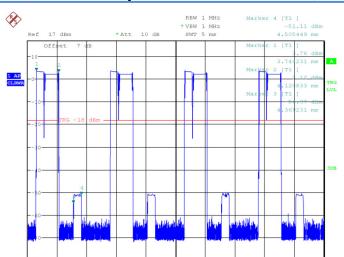


Date: 8.DEC.2016 19:46:00


Fig.53 Time of occupancy (Dwell Time): Ch39,Packet DH5

Date: 8.DEC.2016 19:46:08

Fig.54 Number of Transmissions Measurement: Ch39, Packet DH5

Page Number: 47of 71

Date: 8.DEC.2016 19:46:16

Fig.55 Time of occupancy (Dwell Time): Ch39, Packet 2-DH1

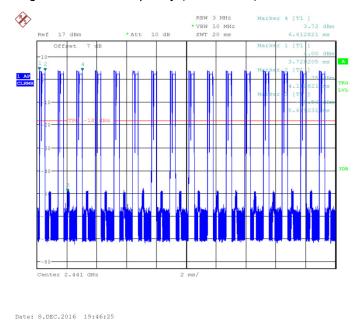
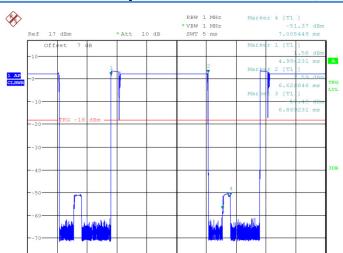



Fig.56 Number of Transmissions Measurement: Ch39, Packet 2-DH1

Page Number: 48of 71

Report Issued Date : Jan.24.2017

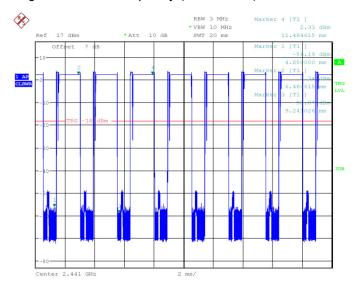
Report No.: I16D00249-RFB

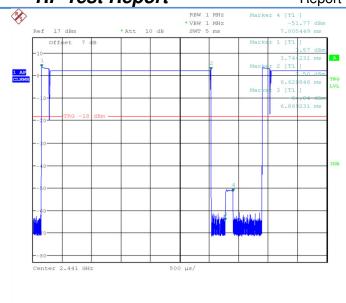
Report No.: I16D00249-RFB

Date: 8.DEC.2016 19:46:34

Center 2.441 GHz

Fig.57 Time of occupancy (Dwell Time): Ch39,Packet 2-DH3




Fig.58 Number of Transmissions Measurement: Ch39, Packet 2-DH3

Page Number: 49of 71

Report Issued Date : Jan.24.2017

Date: 8.DEC.2016 19:46:42

Date: 8.DEC.2016 19:46:51

Fig.59 Time of occupancy (Dwell Time): Ch39, Packet 2-DH5

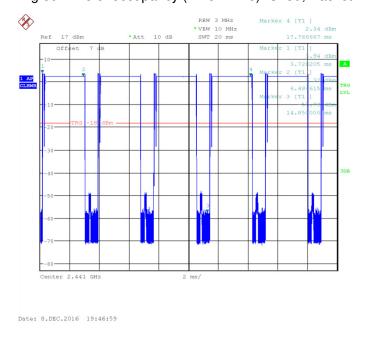
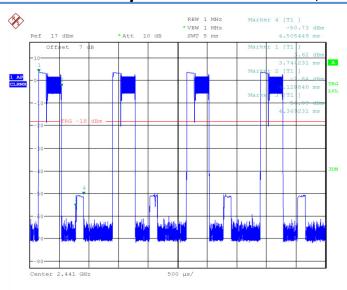



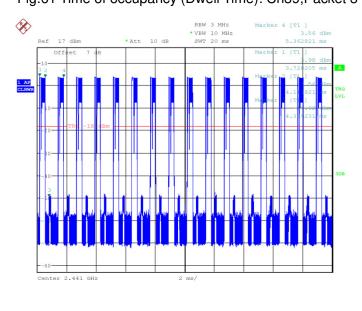
Fig.60 Number of Transmissions Measurement: Ch39, Packet 2-DH5

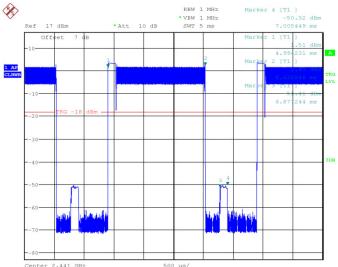
Page Number: 50of 71

Date: 8.DEC.2016 19:47:08

Report No.: I16D00249-RFB

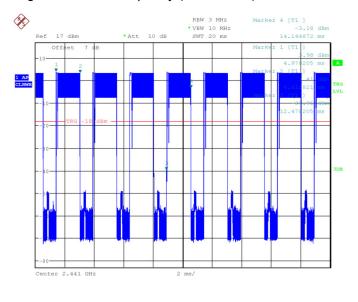
Fig.61 Time of occupancy (Dwell Time): Ch39, Packet 3-DH1



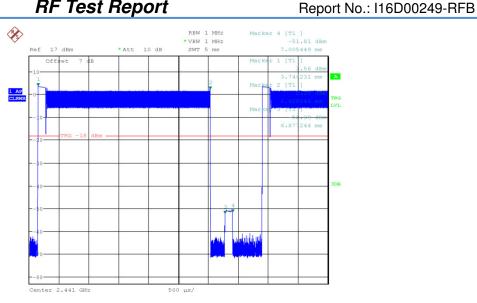

Fig.62 Number of Transmissions Measurement: Ch39, Packet 3-DH1

Page Number: 51of 71

Report Issued Date : Jan.24.2017


Date: 8.DEC.2016 19:47:16

Date: 8.DEC.2016 19:47:25


Fig.63 Time of occupancy (Dwell Time): Ch39,Packet 3-DH3

Date: 8.DEC.2016 19:47:34

Fig.64 Number of Transmissions Measurement: Ch39, Packet 3-DH3

Page Number: 52of 71

Date: 8.DEC.2016 19:47:42

Fig.65 Time of occupancy (Dwell Time): Ch39, Packet 3-DH5

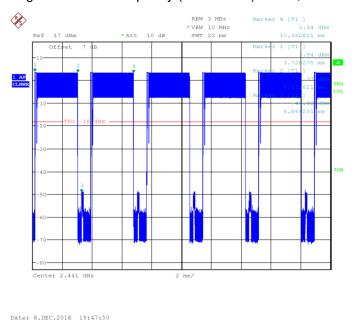


Fig.66 Number of Transmissions Measurement: Ch39, Packet 3-DH5

6.6. 20dB Bandwidth

6.6.1 Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247 (a) (1)	N/A

Page Number: 53of 71

6.6.2 Test procedures

The measurement is according to ANSI C63.10 clause 7.8.7

1. Connect the EUT through cable and divide with CBT32 and spectrum analyzer.

Report No.: I16D00249-RFB

- 2. Enable the EUT transmit maximum power.
- 3. Set the spectrum analyzer as step 4 to step 7.
- 4. Span: two or five times of OBW
- 5. RBW= 1% to 5% of the OBW; VBW ≥ 3RBW; Max Hold.
- 6. Select the max peak, and N DB DOWN=20dB.
- 7. Record the results.

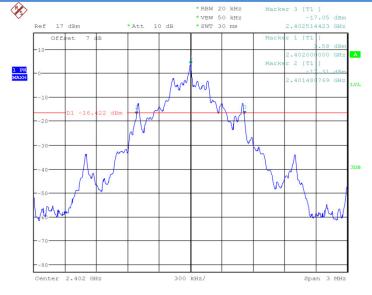
Measurement Result:

For GFSK

Channel	20dB Bandwidth (KHz)		Conclusion
0	Fig.67	1.034	Р
39	Fig.68	1.034	Р
78	Fig.69	1.029	Р

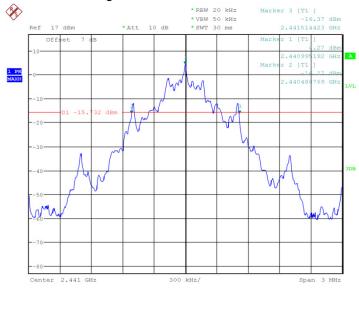
For π/4 DQPSK

Channel	20dB Bandwidth (KHz)		Conclusion
0	Fig.70	1.091	Р
39	Fig.71	1.091	Р
78	Fig.72	1.091	Р


For 8DPSK

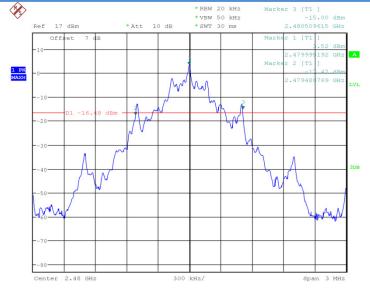
Channel	20dB Bandwidth (KHz)		Conclusion
0	Fig.73	1.192	Р
39	Fig.74	1.192	Р
78	Fig.75	1.197	Р

Conclusion: PASS
Test graphs as below:


East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301 Page Number: 54of 71

Date: 8.DEC.2016 19:48:39

Fig.67 20dB Bandwidth: GFSK, Ch0



Date: 8.DEC.2016 19:48:57

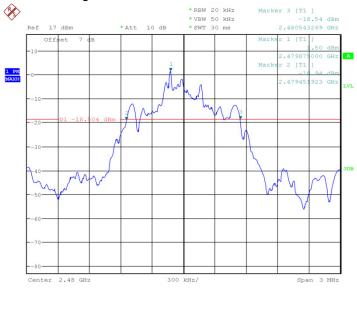
Fig.68 20dB Bandwidth: GFSK, Ch39

Page Number: 55of 71

Date: 8.DEC.2016 19:49:14

Fig.69 20dB Bandwidth: GFSK, Ch78

Fig.70 20dB Bandwidth: $\pi/4$ DQPSK, Ch0


Page Number: 56of 71

Date: 8.DEC.2016 19:49:47

Fig.71 20dB Bandwidth: $\pi/4$ DQPSK, Ch39



Date: 8.DEC.2016 19:50:04

Fig.72 20dB Bandwidth: $\pi/4$ DQPSK, Ch78

Page Number: 57of 71

Date: 8.DEC.2016 19:50:21

Fig.73 20dB Bandwidth: 8DPSK, Ch0

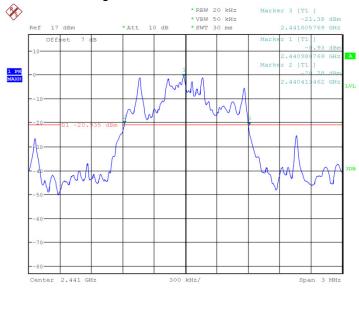



Fig.74 20dB Bandwidth: 8DPSK, Ch39

Page Number: 58of 71

Report Issued Date : Jan.24.2017

Date: 8.DEC.2016 19:50:38

Report No.: I16D00249-RFB

Fig.75 20dB Bandwidth: 8DPSK, Ch78

6.7. Carrier Frequency Separation

6.7.1 Measurement Limit:

Standard	Limit (KHz)
FCC 47 CFR Part 15.247 (a) (1)	Over 25KHz or (2/3)*20dB bandwidth

6.7.2 Test procedures

The measurement is according to ANSI C63.10 clause 7.8.2.

- 1. Connect the EUT through cable and divide with CBT32 and spectrum analyzer.
- 2. Enable the EUT transmit in hopping mode.
- 3. Span: Wide enough to capture the peaks of two adjacent channels.
- 4. RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- 5. Video (or average) bandwidth (VBW) ≥ RBW.
- 6. Sweep: Auto.
- 7. Detector function: Peak.
- 8. Trace: Max hold.
- Allow the trace to stabilize.

6.7.3 Measurement Result:

For GFSK

Channel	Carrier separation (KHz)	Conclusion
---------	--------------------------	------------

East China Institute of Telecommunications Page Number: 59of 71
TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Jan.24.2017

		.	
39	Fig.76	1024.039	Р

Report No.: I16D00249-RFB

For $\pi/4$ DQPSK

Channel	Carrier separation (KHz)		Conclusion
39	Fig.77	966.346	Р

For 8DPSK

Channel	Carrier separation (KHz)		Conclusion
39	Fig.78	1000	Р

Conclusion: PASS Test graphs as below:

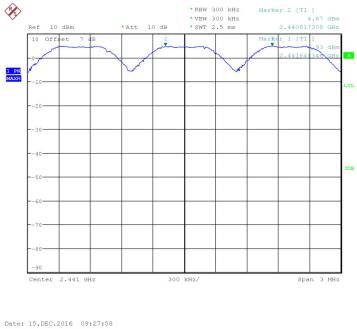
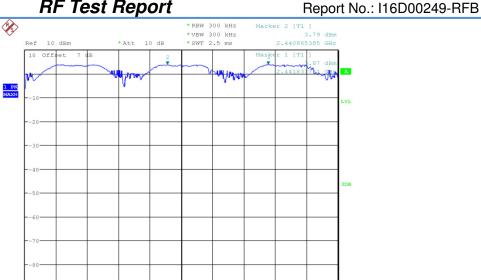



Fig.76 Carrier separation measurement: GFSK, Ch39

Page Number: 60of 71

Date: 15.DEC.2016 09:30:11

Fig.77 Carrier separation measurement: π/4 DQPSK, Ch39

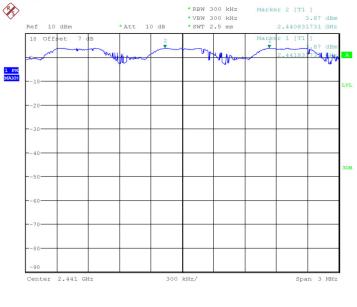


Fig.78 Carrier separation measurement: 8DPSK, Ch39

6.8. Number Of Hopping Channels

Date: 15.DEC.2016 09:32:24

6.8.1 Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247 (a)(1)(iii)	At least 15 non-overlapping channels

Page Number: 61of 71

6.8.2 Test procedure

The measurement is according to ANSI C63.10 clause 7.8.3.

- 1. Connect the EUT through cable and divide with CBT32 and spectrum analyzer.
- 2. Enable the EUT transmit in hopping mode.
- 3. Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.

Report No.: I16D00249-RFB

- 4. RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- 5. VBW \geq RBW.
- 6. Sweep: Auto.
- 7. Detector function: Peak.
- 8. Trace: Max hold.
- 9. Allow the trace to stabilize.
- 10. Record the test rsults.

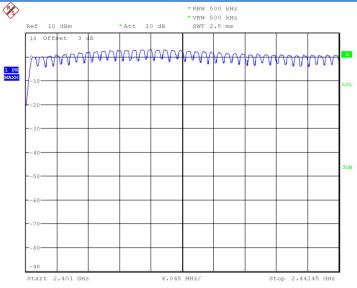
6.8.3 Measurement Result:

For GFSK

Channel	Number of hopping channels		Conclusion
0~39	Fig.79	70	Р
40~78	Fig.80	79	Р

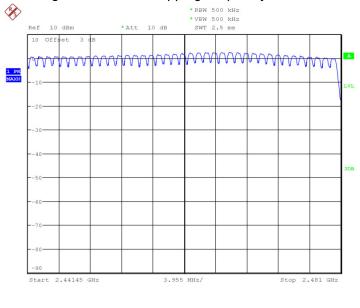
For π/4 DQPSK

Channel	Number of hopping channels		Conclusion
0~39	Fig.81	70	Р
40~78	Fig.82	79	Р

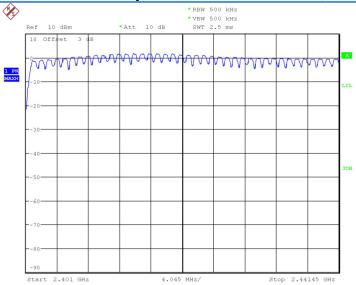

For 8DPSK

Channel	Number of hop	Conclusion	
0~39	Fig.83	70	Р
40~78	Fig.84	79	Р

Conclusion: PASS
Test graphs as below:


East China Institute of Telecommunications Page Number: 62of 71
TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Jan.24.2017

Date: 8.DEC.2016 20:02:05


Fig.79 Number of hopping frequency: GFSK, Ch0~39

Date: 8.DEC.2016 20:04:11

Fig.80 Number of hopping frequency: GFSK, Ch40~78

Page Number: 63of 71

Report No.: I16D00249-RFB

Date: 8.DEC.2016 20:06:15

Fig.81 Number of hopping frequency: π/4 DQPSK, Ch0~39

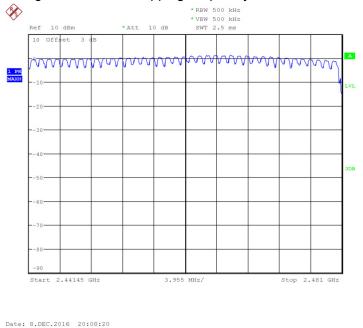
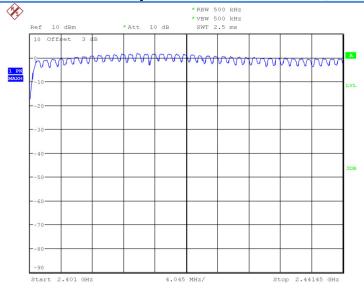
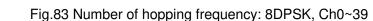




Fig.82 Number of hopping frequency: $\pi/4$ DQPSK, Ch40~78

Page Number: 64of 71

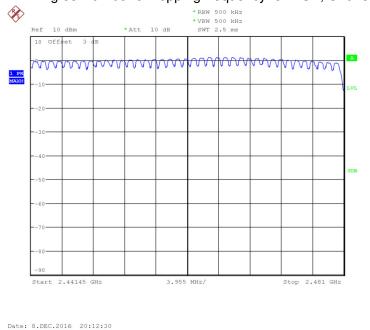


Fig.84 Number of hopping frequency: 8DPSK, Ch40~78

6.9. AC Powerline Conducted Emission

Date: 8.DEC.2016 20:10:25

Method of Measurement: See ANSI C63.10-2013-clause 6.2

- 1 The one EUT cable configuration and arrangement and mode of operation that produced the emission with the highest amplitude relative to the limit is selected for the final measurement, while applying the appropriate modulating signal to the EUT.
- If the EUT is relocated from an exploratory test site to a final test site, the highest emissions shall be remaximized at the final test location before final ac power-line conducted emission measurements are performed.

East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301 Page Number: 65of 71 Report Issued Date : Jan.24.2017

Report No.: I16D00249-RFB

- Report No.: I16D00249-RFB
- The final test on all current-carrying conductors of all of the power cords to the equipment that comprises the EUT (but not the cords associated with other non-EUT equipment in the system) is then performed for the full frequency range for which the EUT is being tested for compliance without further variation of the EUT arrangement, cable positions, or EUT mode of operation.
- If the EUT is comprised of equipment units that have their own separate ac power connections, e.g., floor-standing equipment with independent power cords for each shelf that are able to connect directly to the ac power network, each current-carrying conductor of one unit is measured while the other units are connected to a second (or more) LISN(s). All units shall be separately measured. If a power strip is provided by the manufacturer, to supply all of the units making up the EUT, only the conductors in the power cord of the power strip shall be measured.

If the EUT uses a detachable antenna, these measurements shall be made with a suitable dummy load connected to the antenna output terminals; otherwise, the tests shall be made with the antenna connected and, if adjustable, fully extended. When measuring the ac conducted emissions from a device that operates between 150 kHz and 30 MHz a non-detachable antenna may be replaced with a dummy load for the measurements within the fundamental emission band of the transmitter, but only for those measurements.36 Record the six highest EUT emissions relative to the limit of each of the current-carrying conductors of the power cords of the equipment that comprises the EUT over the frequency range specified by the procuring or regulatory agency. Diagram or photograph the test setup that was used. See Clause 8 for full reporting requirements.

Test Condition:

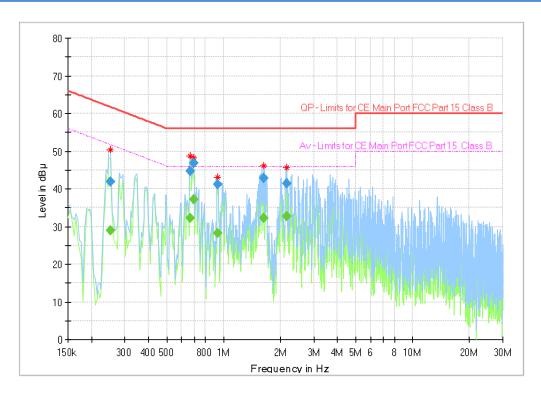
Voltage (V)	Frequency (Hz)	
120	60	

Measurement Result and limit:

(Quasi-peak-average Limit)

			Result (dB _μ V)	
Frequency range (MHz)	Quasi-peak Limit (dBμV)	Average Limit (dBμV)	With charger	Conclusion
			802.11b	
0.15 to 0.5	66 to 56	56 to 46		
0.5 to 5	56	46	Fig.58	Р
5 to 30	60	50		

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.


Conclusion: Pass

East China Institute of Telecommunications

TEL: +86 21 63843300 FAX: +86 21 63843301

Page Number: 66of 71

Report No.: I16D00249-RFB

Fig.58 AC Powerline Conducted Emission

	1 19:00 7:0 1 0 110 111110 0 0 111110 10 10 11								
Frequency	QuasiPeak	Average	Limit	Margin	Meas.	Bandwidth	Line	Filter	Corr.
(MHz)	(dB µ V)	(dB μ V)	(dB μ V)	(dB)	Time	(kHz)			(dB)
0.250744	41.85		61.73	19.88	1000.0	9.000	N	ON	9.7
0.250744		29.00	51.73	22.73	1000.0	9.000	N	ON	9.7
0.664912	44.78		56.00	11.22	1000.0	9.000	L1	ON	9.7
0.664912		32.24	46.00	13.76	1000.0	9.000	L1	ON	9.7
0.691031	46.76		56.00	9.24	1000.0	9.000	L1	ON	9.7
0.691031		37.26	46.00	8.74	1000.0	9.000	L1	ON	9.7
0.929831	41.21		56.00	14.79	1000.0	9.000	L1	ON	9.7
0.929831		28.17	46.00	17.83	1000.0	9.000	L1	ON	9.7
1.635038	42.74		56.00	13.26	1000.0	9.000	L1	ON	9.7
1.635038		32.28	46.00	13.72	1000.0	9.000	L1	ON	9.7
2.153681	41.51		56.00	14.49	1000.0	9.000	L1	ON	9.7
2.153681		32.61	46.00	13.39	1000.0	9.000	L1	ON	9.7

Page Number: 67of 71 Report Issued Date : Jan.24.2017

7. Test Equipments and Ancillaries Used For Tests

The test equipments and ancillaries used are as follows.

Conducted test system

No.	Equipment	Model	Serial	Manufacture	Calibration
NO.	Equipment	Wodei	Number	r	Due date
1	Vector Signal	FSQ26	101096	Rohde&Schw	2017-05-11
ı	Analyzer	1 3020	101090	arz	2017-03-11
2	DC Power	ZUP60-14	LOC-220Z00	TDL-Lambda	2017-05-11
2	Supply	20100-14	6	TDL-Lambua	2017-05-11
3	Bluetooth	CBT32	100785	Rohde&Schw	2017-05-11
3	Tester	UD132	100785	arz	2017-05-11

Report No.: I16D00249-RFB

Radiated emission test system

riadiated emi	adiated emission test system					
No.	Equipment	Model	Serial Number	Manufacturer	Calibration Due date	
1	Universal Radio Communicati on Tester	CMU200	123101	R&S	2017-05-11	
3	Test Receiver	ESU40	100307	R&S	2017-05-11	
4	Trilog Antenna	VULB9163	VULB9163- 515	Schwarzbeck	2017-11-04	
5	Double Ridged Guide Antenna	ETS-3117	135885	ETS	2017-05-05	
8	2-Line V-Network	ENV216	101380	R&S	2017-05-11	

Anechoic chamber

Fully anechoic chamber by Frankonia German.

East China Institute of Telecommunications

TEL: +86 21 63843300 FAX: +86 21 63843301

Page Number: 68of 71

8. Test Environment

Shielding Room1 (6.0 meters × 3.0 meters × 2.7 meters) did not exceed following limits along the conducted RF performance testing:

Report No.: I16D00249-RFB

	
Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 25 %, Max. = 75 %
Shielding effectiveness	> 110 dB
Ground system resistance	< 0.5 Ω

Control room did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. =30 %, Max. = 60 %
Shielding effectiveness	> 110 dB
Electrical insulation	> 10 kΩ
Ground system resistance	< 0.5 Ω

Fully-anechoic chamber1 (6.9 meters×10.9 meters×5.4 meters) did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 25 %, Max. = 75 %
Shielding effectiveness	> 100 dB
Electrical insulation	> 10 kΩ
Ground system resistance	< 0.5 Ω
VSWR	Between 0 and 6 dB, from 1GHz to 18GHz
Site Attenuation Deviation	Between -4 and 4 dB,30MHz to 1GHz
Uniformity of field strength	Between 0 and 6 dB, from 80MHz to 3000 MHz

Page Number: 69of 71

ANNEX A. Deviations from Prescribed Test Methods

Report No.: I16D00249-RFB

No deviation from Prescribed Test Methods.

East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301 Page Number: 70of 71

ANNEX B. Accreditation Certificate

Accredited Laboratory

A2LA has accredited

EAST CHINA INSTITUTE OF TELECOMMUNICATIONS

Shanghai, People's Republic of China

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005
General requirements for the competence of testing and calibration laboratories. This laboratory also meets the requirements of any additional program requirements in the field of Electrical. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).

Presented this 10% day of December 2014.

Page Number: 71of 71

Report Issued Date : Jan.24.2017

Report No.: I16D00249-RFB

President & CEO V
For the Accreditation Council
Certificate Number 3682.01

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation

*******End The Report*******