode = max hold. Allow trace to fully stabilize. Use the peak marker function to determine the maximum PSD level. Note that the channel found to contain the maximum PSD level can be used to establish the reference level. **Emission level measurement** Set the center frequency and span to encompass frequency range to be measured.

- Set the RBW = 100 kHz.
- Set the VBW =300 kHz.
- Set Detector = peak

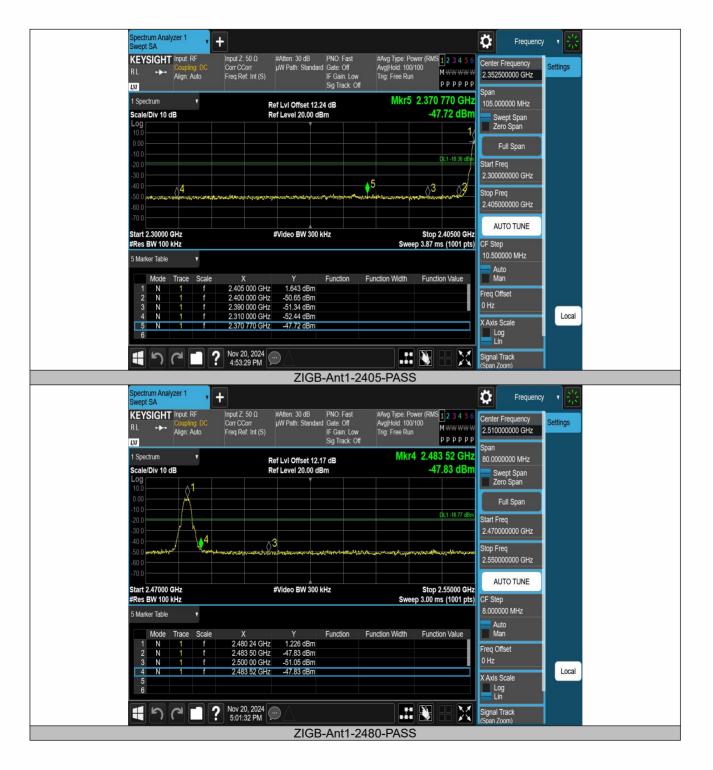
Sweep time = auto couple.

Trace mode = max hold.

Allow trace to fully stabilize.

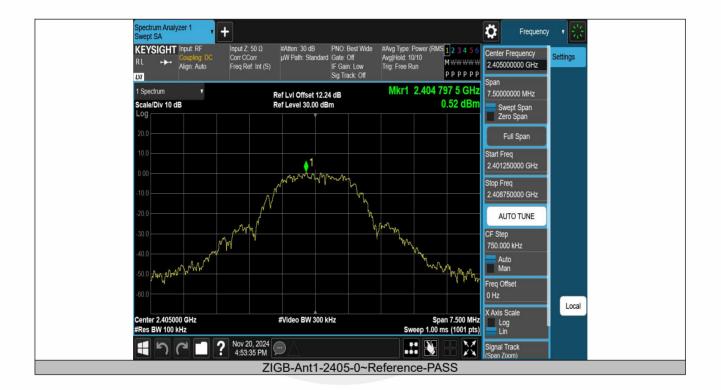
Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements . Report the three highest emissions relative to the limit.

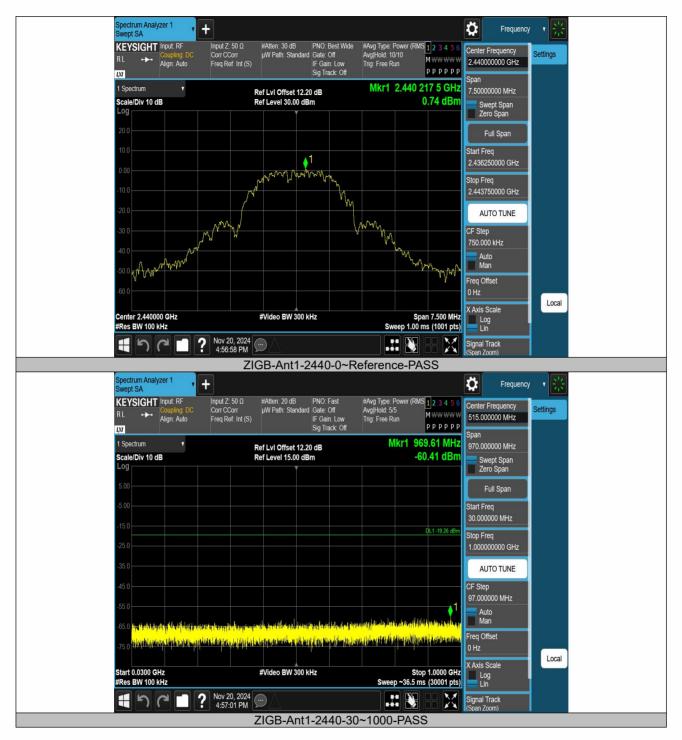

8.5.5 Test Results

Temperature:	26° C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

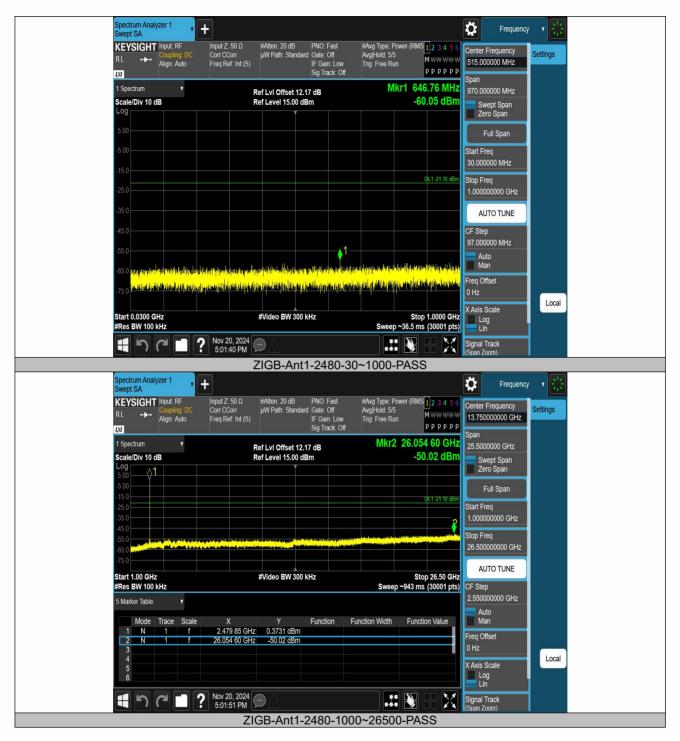
8.5.6 Band edge measurements


TestMode	Antenna	ChName	Frequency[MHz]	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict
ZIGB	Ant1	Low	2405	1.64	-47.72	≤-18.36	PASS
ZIGB	Ant1	High	2480	1.23	-47.83	≤-18.77	PASS

TestMode	Antenna	Frequency[MHz]	FreqRange [MHz]	RefLevel [dBm]	Result[dBm]	Limit[dBm]	Verdict
ZIGB	Ant1	2405	0~Reference	0.52	0.52		PASS
ZIGB	Ant1	2405	30~1000	0.52	-60.69	≤-19.48	PASS
ZIGB	Ant1	2405	1000~26500	0.52	-50	≤-19.48	PASS
ZIGB	Ant1	2440	0~Reference	0.74	0.74		PASS
ZIGB	Ant1	2440	30~1000	0.74	-60.41	≤-19.26	PASS
ZIGB	Ant1	2440	1000~26500	0.74	-50.25	≤-19.26	PASS
ZIGB	Ant1	2480	0~Reference	-1.10	-1.10		PASS
ZIGB	Ant1	2480	30~1000	-1.10	-60.05	≤-21.1	PASS
ZIGB	Ant1	2480	1000~26500	-1.10	-50.02	≤-21.1	PASS


8.5.7 **Conducted Spurious Emission**

Spectrum Analyzer 1			Frequency V
KEYSIGHT Input: RF	iput Z: 50 Ω #Atten: 20 dB PNO: Fast orr CCorr uW Path: Standard Gate: Off	#Avg Type: Power (RMS 1 2 3 4 5 6 Avg Hold: 5/5	Center Frequency Settings
	req Ref: Int (S) IF Gain: Low Sig Track: Off	Trig: Free Run	515.000000 MHz
1 Spectrum V	Ref LvI Offset 12.24 dB	Mkr1 878.78 MHz	Span 970.000000 MHz
Scale/Div 10 dB	Ref Level 15.00 dBm	-60.69 dBm	Swept Span Zero Span
5.00			
-5.00			Full Span Start Freq
-15.0			30.000000 MHz
-25.0		DL1 -19.48 dBm	Stop Freq 1.000000000 GHz
-35.0			
-45.0			AUTO TUNE CF Step
-55.0			97.000000 MHz
	an at see and a new pole of a net pipeline in the letter of the set	a na a cheala bhriachd bhliach an an Annaidh rainn an Annaidh ann a dh	Auto Man
	<mark>alan panangan kanangan sa panangan kanangan kanangan kanangan kanangan kanangan kanangan kanangan kanangan kan Internet kanangan kana</mark>		Freq Offset
			0 Hz
Start 0.0300 GHz #Res BW 100 kHz	#Video BW 300 kHz	Stop 1.0000 GHz Sweep ~36.5 ms (30001 pts)	X Axis Scale
	Nov 20, 2024 4:53:39 PM		Signal Track (Span Zoom)
	ZIGB-Ant1-2405-3		(Span Zoom)
Spectrum Analyzer 1			Frequency 🔻 💥
KEYSIGHT Input: RF	iput Ζ: 50 Ω #Atten: 20 dB PNO: Fast orr CCorr μW Path: Standard Gate: Off	#Avg Type: Power (RMS 1 2 3 4 5 6 Avg Hold: 5/5	Center Frequency Settings
	req Ref: Int (S) IF Gain: Low Sig Track: Off	Trig: Free Run PPPPP	13.750000000 GHz
1 Spectrum V	Ref LvI Offset 12.24 dB	Mkr2 25.738 40 GHz	Span 25.5000000 GHz
Scale/Div 10 dB	Ref Level 15.00 dBm	-50.00 dBm	Swept Span Zero Span
5.00 -5.00			Full Span
-15.0		DL1-19.48 dBm	Start Freq
-35.0		2	1.000000000 GHz
-55.0 -65.0			Stop Freq 26.500000000 GHz
-75.0			AUTO TUNE
Start 1.00 GHz #Res BW 100 kHz	#Video BW 300 kHz	Stop 26.50 GHz Sweep ~943 ms (30001 pts)	CF Step
5 Marker Table 🔹 🔻			2.550000000 GHz
Mode Trace Scale		Function Width Function Value	Auto Man
	2.405 05 GHz 0.6085 dBm 25.738 40 GHz -50.00 dBm		Freq Offset 0 Hz
4 5			X Axis Scale
6			Log Lin
	Nov 20, 2024		Signal Track (Span Zoom)
	ZIGB-Ant1-2405-10		



8.6 RADIATED SPURIOUS EMISSION

8.6.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and KDB 558074 DTS 01 Meas. Guidance v04

8.6.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

MHz	MHz	MHz	GHz			
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15			
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46			
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75			
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5			
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2			
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5			
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7			
6.26775-6.26825	123-138	2200-2300	14.47-14.5			
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2			
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4			
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12			
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0			
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8			
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5			
12.57675-12.57725	322-335.4	3600-4400	(2)			
13.36-13.41						

According to FCC Part15.205, the level of any transmitter spurious emission in Restricted bands shall not exceed the level of the emission specified in the following table

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009-0.490	2400/F(KHz)	20 log (uV/m)	300
0.490-1.705	2400/F(KHz)	20 log (uV/m)	30
1.705-30	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

8.6.3 Test Configuration

Test according to clause 7.2 radio frequency test setup 2

8.6.4 Test Procedure

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

For Above 1GHz:

The EUT was placed on a turn table which is 1.5m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz

 $\mathsf{VBW} \geq \mathsf{RBW}$

Sweep = auto Detector function = peak

Trace = max hold For Below 1GHz: The EUT was placed on a turn table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Span = wide enough to fully capture the emission being measured RBW = 100 kHz for VBW > RBW Sweep = auto Detector function = peak Trace = max hold For Below 30MHz: The EUT was placed on a turn table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Span = wide enough to fully capture the emission being measured RBW = 9kHz $VBW \ge RBW$ Sweep = auto Detector function = peak Trace = max holdFor Below 150KHz: The EUT was placed on a turn table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Span = wide enough to fully capture the emission being measured RBW = 200Hz $VBW \ge RBW$ Sweep = auto Detector function = peak Trace = max hold Follow the guidelines in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT. measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization, etc. A pre-amp and a high pass filter are required for this test, in order to provide the measuring system with sufficient sensitivity. Allow the trace to stabilize. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, which must comply with the limit specified in Section 15.35(b). Submit this data.

Now set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit. Submit this data.

Repeat above procedures until all frequency measured was complete.

8.6.5 Test Results

Temperature:	26° C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

Spurious Emission below 30MHz (9KHz to 30MHz)

Test mode:	TX Mode
Tool modo.	17(10000

Test mode:		lode						
Freq. (MHz)	Ant.Pol.		ssion BuV/m)	Limit 3m((dBuV/m)	Over(dB)		
	H/V	PK	AV	PK	AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor

Spurious Emission Above 1GHz (1GHz to 25GHz)

Test mode:	O-QPSK	Frequency:	Channel 1: 2405MHz	

Freq.	Ant.Pol	Emission Lev	el(dBuV/m)	Limit 3m((dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	
7456.58	V	55.36	41.47	74.00	54.00	-18.64	-12.53	
10103.43	V	54.53	40.68	74.00	54.00	-19.47	-13.32	
14103.52	V	55.04	41.18	74.00	54.00	-18.96	-12.82	
7717.52	Н	55.20	41.33	74.00	54.00	-18.80	-12.67	
9869.64	Н	55.02	41.17	74.00	54.00	-18.98	-12.83	
12498.47	Н	54.58	54.58 40.75		74.00 54.00		-13.25	

Test mode: **O-QPSK**

Frequency:

Channel 8: 2440MHz

Freq.	Ant.Pol	Emission Lev	vel(dBuV/m)	Limit 3m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	
7303.01	V	55.12	41.30	74.00	54.00	-18.88	-12.70	
10788.56	V	54.76	40.88	74.00	54.00	-19.24	-13.12	
13618.79	V	55.52	41.67	74.00	54.00	-18.48	-12.33	
8164.99	Н	54.63	40.80	74.00	54.00	-19.37	-13.20	
12195.15	Н	54.87	40.96	74.00	54.00	-19.13	-13.04	
14087.22	Н	55.41	41.55	74.00	54.00	-18.59	-12.45	

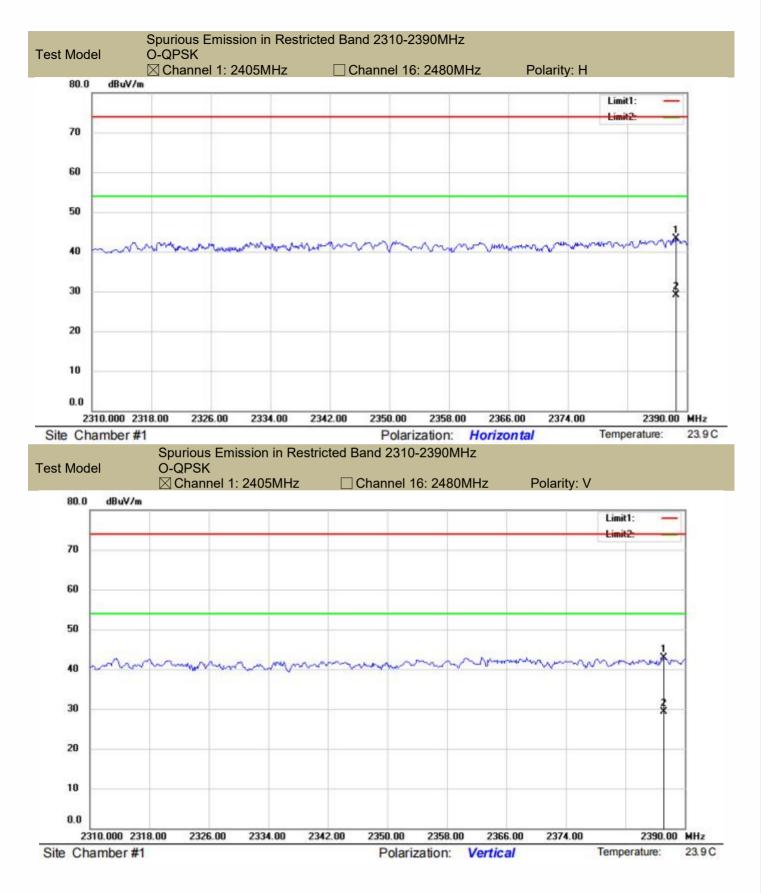
O-QPSK Channel 16: 2480MHz Test mode: Frequency:

Freq.	Ant.Pol	Emission Lev	vel(dBuV/m)	Limit 3m	(dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	
8059.48	V	55.91	42.03	74.00	54.00	-18.09	-11.97	
10283.15	V	55.61	41.74	74.00	54.00	-18.39	-12.26	
12621.90	V	55.85	41.97	74.00	54.00	-18.15	-12.03	
7807.26	Н	54.44	40.63	74.00	54.00	-19.56	-13.37	
9886.77	Н	54.60	40.75	74.00	54.00	-19.40	-13.25	
14437.60	Н	54.42	40.61	74.00	54.00	-19.58	-13.39	

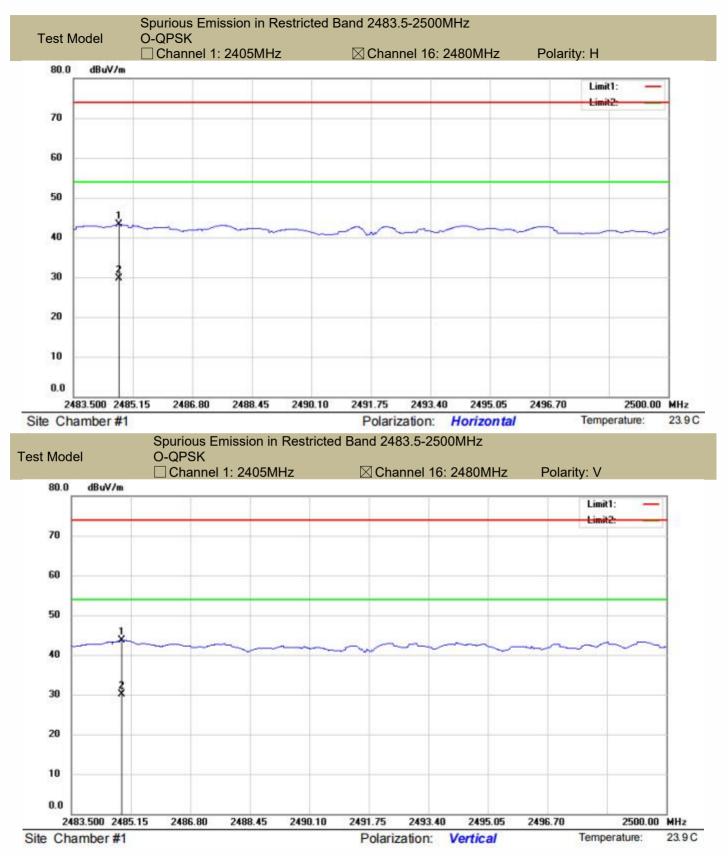
Note: (1) All Readings are Peak Value (VBW=3MHz) and Peak Value (VBW=10Hz). (2) Emission Level= Reading Level+Probe Factor +Cable Loss.

- (3) Data of measurement within this frequency range shown " -- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz

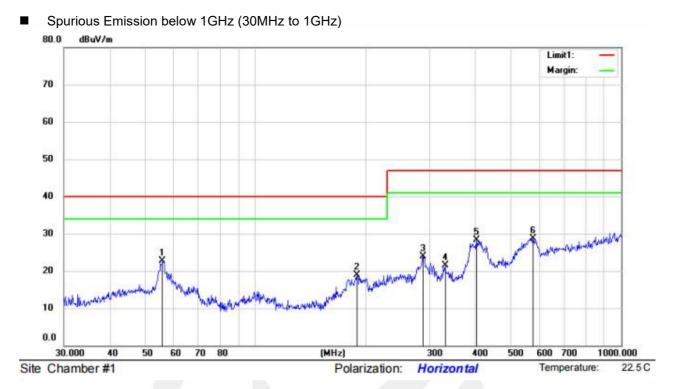
Test mode:	O-QPSK	Frequence	cy: Ch	Z	
Frequency	Polarity	PK(dBuV/m)	Limit 3m	PK(dBuV/m)	Limit 3m
(MHz)	-	(VBW=3MHz)	(dBuV/m)	(VBW=10Hz)	(dBuV/m)
2388.63	<u> </u>	43.39	74.00	29.05	54.00
2387.27	V	42.86	74.00	29.31	54.00


Test mode: **O-QPSK** Frequency: Channel 16: 2480MHz

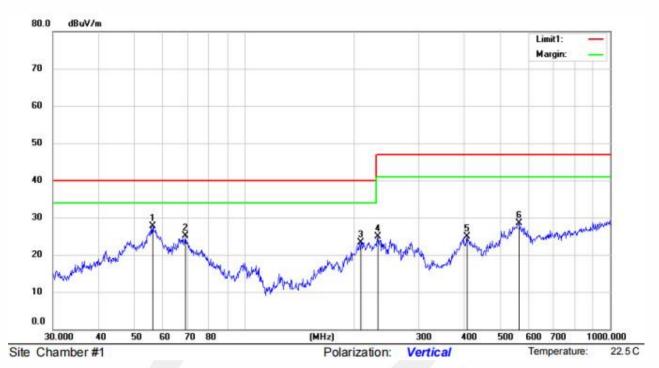
Frequency (MHz)	Polarity	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	PK(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)
2484.77	Н	43.24	74.00	29.65	54.00
2484.92	V	43.63	74.00	30.15	54.00


- Note: (1) All Readings are Peak Value (VBW=3MHz) and Peak Value (VBW=10Hz).
 - (2) Emission Level= Reading Level+Probe Factor +Cable Loss.
 - (3) Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

All the modulation modes were tested, the data of the worst mode are described in the following table



Mk.	Freq.	Reading Level	Ant. Factor	Pre Amp Gain	Cable loss	Measure- ment	Limit	Over		н	Degree	Ŭ.
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	Detector	cm	deg.	Comment
*	55.8047	38.98	13.31	30.5	0.94	22.73	40.00	-17.27	QP			
	189.7385	36.86	10.77	30.41	1.65	18.87	40.00	-21.13	QP			
	286.9823	38.07	13.67	29.9	2.15	23.99	47.00	-23.01	QP			
	330.1948	34.57	14.56	29.83	2.29	21.59	47.00	-25.41	QP			
	401.8385	38.19	16.32	29.82	3.66	28.35	47.00	-18.65	QP			
	574.6258	36.11	19.44	29.92	3.1	28.73	47.00	-18.27	QP			
	•	MHz * 55.8047 189.7385 286.9823 330.1948	Mk. Freq. Level MHz dBuV * 55.8047 38.98 189.7385 36.86 286.9823 38.07 330.1948 34.57 401.8385 38.19	Mk. Freq. Level Factor MHz dBuV dB/m * 55.8047 38.98 13.31 189.7385 36.86 10.77 286.9823 38.07 13.67 330.1948 34.57 14.56 401.8385 38.19 16.32	Mk. Freq. Level Factor Gain MHz dBuV dB/m dB * 55.8047 38.98 13.31 30.5 189.7385 36.86 10.77 30.41 286.9823 38.07 13.67 29.9 330.1948 34.57 14.56 29.83 401.8385 38.19 16.32 29.82	Mk. Freq. Level Factor Gain loss MHz dBuV dB/m dB dB * 55.8047 38.98 13.31 30.5 0.94 189.7385 36.86 10.77 30.41 1.65 286.9823 38.07 13.67 29.9 2.15 330.1948 34.57 14.56 29.82 3.66 401.8385 38.19 16.32 29.82 3.66	Mk. Freq. Level Factor Gain loss ment MHz dBuV dB/m dB dB dBuV/m * 55.8047 38.98 13.31 30.5 0.94 22.73 189.7385 36.86 10.77 30.41 1.65 18.87 286.9823 38.07 13.67 29.9 2.15 23.99 330.1948 34.57 14.56 29.83 2.29 21.59 401.8385 38.19 16.32 29.82 3.66 28.35	Mk. Freq. Level Factor Gain loss ment Limit MHz dBuV dB/m dB dB dBuV/m dBuV/m * 55.8047 38.98 13.31 30.5 0.94 22.73 40.00 189.7385 36.86 10.77 30.41 1.65 18.87 40.00 286.9823 38.07 13.67 29.9 2.15 23.99 47.00 330.1948 34.57 14.56 29.83 2.29 21.59 47.00 401.8385 38.19 16.32 29.82 3.66 28.35 47.00	Mk. Freq. Level Factor Gain loss ment Limit Over MHz dBuV dB/m dB dB dBuV/m dBuV/m dB * 55.8047 38.98 13.31 30.5 0.94 22.73 40.00 -17.27 189.7385 36.86 10.77 30.41 1.65 18.87 40.00 -21.13 286.9823 38.07 13.67 29.9 2.15 23.99 47.00 -23.01 330.1948 34.57 14.56 29.83 2.29 21.59 47.00 -25.41 401.8385 38.19 16.32 29.82 3.66 28.35 47.00 -18.65	Mk. Freq. Level Factor Gain loss ment Limit Over MHz dBuV dBuV dB dB dB dBuV/m dBuV/m dB Detector * 55.8047 38.98 13.31 30.5 0.94 22.73 40.00 -17.27 QP 189.7385 36.86 10.77 30.41 1.65 18.87 40.00 -21.13 QP 286.9823 38.07 13.67 29.9 2.15 23.99 47.00 -23.01 QP 330.1948 34.57 14.56 29.83 2.29 21.59 47.00 -25.41 QP 401.8385 38.19 16.32 29.82 3.66 28.35 47.00 -18.65 QP	Mk. Freq. Level Factor Gain loss ment Limit Over HI MHz dBuV dB/m dB dB dBuV/m dBuV/m dB Detector cm * 55.8047 38.98 13.31 30.5 0.94 22.73 40.00 -17.27 QP - 189.7385 36.86 10.77 30.41 1.65 18.87 40.00 -21.13 QP - 286.9823 38.07 13.67 29.9 2.15 23.99 47.00 -23.01 QP - 330.1948 34.57 14.56 29.83 2.29 21.59 47.00 -25.41 QP 401.8385 38.19 16.32 29.82 3.66 28.35 47.00 -18.65 QP	Mk. Freq. Level Factor Gain loss ment Limit Over HI Degree MHz dBuV dB/m dB dB dBuV/m dBuV/m dB Detector cm deg. * 55.8047 38.98 13.31 30.5 0.94 22.73 40.00 -17.27 QP -


*:Maximum data x:Over limit I:over margin Operator: Ccyf

Remark:

1. Measurement (dBµV/m) = Antenna Factor(dB) - Amp Factor(dB) + Cable Loss(dB) + Reading(dBµV/m)

2. Over (dB) = Measurement (dB μ V/m) - Limit (dB μ V/m)

No.	Mk.	Freq.	Reading Level	Ant. Factor	Pre Amp Gain	Cable loss	Measure- ment	Limit	Over		н	Degree	2
		MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	Detector	cm	deg.	Comment
1	*	56.1974	44.12	13.21	30.5	0.95	27.78	40.00	-12.22	QP			
2		69.1140	44.55	10.08	30.55	1.1	25.18	40.00	-14.82	QP			
3		207.8500	40.02	11.82	30.32	1.77	23.29	40.00	-16.71	QP			
4		231.7178	40.65	12.49	30.19	1.97	24.92	47.00	-22.08	QP			
5		406.0880	34.76	16.37	29.82	3.58	24.89	47.00	-22.11	QP			
6	(562.6622	36.22	19.18	29.9	3.1	28.60	47.00	-18.40	QP			
		NUMBER OF STREET		202202000000	250725000		2-23-5-27-7	2000 (2000 (2000 (2000 (2000 (2000 (2000 (2000 (2000 (2000 (2000 (2000 (2000 (2000 (2000 (2000 (2000 (2000 (200	1000 CH 1000 CH 1000				

*:Maximum data x:Over limit l:over margin Operator: Ccyf

Remark:

1. Measurement (dBµV/m) = Antenna Factor(dB) - Amp Factor(dB) + Cable Loss(dB) + Reading(dBµV/m)

2. Over (dB) = Measurement (dB μ V/m) - Limit (dB μ V/m)

8.7 CONDUCTED EMISSIONS TEST

Applicable Standard

According to FCC Part 15.207(a)

Conformance Limit

Co	onducted Emission Limit	
Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56	56-46
0.5-5.0	56	46
5.0-30.0	60	50
0.15-0.5 0.5-5.0	66-56 56	56-46 46

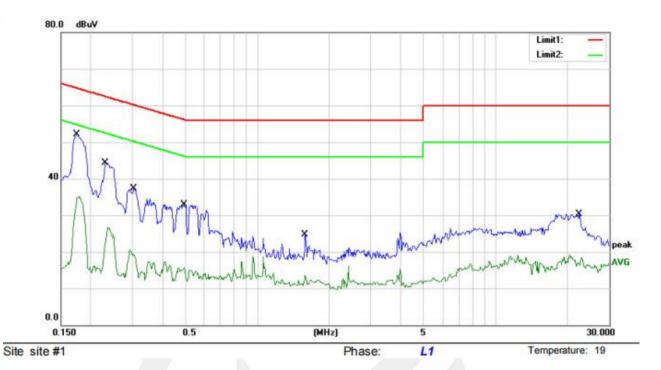
Note: 1. The lower limit shall apply at the transition frequencies

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

Test Configuration

Test according to clause 7.3 conducted emission test setup

Test Procedure


The EUT was placed on a table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Repeat above procedures until all frequency measured were complete.

Test Results

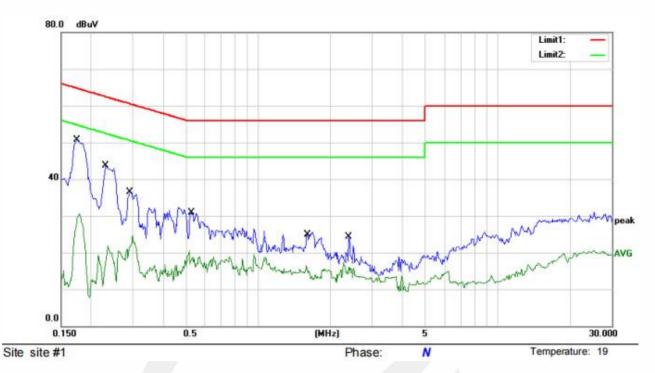
Pass

The 120V &240V voltagehave been tested, and the worst result recorded was report as below:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1750	52.19	0.00	52.19	64.72	-12.53	QP	
2		0.1750	35.13	0.00	35.13	54.72	-19.59	AVG	
3		0.2300	44.40	0.00	44.40	62.45	-18.05	QP	
4		0.2300	26.61	0.00	26.61	52.45	-25.84	AVG	
5		0.3050	37.24	0.00	37.24	60.11	-22.87	QP	
6		0.3050	20.42	0.00	20.42	50.11	-29.69	AVG	
7		0.4914	32.95	0.00	32.95	56.14	-23.19	QP	
8		0.4914	15.67	0.00	15.67	46.14	-30.47	AVG	
9		1.5900	24.80	0.00	24.80	56.00	-31.20	QP	
10		1.5900	13.61	0.00	13.61	46.00	-32.39	AVG	
11		22.5250	30.22	0.00	30.22	60.00	-29.78	QP	
12		22.5250	19.22	0.00	19.22	50.00	-30.78	AVG	

*:Maximum data x:Over limit

I:over margin


Comment: Factor build in receiver. Operator: Jian

Remark:

1. Measurement (dBµV) = AMN Factor (dB) + Cable Loss (dB) + Reading (dBµV)

2. Over (dB) = Measurement (dB μ V) - Limit (dB μ V)

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1750	50.79	0.00	50.79	64.72	-13.93	QP	
2		0.1750	30.56	0.00	30.56	54.72	-24.16	AVG	
3		0.2300	43.69	0.00	43.69	62.45	-18.76	QP	
4		0.2300	21.96	0.00	21.96	52.45	-30.49	AVG	
5		0.2900	36.54	0.00	36.54	60.52	-23.98	QP	
6		0.2900	24.77	0.00	24.77	50.52	-25.75	AVG	
7		0.5237	30.88	0.00	30.88	56.00	-25.12	QP	
8		0.5237	20.40	0.00	20.40	46.00	-25.60	AVG	
9		1.6020	24.88	0.00	24.88	56.00	-31.12	QP	
10		1.6020	16.52	0.00	16.52	46.00	-29.48	AVG	
11		2.3900	24.21	0.00	24.21	56.00	-31.79	QP	
12		2.3900	17.27	0.00	17.27	46.00	-28.73	AVG	

*:Maximum data x:Over limit l:over margin

Comment: Factor build in receiver.

Operator: Jian

Remark:

1. Measurement (dBµV) = AMN Factor (dB) + Cable Loss (dB) + Reading (dBµV)

2. Over (dB) = Measurement (dB μ V) - Limit (dB μ V)

8.8 ANTENNA APPLICATION

Antenna Requirement

Standard	Requirement
FCC CRF Part 15.203	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Result

PASS.

Note:

The EUT has 1 antenna: a Internal Antenna for zigbee, the gain is 2 dBi;

- \boxtimes Antenna use a permanently attached antenna which is not replaceable.
- Not using a standard antenna jack or electrical connector for antenna replacement
- The antenna has to be professionally installed (please provide method of installation)

which in accordance to section 15.203, please refer to the internal photos.

Frequency(MHz)	Ant_F(dB)	Cab_L(dB)	Preamp(dB)	Correct Factor(dB)	
0.009	20.6	0.03	\	20.63	
0.15	20.7	0.1	\	20.8	
1	20.9	0.15	\	21.05	
10	20.1	0.28	\	20.38	
30	18.8	0.45	\	19.25	
00	44 7	0.00	07.0	45.50	
30	11.7	0.62	27.9	-15.58	
100	12.5	1.02	27.8	-14.28	
300	12.9	1.91	27.5	-12.69	
600	19.2	2.92	27	-4.88	
800	21.1	3.54	26.6	-1.96	
1000	22.3	4.17	26.2	0.27	
1000	25.6	1.76	41.4	-14.04	
3000	28.9	3.27	43.2	-11.03	
5000	31.1	4.2	44.6	-9.3	
8000	36.2	5.95	44.7	-2.55	
10000	38.4	6.3	43.9	0.8	
12000	38.5	7.14	42.3	3.34	
15000	40.2	8.15	41.4	6.95	
18000	45.4	9.02	41.3	13.12	
40000	07.0	1.01	47.0	0.40	
18000	37.9	1.81	47.9	-8.19	
21000	37.9	1.95	48.7	-8.85	
25000	39.3	2.01	42.8	-1.49	
28000	39.6	2.16	46.0	-4.24	
31000	41.2	2.24	44.5	-1.06	
34000	41.5	2.29	46.6	-2.81	
37000	43.8	2.30	46.4	-0.3	
40000	43.2	2.50	42.2	3.5	

Detail of factor for radiated emission

----- END OF REPORT ------