WLAN 5GHz Extremity Date: 2022-9-10 Electronics: DAE4 Sn1527 Medium: Head 5250MHz Medium parameters used: f = 5260 MHz; σ = 4.669 S/m; ϵ_r = 36.384; ρ = 1000 kg/m³ Communication System: UID 0, WIFI 5G (0) Frequency: 5260 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (5.98, 5.98, 5.98) **Rear Side Ch.52/Area Scan (91x91x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 2.17 W/kg Rear Side Ch.52/Zoom Scan (8x8x21)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 1.236 V/m; Power Drift = 0.16 dB Peak SAR (extrapolated) = 6.41 W/kg **SAR(1 g) = 1.37 W/kg; SAR(10 g) = 0.453 W/kg** Maximum value of SAR (measured) = 2.80 W/kg Fig.41 WLAN 5GHz Extremity ## **ANNEX B: SystemVerification Results** ### 750MHz Date: 2022-9-2 Electronics: DAE4 Sn1527 Medium: Head 750MHz Medium parameters used: f = 750 MHz; σ = 0.881 S/m; ε_r = 42.567; ρ = 1000 kg/m³ Communication System: CW_TMC Frequency: 750 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (11.12, 11.12, 11.12) System Validation/Area Scan (81x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 59.345 V/m; Power Drift = -0.06 dB SAR(1 g) = 2.08 W/kg; SAR(10 g) = 1.40 W/kg Maximum value of SAR (interpolated) = 2.66 W/kg System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 59.345 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 3.07 W/kg SAR(1 g) = 2.04 W/kg; SAR(10 g) = 1.38 W/kg 0 dB = 2.63 W/kg = 4.20 dB W/kg Fig.B.1. Validation 750MHz 250mW Date: 2022-9-5 Electronics: DAE4 Sn1527 Medium: Head 835MHz Medium parameters used: f = 835 MHz; $\sigma = 0.922 \text{ S/m}$; $\epsilon r = 40.964$; $\rho = 1000 \text{ kg/m}^3$ Communication System: CW TMC Frequency: 835 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (11.12, 11.12, 11.12) System Validation/Area Scan (91x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 63.158 V/m; Power Drift = 0.12 dB SAR(1 g) = 2.44 W/kg; SAR(10 g) = 1.58 W/kg Maximum value of SAR (interpolated) = 3.59 W/kg System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 63.158 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 4.24 W/kg SAR(1 g) = 2.49 W/kg; SAR(10 g) = 1.61 W/kg Maximum value of SAR (measured) = 3.61 W/kg 0 dB = 3.61 W/kg = 5.58 dB W/kg Fig.B.2. Validation 835MHz 250mW Date: 2022-9-18 Electronics: DAE4 Sn1527 Medium: Head 1750MHz Medium parameters used: f = 1750 MHz; σ = 1.386 S/m; ε_r = 39.238; ρ = 1000 kg/m³ Communication System: CW TMC Frequency: 1750 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (9.22, 9.22, 9.22) System Validation/Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 80.119 V/m; Power Drift = 0.05 dB SAR(1 g) = 9.22 W/kg; SAR(10 g) = 4.90 W/kg Maximum value of SAR (interpolated) = 11.1 W/kg System Validation/Zoom Scan (7x7x7)/Cube0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 80.119 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 22.6 W/kg SAR(1 g) = 9.43 W/kg; SAR(10 g) = 4.99 W/kg Maximum value of SAR (measured) = 11.4 W/kg 0 dB = 11.4 W/kg = 10.57 dB W/kg Fig.B.3. Validation 1750MHz 250mW Date: 2022-8-28 Electronics: DAE4 Sn1527 Medium: Head 1900MHz Medium parameters used: f = 1900 MHz; σ = 1.428 S/m; ϵ_r = 38.924; ρ = 1000 kg/m³ Communication System: CW TMC Frequency: 1900 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (8.90, 8.90, 8.90) System Validation/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 82.072 V/m; Power Drift = 0.04 dB SAR(1 g) = 10.3 W/kg; SAR(10 g) = 5.19 W/kg Maximum value of SAR (interpolated) = 12.2 W/kg System Validation/Zoom Scan (7x7x7)/Cube0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 82.072 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 26.5 W/kg SAR(1 g) = 10.5 W/kg; SAR(10 g) = 5.28 W/kg Maximum value of SAR (measured) = 12.5 W/kg 0 dB = 12.5 W/kg = 10.97 dB W/kg Fig.B.4. Validation 1900MHz 250mW Date: 2022-9-11 Electronics: DAE4 Sn1527 Medium: Head 2450MHz Medium parameters used: f = 2450 MHz; σ = 1.835 S/m; ϵ_r = 38.733; ρ = 1000 kg/m³ Communication System: CW TMC Frequency: 2450 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (8.17, 8.17, 8.17) System Validation/Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 91.783 V/m; Power Drift = 0.10 dB SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.07 W/kg Maximum value of SAR (interpolated) = 15.5 W/kg System Validation/Zoom Scan (7x7x7)/Cube0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 91.783 V/m; Power Drift = 0.10 dB Peak SAR (extrapolated) = 35.9 W/kg SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.17 W/kg Maximum value of SAR (measured) = 15.7 W/kg 0 dB = 15.7 W/kg = 11.96 dB W/kg Fig.B.5. Validation 2450MHz 250mW Date: 2022-9-20 Electronics: DAE4 Sn1527 Medium: Head 2550MHz Medium parameters used: f = 2550 MHz; σ = 1.946 S/m; ε_r = 38.382; ρ = 1000 kg/m³ Communication System: CW TMC Frequency: 2550 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (8.17, 8.17, 8.17) System Validation/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 94.551 V/m; Power Drift = 0.02 dB SAR(1 g) = 14.4 W/kg; SAR(10 g) = 6.40 W/kg Maximum value of SAR (interpolated) = 16.4 W/kg System Validation/Zoom Scan (7x7x7)/Cube0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.551 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 38.7 W/kg SAR(1 g) = 14.6 W/kg; SAR(10 g) = 6.48 W/kg Maximum value of SAR (measured) = 16.7 W/kg 0 dB = 16.7 W/kg = 12.23 dB W/kg Fig.B.6. Validation 2550MHz 250mW Date: 2022-8-30 Electronics: DAE4 Sn1527 Medium: Head 3500MHz Medium parameters used: f = 3500 MHz; σ = 2.863 S/m; ε_r = 38.485; ρ = 1000 kg/m³ Communication System: CW TMC Frequency: 3500 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (7.56, 7.56, 7.56) System Validation/Area Scan (61x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 69.842 V/m; Power Drift = -0.08 dB SAR(1 g) = 6.68 W/kg; SAR(10 g) = 2.54 W/kg Maximum value of SAR (interpolated) = 7.68 W/kg **System Validation/Zoom Scan (7x7x7)/Cube0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 69.842 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 16.6 W/kg SAR(1 g) = 6.51 W/kg; SAR(10 g) = 2.49 W/kg 0 dB = 7.63 W/kg = 8.83 dB W/kg Fig.B.7. Validation 3500MHz 100mW Date: 2022-9-10 Electronics: DAE4 Sn1527 Medium: Head 5250MHz Medium parameters used: f = 5250 MHz; $\sigma = 4.655 \text{ S/m}$; $\varepsilon_r = 36.411$; $\rho = 1000 \text{ kg/m}^3$ Communication System: CW TMC Frequency: 5250 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (5.98, 5.98, 5.98) System Validation/Area Scan (61x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 65.054 V/m; Power Drift = -0.03 dB SAR(1 g) = 7.83 W/kg; SAR(10 g) = 2.27 W/kg Maximum value of SAR (interpolated) = 9.82 W/kg System Validation/Zoom Scan (8x8x21)/Cube0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.054 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 24.8 W/kg SAR(1 g) = 7.72 W/kg; SAR(10 g) = 2.24 W/kg Maximum value of SAR (measured) = 9.77 W/kg 0 dB = 9.77 W/kg = 9.90 dB W/kg Fig.B.8. Validation 5250MHz 100mW Date: 2022-9-10 Electronics: DAE4 Sn1527 Medium: Head 5600MHz Medium parameters used: f = 5600 MHz; $\sigma = 5.173 \text{ S/m}$; $\varepsilon_r = 34.849$; $\rho = 1000 \text{ kg/m}^3$ Communication System: CW TMC Frequency: 5600 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (5.47, 5.47, 5.47) System Validation/Area Scan (61x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 68.975 V/m; Power Drift = 0.11 dB SAR(1 g) = 8.43 W/kg; SAR(10 g) = 2.35 W/kg Maximum value of SAR (interpolated) = 10.4 W/kg System Validation/Zoom Scan (8x8x21)/Cube0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.975 V/m; Power Drift = 0.11 dB Peak SAR (extrapolated) = 28.2 W/kg SAR(1 g) = 8.56 W/kg; SAR(10 g) = 2.40 W/kg Maximum value of SAR (measured) = 10.6 W/kg 0 dB = 10.6 W/kg = 10.25 dB W/kg Fig.B.9. Validation 5600MHz 100mW Date: 2022-9-10 Electronics: DAE4 Sn1527 Medium: Head 5750MHz Medium parameters used: f = 5750 MHz; σ = 5.311 S/m; ϵ_r = 34.591; ρ = 1000 kg/m³ Communication System: CW TMC Frequency: 5750 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (5.40, 5.40, 5.40) System Validation/Area Scan (61x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 66.542 V/m; Power Drift = 0.13 dB SAR(1 g) = 7.99 W/kg; SAR(10 g) = 2.21 W/kg Maximum value of SAR (interpolated) = 10.0 W/kg System Validation/Zoom Scan (8x8x21)/Cube0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 66.542 V/m; Power Drift = 0.13 dB Peak SAR (extrapolated) = 26.8 W/kg SAR(1 g) = 8.18 W/kg; SAR(10 g) = 2.26 W/kg Maximum value of SAR (measured) = 10.3 W/kg 0 dB = 10.3 W/kg = 10.13 dB W/kg Fig.B.10. Validation 5750MHz 100mW ## **ANNEX C: SAR Measurement Setup** ## C.1. Measurement Set-up DASY5 system for performing compliance tests is illustrated above graphically. This system consists of the following items: Picture C.1 SAR Lab Test Measurement Set-up - A standard high precision 6-axis robot (Stäubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE). - An isotropic field probe optimized and calibrated for the targeted measurement. - A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. - The Electro-optical converter (EOC) performs the conversion from
optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server. - The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. - The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning. - A computer running WinXP and the DASY5 software. - Remote control and teach pendant as well as additional circuitry for robot safety such as - warning lamps, etc. - The phantom, the device holder and other accessories according to the targeted measurement. ## C.2. DASY5 E-field Probe System The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 software reads the reflection durning a software approach and looks for the maximum using 2ndord curve fitting. The approach is stopped at reaching the maximum. ## **Probe Specifications:** Model: ES3DV3, EX3DV4 Frequency 10MHz — 6.0GHz(EX3DV4) Range: 10MHz — 4GHz(ES3DV3) Calibration: In head and body simulating tissue at Frequencies from 835 up to 5800MHz Linearity: ± 0.2 dB(30 MHz to 6 GHz) for EX3DV4 ± 0.2 dB(30 MHz to 4 GHz) for ES3DV3 Dynamic Range: 10 mW/kg — 100W/kg Probe Length: 330 mm **Probe Tip** Length: 20 mm Body Diameter: 12 mm Tip Diameter: 2.5 mm (3.9 mm for ES3DV3) Tip-Center: 1 mm (2.0mm for ES3DV3) Application: SAR Dosimetry Testing Compliance tests of mobile phones Dosimetry in strong gradient fields Picture C.2 Near-field Probe Picture C.3 E-field Probe #### C.3. E-field Probe Calibration Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter. The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and inn a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/ cm². E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe. $$SAR = C \frac{\Delta T}{\Delta t}$$ Where: Δt = Exposure time (30 seconds), C = Heat capacity of tissue (brain or muscle), ΔT = Temperature increase due to RF exposure. $$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$ Where: σ = Simulated tissue conductivity, ρ = Tissue density (kg/m³). ## C.4. Other Test Equipment ## C.4.1. Data Acquisition Electronics (DAE) The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock. The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection. The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB. PictureC.4: DAE ## C.4.2. Robot The SPEAG DASY system uses the high precision robots (DASY5: RX160L) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application: - High precision (repeatability 0.02mm) - High reliability (industrial design) - Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives) - Jerk-free straight movements (brushless synchron motors; no stepper motors) - Low ELF interference (motor control fields shielded via the closed metallic construction shields) Picture C.5 DASY 5 #### C.4.3. Measurement Server The Measurement server is based on a PC/104 CPU broad with CPU (DASY5: 400 MHz, Intel Celeron), chipdisk (DASY5:128MB), RAM (DASY5:128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which is directly connected to the PC/104 bus of the CPU broad. The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server. Picture C.6 Server for DASY 5 #### C.4.4. Device Holder for Phantom The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards. The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles. The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity $\ \varepsilon$ =3 and loss tangent $\ \delta$ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered. <Laptop Extension Kit> The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms. Picture C.7-1: Device Holder Picture C.7-2: Laptop Extension Kit #### C.4.5. Phantom The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to Represent the 90th percentile of the population. The phantom enables the dissymmetric evaluation of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm). Shell Thickness: 2 ± 0. 2 mm Filling Volume: Approx. 25 liters Dimensions: 810 x 1000 x 500 mm (H x L x W) Available: Special **Picture C.8: SAM Twin Phantom** ## ANNEX D: Position of the wireless device in relation to the phantom ## D.1. General considerations This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position. W_t Width of the handset at the level of the acoustic w_b Width of the bottom of the handset A Midpoint of the width w_t of the handset at the level of the acoustic output B Midpoint of the width w_b of the bottom of the handset Picture D.1-a Typical "fixed" case handset Picture D.1-b Typical "clam-shell" case handset Picture D.2 Cheek position of the wireless device on the left side of SAM Picture D.3 Tilt position of the wireless device on the left side of SAM ## D.2. Body-worn device A typical
example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer. Picture D.4 Test positions for body-worn devices ## D.3. Desktop device A typical example of a desktop device is a wireless enabled desktop computer placed on a table or desk when used. The DUT shall be positioned at the distance and in the orientation to the phantom that corresponds to the intended use as specified by the manufacturer in the user instructions. For devices that employ an external antenna with variable positions, tests shall be performed for all antenna positions specified. Picture 8.5 show positions for desktop device SAR tests. If the intended use is not specified, the device shall be tested directly against the flat phantom. Picture D.5 Test positions for desktop devices ## **D.4. DUT Setup Photos** Picture D.6 ## **ANNEX E: Equivalent Media Recipes** The liquid used for the frequency range of 700-6000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table E.1 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209. **Table E.1: Composition of the Tissue Equivalent Matter** | Frequency
(MHz) | 835 | 1750 | 1900 | 2450 | 2600 | 5200 | 5800 | |--|------------------|-------------------|------------------|-------------------|-------------------|-------------------|-------------------| | Water | 41.45 | 55.242 | 55.242 | 58.79 | 58.79 | 65.53 | 66.10 | | Sugar | 56.0 | 1 | / | 1 | 1 | 1 | 1 | | Salt | 1.45 | 0.306 | 0.306 | 0.06 | 0.06 | | | | Preventol | 0.1 | 1 | / | 1 | 1 | 17.24 | 16.95 | | Cellulose | 1.0 | / | / | / | 1 | 17.24 | 16.95 | | Glycol Monobutyl | / | 44.452 | 44.452 | 41.15 | 41.15 | / | 1 | | Diethylenglycol | 1 | , | , | , | 1 | , | , | | monohexylether | , | , | , | , | , | , | , | | Triton X-100 | 1 | 1 | / | 1 | 1 | 1 | 1 | | Dielectric
Parameters
Target Value | ε=41.5
σ=0.90 | ε=40.08
σ=1.37 | ε=40.0
σ=1.40 | ε=39.20
σ=1.80 | ε=39.01
σ=1.96 | ε=35.99
σ=4.66 | ε=35.30
σ=5.27 | Note: There is a little adjustment respectively for 750, 5300 and 5600, based on the recipe of closest frequency in table E.1 ## **ANNEX F: System Validation** The SAR system must be validated against its performance specifications before it is deployed. When SAR probes, system components or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such components. **Table F.1: System Validation** | Probe SN. | Liquid name | Validation date | Frequency point | Status (OK or Not) | |-----------|--------------|-----------------|-----------------|--------------------| | 7621 | Head 750MHz | 2022-05-09 | 750MHz | OK | | 7621 | Head 835MHz | 2022-05-09 | 835MHz | OK | | 7621 | Head 1750MHz | 2022-05-09 | 1750MHz | OK | | 7621 | Head 1900MHz | 2022-05-09 | 1900MHz | OK | | 7621 | Head 2300MHz | 2022-05-09 | 2300MHz | OK | | 7621 | Head 2450MHz | 2022-05-08 | 2450MHz | OK | | 7621 | Head 2550MHz | 2022-05-08 | 2550MHz | OK | | 7621 | Head 3500MHz | 2022-05-10 | 3500MHz | OK | | 7621 | Head 3700MHz | 2022-05-10 | 3700MHz | OK | | 7621 | Head 3900MHz | 2022-05-10 | 3900MHz | OK | | 7621 | Head 5250MHz | 2022-05-08 | 5250MHz | OK | | 7621 | Head 5600MHz | 2022-05-08 | 5600MHz | OK | | 7621 | Head 5750MHz | 2022-05-08 | 5750MHz | OK | ## **ANNEX G: DAE Calibration Certificate** Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 | CALIBRATION | CERTIFICATE | | | |---|--|--|--| | Object | DAE4 - SD 000 D0 | 04 BM - SN: 1527 | | | Calibration procedure(s) | QA CAL-06.v30
Calibration proced | lure for the data acquisition elec | ctronics (DAE) | | Calibration date: | June 21, 2022 | | | | All againmentage have been condu | oted in the closed laboratory | facility: environment temperature (22 ± 3)* | Count humiding - 70% | | Calibration Equipment used (M& | TE critical for calibration) | 10 19 0 | | | Calibration Equipment used (M& | | Cal Date (Certificate No.)
31-Aug-21 (No.31368) | Scheduled Calibration Aug-22 | | Calibration Equipment used (M&
Primary Standards
Keithley Multimeter Type 2001 | TE critical for calibration) ID # SN: 0810278 | Cal Date (Certificate No.)
31-Aug-21 (No.31368) | Scheduled Calibration
Aug-22 | | Calibration Equipment used (M&
Primary Standards
Keithley Multimeter Type 2001
Secondary Standards
Auto DAE Calibration Unit
Calibrator Box V2.1 | TE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001 | Cal Date (Certificate No.) | Scheduled Calibration | | Calibration Equipment used (M&
Primary Standards
Keithley Multimeter Type 2001
Secondary Standards
Auto DAE Calibration Unit | TE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002 | Cal Date (Certificate No.)
31-Aug-21 (No.31368)
Check Date (in house)
24-Jan-22 (in house check) | Scheduled Calibration
Aug-22
Scheduled Check
In house check; Jan-23 | | Calibration Equipment used (M&
Primary Standards
Keithley Multimeter Type 2001
Secondary Standards
Auto DAE Calibration Unit
Galibrator Box V2.1 | TE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001 | Cal Date (Certificate No.). 31-Aug-21 (No.31368) Check Date (in flouse). 24-Jan-22 (in house check). 24-Jan-22 (in house check). | Scheduled Calibration
Aug-22
Scheduled Check
In house check: Jan-23
In house check: Jan-23 | | Calibration Equipment used (M&
Primary Standards
Keithley Multimeter Type 2001
Secondary Standards
Auto DAE Calibration Unit
Galibrator Box V2.1 | TE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002 | Cal Date (Certificate No.). 31-Aug-21 (No:31368) Check Date (in house) 24-Jan-22 (in house check) 24-Jan-22 (in house check) | Scheduled Calibration
Aug-22
Scheduled Check
In house check: Jan-23
In house check: Jan-23 | | Calibration Equipment used (M&
Primary Standards
Keithley Multimeter Type 2001
Secondary Standards
Auto DAE Calibration Unit | TE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002 | Cal Date (Certificate No.). 31-Aug-21 (No:31368) Check Date (in house) 24-Jan-22 (in house check) 24-Jan-22 (in house check) | Scheduled Calibration
Aug-22
Scheduled Check
In house check: Jan-23
In house check: Jan-23 | Certificate No: DAE4-1527_Jun22 Page 1 of 5 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di teratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. #### Methods Applied and Interpretation of Parameters DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements, - Input Offset Current; Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. Certificate No: DAE4-1527 Jun22 Page 2 of 5 DC Voltage Measurement A/D - Converter Resolution
nominal High Range: 1LSB = 6.1μV, full range = -100...+300 mV Low Range: 1LSB = 61nV, full range = -1.....+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | × | Y | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 403.865 ± 0.02% (k=2) | 403.595 ± 0.02% (k=2) | 403,805 ± 0.02% (k=2) | | Low Range | 3.95898 ± 1.50% (k=2) | 3.98939 ± 1.50% (k=2) | 3.96763 ± 1.50% (k=2) | ### Connector Angle | Connector Angle to be used in DASY system | 61.0 ° ± 1 ° | |---|--------------| |---|--------------| Certificate No: DAE4-1527_Jun22 Page 3 of 5 ## Appendix (Additional assessments outside the scope of SCS0108) 1. DC Voltage Linearity | High Range | Reading (µV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 200037.59 | 1.98 | 0.00 | | Channel X + Input | 20007.61 | 1.34 | 0.01 | | Channel X - Input | -20004.09 | 1.79 | -0.01 | | Channel Y + Input | 200037.45 | 1.53 | 0.00 | | Channel Y + Input | 20002.68 | -3.42 | -0.02 | | Channel Y - Input | -20007.17 | -1.14 | 0.01 | | Channel Z + Input | 200037.73 | 2.17 | 0.00 | | Channel Z + Input | 20005.72 | -0.34 | -0.00 | | Channel Z - Input | -20006.63 | -0.49 | 0.00 | | | | | | | Low Range | Reading (µV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 2001.36 | -0,15 | -0,01 | | Channel X + Input | 201,70 | 0.16 | 80.0 | | Channel X - Input | -198.10 | 0.49 | -0.24 | | Channel Y + Input | 2001.44 | 0.07 | 0.00 | | Channel Y + Input | 201.07 | -0.21 | -0.11 | | Channel Y - Input | -199.66 | -0.98 | 0.50 | | Channel Z + Input | 2001.52 | 0.21 | 0.01 | | Channel Z + Input | 200.81 | -0.41 | -0,20 | | Channel Z - Input | -199,00 | -0.15 | 0.07 | | | | | | Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | -3,95 | -5.31 | | | - 200 | 5.96 | 4.97 | | Channel Y | 200 | -16.18 | -16.25 | | | - 200 | 14,41 | 14.34 | | Channel Z | 200 | 3.01 | 2.86 | | | - 200 | -3.93 | -4.13 | ## 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (µV) | Channel Y (µV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | (2) | -0.68 | -2.76 | | Channel Y | 200 | 5.43 | - | -0.31 | | Channel Z | 200 | 10.73 | 3.29 | 2 | Certificate No: DAE4-1527_Jun22 AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 16059 | 17078 | | Channel Y | 15965 | 16219 | | Channel Z | 15888 | 13556 | 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MΩ | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation (µV) | |-----------|--------------|------------------|------------------|---------------------| | Channel X | 1.40 | 0.30 | 2.25 | 0.35 | | Channel Y | -0.62 | -1.30 | 0.47 | 0.33 | | Channel Z | -0.18 | -0.90 | 0.60 | 0.31 | 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 200 | 200 | | Channel Y | 200 | 200 | | Channel Z | 200 | 200 | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) | | | |----------------|-------------------|--|--| | Supply (+ Vcc) | +7.9 | | | | Supply (- Vcc) | -7.6 | | | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA | | |----------------|-------------------|---------------|------------------|--| | Supply (+ Vcc) | +0.01 | +6 | +14 | | | Supply (- Vcc) | -0.01 | -8 | -9 | | Certificate No: DAE4-1527_Jun22 ## **ANNEX H: Probe Calibration Certificate** Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 | Client SAICT | | Certifica | ate No: | Z22-60124 | |---|---|--|---|---| | CALIBRATION CER | RTIFICATE | | | | | Object | EX3DV4 - S | N : 7621 | | | | Calibration Procedure(s) | FF-Z11-004-
Calibration F | -02
Procedures for Dosimetric E-fiel | ld Probes | | | Calibration date: | May 06, 202 | 2 | | | | pages and are part of the certif | ficate. | uncertainties with confidence pro- | | | | humidity<70%. | 1&TE critical for cal | libration) | | | | humidity<70%. Calibration Equipment used (Merimany Standards | 1&TE critical for cal | libration)
Cal Date(Calibrated by, Certific | cate No.) | Scheduled Calibration | | humidity<70%.
Calibration Equipment used (№ | | Cal Date(Calibrated by, Certific
15-Jun-21(CTTL, No.J21X044
15-Jun-21(CTTL, No.J21X044
15-Jun-21(CTTL, No.J21X044
20-Jan-21(CTTL, No.J21X004 | 466)
466)
466)
486)
485)
'464_Jan2 | Jun-22
Jun-22
Jun-22
Jan-23
Jan-23
2) Jan-23 | | Calibration Equipment used (Note of the Normal Standards) Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference
10dBAttenuator Reference 20dBAttenuator Reference Probe EX3DV4 DAE4 | ID #
101919
101547
101548
18N50W-10dB
18N50W-20dB
SN 7464 | Cal Date(Calibrated by, Certific
15-Jun-21(CTTL, No.J21X044
15-Jun-21(CTTL, No.J21X044
15-Jun-21(CTTL, No.J21X044
20-Jan-21(CTTL, No.J21X004
20-Jan-21(CTTL, No.J21X004
26-Jan-22(SPEAG, No.EX3-7
20-Aug-21(SPEAG, No.DAE4 | 466)
466)
466)
486)
485)
464_Jan2
-1555_Au | Jun-22
Jun-22
Jun-22
Jan-23
Jan-23
2) Jan-23
g21/2) Aug-22 | | Calibration Equipment used (No Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuator Reference 20dBAttenuator Reference Probe EX3DV4 | ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7464 SN 1555 | Cal Date(Calibrated by, Certific
15-Jun-21(CTTL, No.J21X044
15-Jun-21(CTTL, No.J21X044
15-Jun-21(CTTL, No.J21X044
20-Jan-21(CTTL, No.J21X004
20-Jan-21(CTTL, No.J21X004
26-Jan-22(SPEAG, No.EX3-7 | 466)
466)
466)
486)
485)
464_Jan2
4-1555_Au
No.) | Jun-22
Jun-22
Jun-22
Jan-23
Jan-23
Jan-23 | | Calibration Equipment used (Note of the content | ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7464 SN 1555 ID # 6201052605 | Cal Date(Calibrated by, Certificate 15-Jun-21(CTTL, No.J21X044 15-Jun-21(CTTL, No.J21X044 15-Jun-21(CTTL, No.J21X044 20-Jan-21(CTTL, No.J21X004 20-Jan-21(CTTL, No.J21X004 26-Jan-22(SPEAG, No.EX3-7 20-Aug-21(SPEAG, No.DAE4 Cal Date(Calibrated by, Certificate 16-Jun-21(CTTL, No.J21X044 16-Jun-21(CTTL, No.J21X044 16-Jun-21(CTTL, No.J21X044 16-Jun-21(CTTL, No.J21X044 15-Jun-21(CTTL, 15-Jun | 466)
466)
466)
486)
485)
464_Jan2
4-1555_Au
No.) | Jun-22 Jun-22 Jun-22 Jan-23 Jan-23 (2) Jan-23 (2) Jan-23 (2) Scheduled Calibration Jun-22 | | Calibration Equipment used (Note of the content | ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7464 SN 1555 ID # 6201052605 MY46110673 | Cal Date(Calibrated by, Certificated 16-Jun-21(CTTL, No.J21X00420-Jan-22(SPEAG, No.EX3-720-Aug-21(SPEAG, No.DAE440-Jan-21(CTTL, No.J21X04414-Jan-22(CTTL, No.J22X004414-Jan-22(CTTL, No.J22X044414-Jan-22(CTTL, No.J22X004414-Jan-22(CTTL, No.J22X004414-Jan-22(| 466)
466)
466)
486)
485)
464_Jan2
4-1555_Au
No.) | Jun-22 Jun-22 Jun-23 Jan-23 Jan-23 g21/2) Aug-22 Scheduled Calibration Jun-22 Jan-23 | This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z22-60124 Page 1 of 9 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl a chinattl.com http://www.caict.ac.en Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx, y, z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters Polarization Φ Φ rotation around probe axis Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i θ=0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" Methods Applied and Interpretation of Parameters: NORMx, y, z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No:Z22-60124 Page 2 of 9 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl/a/chinattl.com http://www.caict.ac.cn ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7621 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |-------------------------|----------|----------|----------|-----------| | $Norm(\mu V/(V/m)^2)^A$ | 0.71 | 0.71 | 0.56 | ±10.0% | | DCP(mV) ⁸ | 111.7 | 111.8 | 115.7 | | ## **Modulation Calibration Parameters** | UID | Communication
System Name | | A
dB | B
dBõV | С | D
dB | VR
mV | Unc ^E
(k=2) | |------|------------------------------|-----|---------|-----------|------|---------|----------|---------------------------| | 0 CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 210.8 | ±3.5% | | | | | Υ | 0.0 | 0.0 | 1.0 | | 218.6 | | | | | Z | 0.0 | 0.0 | 1.0 | | 190.8 | | The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. ⁸ Numerical linearization parameter: uncertainty not required. Certificate No:Z22-60124 Page 3 of 9 ^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 4). EUncertainly is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value. Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl/a/chinattl.com http://www.caict.ac.cn ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7621 ## Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 11.12 | 11.12 | 11.12 | 0.18 | 1.14 | ±12.1% | | 900 | 41.5 | 0.97 | 10.68 | 10.68 | 10.68 | 0.14 | 1.14 | ±12.1% | | 1450 | 40.5 | 1.20 | 9.65 | 9.65 | 9.65 | 0.21 | 0.91 | ±12.1% | | 1750 | 40.1 | 1.37 | 9.22 | 9.22 | 9.22 | 0.31 | 0.90 | ±12.1% | | 1900 | 40.0 | 1.40 | 8.90 | 8.90 | 8.90 | 0.35 | 0.84 | ±12.1% | | 2100 | 39.8 | 1.49 | 8.95 | 8.95 | 8.95 | 0.23 | 1.13 | ±12.1% | | 2300 | 39.5 | 1.67 | 8.60 | 8.60 | 8.60 | 0.44 | 0.78 | ±12.1% | | 2450 | 39.2 | 1.80 | 8.17 | 8.17 | 8.17 | 0.49 | 0.78 | ±12.1% | | 2600 | 39.0 | 1.96 | 7.93 | 7.93 | 7.93 | 0.51 | 0.75 | ±12.1% | | 3300 | 38.2 | 2.71 | 7.74 | 7.74 | 7.74 | 0.45 | 0.92 | ±13.3% | | 3500 | 37.9 | 2.91 | 7.56 | 7.56 | 7.56 | 0.44 | 1.00 | ±13.3% | | 3700 | 37.7 | 3.12 | 7.18 | 7.18 | 7.18 | 0.38 | 1.05 | ±13.3% | | 3900 | 37.5 | 3.32 | 7.26 | 7.26 | 7.26 | 0.35 | 1.35 | ±13.3% | | 4100 | 37.2 | 3.53 | 7.21 | 7.21 | 7.21 | 0.25 | 1.30 | ±13.3% | | 4400 | 36.9 | 3.84 | 7.01 | 7.01 | 7.01 | 0.25 | 1.55 | ±13.3% | | 4600 | 36.7 | 4.04 | 6.90 | 6.90 | 6.90 | 0.30 | 1.72 | ±13.3% | | 4800 | 36.4 | 4.25 | 6.79 | 6.79 | 6.79 | 0.30 | 1.85 | ±13.3% | | 4950 | 36.3 | 4.40 | 6.44 | 6.44 | 6.44 | 0.30 | 1.80 | ±13.3% | | 5250 | 35.9 | 4.71 | 5.98 | 5.98 | 5.98 | 0.35 | 1.63 | ±13.3% | | 5600 | 35.5 | 5.07 | 5.47 | 5.47 | 5.47 | 0.40 | 1.55 | ±13.3% | | 5750 | 35.4 | 5.22 | 5.40 | 5.40 | 5.40 | 0.40 | 1.55 | ±13.3% | ^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70
MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No:Z22-60124 $^{^{\}rm F}$ At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel; +86-10-62304633-2117 E-mail: cttl/a/chinattl.com http://www.caict.ac.cn # Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ±7.4% (k=2) Certificate No:Z22-60124 Page 5 of 9 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl/@chinattl.com http://www.caict.ac.cn ## Receiving Pattern (Φ), θ=0° ## f=600 MHz, TEM ## f=1800 MHz, R22 Uncertainty of Axial Isotropy Assessment: ±1.2% (k=2) Certificate No:Z22-60124 Page 6 of 9 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel; +86-10-62304633-2117 E-mail: ettl-@chinattl.com http://www.eaiet.ae.en ## Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) Uncertainty of Linearity Assessment: ±0.9% (k=2) Certificate No:Z22-60124 Page 7 of 9 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn ## **Conversion Factor Assessment** ## f=750 MHz,WGLS R9(H_convF) ## f=1750 MHz,WGLS R22(H_convF) ## **Deviation from Isotropy in Liquid** Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2) Certificate No:Z22-60124 Page 8 of 9 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel; +86-10-62304633-2117 E-mail: cttl/@chinattl.com http://www.caict.ac.cn ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7621 ## **Other Probe Parameters** | Sensor Arrangement | Triangular | | | |---|------------|--|--| | Connector Angle (°) | 95.4 | | | | Mechanical Surface Detection Mode | enabled | | | | Optical Surface Detection Mode | disable | | | | Probe Overall Length | 337mm | | | | Probe Body Diameter | 10mm | | | | Tip Length | 9mm | | | | Tip Diameter | 2.5mm | | | | Probe Tip to Sensor X Calibration Point | 1mm | | | | Probe Tip to Sensor Y Calibration Point | 1mm | | | | Probe Tip to Sensor Z Calibration Point | 1mm | | | | Recommended Measurement Distance from Surface | 1.4mm | | | Certificate No:Z22-60124 Page 9 of 9 # **ANNEX I: Dipole Calibration Certificate** # 750MHz Dipole Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Client SAICT Certificate No: Z22-60333 # CALIBRATION CERTIFICATE Object D750V3 - SN: 1163 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: August 22, 2022 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|---|-----------------------| | Power Meter NRP2 | 106277 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | Power sensor NRP8S | 104291 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | Reference Probe EX3DV4 | SN 7464 | 26-Jan-22(SPEAG,No.EX3-7464_Jan22) | Jan-23 | | DAE4 | SN 1556 | 12-Jan-22(CTTL-SPEAG,No.Z22-60007) | Jan-23 | | Secondary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 13-Jan-22 (CTTL, No.J22X00409) | Jan-23 | | Network Analyzer E5071C | MY46110673 | 14-Jan-22 (CTTL, No.J22X00406) | Jan-23 | | | | | | | | Name | Function | Signature | |----------------|-------------|--------------------|--| | Calibrated by: | Zhao Jing | SAR Test Engineer | ************************************* | | Reviewed by: | Lin Hao | SAR Test Engineer | 1436 | | Approved by: | Qi Dianyuan | SAR Project Leader | 25 | | | | • 27/42 | | Issued: August 26, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z22-60333 Page 1 of 6 Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020 - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY4/5 System Handbook Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z22-60333 Page 2 of 6 Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 750 MHz ±1 MHz | | Head TSL parameters The following parameters a meters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|----------------|--------------|-----------------| | Nominal Head TSL parameters | 22.0 ℃ | 42.0 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ±0.2) °C | 41.3 ±6 % | 0.90 mho/m ±6 % | | Head TSL temperature change during test | <1.0 ℃ | | Same | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|-------------------------| | SAR measured | 250 mW input power | 2.15 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.48 W/kg ±18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 1.42 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.62 W/kg ±18.7 % (k=2) | Certificate No: Z22-60333 #### Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.0Ω- 4.06)Ω | | |--------------------------------------|---------------|--| | Return Loss | - 27.8dB | | #### General Antenna Parameters and Design | 0.941 ns | |----------| | | After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged. #### Additional EUT Data | Manufactured by SPE | AG | |---------------------|----| |---------------------|----| Certificate No: Z22-60333 Page 4 of 6 Date: 2022-08-22 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn # DASY5 Validation Report for Head
TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1163 Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; $\sigma = 0.902$ S/m; $\varepsilon_r = 41.26$; $\rho = 1000$ kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN7464; ConvF(10.26, 10.26, 10.26) @ 750 MHz; Calibrated: 2022-01-26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2022-01-12 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.49 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.17 W/kg SAR(1 g) = 2.15 W/kg; SAR(10 g) = 1.42 W/kg Smallest distance from peaks to all points 3 dB below = 21.2 mm Ratio of SAR at M2 to SAR at M1 = 67.5% Maximum value of SAR (measured) = 2.84 W/kg 0 dB = 2.84 W/kg = 4.53 dBW/kg Certificate No: Z22-60333 Page 5 of 6 12-main: emissearceascer important accuses of ## Impedance Measurement Plot for Head TSL Certificate No: Z22-60333 Page 6 of 6 ## 835MHz Dipole E-mail: ettl@ehinattl.com Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, Chi Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl &chinattl.com http://www.chinattl.cn Certificate No: Z21-60355 # **CALIBRATION CERTIFICATE** Object D835V2 - SN: 4d057 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: October 18, 2021 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Calibrated by Certificate No.) | Scheduled Calibration | |-------------------------|------------|---|-----------------------| | Power Meter NRP2 | 106277 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | Power sensor NRP8S | 104291 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | Reference Probe EX3DV4 | SN 7517 | 03-Feb-21(CTTL-SPEAG,No.Z21-60001) | Feb-22 | | DAE4 | SN 1556 | 15-Jan-21(SPEAG,No.DAE4-1556_Jan21) | Jan-22 | | Secondary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 01-Feb-21 (CTTL, No.J21X00593) | Jan-22 | | NetworkAnalyzer E5071C | MY46110673 | 14-Jan-21 (CTTL, No.J21X00232) | Jan-22 | | | | | | Calibrated by: Reviewed by: Name Function Zhao Jing SAR Test Engineer Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: October 24, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory Certificate No: Z21-60355 In Collaboration with S D C A G CALIBRATION LABORATORY Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz ## Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z21-60355 Add: No.52 Hua YuanBei Road, Haidian District, Beijing, 100191, China Tel; =86-10-62304633-2079 Fax; +86-10-62304633-2504 http://www.chinattl.cn Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10,4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | Head TSL parameters | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.9 ± 6 % | 0.89 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | Selection (| and the second | # SAR result with Head TSL | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.39 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.64 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 1.56 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.29 W/kg ± 18.7 % (k=2) | Certificate No. Z21-60355 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.en ## Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 49.8Ω- 4.19jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 27.5dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.301 ns | |----------------------------------|----------| | Lieunical Delay (one direction) | 1.301115 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| Certificate No: Z21-60355 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Iel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl @chinattl.com http://www.chinattl.com DASY5 Validation Report for Head TSL Date: 10.18.2021 Test Laboratory: CTTL, Beijing, China DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d057 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.886$ S/m; $\epsilon_r = 40.9$; $\rho = 1000$ kg/m³ Phantom section: Right Section DASY5 Configuration: - Probe: EX3DV4 SN7517; ConvF(9.81, 9.81, 9.81) @ 835 MHz; Calibrated: 2021-02-03 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2021-01-15 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4): SEMCAD X Version 14.6.14 (7501) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value - 58.86 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 3.68 W/kg SAR(1 g) = 2.39 W/kg; SAR(10 g) = 1.56 W/kg Smallest distance from peaks to all points 3 dB below = 18 mm Ratio of SAR at M2 to SAR at M1 = 64.9% Maximum value of
SAR (measured) = 3.23 W/kg 0 dB = 3.23 W/kg = 5.09 dBW/kg Certificate No: Z21-60355 Page 5 of 6 # Impedance Measurement Plot for Head TSL Certificate No: Z21-60355 Page 6 of 6 ## 1750MHz Dipole Add: No.52 Hua Yuan Bei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117 E-mail: emf@caiet.ac.en http://www.eaiet.ac.en SAICT Client Certificate No: Z22-60335 # **CALIBRATION CERTIFICATE** Object D1750V2 - SN: 1152 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: August 22, 2022 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility; environment temperature (22:x3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|---|-----------------------| | Power Meter NRP2 | 106277 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | Power sensor NRP8S | 104291 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | Reference Probe EX3DV4 | SN 7464 | 26-Jan-22(SPEAG,No.EX3-7464_Jan22) | Jan-23 | | DAE4 | SN 1556 | 12-Jan-22(CTTL-SPEAG,No.Z22-60007) | Jan-23 | | Secondary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 13-Jan-22 (CTTL, No.J22X00409) | Jan-23 | | Network Analyzer E5071C | MY46110673 | 14-Jan-22 (CTTL, No.J22X00406) | Jan-23 | | | | | | Name Function Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Qi Dianyuan SAR Project Leader Issued: August 26, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z22-60335 Approved by: Page 1 of 6 Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020 - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z22-60335 Page 2 of 6 # Measurement Conditions | DASY Version | DASY52 | 52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | 32.10.4 | | Phantom | Triple Flat Phantom 5.10 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1750 MHz ±1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|----------------|--------------|-----------------| | Nominal Head TSL parameters | 22.0 ℃ | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) ℃ | 41.3 ±6 % | 1.41 mho/m ±6 % | | Head TSL temperature change during test | <1.0 °C | | | SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.18 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 36.3 W/kg ±18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 4.94 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 19.6 W/kg ± 18.7 % (k=2) | Certificate No: Z22-60335 # Appendix (Additional assessments outside the scope of CNAS L0570) ## Antenna Parameters with Head TSL | Impedance, transformed to feed point | 47.9Ω- 0.71jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 32.8dB | | # General Antenna Parameters and Design | Electrical Delay (one direction) | 1.120 ns | | |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| Certificate No: Z22-60335 Page 4 of 6 Date: 2022-08-22 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn ## DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1152 Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.408$ S/m; $\varepsilon_r = 41.28$; $\rho = 1000$ kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN7464; ConvF(8.52, 8.52, 8.52) @ 1750 MHz; Calibrated: 2022-01-26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2022-01-12 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 91.44 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 16.5 W/kg SAR(1 g) = 9.18 W/kg; SAR(10 g) = 4.94 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 56,3% Maximum value of SAR (measured) = 14.0 W/kg 0 dB = 14.0 W/kg = 11.46 dBW/kg Certificate No: Z22-60335 Page 5 of 6 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 #### E-mail: emf@caict.ac.cn http://www.caict.ac.en ## Impedance Measurement Plot for Head TSL Certificate No: Z22-60335 Page 6 of 6 ## 1900MHz Dipole Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, Chi Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl \(\alpha\) chinattl.com http://www.chinattl.cn Client SAICT Certificate No: Z21-60357 # **CALIBRATION CERTIFICATE** Object D1900V2 - SN: 5d088 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: October 18, 2021 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)℃ and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|---|-----------------------| | Power Meter NRP2 | 106277 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | Power sensor NRP8S | 104291 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | Reference Probe EX3DV4 | SN 7517 | 03-Feb-21(CTTL-SPEAG,No.Z21-60001) | Feb-22 | | DAE4 | SN 1556 | 15-Jan-21(SPEAG,No.DAE4-1556_Jan21) | Jan-22 | | Secondary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 01-Feb-21 (CTTL, No.J21X00593) | Jan-22 | | NetworkAnalyzer E5071C | MY46110673 | 14-Jan-21 (CTTL, No.J21X00232) | Jan-22 | | | | | | | | Name | Function | Signature |
----------------|-------------|--------------------|--| | Calibrated by: | Zhao Jing | SAR Test Engineer | | | Reviewed by: | Lin Hao | SAR Test Engineer | 一 林光 | | Approved by: | Qi Dianyuan | SAR Project Leader | a de la companya l | Issued: October 24, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z21-60357 Page I of 6 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: =86-10-62304633-2079 Fax: =86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn lossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z21-60357 Page 2 of 6 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: =86-10-62304633-2079 Fax: =86-10-62304633-2504 http://www.chinattl.cn ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | ## Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.9 ± 6 % | 1.39 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | almos. | | # SAR result with Head TSL | 250 mW input power | 10.0 W/kg | |--------------------|---| | normalized to 1W | 40.2 W/kg ± 18.8 % (k=2) | | Condition | | | 250 mW input power | 5.10 W/kg | | normalized to 1W | 20.5 W/kg ± 18.7 % (k=2) | | | normalized to 1W Condition 250 mW input power | Add: No.52 HuaYuanBei Road, Haidian District, Beiling, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.en # Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 53.7Ω+ 6.80jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 22,6dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.110 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| Certificate No: Z21-60357 Date: 10.18,2021 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn ## DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN; 5d088 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.387$ S/m; $\varepsilon_i = 39.88$; $\rho = 1000$ kg/m³ Phantom section: Right Section DASY5 Configuration: - Probe: EX3DV4 SN7517; ConvF(7.81, 7.81, 7.81) @ 1900 MHz; Calibrated: 2021-02-03 - · Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2021-01-15 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501) #### System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 103.6 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 19.2 W/kg ## SAR(1 g) = 10 W/kg; SAR(10 g) = 5.1 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 52.1% Maximum value of SAR (measured) = 15.8 W/kg 0 dB = 15.8 W/kg = 11.99 dBW/kg Certificate No: Z21-60357 Page 5 of 6 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn ## Impedance Measurement Plot for Head TSL Certificate No: Z21-60357 Page 6 of 6 # 2450MHz Dipole E-mail: ettl ä chinattl.com Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, Chi Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn Certificate No: Z21-60358 # CALIBRATION CERTIFICATE SAICT Object D2450V2 - SN: 873 Calibration Procedure(s) Client FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: October 21, 2021 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are
part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |------------|--|---| | 106277 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | 104291 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | SN 7517 | 03-Feb-21(CTTL-SPEAG.No.Z21-60001) | Feb-22 | | SN 1556 | 15-Jan-21(SPEAG,No.DAE4-1556_Jan21) | Jan-22 | | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | MY49071430 | 01-Feb-21 (CTTL, No.J21X00593) | Jan-22 | | MY46110673 | 14-Jan-21 (CTTL, No.J21X00232) | Jan-22 | | | 106277
104291
SN 7517
SN 1556
ID #
MY49071430 | 106277 24-Sep-21 (CTTL, No.J21X08326) 104291 24-Sep-21 (CTTL, No.J21X08326) SN 7517 03-Feb-21(CTTL-SPEAG,No.Z21-60001) SN 1556 15-Jan-21(SPEAG,No.DAE4-1556_Jan-21) ID# Cal Date (Calibrated by, Certificate No.) MY49071430 01-Feb-21 (CTTL, No.J21X00593) | | | Name | Function | | |----------------|-----------|-------------------|--| | Calibrated by: | Zhao Jing | SAR Test Engineer | | | Reviewed by: | Lin Hao | SAR Test Engineer | | Approved by: Qi Dianyuan SAR Project Leader Issued: October 27, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory Certificate No: Z21-60358 Page 1 of 6 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn E-mail: cttl a chinattl.com #### Glossary: TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z21-60358 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: =86-10-62304633-2079 Fax: *86-10-62304633-2504 E-mail: ettl a chinattl.com http://www.chinattl.com # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY52 | V52.10.4 | |--------------------------|---| | Advanced Extrapolation | | | Triple Flat Phantom 5.1C | | | 10 mm | with Spacer | | dx, dy, dz = 5 mm | | | 2450 MHz ± 1 MHz | | | | Advanced Extrapolation Triple Flat Phantom 5.1C 10 mm dx, dy, dz = 5 mm | # Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.5 ± 6 % | 1,81 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.3 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 53.2 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 6.05 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.2 W/kg ± 18.7 % (k=2) | Add; No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2504 Fax: +86-10-62304633-2504 http://www.chinattl.cn # Appendix (Additional assessments outside the scope of CNAS L0570) ## Antenna Parameters with Head TSL | Impedance, transformed to feed point | 53.6Ω+ 1.26jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 28.8dB | | # General Antenna Parameters and Design | | Y | |----------------------------------|----------| | Electrical Delay (one direction) | 1.066 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. # Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| | | | Certificate No: Z21-60358 Date: 10.21.2021 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2504 E-mail: cttl a chinattl.com http://www.chinattl.com #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 873 Communication System; UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.809$ S/m; $\epsilon_r = 39.51$; $\rho = 1000$ kg/m³ Phantom section: Right Section DASY5 Configuration: - Probe: EX3DV4 SN7517; ConvF(7.34, 7.34, 7.34) @ 2450 MHz; Calibrated: 2021-02-03 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2021-01-15 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 108.0 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 28.0 W/kg SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.05 W/kg Smallest distance from peaks to all points 3 dB below = 9.2 mm Ratio of SAR at M2 to SAR at M1 = 46.9% Maximum value of SAR (measured) = 22.6 W/kg 0 dB = 22.6 W/kg = 13.54 dBW/kg Certificate No: Z21-60358 Page 5 of 6 #### Impedance Measurement Plot for Head TSL Certificate No: Z21-60358 Page 6 of 6 # 2550MHz Dipole Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client TMC-SZ (Auden) Certificate No: D2550V2-1010_May21 | Object | D2550V2 - SN:1010 | | | |---|---
--|---| | Calibration procedure(s) | QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz | | | | Calibration date: | May 21, 2021 | | | | his calibration certificate document
the measurements and the uncert | nts the traceability to national sintles with confidence pro- | onal standards, which realize the physical uni-
robability are given on the following pages an | its of measurements (SI),
ad are part of the cortilicate. | | All calibrations have been conductor | ed in the closed laborator | y facility: environment temperature (22 \pm 3) $^{\circ}$ | C and humidity $< 70^{\circ}$ ₆ . | | | | | | | Calibration Equipment used (M&TE | E critical for calibration) | | | | | Edifical for calibration) | Cal Date (Certificate No.) | Scheduled Calibration | | Primary Standards | | 09-Apr-21 (No. 217-03291/03292) | Scheduled Calibration
Apr-22 | | Primary Standards Power meter NRP | ID# | 09-Apr-21 (No. 217-03291/03292)
09-Apr-21 (No. 217-03291) | Apr-22
Apr-22 | | Primary Standards
Power meter NRP
Power sensor NRP-Z91 | ID #
SN: 104778
SN: 103244
SN: 103245 | 09-Apr-21 (No. 217-03291/03292)
09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292) | Apr-22
Apr-22
Apr-22 | | Primary Standards
Power meter NRP
Power sensor NRP-291
Power sensor NRP-291 | ID #
SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k) | 09-Apr-21 (No. 217-03291/03292)
09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292)
09-Apr-21 (No. 217-03343) | Apr-22
Apr-22
Apr-22
Apr-22 | | Primary Standards
Power meter NRP
Power sensor NRP-291
Power sensor NRP-291
Reference 20 dB Attenuator
Type-N mismatch combination | ID #
SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310962 / 06327 | 09-Apr-21 (No. 217-03291/03292)
09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292)
09-Apr-21 (No. 217-03343)
09-Apr-21 (No. 217-03344) | Apr-22
Apr-22
Apr-22
Apr-22
Apr-22 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatich combination Reference Probe EX3DV4 | ID #
SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310962 / 06327
SN: 7349 | 09-Apr-21 (No. 217-03291/03292)
09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292)
09-Apr-21 (No. 217-03343)
09-Apr-21 (No. 217-03344)
28-Dec-20 (No. EX3-7349 Dec-20) | Apr-22
Apr-22
Apr-22
Apr-22
Apr-22
Dec-21 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 | ID #
SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310962 / 06327 | 09-Apr-21 (No. 217-03291/03292)
09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292)
09-Apr-21 (No. 217-03343)
09-Apr-21 (No. 217-03344) | Apr-22
Apr-22
Apr-22
Apr-22
Apr-22 | | Calibration Equipment used IM&TE Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards | ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7949 SN: 601 | 09-Apr-21 (No. 217-03291/03292)
09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292)
09-Apr-21 (No. 217-03343)
09-Apr-21 (No. 217-03344)
28-Dec-20 (No. EX3-7349_Dec20)
02-Nov-20 (No. DAE4-601_Nov20)
Check Date (in house) | Apr-22
Apr-22
Apr-22
Apr-22
Apr-22
Dec-21
Nov-21 | | Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B | ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 | 09-Apr-21 (No. 217-03291/03292)
09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292)
09-Apr-21 (No. 217-03343)
09-Apr-21 (No. 217-03344)
28-Dec-20 (No. EX3-7349 Dec20)
02-Nov-20 (No. DAE4-601 Nov20)
Check Date (in house)
30-Oct-14 (in house check Oct-20) | Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A | ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 | 09-Apr-21 (No. 217-03291/03292)
09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292)
09-Apr-21 (No. 217-03343)
09-Apr-21 (No. 217-03344)
28-Dec-20 (No. EX3-7349 Dec-20)
02-Nov-20 (No. DAE-4-601 Nov20)
Check Date (in house)
30-Oct-14 (in house check Oct-20)
07-Oct-15 (in house check Oct-20) | Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A | ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 | 09-Apr-21 (No. 217-03291/03292)
09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292)
09-Apr-21 (No. 217-03343)
09-Apr-21 (No. 217-03344)
28-Dec-20 (No. EX3-7349 Dec-20)
02-Nov-20 (No. DAE-4-601 Nov20)
Check Date (in house)
30-Oct-14 (in house check Oct-20)
07-Oct-15 (in house check Oct-20)
07-Oct-15 (in house check Oct-20) | Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06 | ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310962 / 06327 SN: 7349 SN: 601 ID # SN: G639512475 SN: U537292783 SN: MY41092317 SN: 100972 | 09-Apr-21 (No. 217-03291/03292)
09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292)
09-Apr-21 (No. 217-03343)
09-Apr-21 (No. 217-03344)
28-Dec-20 (No. EX3-7349 Dec-20)
02-Nov-20 (No. DAE4-601 Nov20)
Check Date (in house)
30-Oct-14 (in house check Oct-20)
07-Oct-15 (in house check Oct-20)
15-Jun-15 (in house check Oct-20) | Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A | ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310962 / 06327 SN: 7349 SN: 601 ID # SN: G639512475 SN: U537292783 SN: MY41092317 SN: 100972 | 09-Apr-21 (No. 217-03291/03292)
09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292)
09-Apr-21 (No. 217-03343)
09-Apr-21 (No. 217-03344)
28-Dec-20 (No. EX3-7349 Dec-20)
02-Nov-20 (No. DAE-4-601 Nov20)
Check Date (in house)
30-Oct-14 (in house check Oct-20)
07-Oct-15 (in house check Oct-20)
07-Oct-15 (in house check Oct-20) | Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Proper sensor HP 8481A RF generator R&S SMT-06 | ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310962 / 06327 SN: 7349 SN: 601 ID # SN: G639512475 SN: U537292783 SN: MY41092317 SN: 100972 | 09-Apr-21 (No. 217-03291/03292)
09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292)
09-Apr-21 (No. 217-03343)
09-Apr-21 (No. 217-03344)
28-Dec-20 (No. EX3-7349 Dec-20)
02-Nov-20 (No. DAE4-601 Nov20)
Check Date (in house)
30-Oct-14 (in house check Oct-20)
07-Oct-15 (in house check Oct-20)
15-Jun-15 (in house check Oct-20) | Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 | | Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 | 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349 Dec20) 02-Nov-20 (No. DAE4-601 Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-16 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check
Oct-20) | Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-21 Signature | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzor Agilent E8358A | ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 103825 SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41086477 Namie | 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349 Dec-20) 02-Nov-20 (No. DAE4-601 Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-21 | Certificate No: D2550V2-1010_May21 Page 1 of 9