

RADIO TEST REPORT FCC ID: HLZ-ACERONE8T2

Product: Tablet Trade Mark: Acer Model No.: Acer one 8 T2 Family Model: N/A Report No.: S20072802602001 Issue Date: 24 Aug. 2020

Prepared for

Acer Incorporated 8F, 88, Sec. 1, Hsin Tai Wu Rd, Hsichih, Taipei Hsien, Taiwan

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel.: +86-755-6115 6588 Fax.: +86-755-6115 6599 Website:http://www.ntek.org.cn

TABLE OF CONTENTS

ACCREDITED

Certificate #4298.01

1	TES	ST RESULT CERTIFICATION	3
2	SUN	IMARY OF TEST RESULTS	4
3	FAC	CILITIES AND ACCREDITATIONS	5
	3.1 3.2 3.3	FACILITIES LABORATORY ACCREDITATIONS AND LISTINGS MEASUREMENT UNCERTAINTY	5
4	GE	NERAL DESCRIPTION OF EUT	6
5	DES	SCRIPTION OF TEST MODES	8
6	SET	UP OF EQUIPMENT UNDER TEST	9
	6.1 6.2 6.3	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS	9 .10
7	TES	ST REQUIREMENTS	.13
	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10	CONDUCTED EMISSIONS TEST RADIATED SPURIOUS EMISSION NUMBER OF HOPPING CHANNEL. HOPPING CHANNEL SEPARATION MEASUREMENT AVERAGE TIME OF OCCUPANCY (DWELL TIME) 20DB BANDWIDTH TEST PEAK OUTPUT POWER CONDUCTED BAND EDGE MEASUREMENT. SPURIOUS RF CONDUCTED EMISSION. ANTENNA APPLICATION	.16 .25 .26 .27 .29 .30 .31 .32 .33
8	TES	ST RESULTS	.34
	8.1 8.2 8.3 8.4 8.5 8.6 8.7	DWELL TIME MAXIMUM CONDUCTED OUTPUT POWER OCCUPIED CHANNEL BANDWIDTH CARRIER FREQUENCIES SEPARATION NUMBER OF HOPPING CHANNEL BAND EDGE CONDUCTED RF SPURIOUS EMISSION.	.39 .44 .54 .59 .60

NTEK北测

1 TEST RESULT CERTIFICATION

Applicant's name:	Acer Incorporated
Address:	8F, 88, Sec. 1, Hsin Tai Wu Rd, Hsichih,Taipei Hsien,Taiwan
Manufacturer's Name:	Acer Incorporated
Address:	8F, 88, Sec. 1, Hsin Tai Wu Rd, Hsichih,Taipei Hsien,Taiwan
Product description	
Product name:	Tablet
Model and/or type reference:	Acer one 8 T2
Family Model:	N/A

ACCREDITED

Certificate #4298.01

Measurement Procedure Used:

	APPLICABLE	STANDARDS
STANDARD/ TES	T PROCEDURE	TEST RESULT
FCC 47 CFR Part FCC 47 CFR Part ANSI C63.	15, Subpart C	Complied
results show that the equipr applicable only to the tested This report shall not be repr	nent under test (EUT) is sample identified in the re oduced except in full, wit cument may be altered o	hout the written approval of Shenzhen NTEK Testing revised by Shenzhen NTEK Testing Technology Co.,
The test results of this report	relate only to the tested s	sample identified in this report.
Date of Test	::	28 Jul. 2020 ~ 24 Aug. 2020
Testing Engineer	:	Allen Liu)
Technical Manag	er :	Jason Chen
Authorized Signa	tory :	(Alex Li)

Certificate #4298.01 Rep

2 SUMMARY OF TEST RESULTS

NTEK北测

FCC Part15 (15.247), Subpart C			
Standard Section	Test Item	Verdict	Remark
15.207	Conducted Emission	PASS	
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS	
15.247(a)(1)	Hopping Channel Separation	PASS	
15.247(b)(1)	Peak Output Power	PASS	
15.247(a)(iii)	Number of Hopping Frequency	PASS	
15.247(a)(iii)	Dwell Time	PASS	
15.247(a)(1)	Bandwidth	PASS	
15.247 (d)	Band Edge Emission	PASS	
15.247 (d)	Spurious RF Conducted Emission	PASS	
15.203	Antenna Requirement	PASS	

Remark:

1. "N/A" denotes test is not applicable in this Test Report.

 All test items were verified and recorded according to the standards and without any deviation during the test.

This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	The Laboratory has been assessed and proved to be in compliance with
	CNAS-CL01:2006 (identical to ISO/IEC 17025:2005)
	The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm	Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test ±2.80dB	
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%

NTEK北测

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification			
Equipment	Tablet		
Trade Mark	Acer		
FCC ID	HLZ-ACERONE8T2		
Model No.	Acer one 8 T2		
Family Model	N/A		
Model Difference	N/A		
Operating Frequency	2402MHz~2480MHz		
Modulation	GFSK, π/4-DQPSK, 8-DPSK		
Bluetooth Version	BT V4.0		
Number of Channels	79 Channels		
Antenna Type	FPCB Antenna		
Antenna Gain	0.7dBi		
Power supply	DC supply: DC 3.7V, 4000mAh ,14.8Wh from Battery or DC 5V from USB Port Adapter: Model: EE-0501500UZ Input: 100-240V~50/60Hz Output: 5V,1500mA		
HW Version	AL-MT8765-863M-V1.0-17		
SW Version	Acer_one_8_T2_V2.0_08222020		

ACCRED

Certificate #4298.01

Note: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Revision History

ACCREDITED

Certificate #4298.01

		1	
Report No.	Version	Description	Issued Date
S20072802602001	Rev.01	Initial issue of report	24 Aug. 2020

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for π /4-DQPSK modulation; 3Mbps for 8-DPSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2403
39	2441
40	2442
77	2479
78	2480

Note: fc=2402MHz+k×1MHz k=0 to 78(k is the Channel)

The following summary table is showing all test modes to demonstrate in compliance with the standard.

	For AC Conducted Emission
Final Test Mode	Description
Mode 1	normal link mode

Note: AC power line Conducted Emission was tested under maximum output power.

For Radiated Test Cases		
Final Test Mode	Description	
Mode 1	normal link mode	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	

Note: For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

For Conducted Test Cases		
Final Test Mode	Description	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	
Mode 5	Hopping mode	

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

6 SETUP OF EQUIPMENT UNDER TEST	
6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM For AC Conducted Emission Mode	
AC PLUG	
C-1 AE 1	
EUT Adapter	
C-2	
AE-2 Earphone	
For Radiated Test Cases	
EUT	
For Conducted Test Cases	
C2	
Measurement EUT	
	, , , , , ,
Note: 1. The temporary antenna connector is soldered on the PCB board in order to p and this temporary antenna connector is listed in the equipment list. 2. EUT built-in battery-powered, the battery is fully-charged.	perform conducted tests

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Adapter	EE-0501500UZ	N/A	Peripherals
AE-2	Earphone	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	YES	NO	1.0m
C-2	Earphone Cable	NO	NO	1.2m
C-3	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

NTEK北测

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

	estequipment					
Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
Spectrum Analyzer	Aglient	E4407B	MY45108040	2020.05.11	2021.05.10	1 year
Spectrum Analyzer	Agilent	N9020A	MY49100060	2020.07.13	2021.07.12	1 year
Spectrum Analyzer	R&S	FSV40	101417	2020.07.13	2021.07.12	1 year
Test Receiver	R&S	ESPI7	101318	2020.05.11	2021.05.10	1 year
Bilog Antenna	TESEQ	CBL6111D	31216	2020.04.11	2021.04.10	1 year
50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
Horn Antenna	EM	EM-AH-1018 0	2011071402	2020.04.11	2021.04.10	1 year
Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2019.12.10	2020.12.09	1 year
Amplifier	EMC	EMC051835 SE	980246	2020.07.13	2021.07.12	1 year
Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2019.12.11	2020.12.10	1 year
Power Meter	DARE	RPR3006W	15I00041SN 084	2020.07.13	2021.07.12	1 year
Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2019.08.6	2022.08.05	3 year
Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2019.08.6	2022.08.05	3 year
High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2019.06.28	2022.06.27	3 year
High Test Cable(1G-40G Hz)	N/A	R-04	N/A	2020.04.11	2021.04.10	1 year
Filter	TRILTHIC	2400MHz	29	2020.07.13	2021.07.12	1 year
temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A
	Equipment Spectrum Analyzer Spectrum Analyzer Spectrum Analyzer Test Receiver Bilog Antenna 50Ω Coaxial Switch Horn Antenna Broadband Horn Antenna Broadband Horn Antenna Amplifier Active Loop Antenna Power Meter Test Cable (9KHz-30MHz) Test Cable (30MHz-1GHz) High Test Cable(1G-40G Hz) High Test Cable(1G-40G Hz) Filter temporary antenna connector	EquipmentManufacturerSpectrum AnalyzerAglientSpectrum AnalyzerAgilentSpectrum AnalyzerR&STest ReceiverR&SBilog AntennaTESEQ50Ω Coaxial SwitchAnritsuHorn AntennaEMBroadband Horn AntennaSCHWARZBE CKAmplifierEMCActive Loop AntennaSCHWARZBE CKPower MeterDARETest Cable (30MHz-1GHz)N/AHigh Test Cable(1G-40G Hz)N/AHigh Test Cable(1G-40G Hz)N/AFilterTRILTHICtemporary antenna connectorNTS	EquipmentManufacturerType No.Spectrum AnalyzerAglientE4407BSpectrum AnalyzerAgilentN9020ASpectrum AnalyzerR&SFSV40Test ReceiverR&SESPI7Bilog AntennaTESEQCBL6111D50Ω Coaxial SwitchAnritsuMP59BHorn AntennaEMEM-AH-1018 0Broadband Horn AntennaSCHWARZBE CKBBHA 9170AmplifierEMCEMC051835 SEActive Loop AntennaSCHWARZBE CKFMZB 1519 BPower MeterDARERPR3006WTest Cable (9KHz-30MHz)N/AR-01Test Cable (30MHz-1GHz)N/AR-02High Test Cable(1G-40G Hz)N/AR-03High Test Cable(1G-40G Hz)N/AR-04High Test Cable(1G-40G Hz)N/AR-04FilterTRILTHIC2400MHztemporary antenna connectorNTSR001	EquipmentManufacturerType No.Serial No.Spectrum AnalyzerAglientE4407BMY45108040Spectrum AnalyzerAgilentN9020AMY49100060Spectrum AnalyzerR&SFSV40101417Test ReceiverR&SESPI7101318Bilog AntennaTESEQCBL6111D3121650Ω Coaxial SwitchAnritsuMP59B6200983705Horn AntennaEMEM-AH-1018 02011071402Broadband Horn AntennaSCHWARZBE CKBBHA 9170803AmplifierEMCEMC051835 SE980246Active Loop AntennaSCHWARZBE CKFMZB 1519 B055Power MeterDARERPR3006W15100041SN 084Test Cable (30MHz-1GHz)N/AR-01N/AHigh Test Cable(1G-40G Hz)N/AR-03N/AHigh Test Cable(1G-40G Hz)N/AR-04N/AFilterTRILTHIC2400MHz29temporary antenna connectorNTSR001N/A	EquipmentManufacturerType No.Serial No.calibrationSpectrum AnalyzerAglientE4407BMY451080402020.05.11Spectrum AnalyzerAgilentN9020AMY491000602020.07.13Spectrum AnalyzerR&SFSV401014172020.07.13Spectrum AnalyzerR&SFSV401014172020.07.13Test ReceiverR&SESPI71013182020.05.11Bilog AntennaTESEQCBL6111D312162020.04.1150Ω Coaxial SwitchAnritsuMP59B62009837052020.05.11Horn AntennaEMEM-AH-1018 020110714022020.04.11Broadband Horn AntennaSCHWARZBE CKBBHA 91708032019.12.10Artive Loop AntennaSCHWARZBE 	Equipment Manufacturer Type No. Serial No. calibration until Spectrum Analyzer Aglient E4407B MY45108040 2020.05.11 2021.05.10 Spectrum Analyzer Aglient N9020A MY49100060 2020.07.13 2021.07.12 Spectrum Analyzer R&S FSV40 101417 2020.07.13 2021.07.12 Test Receiver R&S ESPI7 101318 2020.05.11 2021.05.10 Bilog Antenna TESEQ CBL6111D 31216 2020.04.11 2021.04.10 500 Coaxial Switch Anritsu MP59B 6200983705 2020.05.11 2023.05.10 Horn Antenna EM EM-AH-1018 0 2011071402 2020.04.11 2021.04.10 Broadband Horn Antenna SCHWARZBE SE BBHA 9170 803 2019.12.10 2020.12.09 Amplifier EMC EMC051835 SE 980246 2020.07.13 2021.07.12 Active Loop Antenna CK RP3006W 15100041SN 084 2020.07.13 2021.07.12 Test Ca

ACC

Certificate #4298.01

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Conduction Test equipment							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2020.05.11	2021.05.10	1 year
2	LISN	R&S	ENV216	101313	2020.04.11	2021.04.10	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2020.05.11	2021.05.10	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2021.05.10	3 year

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

NTEKJLIN CERTIFICATE #4298.01

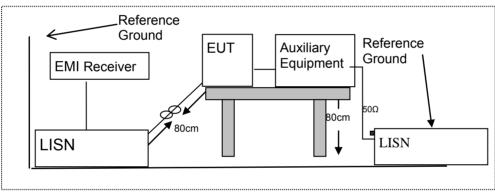
7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit


	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency

2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Test Configuration

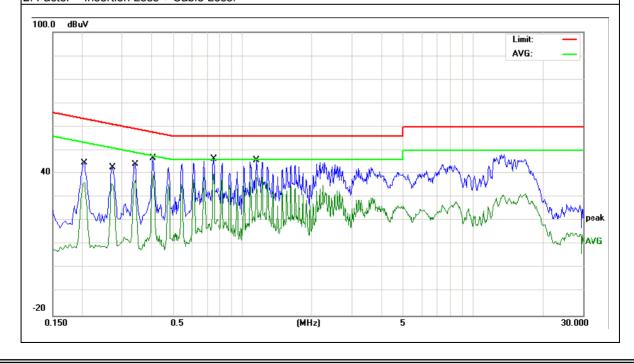
7.1.4 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.5 Test Results

Pass


7.1.6 Test Results

EUT:	Tablet	Model Name :	Acer one 8 T2
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

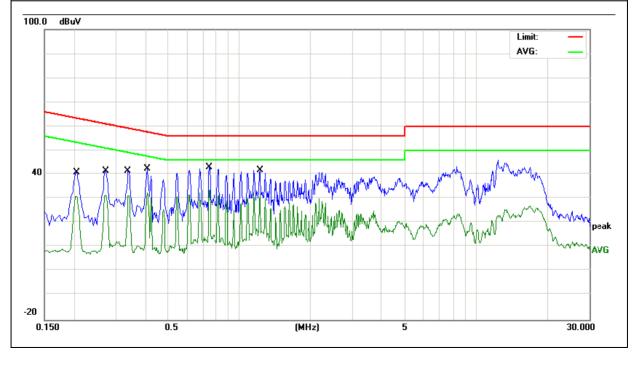
Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Deveserie
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	- Remark
0.206	35.14	9.55	44.69	63.36	-18.67	QP
0.206	26.79	9.55	36.34	53.36	-17.02	AVG
0.27	33	9.54	42.54	61.12	-18.58	QP
0.27	26.1	9.54	35.64	51.12	-15.48	AVG
0.342	34.65	9.54	44.19	59.15	-14.96	QP
0.342	27.73	9.54	37.27	49.15	-11.88	AVG
0.41	37.12	9.55	46.67	57.65	-10.98	QP
0.41	30.2	9.55	39.75	47.65	-7.9	AVG
0.75	36.84	9.55	46.39	56	-9.61	QP
0.75	30.27	9.55	39.82	46	-6.18	AVG
1.158	36.34	9.56	45.9	56	-10.1	QP
1.158	28.92	9.56	38.48	46	-7.52	AVG

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

EUT:	Tablet	Model Name :	Acer one 8 T2
Temperature:	21 ℃	Relative Humidity:	53%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

ACCREDITED


Certificate #4298.01

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Demort
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.202	31.31	9.54	40.85	63.52	-22.67	QP
0.202	21.43	9.54	30.97	53.52	-22.55	AVG
0.274	31.92	9.53	41.45	60.99	-19.54	QP
0.274	21.84	9.53	31.37	50.99	-19.62	AVG
0.3379	31.81	9.53	41.34	59.25	-17.91	QP
0.3379	21.76	9.53	31.29	49.25	-17.96	AVG
0.41	32.76	9.54	42.3	57.65	-15.35	QP
0.41	22.96	9.54	32.5	47.65	-15.15	AVG
0.746	33.26	9.54	42.8	56	-13.2	QP
0.746	24.12	9.54	33.66	46	-12.34	AVG
1.226	32.08	9.55	41.63	56	-14.37	QP
1.226	22.16	9.55	31.71	46	-14.29	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to 1 CC 1 alt 13.20	According to FOC Fait 15.205, Restricted bands						
MHz	MHz	MHz	GHz				
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15				
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46				
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75				
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5				
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2				
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5				
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7				
6.26775-6.26825	123-138	2200-2300	14.47-14.5				
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2				
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4				
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12				
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0				
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8				
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5				
12.57675-12.57725	322-335.4	3600-4400	(2)				
13.36-13.41							

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Frequency(MHz)	Class B (dBuV/m) (at 3M)				
	PEAK	AVERAGE			
Above 1000	74	54			

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz:

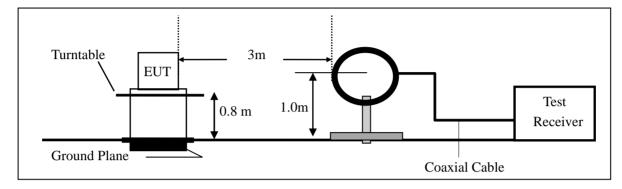
Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

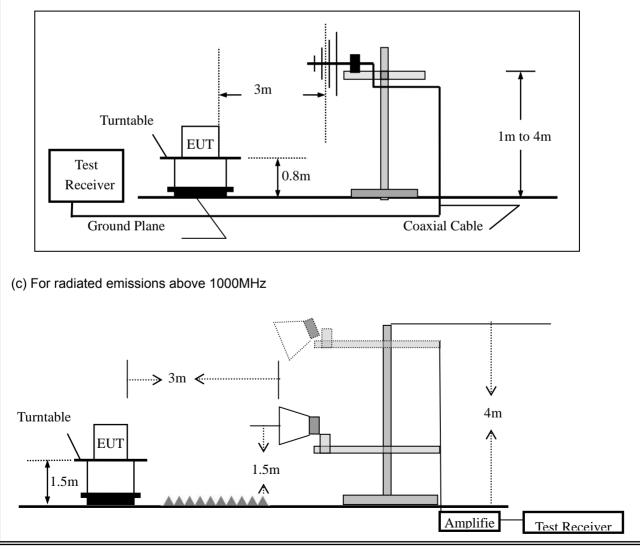
For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments


The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

(b) For radiated emissions from 30MHz to 1000MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations: For peak measurement:

Set RBW=120 kHz for f < 1 GHz; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold; Set RBW = 1 MHz, VBW= 3MHz for f≥1 GHz

For average measurement:

VBW = 10 Hz, when duty cycle is no less than 98 percent.

VBW \geq 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Above 1000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	10 Hz

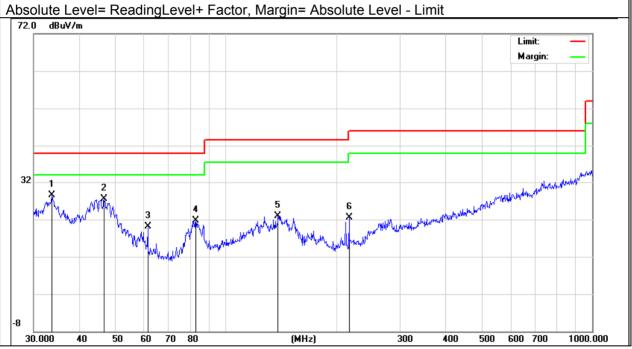
Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

EUT:	Tablet	Model No.:	Acer one 8 T2
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Freq.	Ant.Pol.	Emission L	evel(dBuV/m)	Limit 3m(dBuV/m)		Over(dB)	
(MHz)	H/V	PK AV		PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.



Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below:

EUT:	Tablet	Model Name :	Acer one 8 T2
Temperature:	20 ℃	Relative Humidity:	48%
Pressure:	1010hPa	Test Mode:	Mode 1
Test Voltage :	DC 3.7V		

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	33.6802	11.12	17.39	28.51	40	-11.49	QP
V	46.6664	16.84	10.73	27.57	40	-12.43	QP
V	61.3462	14.22	5.92	20.14	40	-19.86	QP
V	82.9385	13.4	8.39	21.79	40	-18.21	QP
V	138.8735	10.5	12.43	22.93	43.5	-20.57	QP
V	216.7828	12.2	10.24	22.44	46	-23.56	QP

Remark:

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remar
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Н	30.1052	5.6	18.78	24.38	40	-15.62	QP
Н	46.9947	7.63	10.76	18.39	40	-21.61	QP
Н	86.8068	10.11	9.28	19.39	40	-20.61	QP
Н	154.2786	8.62	11.72	20.34	43.5	-23.16	QP
Н	281.0075	7.27	15.67	22.94	46	-23.06	QP
Н	763.3757	8.08	24.91	32.99	46	-13.01	QP
						Margin:	
						6	
32						Mand	War
				5	1. amplease	Mydundwar	
Two.	2	3 X	4 X	MA N	an the weather that		
	A CONTRACTOR OF THE OWNER OWNER OF THE OWNER	When all the property on	and a second with much an app	the the gran about			
	**************************************	verver(WVV.					
-8							

EUT:	EUT: Tablet				Mod	lel No.:		Acer one 8	T2		
Temperatu	emperature:		20 °C Re			ative Humi	dity:	48%			
Test Mode: Mode2/Mode3/Mode4 Test By: Allen Liu											
All the mod	lulation m	odes hav	ve been te	sted, G	FSK	is worst c	ase and	the worst re	sult was rep	port as below	
Frequency	Read Level	Cable loss	Antenna Factor	Prear Fact	•	Emission Level	Limits	Margin	Remark	Comment	
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/r	n) (dB)			
			Low Cha	annel (2	402	MHz)(GFSI	K)Abov	re 1G			
4804.718	60.05	5.21	35.59	44.3	0	56.55	74.00	-17.45	Pk	Vertical	
4804.718	42.08	5.21	35.59	44.3	0	38.58	54.00	-15.42	AV	Vertical	
7205.686	61.57	6.48	36.27	44.6	0	59.72	74.00	-14.28	Pk	Vertical	
7205.686	39.91	6.48	36.27	44.6	0	38.06	54.00	-15.94	AV	Vertical	
4804.626	61.45	5.21	35.55	44.3	0	57.91	74.00	-16.09	Pk	Horizontal	
4804.626	41.30	5.21	35.55	44.30		37.76	54.00	-16.24	AV	Horizontal	
7206.287	60.05	6.48	36.27	44.52		58.28	74.00	-15.72	Pk	Horizontal	
7206.287	40.44	6.48	36.27	44.5	2	38.67	54.00	-15.33	AV	Horizontal	
			Mid Cha	nnel (2	441 I	MHz)(GFSł	<)Abov	e 1G	1	1	
4881.191	61.88	5.21	35.66	44.2	0	58.55	74.00	-15.45	Pk	Vertical	
4881.191	42.20	5.21	35.66	44.2	0	38.87	54.00	-15.13	AV	Vertical	
7322.874	62.36	7.10	36.50	44.4	3	61.53	74.00	-12.47	Pk	Vertical	
7322.874	42.33	7.10	36.50	44.4	3	41.50	54.00	-12.50	AV	Vertical	
4882.276	60.30	5.21	35.66	44.2	0	56.97	74.00	-17.03	Pk	Horizontal	
4882.276	41.80	5.21	35.66	44.2	0	38.47	54.00	-15.53	AV	Horizontal	
7322.973	61.96	7.10	36.50	44.4	3	61.13	74.00	-12.87	Pk	Horizontal	
7322.973	39.59	7.10	36.50	44.4		38.76	54.00		AV	Horizontal	
			High Cha	nnel (2	480	MHz)(GFSI	≺) Abov	/e 1G	1	1	
4960.742	60.22	5.21	35.52	44.2	1	56.74	74.00	-17.26	Pk	Vertical	
4960.742	41.93	5.21	35.52	44.2	1	38.45	54.00	-15.55	AV	Vertical	
7440.332	61.00	7.10	36.53	44.6	0	60.03	74.00	-13.97	Pk	Vertical	
7440.332	40.77	7.10	36.53	44.6	0	39.80	54.00	-14.20	AV	Vertical	
4960.735	59.88	5.21	35.52	44.2	:1	56.40	74.00	-17.60	Pk	Horizontal	
4960.735	41.72	5.21	35.52	44.2	1	38.24	54.00	-15.76	AV	Horizontal	
7440.564	60.08	7.10	36.53	44.6	0	59.11	74.00	-14.89	Pk	Horizontal	
7440.564	41.85	7.10	36.53	44.6	0	40.88	54.00	-13.12	AV	Horizontal	

ACCRED

Certificate #4298.01

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

Report No.: S20072802602001

UT:		Tablet		Мо	lel No.:		Acer one 8 T	2		
Temperature: 20			20 ℃ Re			Relative Humidity:		48%		
Test Mode		Mode2/ Mode4 Te			est By: Allen Liu					
All the modulation modes have been tested, and the worst result was report as below:										
Frequenc	Meter	Cable	Cable Antenna Prea		eamp Emission	Limits	Margin	Detector		
у	Reading	Loss	Factor	Factor	Level		5		Comment	
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)		m) (dB)	Туре		
				Mbps (GF	SK)-hopping					
2310.00	62.25	2.97	27.80	43.80	49.22	74	-24.78	Pk	Horizontal	
2310.00	42.84	2.97	27.80	43.80	29.81	54	-24.19	AV	Horizontal	
2310.00	60.28	2.97	27.80	43.80	47.25	74	-26.75	Pk	Vertical	
2310.00	41.54	2.97	27.80	43.80	28.51	54	-25.49	AV	Vertical	
2390.00	60.05	3.14	27.21	43.80	46.60	74	-27.40	Pk	Vertical	
2390.00	41.61	3.14	27.21	43.80	28.16	54	-25.84	AV	Vertical	
2390.00	62.02	3.14	27.21	43.80	48.57	74	-25.43	Pk	Horizontal	
2390.00	41.43	3.14	27.21	43.80	27.98	54	-26.02	AV	Horizontal	
2483.50	60.45	3.58	27.70	44.00	47.73	74	-26.27	Pk	Vertical	
2483.50	40.40	3.58	27.70	44.00	27.68	54	-26.32	AV	Vertical	
2483.50	61.21	3.58	27.70	44.00	48.49	74	-25.51	Pk	Horizontal	
2483.50	39.84	3.58	27.70	44.00	27.12	54	-26.88	AV	Horizontal	
			1M)- Non-hop	bing	•			
2310.00	61.70	2.97	27.80	43.80	48.67	74	-25.33	Pk	Horizontal	
2310.00	40.99	2.97	27.80	43.80	27.96	54	-26.04	AV	Horizontal	
2310.00	60.67	2.97	27.80	43.80	47.64	74	-26.36	Pk	Vertical	
2310.00	40.34	2.97	27.80	43.80	27.31	54	-26.69	AV	Vertical	
2390.00	62.41	3.14	27.21	43.80	48.96	74	-25.04	Pk	Vertical	
2390.00	40.37	3.14	27.21	43.80	26.92	54	-27.08	AV	Vertical	
2390.00	62.29	3.14	27.21	43.80	48.84	74	-25.16	Pk	Horizontal	
2390.00	40.55	3.14	27.21	43.80	27.10	54	-26.90	AV	Horizontal	
2483.50	59.99	3.58	27.70	44.00	47.27	74	-26.73	Pk	Vertical	
2483.50	41.59	3.58	27.70	44.00	28.87	54	-25.13	AV	Vertical	
2483.50	61.78	3.58	27.70	44.00	49.06	74	-24.94	Pk	Horizontal	
2483.50	41.13	3.58	27.70	44.00	28.41	54	-25.59	AV	Horizontal	

Note: (1) All other emissions more than 20dB below the limit.

EUT:		Tab	let		Model N	No.:	Ac	Acer one 8 T2		
Tempe	Гетрегаture: 20 °С			Relative	Relative Humidity:		48%			
Test Mode: Mode2/ Mode4			Test By	Test By:			Allen Liu			
All the	modulatio	n modes	have be	en tested	, and the v	worst resul	t was r	eport as b	elow:	
	Frequenc V	Readin g Level	Cable Loss	Antenn a	Preamp Factor	Emission Level	Limits	Margin	Detecto r	
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµ V/m)	(dBµ V/m)	(dB)	Туре	Comment
Г	3260	61.21	4.04	29.57	44.70	50.12	74	-23.88	Pk	Vertical
	3260	48.63	4.04	29.57	44.70	37.54	54	-16.46	AV	Vertical
Γ	3260	61.33	4.04	29.57	44.70	50.24	74	-23.76	Pk	Horizontal
	3260	50.83	4.04	29.57	44.70	39.74	54	-14.26	AV	Horizontal
	3332	59.59	4.26	29.87	44.40	49.32	74	-24.68	Pk	Vertical
	3332	50.85	4.26	29.87	44.40	40.58	54	-13.42	AV	Vertical
	3332	61.71	4.26	29.87	44.40	51.44	74	-22.56	Pk	Horizontal
	3332	49.83	4.26	29.87	44.40	39.56	54	-14.44	AV	Horizontal
	17797	40.17	10.99	43.95	43.50	51.61	74	-22.39	Pk	Vertical
	17797	30.17	10.99	43.95	43.50	41.61	54	-12.39	AV	Vertical
	17788	39.54	11.81	43.69	44.60	50.44	74	-23.56	Pk	Horizontal
	17788	30.15	11.81	43.69	44.60	41.05	54	-12.95	AV	Horizontal

ACCREDI

Certificate #4298.01

Note: (1) All other emissions more than 20dB below the limit.

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = the frequency band of operation

RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.

VBW ≥ RBW

Sweep = auto

Detector function = peak Trace = max hold

7.3.6 Test Results

EUT:	Tablet	Model No.:	Acer one 8 T2
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode 5(1Mbps)	Test By:	Allen Liu

7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Measurement Bandwidth or Channel Separation RBW: Start with the RBW set to approximately 3% of the channel spacing; adjust as necessary to best identify the center of each individual channel. VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.4.6 Test Results

EUT:	Tablet	Model No.:	Acer one 8 T2
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW \geq 1MHz VBW \geq RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.

7.5.6 Test Results

EUT:	Tablet	Model No.:	Acer one 8 T2
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Test data reference attachment.

Note:

A Period Time = (channel number)*0.4 DH1 Dwell time: Reading * (1600/2)*31.6/(channel number) DH3 Dwell time: Reading * (1600/4)*31.6/(channel number) DH5 Dwell time: Reading * (1600/6)*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to (800 / 6 / 20) x (0.4 x 20) = 53.33 hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.6.2 Conformance Limit

No limit requirement.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.6.6 Test Results

EUT:	Tablet	Model No.:	Acer one 8 T2
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.7 PEAK OUTPUT POWER

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW \geq the 20 dB bandwidth of the emission being measured VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.7.6 Test Results

EUT:	Tablet	Model No.:	Acer one 8 T2
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = 100KHz

VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

EUT:	Tablet	Model No.:	Acer one 8 T2
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2 /Mode4/ Mode 5	Test By:	Allen Liu

7.9 SPURIOUS RF CONDUCTED EMISSION

7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

7.9.6 Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and band ege measurement data.

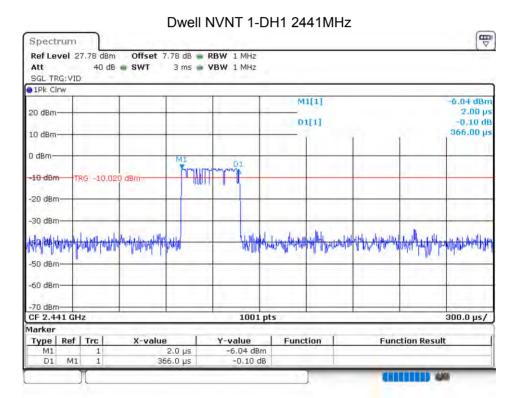
7.10 ANTENNA APPLICATION

7.10.1 Antenna Requirement

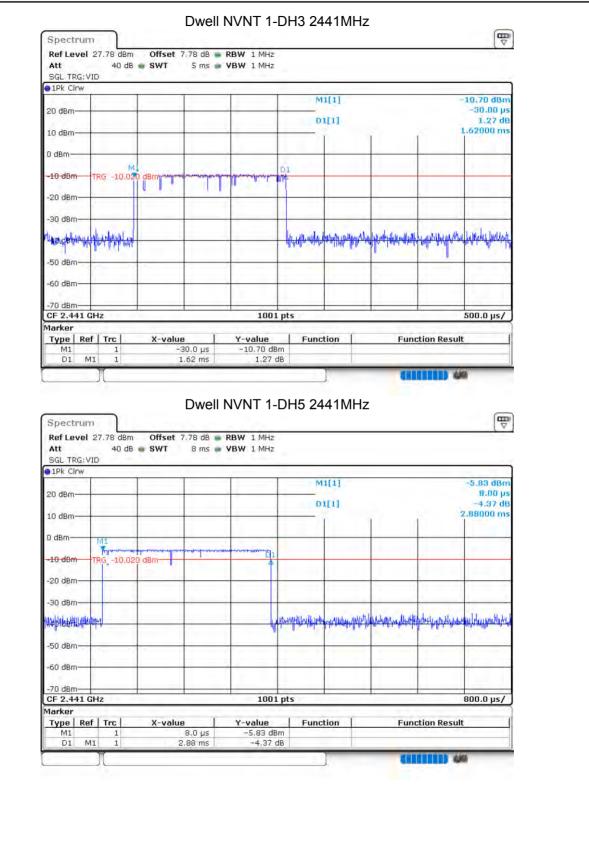
15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.10.2 Result

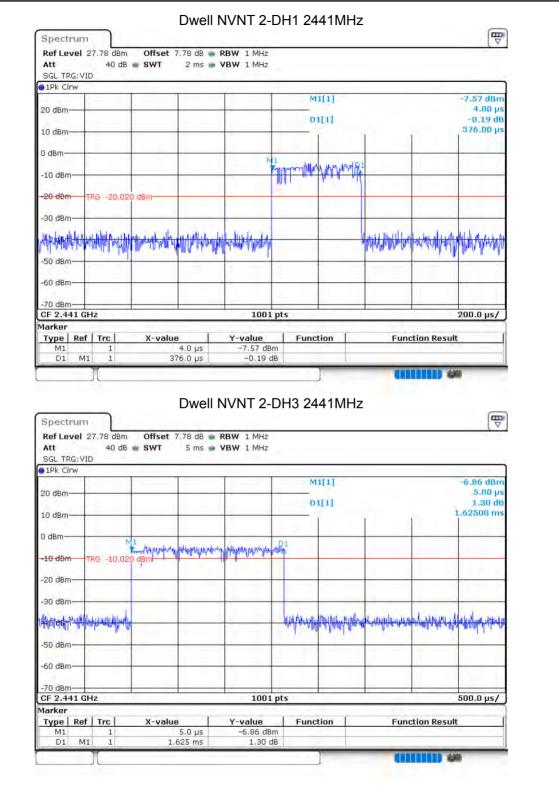
The EUT antenna is permanent attached FPCB antenna (Gain: 0.7dBi). It comply with the standard requirement.

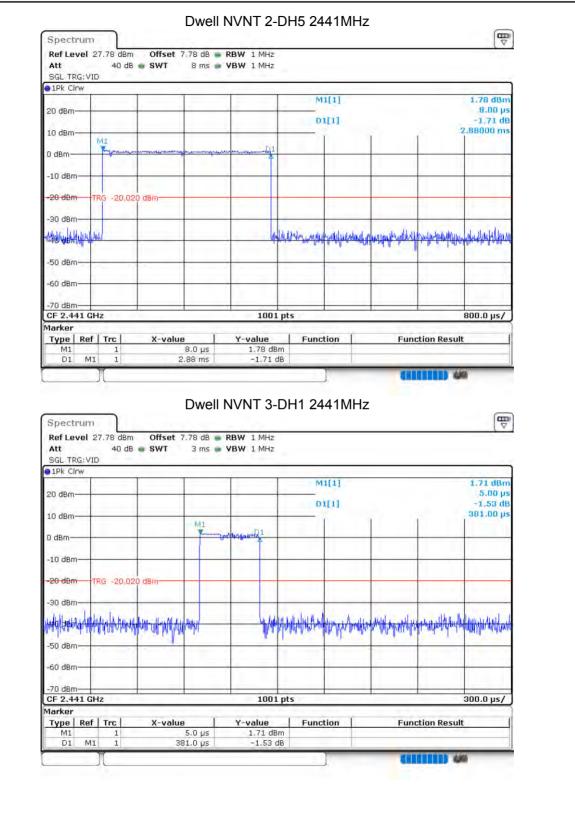

8 TEST RESULTS

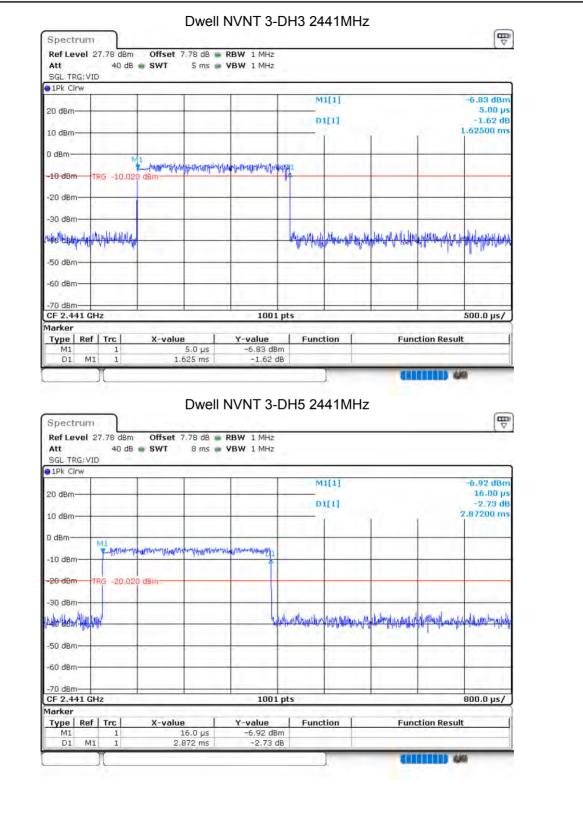
8.1 DWELL TIME

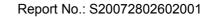

Condition	Mode	Frequency (MHz)	Pulse Time (ms)	Total Dwell Time (ms)	Period Time (ms)	Limit (ms)	Verdict
NVNT	1-DH1	2441	0.366	117.12	31600	400	Pass
NVNT	1-DH3	2441	1.62	259.2	31600	400	Pass
NVNT	1-DH5	2441	2.88	307.2	31600	400	Pass
NVNT	2-DH1	2441	0.376	120.32	31600	400	Pass
NVNT	2-DH3	2441	1.625	260	31600	400	Pass
NVNT	2-DH5	2441	2.88	307.2	31600	400	Pass
NVNT	3-DH1	2441	0.381	121.92	31600	400	Pass
NVNT	3-DH3	2441	1.625	260	31600	400	Pass
NVNT	3-DH5	2441	2.872	306.347	31600	400	Pass

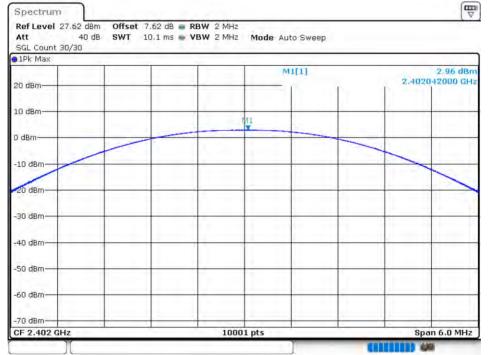
ACCREDITED

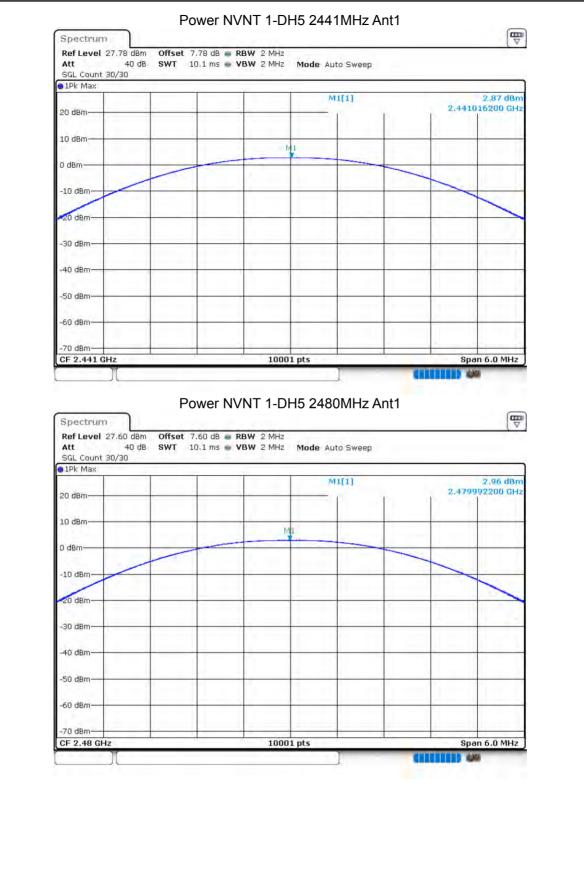

Certificate #4298.01



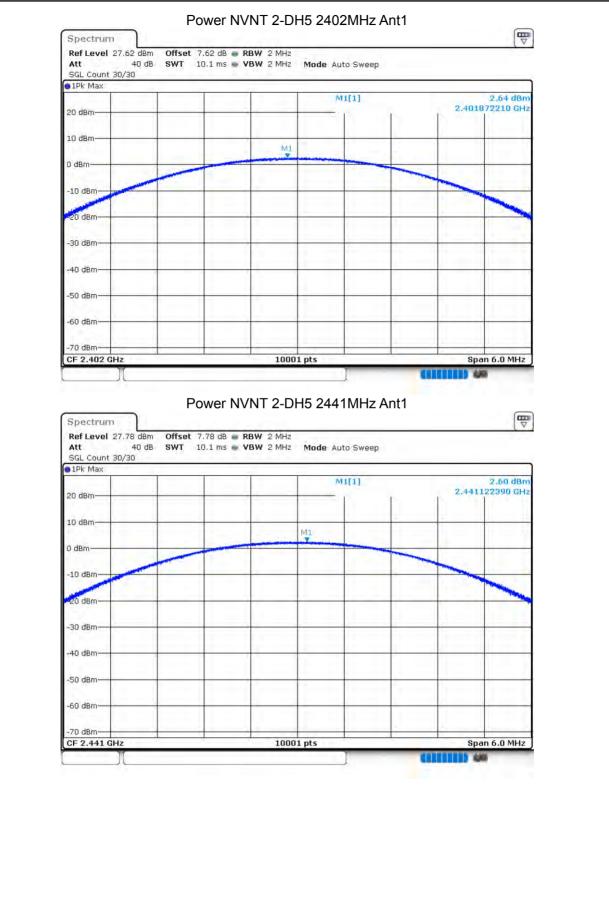


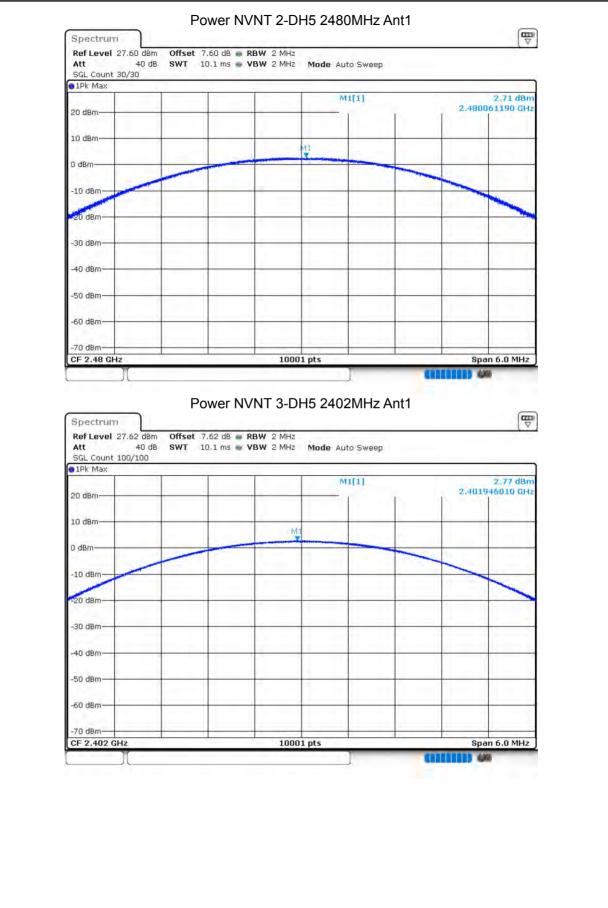


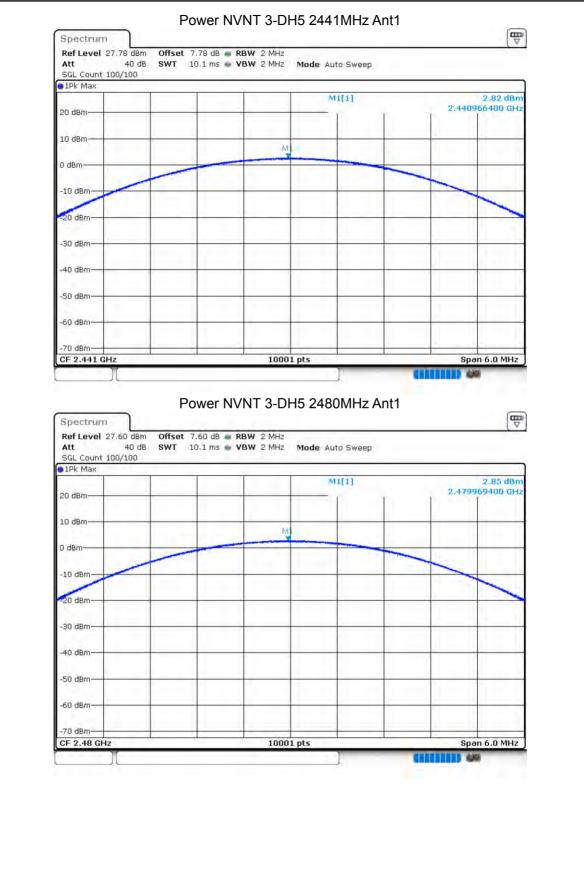


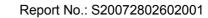

8.2 MAXIMUM CONDUCTED OUTPUT POWER

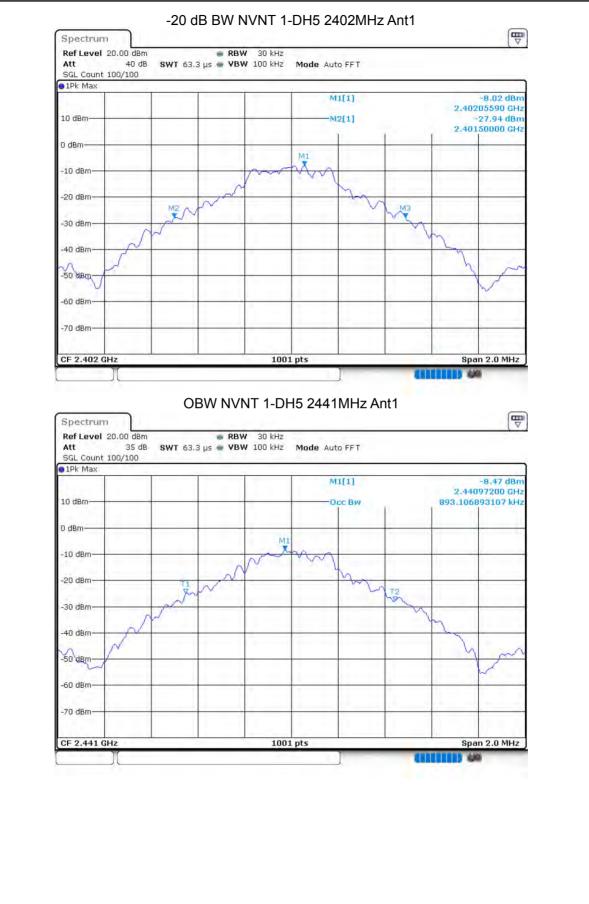
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant 1	2.957	30	Pass
NVNT	1-DH5	2441	Ant 1	2.874	30	Pass
NVNT	1-DH5	2480	Ant 1	2.96	30	Pass
NVNT	2-DH5	2402	Ant 1	2.635	20.97	Pass
NVNT	2-DH5	2441	Ant 1	2.603	20.97	Pass
NVNT	2-DH5	2480	Ant 1	2.711	20.97	Pass
NVNT	3-DH5	2402	Ant 1	2.766	20.97	Pass
NVNT	3-DH5	2441	Ant 1	2.823	20.97	Pass
NVNT	3-DH5	2480	Ant 1	2.85	20.97	Pass


Power NVNT 1-DH5 2402MHz Ant1



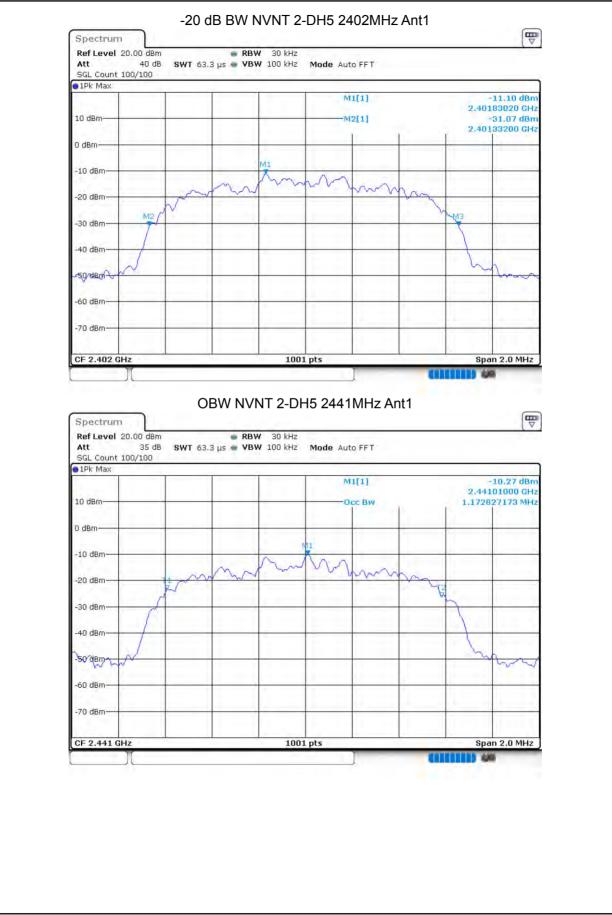


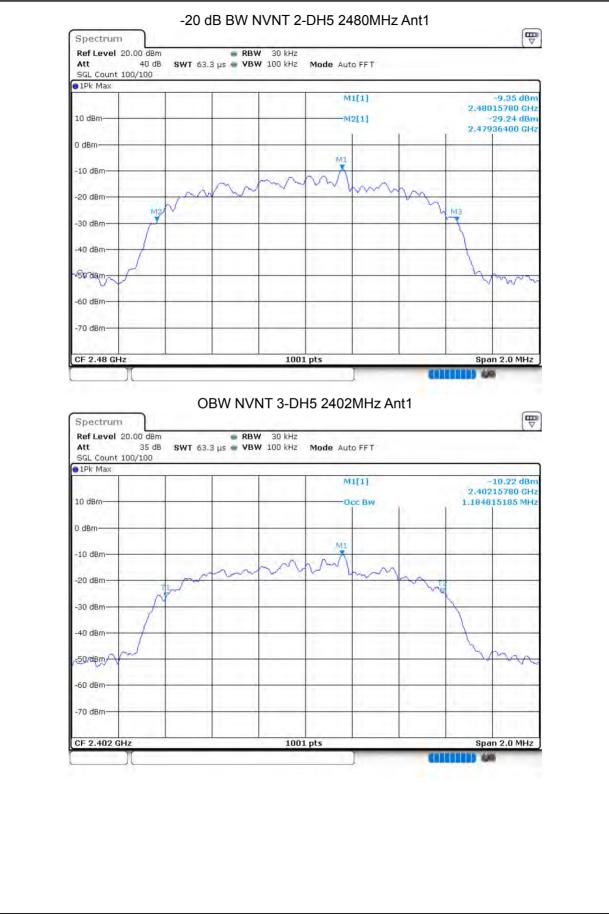


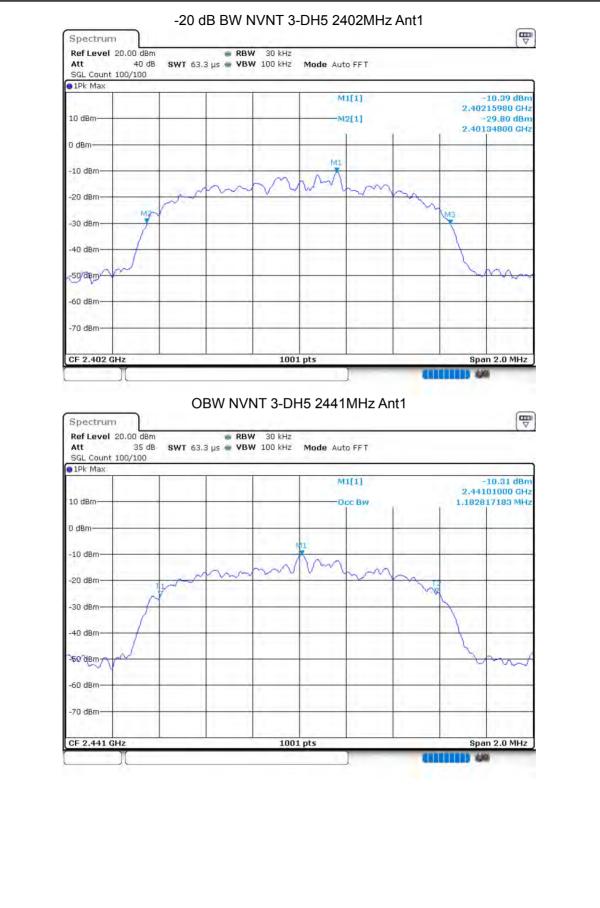

8.3 OCCUPIED CHANNEL BANDWIDTH

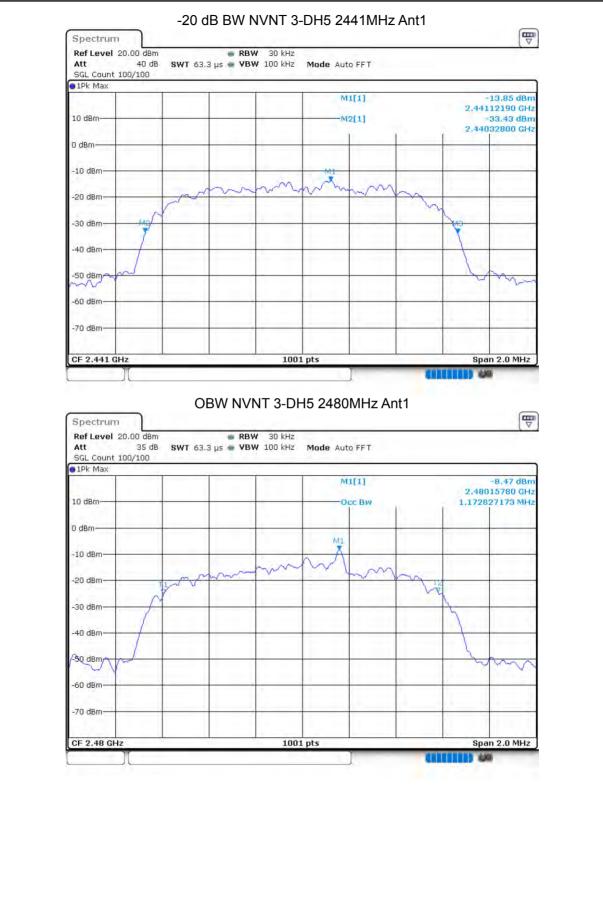
Condition	Mode	Frequency (MHz)	Antenna	99% OBW	-20 dB Bandwidth	Verdict
		· · ·	A . I . A	(MHz)	(MHz)	Dest
NVNT	1-DH5	2402	Ant 1	0.8891	0.988	Pass
NVNT	1-DH5	2441	Ant 1	0.8931	0.994	Pass
NVNT	1-DH5	2480	Ant 1	0.8911	0.962	Pass
NVNT	2-DH5	2402	Ant 1	1.1848	0.883	Pass
NVNT	2-DH5	2441	Ant 1	1.1728	0.857	Pass
NVNT	2-DH5	2480	Ant 1	1.1748	0.856	Pass
NVNT	3-DH5	2402	Ant 1	1.1848	0.865	Pass
NVNT	3-DH5	2441	Ant 1	1.1828	0.891	Pass
NVNT	3-DH5	2480	Ant 1	1.1728	0.852	Pass

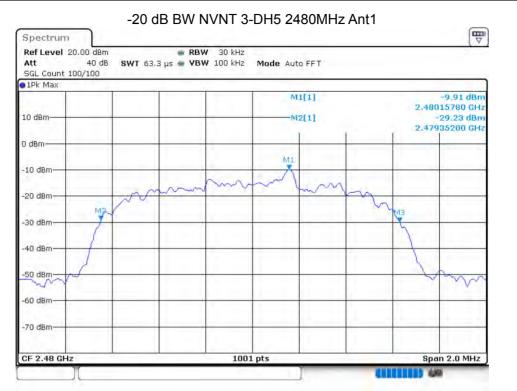

OBW NVNT 1-DH5 2402MHz Ant1







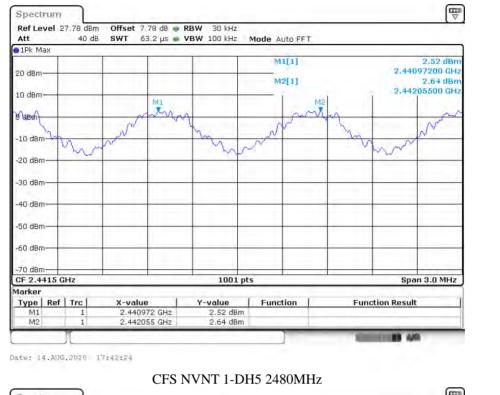




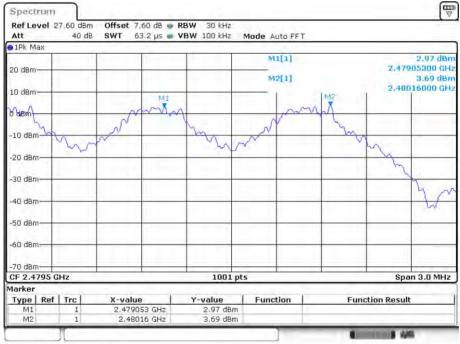
8.4 CARRIER FREQUENCIES SEPARATION

			-			
Condition	Mode	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict
NVNT	1-DH5	2401.972	2403.055	1.083	0.988	Pass
NVNT	1-DH5	2440.972	2442.055	1.083	0.994	Pass
NVNT	1-DH5	2479.053	2480.16	1.107	0.962	Pass
NVNT	2-DH5	2402.161	2403.163	1.002	0.855	Pass
NVNT	2-DH5	2441.161	2442.163	1.002	0.855	Pass
NVNT	2-DH5	2479.161	2480.163	1.002	0.853	Pass
NVNT	3-DH5	2402.158	2403.163	1.005	0.856	Pass
Condition NVNT NVNT NVNT NVNT NVNT NVNT NVNT NVN	3-DH5	2441.011	2442.16	1.149	0.849	Pass
NVNT	3-DH5	2479.161	2480.16	0.999	0.849	Pass

ACCREDITED


Certificate #4298.01

Date: 14.AUG,2020 17:39:18

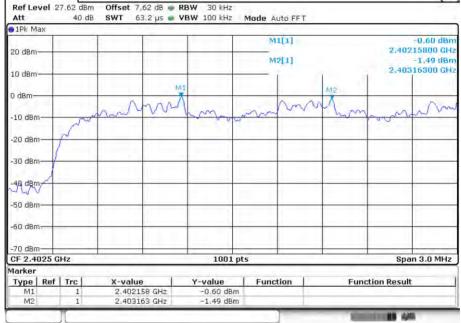

CFS NVNT 1-DH5 2441MHz

ACCREDITED

Certificate #4298.01

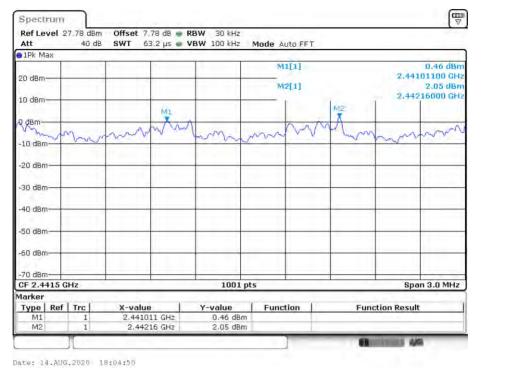
Date: 14.AUG,2020 17:45:55

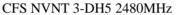
CFS NVNT 2-DH5 2402MHz

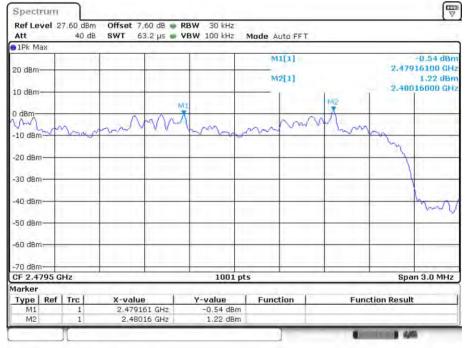

ACCREDITED

Certificate #4298.01

1Pk Max			1	1	M1[1]			0.18 dBn
20 dBm	_				M2[1]			16100 GH: -0.47 dBn
10 dBm						1	2.480	16300 GH
			P.	11		M2		
dBm	-	1 A	000	Ň	Δ.	n Å		
0 dBm	man	man	m v v w	homes	mm	1 how	non	
2 GBIII	V						2	
0 dBm				-			7	
		1.000					. λ	
10 dBm			11.					·
0 dBm	_		1	_				h
		11 2 11	11			1000		m
0 dBm	_					_		
0 dBm			-					
2.4795 G	Hz		~	1001 pt	5		Spa	n 3.0 MHz
arker	Trc	X-value	- 1	Y-value	Function	Funda	tion Result	
ype Ref M1	1	2.4791		0.18 dBm	Function	Func	alon Result	
M2	1	2,4801	63 GHz	-0.47 dBm				
the second se	5.5						8 445	0


ACCREDITED

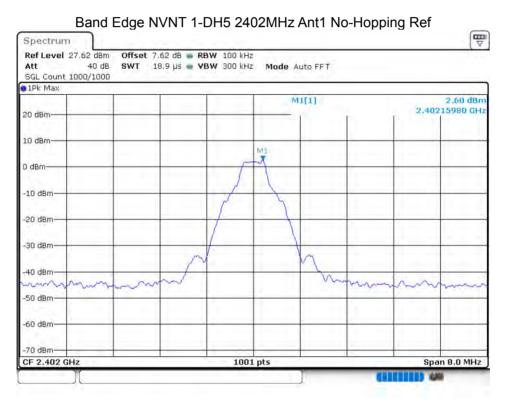

Date: 14.AUG,2020 18:01:13


CFS NVNT 3-DH5 2441MHz

ACCREDITED

Date: 14.AUG,2020 18:10:26

8.5 NUMBER OF HOPPING CHANNEL Hopping Number Limit Verdict Condition Mode NVNT Pass 1-DH5 15 79 Hopping No. NVNT 1-DH5 2402MHz Spectrum Offset 7.62 dB 🝙 RBW 100 kHz Ref Level 27.62 dBm Att 40 dB SWT 1 ms 🖷 VBW 300 kHz Mode Auto Sweep SGL Count 60000/60000 1Pk Max M1[1] 2.04 dBn 2.4018370 GHz 20 dBm M2[1] 2.41 dBm 2.4802435 GHz 10 dBm O BBM លើ ដំន័រ 20 dBm 30 dBm 40 dBm -50 dBm--60 dBm -70 dBm Start 2.4 GHz 1001 pts Stop 2.4835 GHz Marker Type | Ref | Trc | Y-value Function **Function Result** X-value 2.401837 GHz 2.04 dBm M1 1 M2 1 2.4802435 GHz 2.41 dBm

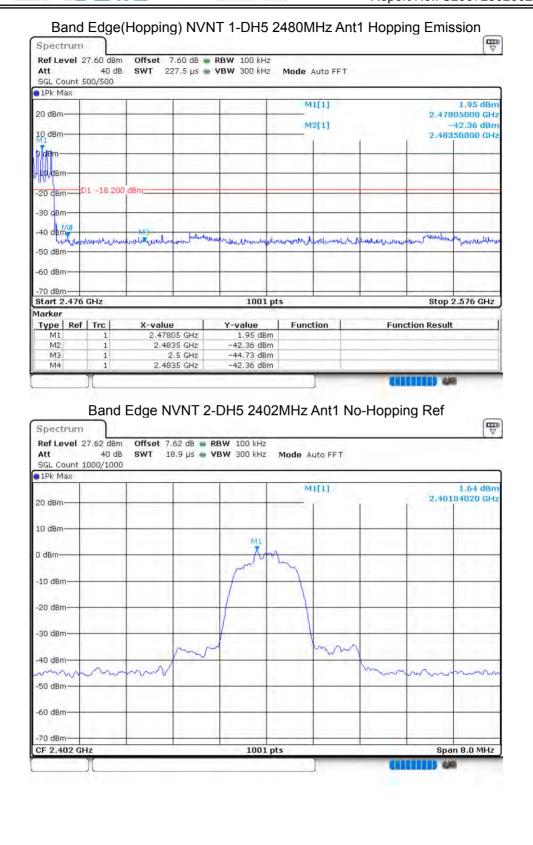

ACCREDITED

Certificate #4298.01

8.6 BAND EDGE

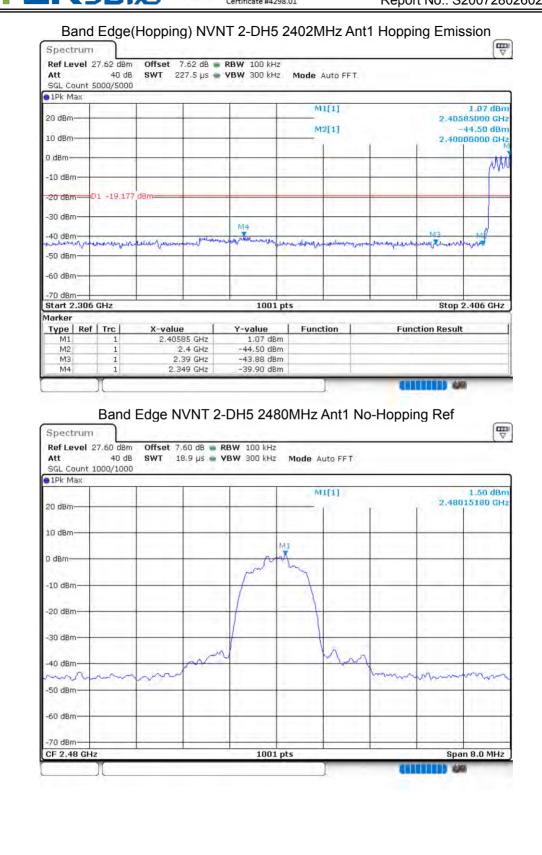
Condition	Mode	Frequency (MHz)	Antenna	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant 1	No-Hopping	-42.69	-20	Pass
NVNT	1-DH5	2402	Ant 1	Hopping	-43	-20	Pass
NVNT	1-DH5	2480	Ant 1	No-Hopping	-46.71	-20	Pass
NVNT	1-DH5	2480	Ant 1	Hopping	-44.16	-20	Pass
NVNT	2-DH5	2402	Ant 1	No-Hopping	-42.57	-20	Pass
NVNT	2-DH5	2402	Ant 1	Hopping	-40.72	-20	Pass
NVNT	2-DH5	2480	Ant 1	No-Hopping	-43.34	-20	Pass
NVNT	2-DH5	2480	Ant 1	Hopping	-43.05	-20	Pass
NVNT	3-DH5	2402	Ant 1	No-Hopping	-42.49	-20	Pass
NVNT	3-DH5	2402	Ant 1	Hopping	-41.4	-20	Pass
NVNT	3-DH5	2480	Ant 1	No-Hopping	-41.36	-20	Pass
NVNT	3-DH5	2480	Ant 1	Hopping	-44.12	-20	Pass

Band Edge NVNT 1-DH5 2402MHz Ant1 No-Hopping Emission Spectrum Ref Level 27.62 dBm Offset 7.62 dB . RBW 100 kHz 40 dB SWT 227.5 µs . VBW 300 kHz Mode Auto FFT Att SGL Count 100/100 1Pk Max M1[1] 2.30 dBn 20 dBm 2.40185000 GHz -46.56 dBm 2.40000000 GHz M2[1] 10 dBm 0 dBm -10 dBm 17 40 -20 dBm -30 dBm M4 40 dBm and montaneous the same was a set and a set a last a set and a set a not for described with mon my the wester on his Leaningport -50 dBm -60 dBm -70 dBm-Stop 2.406 GHz Start 2.306 GHz 1001 pts Marker Y-value 2.30 dBm Function Function Result Type | Ref | Trc X-value 2.40185 GHz M1 1 M2 46.56 dBm 2.4 GHz 1 MЗ 2.39 GHz -46.79 dBm 1 M4 2.3404 GHz -40.10 dBm 1 Band Edge(Hopping) NVNT 1-DH5 2402MHz Ant1 Hopping Ref **₩** Spectrum Ref Level 27.62 dBm Offset 7.62 dB 💼 RBW 100 kHz 40 dB SWT 18.9 µs 🖷 VBW 300 kHz Att Mode Auto FFT SGL Count 1000/1000 01Pk Max MI[1] 2,19 dBm 2.40499700 GHz 20 dBm 10 dBm ML 0 dBm -10 dBm -20 dBm 30 dBm -40 dBm NA. -50 dBm -60 dBm -70 dBm-Span 8.0 MHz CF 2.402 GHz 1001 pts

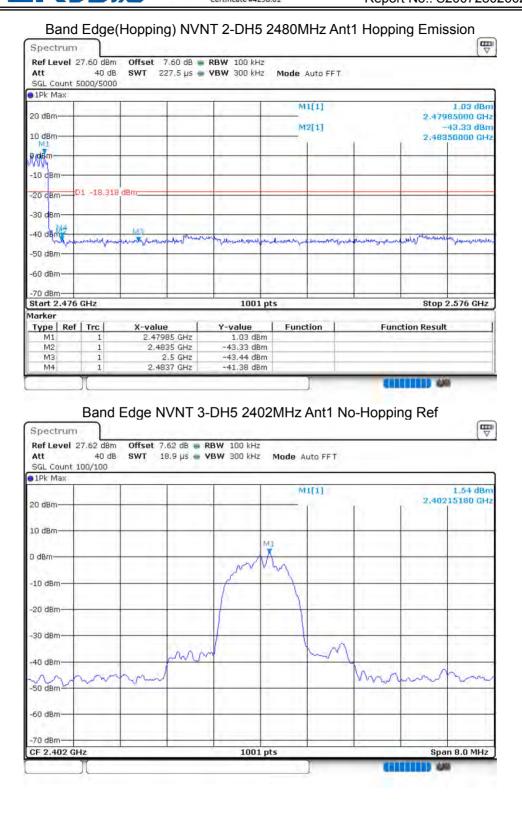


Att SGL Cou	unt 5		dB SWT		 RBW 100 k VBW 300 k 		Auto FFT			5.0
∎1Pk Ma	X		1		1	M	1[1]		-	1.78 dB
20 dBm-		_	-			-	2[1]			295000 GH -45.22 dB
10 dBm-		_	1					1		
0 dBm-										
-20 dBm	D	1 -17.8	15 dBm-		1	-		-	-	()
-30 dBm·		_	_		-	-	1	:	1	23
-40 dBm					M4		1.0.0		Mo	Ma
-50 dBm		upinling	normaliantiqu	uncound m	how we we have the second	an manual and the	mannah	uniteducer	- the wanter	national
-60 dBm·			-	-						
-70 dBm Start 2.		GH7		-	100	01 pts			Ston	2.406 GH:
Marker									1	
Type M1	Ref	Trc 1		value 40295 GHz	Y-value 1.78 c	dBm	tion	Fun	tion Resul	t
M2		1		2.4 GHz	-45.22 0					
M3		1		2.39 GHz	-44.90 c	dBm				
M3 M4 Spectr Ref Lev Att	um rel 2	1 Ban 7.60 dl 40	d Edge m offse de swr	et 7.60 dB	-44.90 c -40.82 c 1-DH5 24 RBW 100 kH VBW 300 kH	180MHz A		Io-Hoppin	ng Ref	٩
M3 M4 Spectr Ref Lev	um vel 2 unt 1	1 Ban 7.60 dl 40	d Edge m offse de swr	2.3433 GHz e NVNT et 7.60 dB	-40.82 c 1-DH5 24 RBW 100 kH	180MHz / 12 12 Mode A	uto FFT	Io-Hoppin	ng Ref	
M3 M4 Spectr Ref Lev Att SGL Cou	um vel 2 unt 1	1 Ban 7.60 dl 40	d Edge m offse de swr	2.3433 GHz e NVNT et 7.60 dB	-40.82 c 1-DH5 24 RBW 100 kH	180MHz / 12 12 Mode A		Io-Hoppin		2.61 dB 015180 GH
M3 M4 Spectr Ref Lev Att SGL Cou JPk Ma 20 dBm-	um vel 2 unt 1	1 Ban 7.60 dl 40	d Edge m offse de swr	2.3433 GHz e NVNT et 7.60 dB	-40.82 c 1-DH5 24 RBW 100 kH	180MHz / 12 12 Mode A	uto FFT	Io-Hoppin		2.61 dB
M3 M4 Spectr Ref Lev Att SGL Cot 1Pk Ma	um vel 2 unt 1	1 Ban 7.60 dl 40	d Edge m offse de swr	2.3433 GHz e NVNT et 7.60 dB	-40.82 c 1-DH5 24 RBW 100 kH	180MHz / 12 12 Mode A	uto FFT	lo-Hoppin		2.61 dB
M3 M4 Spectr Ref Lev Att SGL Cou JPk Ma 20 dBm-	um vel 2 unt 1	1 Ban 7.60 dl 40	d Edge m offse de swr	2.3433 GHz e NVNT et 7.60 dB	-40.82 c 1-DH5 24 RBW 100 kH	HBOMHZ A	uto FFT			2.61 dB
M3 M4 Spectr Ref Lev Att SGL Cot 1Pk Ma 20 dBm- 10 dBm-	vel 2 unt 1 x	1 Ban 7.60 dl 40	d Edge m offse de swr	2.3433 GHz e NVNT et 7.60 dB	-40.82 c 1-DH5 24 RBW 100 kH	HBOMHZ A	uto FFT			2.61 dB
M3 M4 Spectr Ref Lev Att SGL Cou 1Pk Ma 20 dBm- 10 dBm-	vel 2 unt 1 x	1 Ban 7.60 dl 40	d Edge m offse de swr	2.3433 GHz e NVNT et 7.60 dB	-40.82 c 1-DH5 24 RBW 100 kH	HBOMHZ A	uto FFT	Io-Hoppin		2.61 dB
M3 M4 Spectr Ref Lev Att SGL Cou 1Pk Ma 20 dBm- 10 dBm- -10 dBm- -20 dBm-	um 2 unt 11 x	1 Ban 7.60 dl 40	d Edge m offse de swr	2.3433 GHz e NVNT et 7.60 dB	-40.82 c 1-DH5 24 RBW 100 kH	HBOMHZ A	uto FFT			2.61 dB
M3 M4 Spectr Ref Lev Att SGL Cou J1Pk Ma 20 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm-	vel 2 unt 1 x	1 Ban 7.60 dl 40	d Edge m offse de swr	2.3433 GHz e NVNT et 7.60 dB	-40.82 c 1-DH5 24 RBW 100 kH	HBOMHZ A	uto FFT			2.61 dB
M3 M4 Spectr Ref Lev Att SGL Cou 1Pk Ma 20 dBm- 10 dBm- -10 dBm- -20 dBm-	vel 2 unt 1 x	1 Ban 7.60 dl 40	d Edge m offse de swr	2.3433 GHz e NVNT et 7.60 dB	-40.82 c 1-DH5 24 RBW 100 kH	HBOMHZ A	uto FFT			2.61 dB
M3 M4 Spectr Ref Lev Att SGL Cou J1Pk Ma 20 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm-	um vel 2 unt 1 ×	1 Ban 7.60 dl 40	d Edge m offse de swr	2.3433 GHz e NVNT et 7.60 dB	-40.82 c 1-DH5 24 RBW 100 kH	HBOMHZ A	uto FFT			2.61 dB
M3 M4 Spectr Ref Lev Att SGL Cou SGL Cou 10 dBm- 10 dBm- -10 dBm- -20 dBm- -20 dBm- -30 dBm- -50 dBm-	vel 2 unt 10	1 Ban 7.60 dl 40	d Edge m offse de swr	2.3433 GHz e NVNT et 7.60 dB	-40.82 c 1-DH5 24 RBW 100 kH	HBOMHZ A	uto FFT			2.61 dB
M3 M4 Spectr Ref Lev Att SGL Cou I D dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm- -40 dBm-	vel 2 unt 10	1 Ban 7.60 dl 40	d Edge m offse de swr	2.3433 GHz e NVNT et 7.60 dB	-40.82 c 1-DH5 24 RBW 100 kH	HBOMHZ A	uto FFT			2.61 dB
M3 M4 Spectr Ref Lev Att SGL Cou • 1Pk Ma • 20 dBm- • 10 dBm- • 20 dBm- • -20 dBm- • -50 dBm- • -50 dBm-	um vel 2 unt 1) x	1 Ban 7.60 di 40 000/10	d Edge m offse de swr	2,3433 GHz e NVNT et 7.60 dB	-40.82 c	180MHz /	uto FFT		2.480	2.61 dB
M3 M4 Spectr Ref Lev SGL Cou SGL Cou SGL Cou 10 dBm- 10 dBm- -10 dBm- -20 dBm- -20 dBm- -30 dBm- -50 dBm- -50 dBm-	um vel 2 unt 1) x	1 Ban 7.60 di 40 000/10	d Edge m offse de swr	2,3433 GHz e NVNT et 7.60 dB	-40.82 c	HBOMHZ A	uto FFT		2.480	2.61 dB

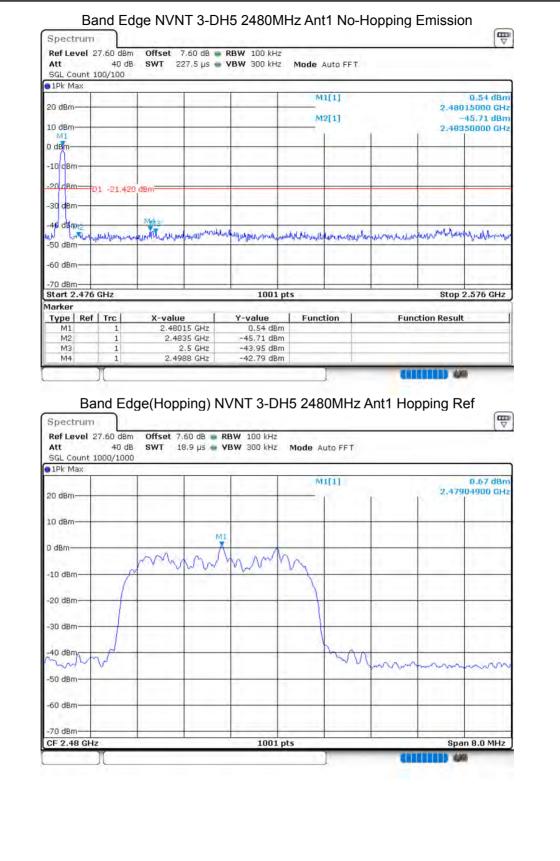
Att SGL Count	27.60 dBm 40 dB 100/100			XBW 100 kHz /BW 300 kHz	Mode A	uto FFT			
1Pk Max			-		M	[1]		0.00	1.94 dBm
20 dBm					Ma	2[1]			05000 GHz 44.24 dBm
10 dBm			1				()	2.483	50000 GHz
0 d6m									1
-10 dBm					-	-			
-20 cBm	D1 -17.388	dBm							
-30 dBm									·
-40 dBm	04) X	Ma	an a hadrada and	Managhterengen	6.000	a halo at at a	a an ada	. um tola	den al sea a
-50 dBm	ann an the	hermanical	Marthan	* femerile blanker	wellen markely with	- WARDER AND	partial viceory fre	WWW	VUMP-UD-AND-PARK
-60 dBm						1	-		
-70 dBm	_					1			1 L
Start 2.476 Aarker	GHz			1001 p	ts			Stop :	2.576 GHz
Type Ref	Trc 1	X-value	9 05 GHz	Y-value 1.94 dBm	Funct	ion	Fund	ction Result	-
1411			35 GHz	-44.24 dBm					
M2	1			44.40 -00-					
M2 M3 M4	1 1 1	2	73 GHz	-44.49 dBm -44.10 dBm					
M3 M4 Ba Spectrum Ref Level Att	1 1 27.60 dBm 40 dB	2 2.48 ge(Hopp Offset 7.	5 GHz 73 GHz Ding) NV		15 248		Ant1 Ho	pping R	ef
M3 M4 Ba Spectrum Ref Level Att SGL Count	1 1 27.60 dBm 40 dB	2 2.48 ge(Hopp Offset 7.	5 GHz 73 GHz Ding) NV	-44.10 dBm	15 248		Ant1 Ho	pping R	
M3 M4 Ba Spectrum Ref Level Att	1 1 27.60 dBm 40 dB	2 2.48 ge(Hopp Offset 7.	5 GHz 73 GHz Ding) NV	-44.10 dBm	15 2480 Mode Au		Ant1 Ho		1.80 dBm
M3 M4 Ba Spectrum Ref Level Att SGL Count	1 1 27.60 dBm 40 dB	2 2.48 ge(Hopp Offset 7.	5 GHz 73 GHz Ding) NV	-44.10 dBm	15 2480 Mode Au	ito FFT	Ant1 Ho		
M3 M4 Spectrum Ref Level Att SGL Count	1 1 27.60 dBm 40 dB	2 2.48 ge(Hopp Offset 7.	5 GHz 73 GHz Ding) NV	-44.10 dBm	15 2480 Mode Au	ito FFT	Ant1 Ho		1.80 dBm
M3 M4 Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm-	1 1 27.60 dBm 40 dB 2000/2000	2 2.48 ge(Hopp Offset 7.	5 GHz 73 GHz Ding) NV	-44.10 dBm	15 2480 Mode Au	ito FFT	Ant1 Ho		1.80 dBm
M3 M4 Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm	1 1 27.60 dBm 40 dB 2000/2000	2 2.48 ge(Hopp Offset 7.	5 GHz 73 GHz Ding) NV	-44.10 dBm	15 2480 Mode Au	ito FFT	Ant1 Ho		1.80 dBm
M3 M4 Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm-	1 1 27.60 dBm 40 dB 2000/2000	2 2.48 ge(Hopp Offset 7.	5 GHz 73 GHz Ding) NV	-44.10 dBm	15 2480 Mode Au	ito FFT	Ant1 Ho		1.80 dBm
M3 M4 Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm	1 1 27.60 dBm 40 dB 2000/2000	2 2.48 ge(Hopp Offset 7.	5 GHz 73 GHz Ding) NV	-44.10 dBm	15 2480 Mode Au	ito FFT	Ant1 Ho		1.80 dBm
M3 M4 Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm	1 1 27.60 dBm 40 dB 2000/2000	2 2.48 ge(Hopp Offset 7.	5 GHz 73 GHz Ding) NV	-44.10 dBm	15 2480 Mode Au	ito FFT	Ant1 Ho		1.80 dBm
M3 M4 Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm 0 dBm	1 1 27.60 dBm 40 dB 2000/2000	2 2.48 ge(Hopp Offset 7.	5 GHz 73 GHz Ding) NV	-44.10 dBm	15 2480 Mode Au	ito FFT	Ant1 Ho		1.80 dBm
M3 M4 Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm	1 1 27.60 dBm 40 dB 2000/2000	2 2.48 ge(Hopp Offset 7.	5 GHz 73 GHz Ding) NV	-44.10 dBm	15 2480 Mode Au	ito FFT			1.80 dBm
M3 M4 Ba Spectrum Ref Level Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	1 1 27.60 dBm 40 dB 2000/2000	2 2.48 ge(Hopp Offset 7.	5 GHz 73 GHz Ding) NV	-44.10 dBm	15 2480 Mode Au	ito FFT	Ant1 Ho		1.80 dBm
M3 M4 Ba Spectrum Ref Level Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	1 1 27.60 dBm 40 dB 2000/2000	2 2.48 ge(Hopp Offset 7.	5 GHz 73 GHz Ding) NV	-44.10 dBm	15 2480 Mode Au	ito FFT	Ant1 Ho		1.80 dBm
M3 M4 Ba Spectrum Ref Level Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm	1 1 27.60 dBm 40 dB 2000/2000	2 2.48 ge(Hopp Offset 7.	5 GHz 73 GHz Ding) NV	-44.10 dBm	15 2480 Mode Au	ito FFT	Ant1 Ho		1.80 dBm
M3 M4 Spectrum Ref Level Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	1 1 27.60 dBm 40 dB 2000/2000	2 2.48 ge(Hopp Offset 7.	5 GHz 73 GHz Ding) NV	-44.10 dBm	15 2480 Mode Au	ito FFT	Ant1 Ho		1.80 dBm
M3 M4 Spectrum Ref Level Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm	1 1 27.60 dBm 40 dB 2000/2000	2 2.48 ge(Hopp Offset 7.	5 GHz 73 GHz Ding) NV	-44.10 dBm	H5 2480	ito FFT	Ant1 Ho	2.476	1.80 dBm



Att SGL Count	27.62 dBm 40 dB 100/100			RBW 100 kHz VBW 300 kHz		Auto FFT			
1Pk Max			1	i i	68	1511			-2.44 dBr
20 dBm			-		_	1[1]		2.402	15000 GH
10 dBm			-		M	2[1]			46.37 dBr 00000 GH
0 dBm			_						M1
-10 dBm				-					- 1
-20 dBm	D1 -18.355	dBm		-			_		
-30 dBm								1 I.	
			M4			1		MI3	14
www.hummynl	anon-antonic the	aurian Alapana	Admit Andrew	- hall have been and have	welsty the well of	-	whitemanist	hand the Margaret	news 1
1.000				•					
-60 dBm				1			· · · · · ·	l	
-70 dBm	5 GHz	1	1	1001	pts			Stop 2	2.406 GHz
Marker Type Rei	f Trc	X-valu	e l	Y-value	Func	tion	Fund	tion Result	
M1	1 1	2.402	215 GHz 2.4 GHz	-2.44 dBn -46.37 dBn	n				
MO				40.37 401					
M2 M3	1	2	.39 GHz	-45.54 dBn					
M3 M4 Bi Spectrum Ref Level Att	1 1 27.62 dBm 40 dB	2 2.34 ge(Hop Offset 7	409 GHZ ping) N 7.62 dB ■ R	-45.54 dBn -40.93 dBn VNT 2-DI BW 100 kHz 'BW 100 kHz	n H5 240		ant1 Hop	oping Re	ef
M3 M4 Bi Spectrum Ref Level Att	and Edg	2 2.34 ge(Hop Offset 7	409 GHZ ping) N 7.62 dB ■ R	-40.93 dBn VNT 2-DI BW 100 kHz	n H5 240 Mode A	uto FFT	ant1 Hop	oping Re	
M3 M4 Spectrum Ref Level Att SGL Count 1Pk Max	1 1 27.62 dBm 40 dB	2 2.34 ge(Hop Offset 7	409 GHZ ping) N 7.62 dB ■ R	-40.93 dBn VNT 2-DI BW 100 kHz	n H5 240 Mode A		ant1 Hop		
M3 M4 Spectrum Ref Level Att SGL Count	1 1 27.62 dBm 40 dB	2 2.34 ge(Hop Offset 7	409 GHZ ping) N 7.62 dB ■ R	-40.93 dBn VNT 2-DI BW 100 kHz	n H5 240 Mode A	uto FFT	ant1 Hop		0,82 dBr
M3 M4 Spectrum Ref Level Att SGL Count 1Pk Max	1 1 27.62 dBm 40 dB	2 2.34 ge(Hop Offset 7	409 GHZ ping) N 7.62 dB ■ R	-40.93 dBn VNT 2-DI BW 100 kHz	n H5 240 Mode A	uto FFT	Ant1 Hop		0,82 dBr 84420 GH
M3 M4 Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm-	1 1 27.62 dBm 40 dB	2 2.34 ge(Hop Offset 7	409 GHZ ping) N 7.62 dB ■ R	-40.93 dBn VNT 2-DI BW 100 kHz	n H5 240 Mode A	uto FFT	ant1 Hop		0,82 dBr
M3 M4 Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- 0 dBm-	1 1 27.62 dBm 40 dB	2 2.34 ge(Hop Offset 7	409 GHZ ping) N 7.62 dB ■ R	-40.93 dBn VNT 2-DI BW 100 kHz	n H5 240 Mode A	uto FFT	Ant1 Hop		0,82 dBr 84420 GH
M3 M4 Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm-	1 1 27.62 dBm 40 dB	2 2.34 ge(Hop Offset 7	409 GHZ ping) N 7.62 dB ■ R	-40.93 dBn VNT 2-DI BW 100 kHz	n H5 240 Mode A	uto FFT	Ant1 Hop		0,82 dBr 84420 GH
M3 M4 Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- 0 dBm-	1 1 27.62 dBm 40 dB	2 2.34 ge(Hop Offset 7	409 GHZ ping) N 7.62 dB ■ R	-40.93 dBn VNT 2-DI BW 100 kHz	n H5 240 Mode A	uto FFT	Ant1 Hop		0,82 dBr 84420 GH
M3 M4 Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm-	1 1 27.62 dBm 40 dB	2 2.34 ge(Hop Offset 7	409 GHZ ping) N 7.62 dB ■ R	-40.93 dBn VNT 2-DI BW 100 kHz	n H5 240 Mode A	uto FFT	Ant1 Hop		0,82 dBr 84420 GH
M3 M4 Spectrum Ref Level Att SGL Count O dBm 10 dBm -10 dBm -20 dBm -30 dBm	1 1 27.62 dBm 40 dB	2 2.34 ge(Hop Offset 7	409 GHz ping) N' 7,62 dв в R 18,9 µs в У	-40.93 dBn VNT 2-DI BW 100 kHz	n H5 240 Mode A	uto FFT	Ant1 Hop		0,82 dBr 84420 GH
M3 M4 Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm-	1 1 27.62 dBm 40 dB	2 2.34 ge(Hop Offset 7	409 GHZ ping) N 7.62 dB ■ R	-40.93 dBn VNT 2-DI BW 100 kHz	n H5 240 Mode A	uto FFT	Ant1 Hop		0,82 dBr 84420 GH
M3 M4 Spectrum Ref Level Att SGL Count O dBm 10 dBm -10 dBm -20 dBm -30 dBm	1 1 27.62 dBm 40 dB	2 2.34 ge(Hop Offset 7	409 GHz ping) N' 7.62 dв в R 18.9 µs в У	-40.93 dBn VNT 2-DI BW 100 kHz	n H5 240 Mode A	uto FFT	Ant1 Hop		0,82 dBr 84420 GH
M3 M4 Spectrum Ref Level Att SGL Count O dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm	1 1 27.62 dBm 40 dB	2 2.34 ge(Hop Offset 7	409 GHz ping) N' 7.62 dв в R 18.9 µs в У	-40.93 dBn VNT 2-DI BW 100 kHz	n H5 240 Mode A	uto FFT	Ant1 Hop		0,82 dBr 84420 GH
M3 M4 Spectrum Ref Level Att SGL Count O dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm	1 1 27.62 dBm 40 dB	2 2.34 ge(Hop Offset 7	409 GHz ping) N' 7.62 dв в R 18.9 µs в У	-40.93 dBn VNT 2-DI BW 100 kHz	n H5 240 Mode A	uto FFT			0,82 dBr 84420 GH
M3 M4 Spectrum Ref Level Att SGL Count O dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm	1 1 27.62 dBm 40 dB 3000/3000	2 2.34 ge(Hop Offset 7	409 GHz ping) N' 7.62 dв в R 18.9 µs в У	-40.93 dBn VNT 2-DI BW 100 kHz	Mode A	uto FFT	Ant1 Hop	2,405	0,82 dBr 84420 GH



Ref Level 27.60 Att 44 SGL Count 100/10 1Pk Max 43	Odb SWT 22		RBW 100 kHz /BW 300 kHz		Auto FFT.	_		
20 dBm	-			M	1[1]		2.400	-0.73 dBn
				M	2[1]			45.39 dBn
10 dBm M1						(—)	2.483	50000 GH
0 dBm							1	1
-10 cBm								
-20 cBm-D1 -16	3,498 dBm		·	_				
-30 dBm			-				-	-
-40 dBm2	Ma	in solice have	-brancher alphoneter			and the second		the stand and
-50 dBm	are with the second stands	Jannaha	and Marcraham dry	Annow Mar BACHA	- Window Conditional	and an and the second second	Mano - area	-July-und shirted
-60 dBm	_			-				
-70 dBm						1		1
Start 2.476 GHz Marker	_		1001	pts	-		Stop	2.576 GHz
Type Ref Trc M1 1		9 15 GHz	Y-value -0.73 dBm	Func	tion	Func	tion Result	1
		35 GHz	-45.39 dBm	n				
M2 1								
M3 1 M4 1 Band Spectrum Ref Level 27.60	Edge(Hopp dBm offset 7.	60 dB 🖷 RE	BW 100 kHz	15 248		Ant1 Hop	oping R	ef [₩
M3 1 M4 1 Band Spectrum Ref Level 27.60	Edge(Hopp dBm offset 7, odb swr 16	54 GHz Ding) N\ 60 dB RE	-41.85 dBm	15 248 Mode A	uto FFT	Ant1 Hop	oping R	
M3 1 M4 1 Band Spectrum Ref Level 27.60 Att 4 SGL Count 10000	Edge(Hopp dBm offset 7, odb swr 16	54 GHz Ding) N\ 60 dB RE	-41.85 dBm /NT 2-DH BW 100 kHz	15 248 Mode A		Ant1 Hop		
M3 1 M4 1 Band Spectrum Ref Level 27.60 Att 4 SGL Count 10000 1Pk Max 20 dBm	Edge(Hopp dBm offset 7, odb swr 16	54 GHz Ding) N\ 60 dB RE	-41.85 dBm /NT 2-DH BW 100 kHz	15 248 Mode A	uto FFT	Ant1 Hop		1.68 dBn
M3 1 M4 1 Band Spectrum Ref Level 27.60 Att 4 SGL Count 10000 1Pk Max	Edge(Hopp dBm offset 7, odb swr 16	54 GHz Ding) N\ 60 dB RE	-41.85 dBm /NT 2-DH BW 100 kHz	15 248 Mode A	uto FFT	Ant1 Hop		1.68 dBn
M3 1 M4 1 Band Spectrum Ref Level 27.60 Att 4 SGL Count 10000 1Pk Max 20 dBm	Edge(Hopp dBm offset 7, odb swr 16	54 GHz Ding) N\ 60 dB RE	-41.85 dBm /NT 2-DH BW 100 kHz	15 248 Mode A	uto FFT	Ant1 Hop		1.68 dBn
M3 1 M4 1 Band 1 Spectrum Ref Level 27.60 Att 4 SGL Count 10000 1Pk Max 20 dBm 10 dBm	Edge(Hopp dBm offset 7, odb swr 16	54 GHz Ding) N\ 60 dB RE	-41.85 dBm /NT 2-DH BW 100 kHz	15 248 Mode A	uto FFT	Ant1 Hop		1.68 dBn
M3 1 M4 1 M4 1 Band 1 Spectrum 4 SGL Count 10000 1Pk Max 20 dBm 10 dBm 10 dBm 11 0'dBm 11	Edge(Hopp dBm offset 7, odb swr 16	54 GHz Ding) N\ 60 dB RE	-41.85 dBm /NT 2-DH BW 100 kHz	15 248 Mode A	uto FFT	Ant1 Hop		1.68 dBn
M3 1 M4 1 Band Spectrum Ref Level 27.60 Att 4 SGL Count 10000 1Pk Max 20 dBm 10 dBm	Edge(Hopp dBm offset 7, odb swr 16	54 GHz Ding) N\ 60 dB RE	-41.85 dBm /NT 2-DH BW 100 kHz	15 248 Mode A	uto FFT	Ant1 Hop		1.68 dBn
M3 1 M4 1 M4 1 Band 1 Spectrum 4 SGL Count 10000 1Pk Max 20 dBm 10 dBm 10 dBm 11 0'dBm 11	Edge(Hopp dBm offset 7, odb swr 16	54 GHz Ding) N\ 60 dB RE	-41.85 dBm /NT 2-DH BW 100 kHz	15 248 Mode A	uto FFT	Ant1 Hop		1.68 dBn
M3 1 M4 1 Band Spectrum Ref Level 27.60 Att 4 SGL Count 10000 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Edge(Hopp dBm offset 7, odb swr 16	54 GHz Ding) N\ 60 dB RE	-41.85 dBm /NT 2-DH BW 100 kHz	15 248 Mode A	uto FFT	Ant1 Hop		1.68 dBn
M3 1 M4 1 M4 1 Band 1 Spectrum Ref Level 27.60 Att 44 SGL Count 100000 1Pk Max 20 dBm 10 dBm 10 dBm 11 0'dBm 10 -20 dBm -20 dBm	Edge(Hopp dBm offset 7, odb swr 16	54 GHz Ding) N\ 60 dB RE	-41.85 dBm /NT 2-DH BW 100 kHz	15 248 Mode A	uto FFT	Ant1 Hop		1.68 dBn
M3 1 M4 1 Band Spectrum Ref Level 27.60 Att 4 SGL Count 10000 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Edge(Hopp dBm offset 7, odb swr 16	54 GHz Ding) N\ 60 dB RE	-41.85 dBm /NT 2-DH BW 100 kHz	15 248 Mode A	uto FFT	Ant1 Hop		1.68 dBn
M3 1 M4 1 Band Spectrum Ref Level 27.60 Att 4 SGL Count 1PK Max 4 20 dBm 1 10 dBm 11 9'dBm 11 -10 dBm 11 -20 dBm -30 dBm	Edge(Hopp dBm offset 7, odb swr 16	54 GHz Ding) N\ 60 dB RE	-41.85 dBm /NT 2-DH BW 100 kHz	15 248 Mode A	uto FFT	Ant1 Hop		1.68 dBn
M3 1 M4 1 Band 1 Spectrum Ref Level 27.60 Att 4. 3 SGL Count 100000 10 PK Max 20 dBm 10 dBm 11 9 dBm -10 dBm 11 9 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -60 dBm -60 dBm -60 dBm -60 dBm -60 dBm -60 dBm -60 dBm -60 dBm -60 dBm -70 dBm <t< td=""><td>Edge(Hopp dBm offset 7, odb swr 16</td><td>54 GHz Ding) N\ 60 dB RE</td><td>-41.85 dBm /NT 2-DH BW 100 kHz</td><td>15 248 Mode A</td><td>uto FFT</td><td>Ant1 Hop</td><td></td><td>1.68 dBn</td></t<>	Edge(Hopp dBm offset 7, odb swr 16	54 GHz Ding) N\ 60 dB RE	-41.85 dBm /NT 2-DH BW 100 kHz	15 248 Mode A	uto FFT	Ant1 Hop		1.68 dBn
M3 1 M4 1 Band 1 Spectrum Ref Level 27.60 Att 4 SGL Count 10000 1PK Max 20 dBm 10 dBm 10 dBm 10 -10 dBm -10 -20 dBm -30 dBm -50 dBm -50 dBm	Edge(Hopp dBm offset 7, odb swr 16	54 GHz Ding) N\ 60 dB RE	-41.85 dBm /NT 2-DH BW 100 kHz	Mode A	uto FFT	Ant1 Hop	2.476	1.68 dBn

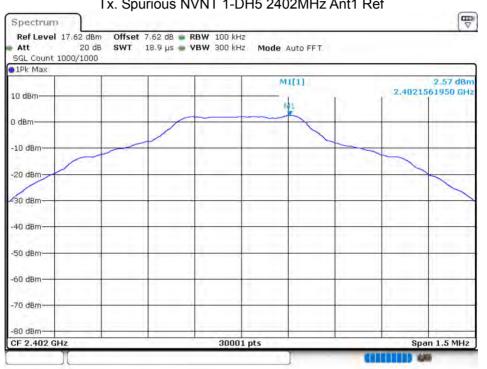


Band Edge NVNT 3-DH5 2402MHz Ant1 No-Hopping Emission **m** ⊽ Spectrum Ref Level 27.62 dBm Offset 7.62 dB . RBW 100 kHz 40 dB SWT 227.5 µs . VBW 300 kHz Mode Auto FFT Att SGL Count 100/100 ● 1Pk Max M1[1] -0.71 dBn 20 dBm-2.40195000 GH M2[1] -43.18 dBn 10 dBm 2.40000000 GHz 0 dBm -10 dBm D1 -18,455 dBm -20 dBm--30 dBm 6.424 40 dBm manhampra -50 dBm Muhampa In a h n Manapartellin Michalum Marcharter Atom to a Ma In -60 dBm -70 dBm-1001 pts Stop 2.406 GHz Start 2.306 GHz Marker Y-value -0.71 dBm Function Function Result Type | Ref | Trc X-value 2.40195 GHz M1 1 M2 43.18 dBm 2.4 GHz 1 MЗ 1 2.39 GHz -47.49 dBm M4 1 2.3496 GHz -40.95 dBm Band Edge(Hopping) NVNT 3-DH5 2402MHz Ant1 Hopping Ref **₩** Spectrum Ref Level 27.62 dBm Offset 7.62 dB 👜 RBW 100 kHz 40 dB SWT 18.9 µs 🖷 VBW 300 kHz Att Mode Auto FFT SGL Count 2000/2000 01Pk Max MI[1] 0.87 dBn 2.40215180 GHz 20 dBm 10 dBm MI 0 dBm M -10 dBm -20 dBm 30 dBm -40 dBm -50 dBm -60 dBm -70 dBm-Span 8.0 MHz CF 2.402 GHz 1001 pts

Band Edge(Hopping) NVNT 3-DH5 2402MHz Ant1 Hopping Emission **m** ⊽ Spectrum Ref Level 27.62 dBm Offset 7.62 dB . RBW 100 kHz 40 dB SWT 227.5 µs 🛥 VBW 300 kHz Att Mode Auto FFT SGL Count 500/500 0 1Pk Max M1[1] 0.16 dBn 20 dBm 2.40295000 GHz M2[1] ~46.04 dBm 2.40000000 GHz 10 dBm 0 dBm hh -10 dBm -20 dBm-D1 -19.134 dB -30 dBm MAL 40 dBm remailwayselandary Just Timber 14,100 por Althou matter why such -50 dBm -60 dBm -70 dBm-Stop 2.406 GHz Start 2.306 GHz 1001 pts Marker Y-value 0.16 dBm Function Function Result Type | Ref | Trc X-value 2.40295 GHz M1 1 M2 2.4 GHz 46.04 dBm 1 MЗ 2.39 GHz -44.44 dBm 1 M4 1 2.3412 GHz -40.53 dBm Band Edge NVNT 3-DH5 2480MHz Ant1 No-Hopping Ref **₩** Spectrum Ref Level 27.60 dBm Offset 7.60 dB 👜 RBW 100 kHz 40 dB SWT 18.9 µs 💣 YBW 300 kHz Att Mode Auto FFT SGL Count 100/100 01Pk Max MI[1] -1,42 dBn 2.47994410 GHz 20 dBm 10 dBm 0 dBm ww -10 dBm -20 dBm 30 dBm -40 dBm non no -50 dBm -60 dBm -70 dBm-Span 8.0 MHz CF 2.48 GHz 1001 pts

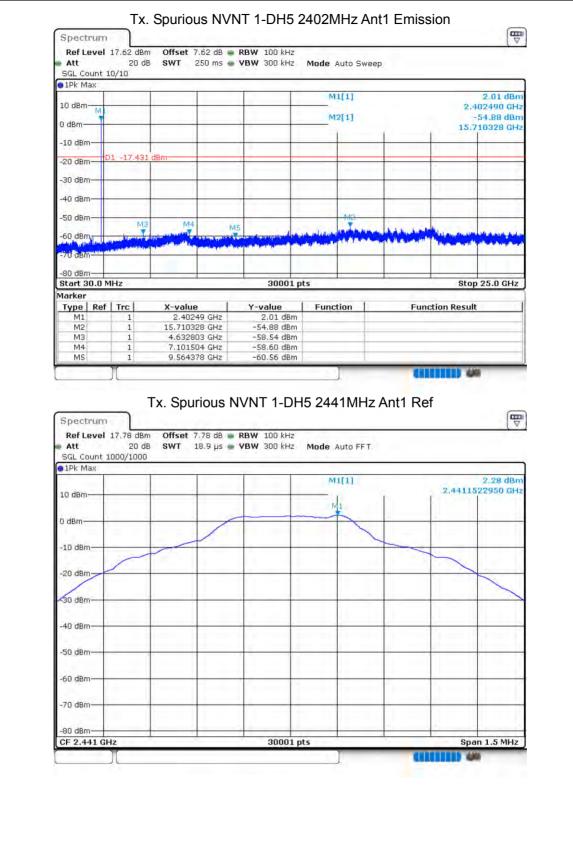
Band Edge(Hopping) NVNT 3-DH5 2480MHz Ant1 Hopping Emission

Ref Level 2 Att SGL Count 5	40 d		RBW 100 kHz VBW 300 kHz	Mode Auto FFT	ð — ⁽).
1Pk Max					
20 dBm				M1[1] M2[1]	-2.21 dBn 2.47995000 GH: -45.25 dBn 2.48350000 GH;
-10 dBm				11.	
-20 dBm-0	1 -19,3	34 abm			
-40 dBm	not-man the work	warehouse and warehouse and	the manual transform	warder and warder and a strate and	por months between the hard the representation
-60 dBm					
-70 dBm					
Start 2.476	GHz		1001 pts	5	Stop 2.576 GHz
larker	1.1			The Feed	
Type Ref	Trc	X-value	Y-value	Function	Function Result
M1	1	2.47995 GHz	-2.21 dBm		
M2	1	2.4835 GHz	-45.25 dBm		
M3 M4	1	2.5 GHz	-44.85 dBm		
	1	2.4991 GHz	-43.45 dBm		

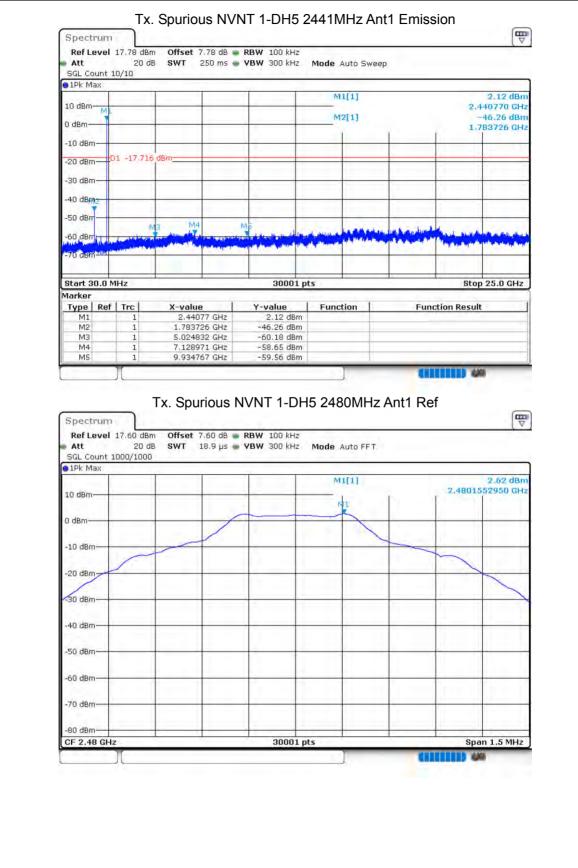


8.7 CONDUCTED RF SPURIOUS EMISSION

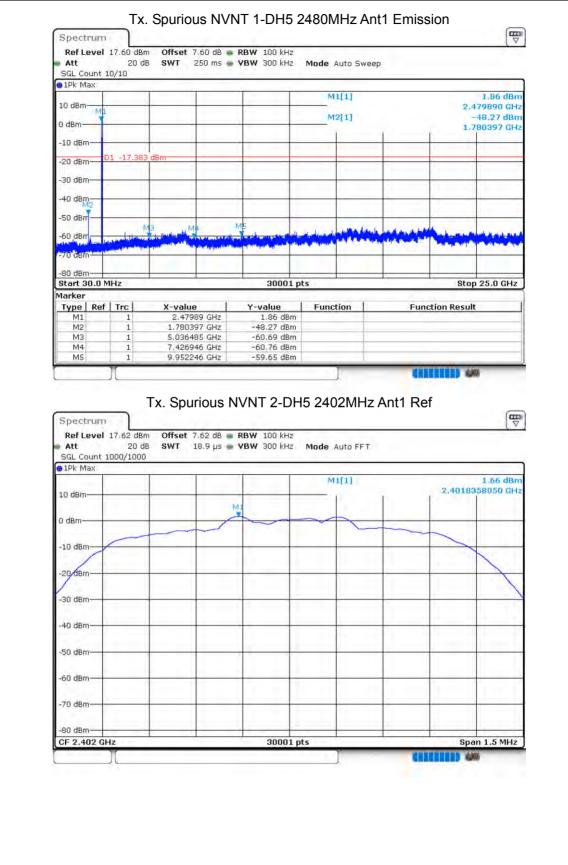
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant 1	-57.44	-20	Pass
NVNT	1-DH5	2441	Ant 1	-48.53	-20	Pass
NVNT	1-DH5	2480	Ant 1	-50.89	-20	Pass
NVNT	2-DH5	2402	Ant 1	-55.82	-20	Pass
NVNT	2-DH5	2441	Ant 1	-56.6	-20	Pass
NVNT	2-DH5	2480	Ant 1	-54.46	-20	Pass
NVNT	3-DH5	2402	Ant 1	-56.41	-20	Pass
NVNT	3-DH5	2441	Ant 1	-55.7	-20	Pass
NVNT	3-DH5	2480	Ant 1	-56.45	-20	Pass

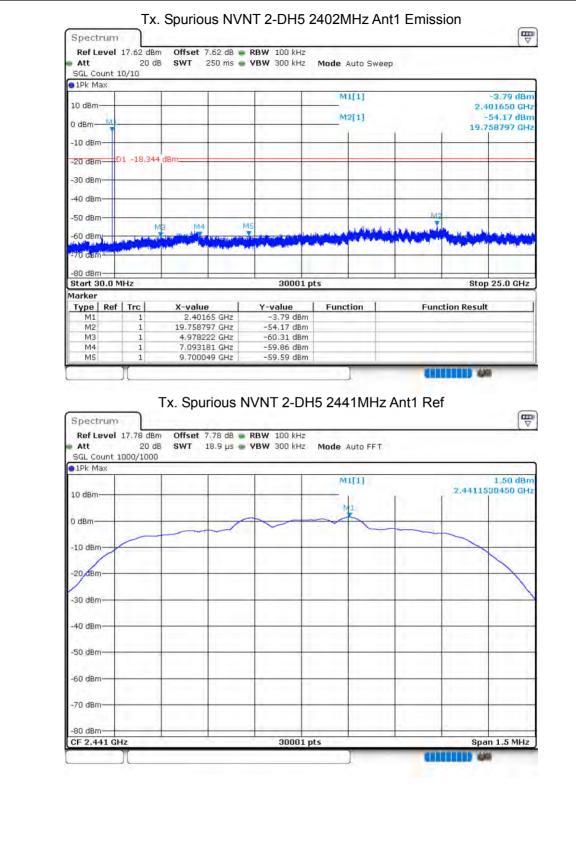

ACCREDITED

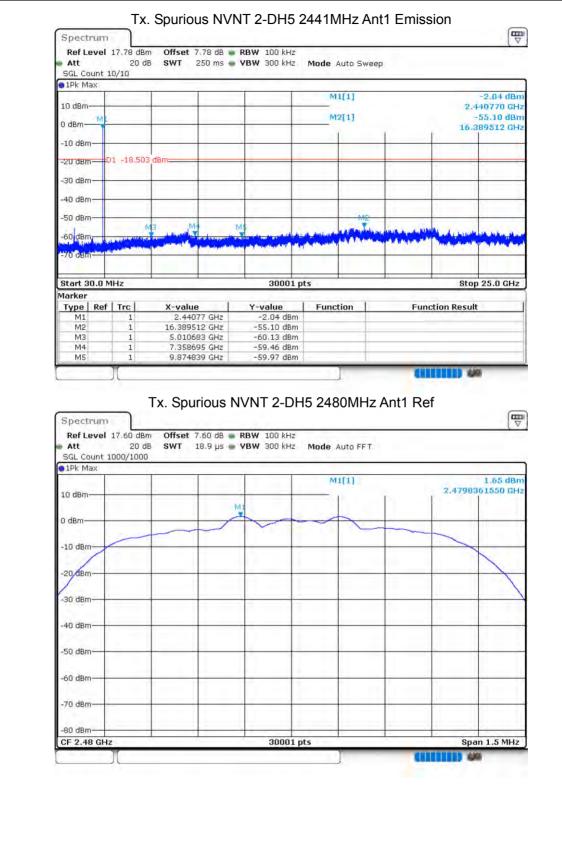
Certificate #4298.01

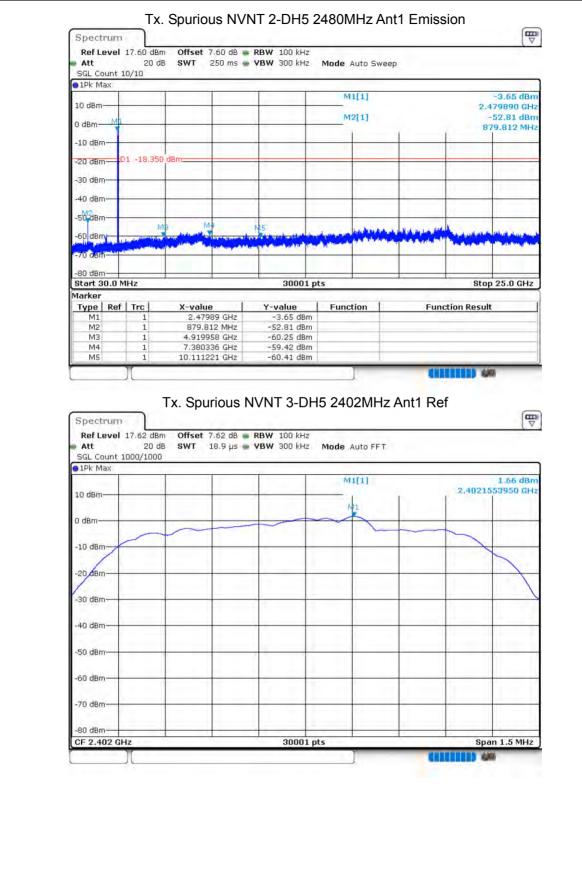


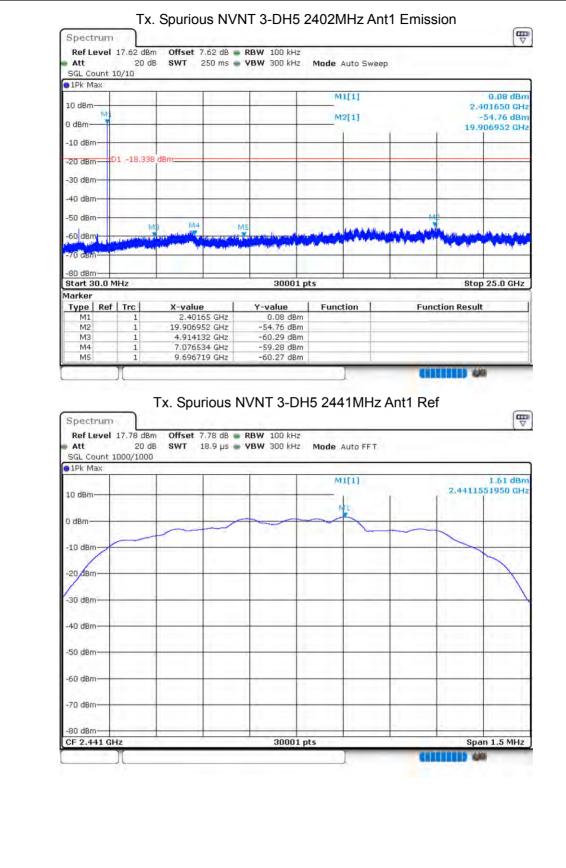
Tx. Spurious NVNT 1-DH5 2402MHz Ant1 Ref

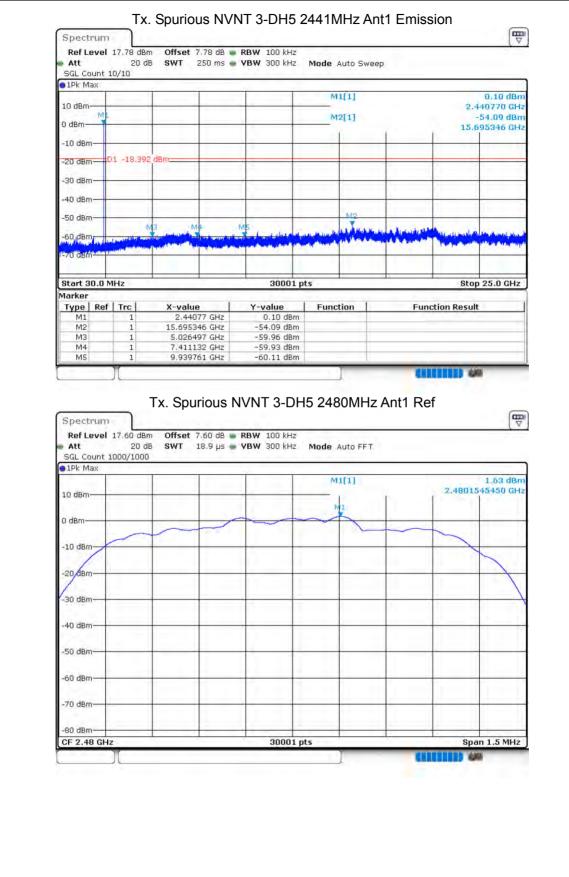


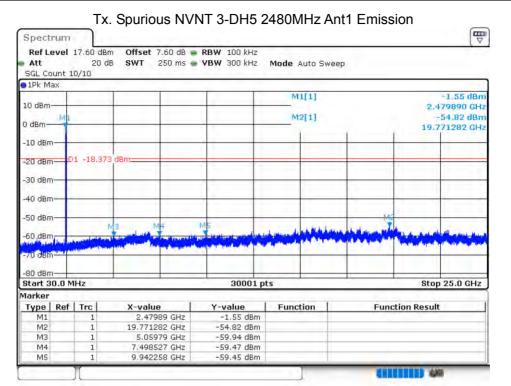












END OF REPORT