

SAR TEST REPORT

Product Name: NOTEBOOK COMPUTER

FCC ID: 2BN3V-S1

- Issued For : Shenzhen Colorful Yugong Applied Technology Innovation Co., Ltd. 1103, 11th Floor, Building 4, Shenzhen New Generation Industrial Park, No. 136, ZhongkangRoad, Meilin Street, Futian District, Shenzhen, China
- Issued By : Shenzhen LGT Test Service Co., Ltd.

Room 205, Building 13, Zone B, Zhenxiong Industrial Park, No.177, Renmin West Road, Jinsha, Kengzi Street, Pingshan District, Shenzhen, Guangdong, China

Report Number: LGT25C029HA02

Sample Received Date: Mar. 06, 2025

Date of Test: Mar. 27, 2025~ Mar. 28, 2025

Date of Issue: Mar. 28, 2025

Max. SAR (1g): Body: 0.130 W/kg

The test report is effective only with both signature and specialized stamp. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report only apply to the tested sample.

Table of Contents

1. General Information	5			
1.1 EUT Description	5			
1.2 Test Environment	6			
1.3 Test Factory	6			
2. Test Standards and Limits	7			
3. SAR Measurement System	8			
3.1 Definition of Specific Absorption Rate (SAR)	8			
3.2 SAR System	8			
4. Tissue Simulating Liquids	11			
4.1 Simulating Liquids Parameter Check	11			
5. SAR System Validation	13			
5.1 Validation System	13			
5.2 Validation Result	14			
6. SAR Evaluation Procedures	15			
7. EUT Antenna Location Sketch	16			
8. EUT Test Position	17			
8.1 Body-supported Position Conditions	17			
9. Uncertainty	18			
9.1 Measurement Uncertainty	18			
9.2 System validation Uncertainty	19			
10. Conducted Power Measurement	20			
10.1 Test Result	20			
11. EUT and Test Setup Photo	25			
11.1 EUT Photos	25			
11.2 Setup Photos	25			
12. SAR Result Summary	26			
12.1 Body SAR	26			
13. Equipment List	27			
Appendix A. System Validation Plots	28			
Appendix B. SAR Test Plots	38			
 7. EUT Antenna Location Sketch 8. EUT Test Position 8.1 Body-supported Position Conditions 9. Uncertainty 9.1 Measurement Uncertainty 9.2 System validation Uncertainty 10. Conducted Power Measurement 10.1 Test Result 11. EUT and Test Setup Photo 11.1 EUT Photos 11.2 Setup Photos 12. SAR Result Summary 12.1 Body SAR 13. Equipment List Appendix A. System Validation Plots				

Revision History

Rev.	Issue Date	Contents	
00	00 Mar. 28, 2025 Initial Issue		

TEST REPORT CERTIFICATION

Applicant	Shenzhen Colorful Yugong Applied Technology Innovation Co., Ltd.
Address	1103, 11th Floor, Building 4, Shenzhen New Generation Industrial Park, No. 136, ZhongkangRoad, Meilin Street, Futian District, Shenzhen, China
Manufacture	Shenzhen Colorful Yugong Applied Technology Innovation Co., Ltd.
Address	1103, 11th Floor, Building 4, Shenzhen New Generation Industrial Park, No. 136, ZhongkangRoad, Meilin Street, Futian District, Shenzhen, China
Product Name	NOTEBOOK COMPUTER
Trademark	COLORFUL
Model Name	S1, COLORFUL S1************, COLORFUL Rimbook S1************, S1***********, Rimbook S1************
Sample number	LGT2503028-1

APPLICABLE STANDARDS							
STANDARD TEST RESULTS							
ANSI/IEEE Std. C95.1-2019 FCC 47 CFR Part 2 (2.1093) IEEE 1528: 2013	PASS						

Prepared by:

Deng Deng

Deng Deng Engineer Approved by:

tali

Vita Li Manager

1. General Information

Environmental evaluation measurements of specific absorption rate (SAR) distributions in emulated human head and body tissues exposed to radio frequency (RF) radiation from wireless portable devices for compliance with the rules and regulations of the U.S. Federal Communications Commission (FCC).

1.1 EUT Description

Product Name	NOTEBOOK COMPUTER						
Trademark	COLORFUL						
Model Name	S1						
Series Model		COLORFUL S1********************, COLORFUL Rimbook S1************************************					
Model Difference	"*" represents for 0-9, a-z, A-Z, "-" or space channels or different colors.	ces to indicate different sales					
Device Category	Portable						
Product stage	Production unit						
Hardware Version	N/A						
Software Version	N/A						
Frequency Range	WLAN 802.11b/g/n20/ax20: 2412 to 2472 WLAN 802.11n40/ax40: 2422 to 2462MH WLAN 802.11a/n20/n40/ac20/ac40/ac80/ WLAN 802.11a/n20/n40/ac20/ac40/ac80/ WLAN 802.11a/n20/n40/ac20/ac40/ac80/ WLAN 802.11a/n20/n40/ac20/ac40/ac80/ Bluetooth: 2402 MHz to 2480 MHz	z /ax20/ax40/ax80: 5150 to 5250 MHz /ax20/ax40/ax80: 5250 to 5350 MHz /ax20/ax40/ax80: 5470 to 5725 MHz					
	Mode	Body (W/ kg)					
Max. Reported	2.4G WLAN	0.044					
SAR(1g):	5.2G WLAN	0.130					
(Limit:1.6W/kg) Test distance:	5.3G WLAN 0.094						
Body:0mm	5.6G WLAN 0.065						
_ • • • • • • • • • • • • • • • • • • •	5.8G WLAN	0.116					
Battery	Rated Voltage: DC 11.55V Capacity: 5200mAh						
Operating Mode:	2.4G WLAN: 802.11b(DSSS): CCK, DQPSK, DBPSK 802.11g(OFDM): BPSK, QPSK,16-QAM,64-QAM 802.11n(OFDM): BPSK, QPSK,16-QAM,64-QAM 802.11ax(OFDM, OFDMA): BPSK, QPSK, 16-QAM, 64-QAM, 256-QAM, 1024QAM 5G WLAN: 802.11a(OFDM): BPSK, QPSK,16-QAM,64-QAM 802.11n(OFDM): BPSK, QPSK,16-QAM,64-QAM 802.11ac (OFDM): BPSK, QPSK,16-QAM,64-QAM, 802.11ax(OFDM, OFDMA): BPSK, QPSK, 16-QAM, 256-QAM, 1024QAM Bluetooth: GFSK +π/4DQPSK+8DPSK						
Antenna Specification	Bluetooth: FPC Antenna WLAN: FPC Antenna						
Operating Mode	Maximum continuous output						
Hotspot Mode	Not Support						
DTM Mode	Not Support						

1.2 Test Environment

Ambient conditions in the SAR laboratory:

Test Environment				
bient conditions in the SAR laboratory:				
Items	Required			
Temperature (°C)	18-25			
Humidity (%RH)	30-70			

1.3 Test Factory

Company Name:	Shenzhen LGT Test Service Co., Ltd.
Address:Room 205, Building 13, Zone B, Zhenxiong Industrial Park, No.1 Renmin West Road, Jinsha, Kengzi Street, Pingshan District, Shenzhen, Guangdong, China	
	FCC Registration No.: 746540
Accreditation Certificate	A2LA Certificate No.: 6727.01
	IC Registration No.: CN0136

2. Test Standards and Limits

No.	Identity	Document Title
1	47 CFR Part 2	Frequency Allocations and Radio Treaty Matters; General Rules and Regulations
2	ANSI/IEEE Std. C95.1-2019	IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz
3	IEEE Std. 1528-2013	Recommended Practice for Determining the Peak Spatial- Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
4	FCC KDB 447498 D01 v06	Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies
5	FCC KDB 865664 D01 v01r04	SAR Measurement 100 MHz to 6 GHz
6	FCC KDB 865664 D02 v01r02	RF Exposure Reporting
7	FCC KDB 648474 D04 v01r03	SAR Evaluation Considerations for Wireless Handsets
8	FCC KDB 248227 D01 Wi-Fi SAR v02r02	SAR Considerations for 802.11 Devices
9	FCC 616217 D04 SAR for laptop and tablets v01r02	SAR Evaluation Considerations For Laptop, Notebook, Netbook And Tablet Computers

(A). Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	<u>Partial-Body</u>	Hands, Wrists, Feet and Ankles			
0.4 8.0		20.0			
(B). Limits for General Popula		tion/Uncontrolled Exposure (W/kg)			
Whole-Body Partial-Body		Hands. Wrists. Feet and Ankles			

0.08 1.6 4.0

NOTE: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

Population/Uncontrolled Environments:

Are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Occupational/Controlled Environments:

Are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

NOTE GENERAL POPULATION/UNCONTROLLED EXPOSURE PARTIAL BODY LIMIT 1.6 W/kg

3. SAR Measurement System

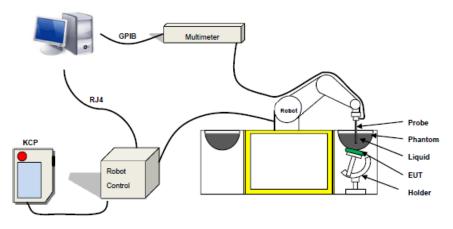
3.1 Definition of Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be related to the electrical field in the tissue by


$$SAR = \frac{\sigma E^2}{\rho}$$

Where: σ is the conductivity of the tissue;

 ρ is the mass density of the tissue and E is the RMS electrical field strength.

3.2 SAR System

MVG SAR System Diagram:

COMOSAR is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The COMOSAR system consists of the following items: - Main computer to control all the system

- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

The following figure shows the system.

The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 1g mass.

3.2.1 Probe

For the measurements the Specific Dosimetric E-Field Probe SN 04/22 EPGO364 with following specifications is used

- Probe Length: 330 mm
- Length of Individual Dipoles: 2mm
- Maximum external diameter: 8 mm
- Probe Tip External Diameter: 2.5 mm
- Distance between dipole/probe extremity: 1 mm
- Dynamic range: 0.01-100 W/kg
- Probe linearity: 3%
- Axial Isotropy: < 0.10 dB
- Spherical Isotropy: < 0.10 dB
- Calibration range: 600 MHz to 6 GHz for head & body simulating liquid.
- -Angle between probe axis (evaluation axis) and surface normal line: less than 30°

Figure 1-MVG COMOSAR Dosimetric E field Probe

3.2.2 Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

Figure-SN 06/22 SAM 148

Figure-SN 06/22 ELLI 51

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of \pm 0.5 mm would produce a SAR uncertainty of \pm 20 %. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

3.2.3 Device Holder

4. Tissue Simulating Liquids

4.1 Simulating Liquids Parameter Check

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values

The uncertainty due to the liquid conductivity and permittivity arises from two different sources. The first source of error is the deviation of the liquid conductivity from its target value (max $_5\%$) and the second source of error arises from the measurement procedures used to assess conductivity. The uncertainty shall be assessed using a rectangular probability For 1 g averaging, the maximum weighting coefficient for SAR is 0,5.

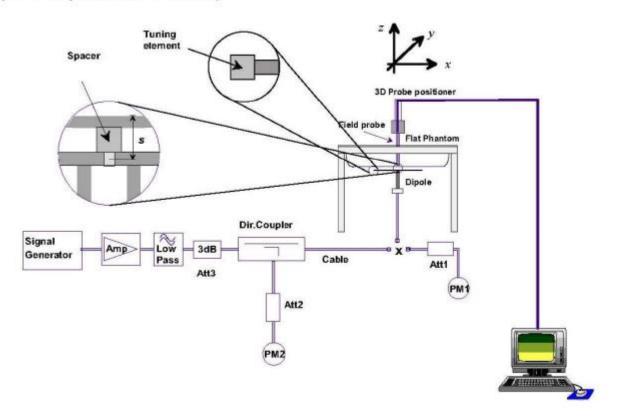
IEEE SCC-34/SC-2 RECOMMENDED TISSUE DIELECTRIC PARAMETERS

The head and body tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 have been incorporated in the following table.

Frequency	εr	σ 10g S/m
300	45.3	0.87
450	43.5	0.87
750	41.9	0.89
835	41.5	0.90
900	41.5	0.97
1450	40.5	1.20
1800 to 2000	40.0	1.40
2100	39.8	1.49
2450	39.2	1.80
2600	39.0	1.96
3000	38.5	2.40
3500	37.9	2.91
4000	37.4	3.43
4500	36.8	3.94
5000	36.2	4.45
5200	36.0	4.66
5400	35.8	4.86
5600	35.5	5.07
5800	35.3	5.27

LIQUID MEASUREMENT RESULTS

Data	Ambient		Simulati	ng Liquid	5	T (Deviation	Limited
Date	Temp. [°C]	Humidity %	Frequency (MHz)	Temp. [°C]	Parameters	Target	Measured	%	%
2025 02 20	20.9	E A	2450	20.5	Permittivity	39.20	39.70	1.28	±5
2025-03-28	20.8	54	2450		Conductivity	1.80	1.77	-1.67	±5
2025-03-27	20.9	54	5200	20.7	Permittivity	36.00	36.75	2.08	±5
					Conductivity	4.66	4.65	-0.21	±5
2025-03-27	24		F 400	00.7	Permittivity	35.80	36.41	1.70	±5
	21	55	5400	20.7	Conductivity	4.86	4.87	0.21	±5
0005 00 07		55	5000	00.0	Permittivity	35.55	35.86	0.87	±5
2025-03-27	21.1		5600	20.8	Conductivity	5.07	5.13	1.28	±5
2025 02 27	04.0		5000	20.9	Permittivity	35.30	35.80	1.42	±5
2025-03-27	21.2	55	5800		Conductivity	5.27	5.23	-0.76	±5



5. SAR System Validation

5.1 Validation System

Each MVG system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the MVG software, enable the user to conduct the system performance check and system validation. System kit includes a dipole, and dipole device holder.

The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system validation setup is shown as below.

5.2 Validation Result

Comparing to the original SAR value provided by MVG, the validation data should be within its specification of ± 10 %.

Date	Freq.	Power	Tested Value	Normalized SAR	Target SAR	Tolerance	Limit
	(MHz)	(mW)	(W/Kg)	(W/kg)	1g(W/kg)	(%)	(%)
2025-03-28	2450	100	5.463	54.63	54.21	0.77	10
2025-03-27	5200	100	8.056	80.56	80.96	-0.49	10
2025-03-27	5400	100	8.486	84.86	84.63	0.27	10
2025-03-27	5600	100	8.095	80.95	80.97	-0.02	10
2025-03-27	5800	100	8.194	81.94	81.68	0.32	10

Note:

- 1. The tolerance limit of System validation $\pm 10\%$.
- 2. The dipole input power (forward power) was 100 mW.
- 3. The results are normalized to 1 W input power.

6. SAR Evaluation Procedures

The procedure for assessing the average SAR value consists of the following steps:

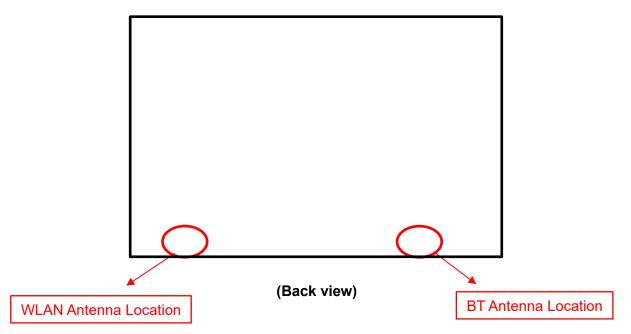
The following steps are used for each test position

- Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface

- Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.

- Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.

- Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8*4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.


Area Scan& Zoom Scan

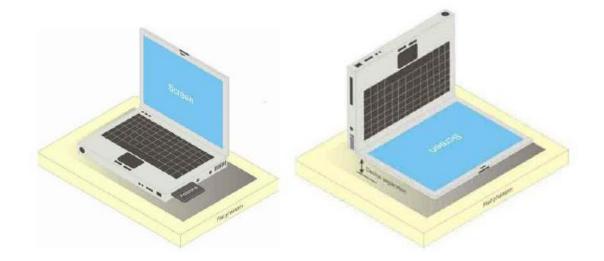
First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. Area scan and zoom scan resolution setting follows KDB 865664 D01 quoted below.

When the 1-g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR.

7. EUT Antenna Location Sketch

It is a NOTEBOOK COMPUTER, support WLAN/BT mode.

Note 1: The antenna information refer the manufacturer provide report, applicable only to the tested sample identified in the report.



8. EUT Test Position

The EUT was tested on the rear side.

8.1 Body-supported Position Conditions

The required minimum test separation distance for incorporating transmitters and antennas into laptop , notebook and netbook computer displays is determined with the display screen opened at an angle of 90° to the keyboard compartment. If a computer has other operating configurations that require a di fferent or more conservative display to keyboard angle for normal use, a KDB inquiry should be submitted to determine the test requirements. When antennas are incorporated in the keyboard section of a laptop computer, SAR is required for the bottom surface of the keyboard. Provided tablet use condition ns are not supported by the laptop computer, SAR tests for bystander exposure from the edges of the Keyboard and display screen of laptop computers are generally not required.

9. Uncertainty

9.1 Measurement Uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in IEEE 1528: 2013. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

approximately the 95% confider		<u> </u>	coverage				1	
Uncertainty Component	Tol (+- %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+-%)	vi
Measurement System			. <u></u>					
Probe calibration	5.8	N	1	1	1	5.8	5.8	8
Axial Isotropy	3.5	R	$\sqrt{3}$	√0.5	√0.5	1.43	1.43	8
Hemispherical Isotropy	5.9	R	$\sqrt{3}$	√0.5	√0.5	2.41	2.41	8
Boundary effect	1	R	$\sqrt{3}$	1	1	0.58	0.58	8
Linearity	4.7	R	$\sqrt{3}$	1	1	2.71	2.71	8
System detection limits	1	R	$\sqrt{3}$	1	1	0.58	0.58	8
Modulation response	3	R	$\sqrt{3}$	1	1	1.73	1.73	8
Readout Electronics	0.5	Ν	1	1	1	0.50	0.50	8
Response Time	0	R	$\sqrt{3}$	1	1	0.00	0.00	8
Integration Time	1.4	R	$\sqrt{3}$	1	1	1.81	1.81	8
RF ambient conditions-Noise	3	R	$\sqrt{3}$	1	1	1.73	1.73	8
RF ambient conditions- reflections	3	R	$\sqrt{3}$	1	1	1.73	1.73	8
Probe positioner mechanical tolerance	1.4	R	√3	1	1	0.81	0.81	8
Probe positioning with respect to phantom shell	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	ø
Extrapolation, Interpolation and Integration Algoritms for Max, SAR	2.3	R	$\sqrt{3}$	1	1	1.33	1.33	8
Test sample Related								
Test sample positioning	2.6	Ν	1	1	1	2.60	2.60	11
Device holder uncertainty	3	Ν	1	1	1	3.00	3.00	7
Output Power Variation - SAR Drift Measurement	5	R	$\sqrt{3}$	1	1	2.89	2.89	∞
SAR scaling	2	R	$\sqrt{3}$	1	1	1.15	1.15	8
Phantom and tissue paramet	ers							
Phantom uncertainty (shape and thickness uncertainty)	4	R	$\sqrt{3}$	1	1	2.31	2.31	8
Uncertainty in SAR correction for deviations in permittivity and conductivity	2	Ν	1	1	0.84	2.00	1.68	8
Liquid Conductivity - Measurement Uncertainty)	4	Ν	1	0.78	0.71	3.12	2.84	5
Liquid Permittivity - Measurement Uncertainty	5	Ν	1	0.23	0.26	1.15	1.30	5
Liquid Conductivity (Temperature Uncertainty)	2.5	R	$\sqrt{3}$	0.78	0.71	1.13	1.02	8
Liquid Permittivity (Temperature Uncertainty)	2.5	R	$\sqrt{3}$	0.23	0.26	0.33	0.38	8
Combined Standard Uncertainty		RSS				10.47	10.34	
Expanded Uncertainty (95% Confidence interval)		к				20.95	20.69	

9.2 System validation Uncertainty

Uncertainty Component	Tol (+- %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+-%)	vi
Measurement System	1			1	r	r	r	
Probe calibration	5.8	N	1	1	1	5.8	5.8	∞
Axial Isotropy	3.5	R	$\sqrt{3}$	1	1	2.02	2.02	∞
Hemispherical Isotropy	5.9	R	$\sqrt{3}$	0	0	0.00	0.00	∞
Boundary effect	1	R	$\sqrt{3}$	1	1	0.58	0.58	8
Linearity	4.7	R	$\sqrt{3}$	1	1	0.71	0.71	8
System detection limits	1	R	$\sqrt{3}$	1	1	0.58	0.58	8
Modulation response	0	N	$\sqrt{3}$	0	0	0.00	0.00	8
Readout Electronics	0.5	N	1	1	1	0.50	0.50	8
Response Time	0	R	$\sqrt{3}$	0	0	0.00	0.00	8
Integration Time	1.4	R	$\sqrt{3}$	0	0	0.00	0.00	00 00
RF ambient conditions-Noise	3				-			
	3	R	$\sqrt{3}$	1	1	1.73	1.73	8
RF ambient conditions- reflections	3	R	√3	1	1	1.73	1.73	8
Probe positioner mechanical tolerance	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	8
Probe positioning with respect to phantom shell	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
Extrapolation, Interpolation and Integration Algoritms for Max, SAR	2.3	R	$\sqrt{3}$	1	1	1.33	1.33	8
Dipole					-	-	-	
Deviation of Experimental Source from Numerical Source	5	Ν	1	1	1	5.00	5.00	8
Input Power and SAR Drift Measurement	0.5	R	$\sqrt{3}$	1	1	0.29	0.29	8
Dipole Axis to Liquid Distance	2	R	$\sqrt{3}$	1	1	1.15	1.15	8
Phantom and Tissue Parame	tore		-					
Phantom uncertainty								
(shape and thickness uncertainty)	4	R	$\sqrt{3}$	1	1	2.31	2.31	8
Uncertainty in SAR correction for deviations in permittivity and conductivity	2	Ν	1	1	0.84	2.00	1.68	8
Liquid Conductivity - Measurement Uncertainty)	4	Ν	1	0.78	0.71	3.12	2.84	5
Liquid Permittivity - Measurement Uncertainty	5	Ν	1	0.23	0.26	1.15	1.30	5
Liquid Conductivity (Temperature Uncertainty)	2.5	R	$\sqrt{3}$	0.78	0.71	1.13	1.02	8
Liquid Permittivity (Temperature Uncertainty)	2.5	R	$\sqrt{3}$	0.23	0.26	0.33	0.38	8
Combined Standard Uncertainty		RSS				10.16	10.03	
Expanded Uncertainty (95% Confidence interval)		К				20.32	20.06	

10. Conducted Power Measurement

10.1 Test Result

2.4G WLAN

2.4GWIFI					
Mode	Channel Number	Frequency (MHz)	Average Power (dBm)	Output Power (mW)	
	1	2412	19.8	95.50	
802.11b	6	2437	20.81	120.50	
	11	2462	21.09	128.53	
	1	2412	22.27	168.66	
802.11g	6	2437	25.2	331.13	
	11	2462	20.89	122.74	
	1	2412	21.81	151.71	
802.11n-HT20	6	2437	24.94	311.89	
	11	2462	20.53	112.98	
	3	2422	21.92	155.60	
802.11n-HT40	6	2437	21.66	146.55	
	9	2452	20.32	107.65	
	1	2412	22.11	162.55	
802.11ax(HEW20)	6	2437	25.39	345.94	
	11	2462	21.31	135.21	
	3	2422	22.41	174.18	
802.11ax(HEW40)	6	2437	22.13	163.31	
	9	2452	20.64	115.88	

Bluetooth

	BT						
Mode	Channel Number	Frequency (MHz)	Average Power (dBm)	Output Power (mW)			
	0	2402	0.08	1.02			
GFSK(1Mbps)	39	2441	-1.34	0.73			
	78	2480	3.08	2.03			
	0	2402	-2.69	0.54			
π/4-QPSK(2Mbps)	39	2441	-0.87	0.82			
	78	2480	0.79	1.20			
	0	2402	-2.67	0.54			
8DPSK(3Mbps)	39	2441	-0.73	0.85			
	78	2480	0.93	1.24			

WLAN (5.2Gband)

5.2G WLAN					
Mode	Channel Number	Frequency (MHz)	Output Power (dBm)	Output Power (mW)	
	36	5180	9.99	9.98	
802.11a20	40	5200	11.93	15.60	
	48	5240	14.85	30.55	
	36	5180	9.86	9.68	
802.11n-HT20	40	5200	12.06	16.07	
	48	5240	14.49	28.12	
802.11n-HT40	38	5190	8.85	7.67	
оuz.111-п140	46	5230	9.34	8.59	
	36	5180	9.7	9.33	
802.11ac-VHT20	40	5200	11.8	15.14	
	48	5240	14.6	28.84	
802.11ac-VHT40	38	5190	8.46	7.01	
602.11ac-VH140	46	5230	9.35	8.61	
	36	5180	9.75	9.44	
802.11ax-VHT20	40	5200	11.59	14.42	
	48	5240	14.14	25.94	
802.11ax-VHT40	38	5190	8.53	7.13	
002.11aX-VH140	46	5230	9.53	8.97	
802.11ax-VHT80	42	5210	8.02	6.34	
802.11ac-VHT80	42	5210	7.79	6.01	

WLAN (5.3Gband)

	5.3G WLAN					
Mode	Channel Number	Frequency (MHz)	Output Power (dBm)	Output Power (mW)		
	52	5260	13.85	24.27		
802.11a20	60	5300	14.3	26.92		
	64	5320	10.49	11.19		
	52	5260	14.06	25.47		
802.11n-HT20	60	5300	14.17	26.12		
	64	5320	10.48	11.17		
802.11n-HT40	54	5270	10.63	11.56		
002.1111-1140	62	5310	9.9	9.77		
	52	5260	13.95	24.83		
802.11ac-VHT20	60	5300	14.2	26.30		
	64	5320	10.48	11.17		
802.11ac-VHT40	54	5270	10.57	11.40		
002.11aC-VH140	62	5310	9.86	9.68		
	52	5260	13.34	21.58		
802.11ax-VHT20	60	5300	13.63	23.07		
	64	5320	10.22	10.52		
	54	5270	10.67	11.67		
802.11ax-VHT40	62	5310	9.52	8.95		
802.11ax-VHT80	58	5290	9.76	9.46		
802.11ac-VHT80	58	5290	10.64	11.59		

WLAN (5.6Gband)

		5.6G WLAN		
Mode	Channel Number	Frequency (MHz)	Output Power (dBm)	Output Power (mW)
	100	5500	13.19	20.84
802.11a20	116	5580	14.95	31.26
	140	5700	13.5	22.39
	100	5500	13.31	21.43
802.11n-HT20	116	5580	15.06	32.06
	140	5700	13.51	22.44
	102	5510	12.29	16.94
802.11n-HT40	110	5550	14.09	25.64
	134	5670	15.31	33.96
	100	5500	13.23	21.04
802.11ac-VHT20	116	5580	14.88	30.76
	140	5700	13.45	22.13
	102	5510	12.21	16.63
802.11ac-VHT40	110	5550	14.09	25.64
	134	5670	15.31	33.96
	100	5500	13.16	20.70
802.11ax-VHT20	116	5580	14.76	29.92
	140	5700	13.06	20.23
	102	5510	11.54	14.26
802.11ax-VHT40	110	5550	13.62	23.01
	134	5670	14.6	28.84
802.11ax-VHT80	106	5530	13.03	20.09
002.11ax-V1160	122	5610	14.27	26.73
802.11ac-VHT80	106	5530	13.57	22.75
002.1180-11100	122	5610	14.53	28.38

WLAN (5.8Gband)

		5.8G WLAN		
Mode	Channel Number	Frequency (MHz)	Output Power (dBm)	Output Power (mW)
	149	5745	10.33	10.79
802.11a20	157	5785	9.34	8.59
	165	5825	8.49	7.06
	149	5745	10.34	10.81
802.11n-HT20	157	5785	9.22	8.36
	165	5825	8.5	7.08
802.11n-HT40	151	5755	10.47	11.14
0U2.1111-H14U	159	5795	9.66	9.25
	149	5745	10.35	10.84
802.11ac-VHT20	157	5785	9.23	8.38
	165	5825	8.44	6.98
	151	5755	10.43	11.04
802.11ac-VHT40	159	5795	9.47	8.85
	149	5745	9.76	9.46
802.11ax-VHT20	157	5785	8.93	7.82
	165	5825	8.21	6.62
902 11 ox \/UT 40	151	5755	9.9	9.77
802.11ax-VHT40	159	5795	9.14	8.20
802.11ax-VHT80	155	5775	8.12	6.49
802.11ac-VHT80	155	5775	8.32	6.79

11. EUT and Test Setup Photo

11.1 EUT Photos

Please refer to attachment.

11.2 Setup Photos

Please refer to attachment.

12. SAR Result Summary

12.1 Body SAR

Band	Model	Test Position	Freq.	SAR (1g) (W/kg)	Power Drift (%)	Max. Turn-up Power (dBm)	Meas. Output Power (dBm)	Scaling Factor	Scaled SAR (W/Kg)	Meas. No.
2.4GHz WLAN	802.11b	Rear	2437	0.040	3.19	21.50	21.09	1.099	0.044	1
		Rear	5180	0.091	-1.47	10.30	9.99	1.074	0.098	/
5.2GHz WLAN	802.11a	Rear	5200	0.096	-1.47	12.30	11.93	1.089	0.105	/
		Rear	5240	0.126	-1.47	15.00	14.85	1.035	0.130	2
5.3GHz WLAN	802.11a	Rear	5300	0.090	1.74	14.50	14.30	1.047	0.094	3
5.6GHz WLAN	802.11n40	Rear	5670	0.062	-3.77	15.50	15.31	1.045	0.065	4
5.8GHz WLAN	802.11n40	Rear	5755	0.115	-1.20	10.50	10.47	1.007	0.116	5

Note:

 The test separation of all above table is 0mm.
 Per KDB 447498 D01, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.

 Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum

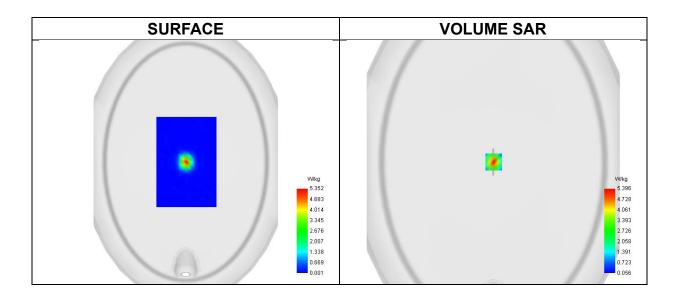
 rated power among all production units.

b. Scaled SAR(W/kg) = Measured SAR(W/kg) *Tune-up Scaling Factor

3. Bluetooth and WLAN can't simultaneous transmission at the same time.

13. Equipment List

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibration	Calibrated Until
2450MHz Dipole	MVG	DIP2G450	SN 06/22 DIP2G450-645	2025.02.05	2028.02.04
5000MHz Dipole	MVG	DIP5G000	SN 06/22 DIP5G000-653	2025.02.05	2028.02.04
E-Field Probe	MVG	EPGO364	SN 04/22 EPGO364	2025.02.05	2026.02.04
Liquid Calibration Kit	MVG	OCPG 87	SN 06/22 OCPG87	2025.02.05	2026.02.04
Antenna	MVG	ANTA 73	SN 06/22 ANTA 73	N/A	N/A
Ellipsoid Phantom	MVG	ELLI 51	SN 06/22 ELLI 51	N/A	N/A
Phantom	MVG	SAM 148	SN 06/22 SAM148	N/A	N/A
Phone holder	MVG	MSH 117	SN 06/22 MSH 117	N/A	N/A
Laptop positioner	MVG	LSH 36	SN 06/22 LSH 38	N/A	N/A
Directional coupler	SHW	SHWDCP	202203280013	N/A	N/A
Network Analyzer	ZVL	R&S	116184-HC	2025.03.05	2026.03.04
Multi Meter	DMM6500	Keithley	4527252	2025.03.06	2026.03.05
Signal Generator	Keysight	N5182B	MY59100717	2025.03.05	2026.03.04
Wireless Communication Test Set	R&S	CMW500	137737	2025.03.05	2026.03.04
Power Sensor	R&S	Z11	116184	2025.03.05	2026.03.04
Electronic Temperature hygrometer	N/A	ST-W2318	N/A	2025.03.05	2026.03.04
Temperature hygrometer	N/A	TP101	N/A	2025.03.05	2026.03.04

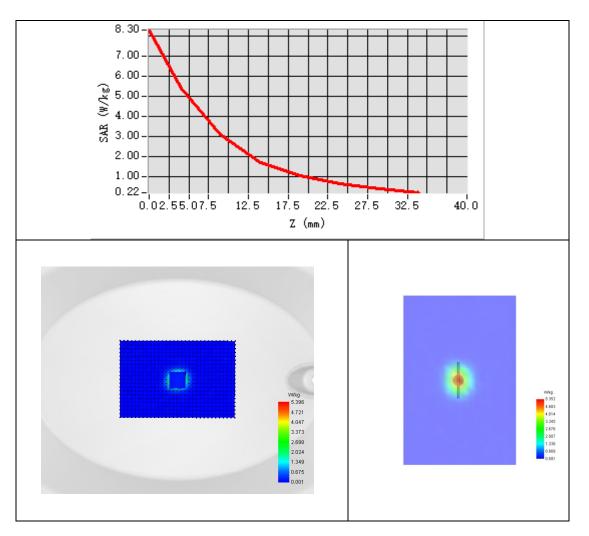

Appendix A. System Validation Plots

System Performance Check Data (2450MHz)

Type: Phone measurement (Complete) Area scan resolution: dx=8mm, dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2025-03-28

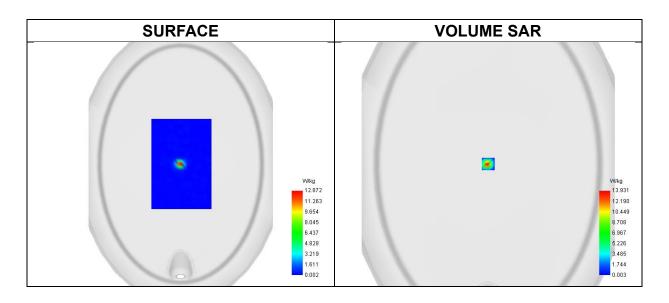
Experimental conditions.

Phantom	Validation plane
Device Position	Dipole
Band	CW2450
Channels	Middle
Signal	CW
Frequency (MHz)	2450.000
Relative permittivity	39.70
Conductivity (S/m)	1.77
Probe	SN 04/22 EPGO364
ConvF	2.33
Crest factor:	1:1



Maximum location: X=1.00, Y=0.00 ; SAR Peak: 8.26 W/kg

SAR 10g (W/Kg)	2.378
SAR 1g (W/Kg)	5.463

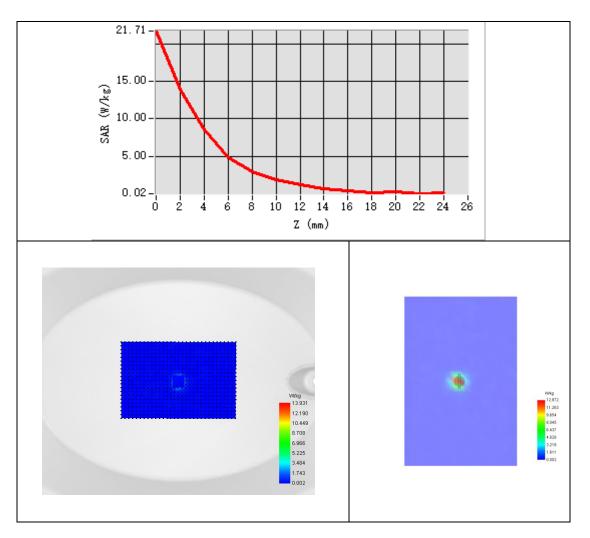


System Performance Check Data (5200MHz)

Type: Phone measurement (Complete) Area scan resolution: dx=8mm, dy=8mm Zoom scan resolution: dx=4mm, dy=4mm, dz=2mm Date of measurement: 2025-03-27

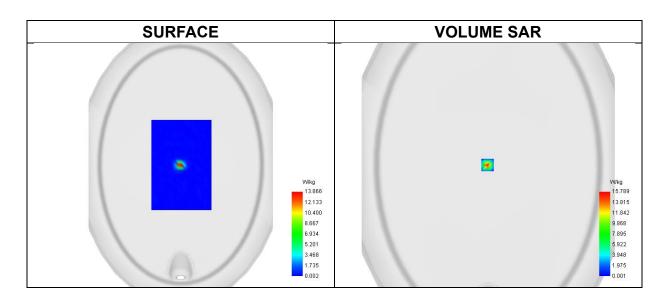
Experimental conditions.

Phantom	Validation plane
Device Position	Dipole
Band	CW5200
Channels	Middle
Signal	CW
Frequency (MHz)	5200.000
Relative permittivity	36.75
Conductivity (S/m)	4.65
Probe	SN 04/22 EPGO364
ConvF	1.99
Crest factor:	1:1



Maximum location: X=0.00, Y=0.00 ; SAR Peak: 22.31 W/kg

SAR 10g (W/Kg)	2.353
SAR 1g (W/Kg)	8.056

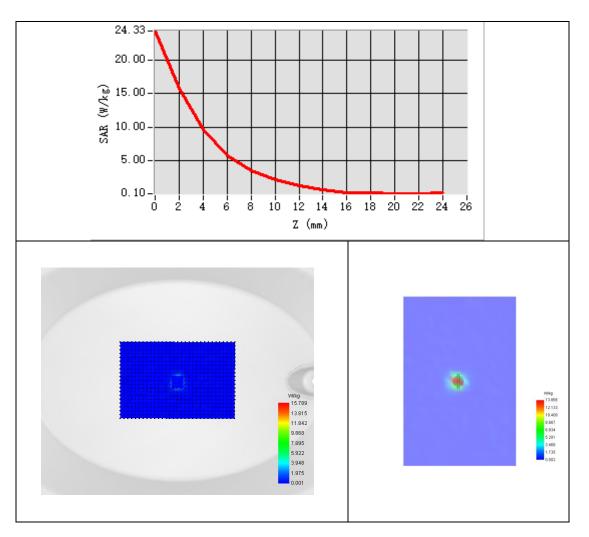


System Performance Check Data (5400MHz)

Type: Phone measurement (Complete) Area scan resolution: dx=8mm, dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2025-03-27

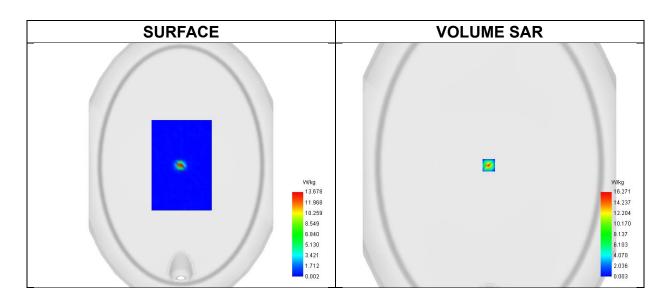
Experimental conditions.

Phantom	Validation plane
Device Position	Dipole
Band	CW5400
Channels	Middle
Signal	CW
Frequency (MHz)	5400.000
Relative permittivity	36.41
Conductivity (S/m)	4.87
Probe	SN 04/22 EPGO364
ConvF	1.87
Crest factor:	1:1



Maximum location: X=-1.00, Y=0.00 ; SAR Peak: 25.07 W/kg

SAR 10g (W/Kg)	2.416
SAR 1g (W/Kg)	8.486

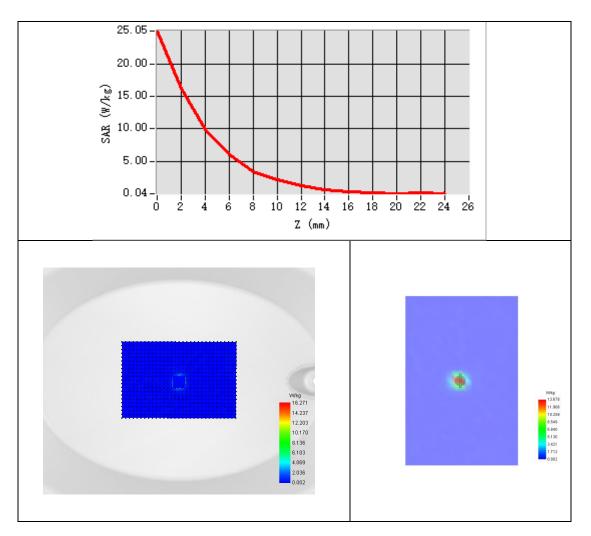


System Performance Check Data (5600MHz)

Type: Phone measurement (Complete) Area scan resolution: dx=8mm, dy=8mm Zoom scan resolution: dx=4mm, dy=4mm, dz=2mm Date of measurement: 2025-03-27

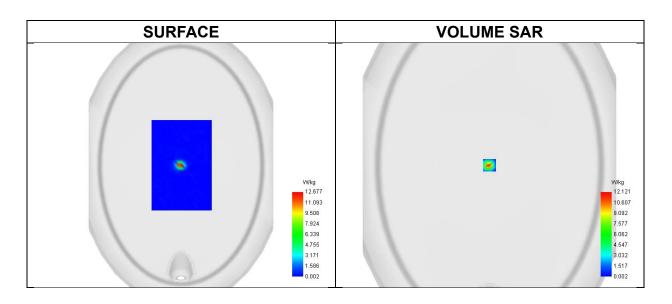
Experimental conditions.

Phantom	Validation plane
Device Position	Dipole
Band	CW5600
Channels	Middle
Signal	CW
Frequency (MHz)	5600.000
Relative permittivity	35.86
Conductivity (S/m)	5.13
Probe	SN 04/22 EPGO364
ConvF	1.87
Crest factor:	1:1



Maximum location: X=-1.00, Y=0.00 ; SAR Peak: 25.16 W/kg

SAR 10g (W/Kg)	2.312
SAR 1g (W/Kg)	8.095

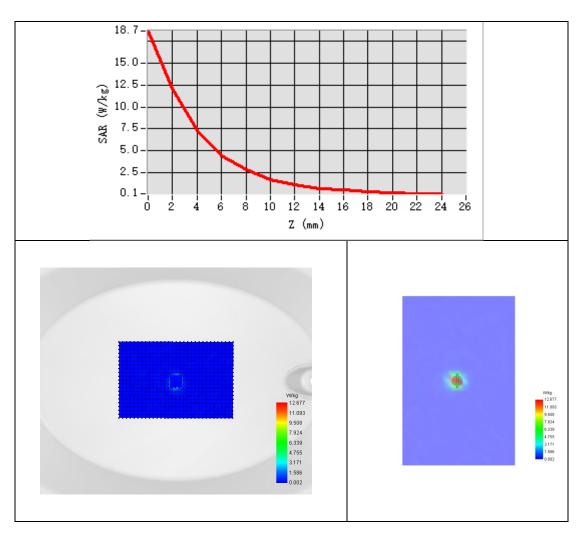


System Performance Check Data (5800MHz)

Type: Phone measurement (Complete) Area scan resolution: dx=8mm, dy=8mm Zoom scan resolution: dx=4mm, dy=4mm, dz=2mm Date of measurement: 2025-03-27

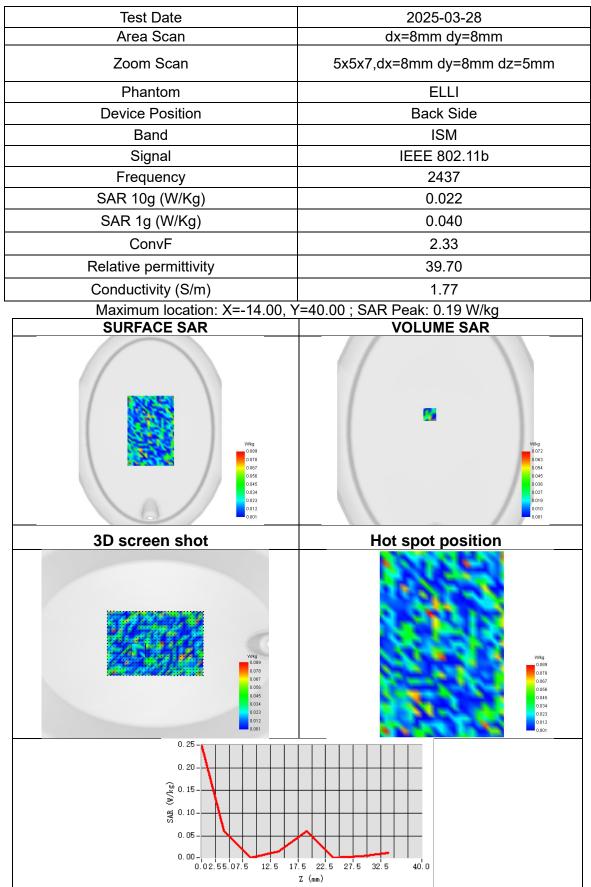
Experimental conditions.

Phantom	Validation plane
Device Position	Dipole
Band	CW5800
Channels	Middle
Signal	CW
Frequency (MHz)	5800.000
Relative permittivity	35.80
Conductivity (S/m)	5.23
Probe	SN 04/22 EPGO364
ConvF	1.70
Crest factor:	1:1



Maximum location: X=0.00, Y=0.00 ; SAR Peak: 19.84 W/kg

SAR 10g (W/Kg)	2.380
SAR 1g (W/Kg)	8.194



Appendix B. SAR Test Plots

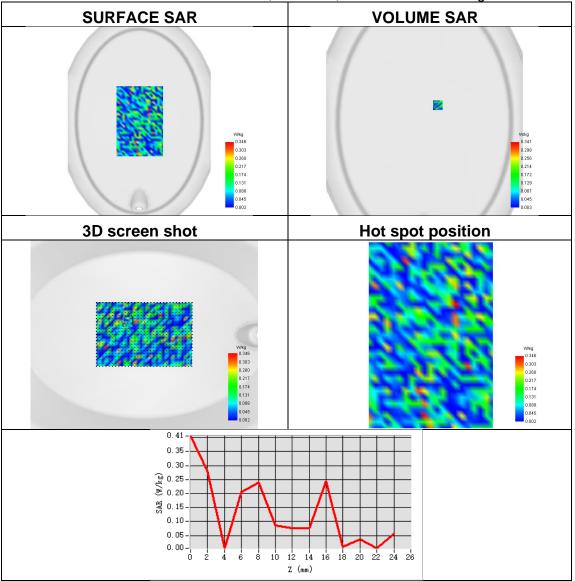
Plot 1:

Plot 2:

2:	
Test Date	2025-03-27
Area Scan	dx=8mm dy=8mm
Zoom Scan	7x7x12,dx=4mm dy=4mm dz=2mm
Phantom	ELLI
Device Position	Back Side
Band	U-NII-1
Signal	IEEE 802.11a
Frequency	5240
SAR 10g (W/Kg)	0.046
SAR 1g (W/Kg)	0.126
ConvF	1.99
Relative permittivity	36.75
Conductivity (S/m)	4.65
Maximum location: X=-14.00, Y	/=-7.00 ; SAR Peak: 0.76 W/kg
SURFACE SAR	VOLUME SAR
Wilg 0.350 0.220 0.194 0.130 0.088 0.068 0.068 0.068 0.068	Wing 0.273 0.239 0.205 0.177 0.137 0.103 0.103 0.036 0.002
3D screen shot	Hot spot position
Wita 0.233 0.233 0.239 0.377 0.137 0.137 0.137 0.137 0.137 0.139 0.030 0.030	Wig 0.226 0.130 0.028 0.130 0.008 0.034 0.002
	12 14 16 18 20 22 24 26 Z (mm)

Plot 3:

).	
Test Date	2025-03-27
Area Scan	dx=8mm dy=8mm
Zoom Scan	7x7x12,dx=4mm dy=4mm dz=2mm
Phantom	ELLI
Device Position	Back Side
Band	U-NII-2a
Signal	IEEE 802.11a
Frequency	5300
SAR 10g (W/Kg)	0.045
SAR 1g (W/Kg)	0.090
ConvF	1.87
Relative permittivity	36.41
Conductivity (S/m)	4.87
	=-32.00 ; SAR Peak: 0.73 W/kg
SURFACE SAR	VOLUME SAR
Wig 0.202 0.212 0.212 0.117 0.122 0.177 0.142 0.107 0.073 0.003	WN9 0.230 0.24 0.216 0.162 0.162 0.162 0.162 0.162 0.162 0.162 0.162 0.163 0.163 0.039 0.003
3D screen shot	Hot spot position
Vite 0.254 0.254 0.258 0.160 0.114 0.152 0.152 0.152 0.152 0.152 0.152 0.152 0.152 0.152 0.152 0.154 0.254 0.254 0.255 0	Wig 0.282 0.247 0.212 0.112 0.
	12 14 16 18 20 22 24 26 Z (nm)


Plot 4:

••	
Test Date	2025-03-27
Area Scan	dx=8mm dy=8mm
Zoom Scan	7x7x12,dx=4mm dy=4mm dz=2mm
Phantom	ELLI
Device Position	Back Side
Band	U-NII-2c
Signal	IEEE 802.11n
Frequency	5670
SAR 10g (W/Kg)	0.048
SAR 1g (W/Kg)	0.062
ConvF	1.87
Relative permittivity	35.86
Conductivity (S/m)	5.13
Maximum location: X=-46.00, Y	/=54.00 ; SAR Peak: 0.90 W/kg
SURFACE SAR	VOLUME SAR
Wing 6.907 0.289 0.231 0.193 0.195 0.116 0.078 0.078 0.078 0.078	Wing 0.362 0.317 0.272 0.227 0.227 0.227 0.227 0.237 0.237 0.237 0.237 0.237 0.237 0.237 0.237 0.249 0.003
3D screen shot	Hot spot position
Vitg 0.932 0.317 0.372 0.327 0.317 0.327 0.317 0.327 0.317 0.327 0.317 0.327 0.317 0.327 0.317 0.327 0.317 0.3270 0.3270 0.3270 0.32700000000000000000000000000000000000	Wig 0.307 0.60 0.321 0.93 0.155 0.155 0.155 0.155 0.161 0.072 0.040 0.002
0.4 0.3 0.2 0.2 0.1 0.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	12 14 16 18 20 22 24 26 Z (mm)

Plot 5:

Test Date	2025-03-27
Area Scan	dx=8mm dy=8mm
Zoom Scan	7x7x12,dx=4mm dy=4mm dz=2mm
Phantom	ELLI
Device Position	Back Side
Band	U-NII-3
Signal	IEEE 802.11n
Frequency	5755
SAR 10g (W/Kg)	0.067
SAR 1g (W/Kg)	0.115
ConvF	1.70
Relative permittivity	35.80
Conductivity (S/m)	5.23
Maximum location: X=33.00	0, Y=40.00 ; SAR Peak: 1.04 W/kg

Appendix C. Probe Calibration and Dipole Calibration Report

Refer the appendix Calibration Report.
