

NTS Test Report No. PR087585 Rev. 1 Page 1 of 66



CERTIFICATE #: 0214.19

**Radio Test Report** 

**Application for Grant of Equipment Authorization** 

FCC Part 27 Subpart C [722MHz – 728MHz]

FCC Part 27 Subpart C [1995MHz – 2020MHz]

# FCC ID: VBNAHLJA-01

Product Name: Airscale Base Transceiver Station Remote Radio Head Model: AHLJA

> Applicant: Nokia Solutions and Networks 6000 Connection Drive Irving, TX 75039

> Test Sites: Nokia Solutions and Networks 6000 Connection Drive Irving, TX 75039 and National Technical Systems – Plano 1701 E Plano Pkwy #150 Plano, TX 75074

> Test Dates: September 25 – October 8, 2018 Total Number of Pages: 66

**Prepared By:** 

**Christian Booker** 

EMI Engineer

**Reviewed By:** 

Jeffrey Viel General Manager

**Approved By:** 

Chelsie Morrow Quality Assurance



## **REVISION HISTORY**

| Rev# | Date       | Comments                        | Modified By      |
|------|------------|---------------------------------|------------------|
| 0    | 10/12/2018 | Initial Draft                   | BreAnna Cheatham |
| 1    | 10/16/2018 | Updated Per<br>Customer Request | BreAnna Cheatham |



NTS Test Report No. PR087585 Rev. 1 Page **3** of **66** 

# TABLE OF CONTENTS

| REVISION HISTORY                                                                                                                                                               | 2                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| TABLE OF CONTENTS                                                                                                                                                              | 3                                                                                                        |
| SCOPE                                                                                                                                                                          | 5                                                                                                        |
| OBJECTIVE                                                                                                                                                                      | 6                                                                                                        |
| STATEMENT OF COMPLIANCE                                                                                                                                                        | 6                                                                                                        |
| DEVIATIONS FROM THE STANDARDS                                                                                                                                                  | 6                                                                                                        |
| TEST RESULTS SUMMARY<br>FCC Part 27 Subpart C (Base Stations Operating in the 722 to 728MHz Band)                                                                              |                                                                                                          |
| FCC Part 27 Subpart C (Base Stations Operating in the 1995 to 2020MHz Band)                                                                                                    | 8                                                                                                        |
| Extreme Conditions                                                                                                                                                             | 9                                                                                                        |
| Measurement Uncertainties                                                                                                                                                      | 9                                                                                                        |
|                                                                                                                                                                                |                                                                                                          |
| EQUIPMENT UNDER TEST (EUT) DETAILS                                                                                                                                             |                                                                                                          |
| EQUIPMENT UNDER TEST (EUT) DETAILS<br>General<br>EUT Hardware                                                                                                                  | 10                                                                                                       |
| General                                                                                                                                                                        | 10<br>12                                                                                                 |
| General<br>EUT Hardware                                                                                                                                                        |                                                                                                          |
| General<br>EUT Hardware<br>Enclosure                                                                                                                                           |                                                                                                          |
| General<br>EUT Hardware<br>Enclosure<br>Support Equipment                                                                                                                      |                                                                                                          |
| General<br>EUT Hardware<br>Enclosure<br>Support Equipment<br>Auxillary Equipment                                                                                               |                                                                                                          |
| General<br>EUT Hardware<br>Enclosure<br>Support Equipment<br>Auxillary Equipment<br>AHLJA Connector Layout:                                                                    |                                                                                                          |
| General<br>EUT Hardware<br>Enclosure<br>Support Equipment<br>Auxillary Equipment<br>AHLJA Connector Layout:<br>EUT External Interfaces                                         | 10<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>13<br>13<br>14<br>14                               |
| General<br>EUT Hardware<br>Enclosure<br>Support Equipment<br>Auxillary Equipment<br>AHLJA Connector Layout:<br>EUT External Interfaces<br>EUT Interface Ports                  | 10<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>13<br>13<br>14<br>14<br>14                         |
| General<br>EUT Hardware<br>Enclosure<br>Support Equipment<br>Auxillary Equipment<br>AHLJA Connector Layout:<br>EUT External Interfaces<br>EUT Interface Ports<br>EUT Operation | 10<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>13<br>13<br>14<br>14<br>14<br>14                   |
| General EUT Hardware Enclosure Support Equipment Auxillary Equipment AHLJA Connector Layout: EUT External Interfaces EUT Interface Ports EUT Operation EUT Software            | 10<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>13<br>13<br>14<br>14<br>14<br>14<br>14<br>14<br>15<br>16 |



| Antenna Port Conducted RF Measurement Test Setup Diagrams       |    |
|-----------------------------------------------------------------|----|
| Test Measurement Equipment                                      | 21 |
| APPENDIX A: ANTENNA PORT TEST DATA FOR BAND 29 (722-728MHZ). 22 | 2  |
| RF Output Power                                                 | 23 |
| Emission Bandwidth (26 dB down and 99%)                         | 27 |
| Antenna Port Conducted Band Edge                                | 29 |
| Transmitter Antenna Port Conducted Emissions                    |    |
| Transmitter Radiated Spurious Emissions                         | 37 |
| Frequency Stability/Accuracy                                    | 47 |
| APPENDIX B: ANTENNA PORT TEST DATA FOR BAND 70 (1995-2020MHZ)4  | 8  |
| RF Output Power                                                 | 49 |
| Emission Bandwidth (26 dB down and 99%)                         | 53 |
| Antenna Port Conducted Band Edge                                | 55 |
| Transmitter Antenna Port Conducted Emissions                    | 59 |
| Transmitter Radiated Spurious Emissions                         | 64 |
| Frequency Stability/Accuracy                                    | 65 |



# SCOPE

Tests have been performed on Nokia Solutions and Networks product Airscale Base Station Remote Radio Head (RRH) Model AHLJA, pursuant to the relevant requirements of the following standard(s) to obtain device certification against the regulatory requirements of the Federal Communications Commission (FCC).

- Code of Federal Regulations (CFR) Title 47 Part 2
- CFR Title 47 Part 27 Subpart C
- FCC DA 13-2409 Items 25 and 47 dated December 20, 2013

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards:

ANSI C63.26-2015 ANSI C63.4-2014 ANSI TIA-603-E FCC KDB 971168 D01 v03r01 FCC KDB 971168 D03 v01 FCC KDB 662911D01 v02r01 TIA-102.CAAA-D

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant FCC requirements.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of Nokia Solutions and Networks product Airscale Base Station Remote Radio Head (RRH) Model AHLJA and therefore apply only to the tested sample. The sample was selected and prepared by Hobert Smith and John Rattanavong of Nokia Solutions and Networks.



# **OBJECTIVE**

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA and Canada, the device requires certification.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

Testing was performed only on Model AHLJA. No additional models were described or supplied for testing.

## STATEMENT OF COMPLIANCE

The tested sample of Nokia Solutions and Networks product Airscale Base Transceiver Station Remote Radio Head (RRH) Model AHLJA complied with the requirements of the standards and frequency bands declared in the scope of this test report.

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

## **DEVIATIONS FROM THE STANDARDS**

No deviations were made from the published requirements listed in the scope of this report.



# TEST RESULTS SUMMARY

The following tables provide a summary of the test results:

# FCC Part 27 Subpart C (Base Stations Operating in the 722 to 728MHz Band)

| AHLJA operating in 722MHz to 728MHz Frequency Band             |                                 |                                                                                                                                                       |                              |                   |  |  |
|----------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------|--|--|
| FCC                                                            | Description                     | Measured                                                                                                                                              | Limit                        | Results           |  |  |
| Transmitter Modulation, output power and other characteristics |                                 |                                                                                                                                                       |                              |                   |  |  |
| §27.5                                                          | Frequency Ranges                | IoT Stand-Alone: 722.2 – 727.8MHz                                                                                                                     | 722.0MHz to<br>728.0MHz      | Pass              |  |  |
| §2.1033(c)(4)                                                  | Modulation Type                 | QPSK for IoT Stand-Alone                                                                                                                              | Digital                      | Pass              |  |  |
| §27.50                                                         | Output Power                    | Highest Conducted Port Power Output RMS:<br>45.7dBm<br>Highest Conducted Carrier Power Output RMS:                                                    |                              | Pass              |  |  |
| Informational                                                  | Peak to Average Power<br>Ratio  | Highest Measured PAPR: 8.7dB                                                                                                                          | 13dB                         | Pass              |  |  |
| §2.1049                                                        | 99%<br>Emission Bandwidth       | IoT Stand-Alone: 198.1817kHz                                                                                                                          | Remain in Block              | Pass              |  |  |
|                                                                | 26dB down<br>Emission Bandwidth | IoT Stand-Alone: 287KG7D                                                                                                                              | Remain in Block              | Pass              |  |  |
| Transmitter Spuri                                              | ous Emissions <sup>1</sup>      |                                                                                                                                                       |                              |                   |  |  |
| 807.52()                                                       | At the antenna terminals        | < -13dBm                                                                                                                                              | -13dBm<br>per Transmit Chain | Pass <sup>1</sup> |  |  |
| §27.53(g)                                                      | Field Strength                  | 58.712dBuV/m at 1m<br>Eq. to -46.08dBm EIRP                                                                                                           | -13dBm EIRP                  | Pass              |  |  |
| Other Details                                                  | Other Details                   |                                                                                                                                                       |                              |                   |  |  |
| §27.54                                                         | Frequency Stability             | Stays within authorized frequency block                                                                                                               | Stays within block           | Pass              |  |  |
| §1.1310                                                        | RF Exposure                     | N/A                                                                                                                                                   |                              | Pass <sup>2</sup> |  |  |
| measurement bandw                                              | vidth is 100kHz for measureme   | mediately outside and adjacent to the frequency bloc<br>nts more than 100kHz from the band edge. See Secti<br>it based on hypothetical antenna gains. |                              | sed. The          |  |  |



|                                                                                                        | AHLJA operating i               | n the 1995 to 2020MHz Frequency Band                                                                                                                              |                                     |                   |  |
|--------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------|--|
| FCC                                                                                                    | Description                     | Measured                                                                                                                                                          | Limit                               | Results           |  |
| Transmitter Modulation, output power and other characteristics                                         |                                 |                                                                                                                                                                   |                                     |                   |  |
| §27.5(h)&(j)                                                                                           | Frequency Ranges                | IoT Stand-Alone: 1995.2 – 2019.8MHz                                                                                                                               | 2110.0 to<br>2190.0MHz              | Pass              |  |
| §2.1033(c)(4)                                                                                          | Modulation Type                 | QPSK for IoT Stand-Alone                                                                                                                                          | Digital                             | Pass              |  |
| §27.50(d)(2i)                                                                                          | Output Power                    | Highest Conducted Port Power Output<br>RMS: 47.3dBm<br>Highest Conducted Carrier Power Output<br>RMS: 42.9dBm<br>EIRP depends on antenna gain which is<br>unknown | EIRP <u>≤</u> 1640W                 | Pass              |  |
| §27.50(d)(5)                                                                                           | Peak to Average<br>Power Ratio  | Highest Measured PAPR: 9.1dB                                                                                                                                      | 13dB                                | Pass              |  |
| §2.1049                                                                                                | 99%<br>Emission Bandwidth       | IoT Stand-Alone: 201.9194kHz                                                                                                                                      | Remain in Block                     | Pass              |  |
| §27.53(h)(3)                                                                                           | 26dB down<br>Emission Bandwidth | IoT Stand-Alone: 293KG7D                                                                                                                                          | Remain in Block                     | Pass              |  |
| Transmitter Spurious Emissions                                                                         | 1                               |                                                                                                                                                                   |                                     |                   |  |
| §27.53(h) and DA13-2409 Items                                                                          | At the antenna terminals        | < -13dBm                                                                                                                                                          | -13dBm per<br>Transmit Chain        | Pass              |  |
| 25 & 47                                                                                                | Field strength                  | 58.712dBuV/m at 1m<br>Eq. to -46.08dBm EIRP                                                                                                                       | -13 dBm<br>EIRP                     | Pass              |  |
| Other Details                                                                                          |                                 |                                                                                                                                                                   |                                     |                   |  |
| §27.54                                                                                                 | Frequency Stability             | Stays within authorized frequency block                                                                                                                           | Stays within block                  | Pass              |  |
| §1.1310                                                                                                | RF Exposure                     | N/A                                                                                                                                                               |                                     | Pass <sup>2</sup> |  |
| Note 1: Based on 1MHz RBW. In<br>bandwidth was used. The measure<br>Note 2: Applicant's declaration on | ment bandwidth is 1MHz          | triside and adjacent to the frequency block a Rl<br>for measurements more than 1MHz from the l<br>on hypothetical antenna gains.                                  | BW of at least 1% of the band edge. | emission          |  |

# FCC Part 27 Subpart C (Base Stations Operating in the 1995 to 2020MHz Band)



## **Extreme Conditions**

Frequency stability is determined over extremes of temperature and voltage.

The extremes of voltage were 85 to 115 percent of the nominal value.

The extremes of temperature were  $-30^{\circ}$ C to  $+50^{\circ}$ C as specified in FCC §2.1055(a)(1).

## **Measurement Uncertainties**

Measurement uncertainties of the test facility based on a 95% confidence level are as follows:

| Test                         | Uncertainty        |
|------------------------------|--------------------|
| Radio frequency              | $\pm 0.2$ ppm      |
| RF power conducted           | ±1.2 dB            |
| RF power radiated            | ±3.3 dB            |
| RF power density conducted   | ±1.2 dB            |
| Spurious emissions conducted | ±1.2 dB            |
| Adjacent channel power       | ±0.4 dB            |
| Spurious emissions radiated  | $\pm 4 \text{ dB}$ |
| Temperature                  | ±1°C               |
| Humidity                     | ±1.6 %             |
| Voltage (DC)                 | ±0.2 %             |
| Voltage (AC)                 | ±0.3 %             |



# EQUIPMENT UNDER TEST (EUT) DETAILS

## General

The equipment under test (EUT) is a Nokia Solutions and Networks Airscale Base Transceiver Station (BTS) Remote Radio Head (RRH) module, model AHLJA. The AHLJA remote radio head is a multistandard multi-carrier radio module designed to support narrow band IoT (internet of things) stand-alone operations. The scope of testing in this effort is for stand-alone IoT operations.

The AHLJA RRH has four transmit/two receive antenna ports (2TX for Band 29 and 2TX/2RX for Band 70). Antenna ports 1&2 supports 3GPP frequency band 70 (BTS Rx: 1915 to 1920 MHz/BTS TX: 1995 to 2020 MHz). Antenna port 3&4 supports 3GPP frequency band 29 (BTS TX: 722 to 728 MHz). The maximum RF output power of the RRH is 200 Watts (20 watts per carrier, 60 watts per antenna port for Band 70 and 20 watts per carrier, 40 watts per antenna port for Band 29). The TX and RX instantaneous bandwidth cover the full operational bandwidth. The RRH supports a 200kHz bandwidth for NB-IoT stand-alone carrier (QPSK). Multi-carrier operation is supported.

The RRH has external interfaces including DC power (DC In), ground, transmit/receive (ANT), external alarm (EAC), optical (OPT) and remote electrical tilt (RET). The RRH with applicable installation kit may be pole or wall mounted. The RRH may be configured with optional cooling fan and AC power supply.

The AHLJA channel numbers and frequencies are as follows:

The narrow band IoT channel bandwidth is 200kHz. The minimum spacing between adjacent IoT carriers is 300kHz. The spacing is 100 kHz between channel numbers.

|                | Downlink EARFCN | Downlink Frequency (MHz) | Narrow Band IoT Channels |
|----------------|-----------------|--------------------------|--------------------------|
|                |                 | 722.0                    | Band Edge                |
| and 4          | 11132           | 722.1                    |                          |
| 3              | 11133           | 722.2                    | Bottom Channel           |
| AHLJA Antennas | 11134           | 722.3                    | Bottom Channel + 1       |
| nter           |                 |                          |                          |
| AA             | 11161           | 725.0                    | Middle Channel           |
| ILJ            |                 |                          |                          |
| 1              | 11188           | 722.7                    | Top Channel - 1          |
| d 29           | 11189           | 727.8                    | Top Channel              |
| Band           | 11190           | 727.9                    |                          |
|                |                 | 728.0                    | Band Edge                |

AHLJA Downlink Band Edge Band 29 Narrow Band IoT Stand-Alone Frequency Channels



## **Multicarrier Test Cases:**

- (1) Two carriers with minimum spacing between carriers at the lower band edge are 11133 EARFCN: 722.2MHz and 11136 EARFCN: 722.5MHz.
- (2) Two carriers with minimum spacing between carriers at the center frequency are 11161 EARFCN: 725.0MHz and 11164 EARFCN: 725.3MHz.
- (3) Two carriers with minimum spacing between carriers at the upper band edge are 11186 EARFCN: 727.5MHz and 11189 EARFCN: 727.8MHz.
- (4) Three carriers based upon KDB 971168 D03v01 using two carriers at the lower band edge with minimum spacing between carriers and one carrier at the upper band edge with maximum spacing between the other two carriers are 11133 EARFCN: 722.2MHz, 11136 EARFCN: 722.5MHz and 11189 EARFCN: 727.8MHz.

The narrow band IoT channel bandwidth is 200kHz. The minimum spacing between adjacent IoT carriers is 300kHz. The spacing is 100 kHz between channel numbers.

|          | Downlink EARFCN | Downlink Frequency (MHz) | Narrow Band IoT Channels |
|----------|-----------------|--------------------------|--------------------------|
|          |                 | 1995.0                   | Band Edge                |
| and 2    | 13112           | 1995.1                   |                          |
| 1 ai     | 13113           | 1995.2                   | Bottom Channel           |
| mas      | 13114           | 1995.3                   | Bottom Channel + 1       |
| Antennas |                 |                          |                          |
|          | 13236           | 2007.5                   | Middle Channel           |
| AHLJA    |                 |                          |                          |
| 1        | 13358           | 2019.7                   | Top Channel - 1          |
| 1 70     | 13359           | 2019.8                   | Top Channel              |
| Band     | 13360           | 2019.9                   |                          |
|          |                 | 2020.0                   | Band Edge                |

AHLJA Downlink Band Edge Band 70 Narrow Band IoT Stand-Alone Frequency Channels

## **Multicarrier Test Cases:**

- (1) Three carriers with minimum spacing between carriers at the lower band edge are 13113 EARFCN: 1995.2MHz, 13116 EARFCN: 1995.5MHz and 13119 EARFCN: 1995.8MHz.
- (2) Three carriers with minimum spacing between carriers at the center frequency are 13233 EARFCN: 2007.2MHz, 13236 EARFCN: 2007.5MHz and 13239 EARFCN: 2007.8MHz.
- (3) Three carriers with minimum spacing between carriers at the upper band edge are 13353 EARFCN: 2019.2MHz, 13356 EARFCN: 2019.5MHz and 13359 EARFCN: 2019.8MHz.
- (4) Three carriers based upon KDB 971168 D03v01 using two carriers at the lower band edge with minimum spacing between carriers and one carrier at the upper band edge with maximum spacing between the other two carriers are 13113 EARFCN: 1995.2MHz, 13116 EARFCN: 1995.5MHz and 13359 EARFCN: 2019.8MHz.



## **EUT Hardware**

The EUT hardware used in testing on September 25 – October 8, 2018.

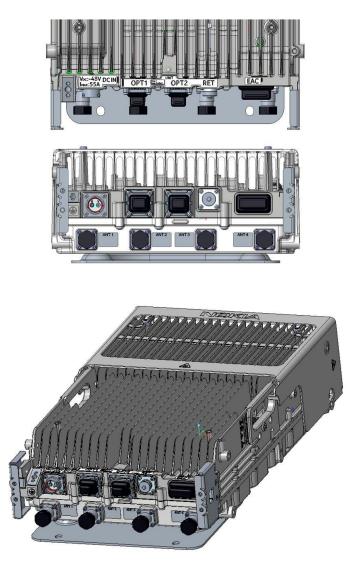
| Company                         | Model | Description      | Part/Serial Number                         | FCC ID/IC Number        |
|---------------------------------|-------|------------------|--------------------------------------------|-------------------------|
| Nokia Solutions<br>and Networks | AHLJA | AirScale BTS RRH | Part#: 474663A.101<br>Serial#: K9183303578 | FCC ID: VBNAHLJA-<br>01 |

## Enclosure

The EUT enclosure is made of heavy duty aluminum.

# **Support Equipment**

| Company                         | Model                  | Description               | Part/Serial Number                         | FCC ID/IC Number |
|---------------------------------|------------------------|---------------------------|--------------------------------------------|------------------|
| Nokia Solutions<br>and Networks | AMIA                   | Airscale System<br>Module | Part#: 473098A.101<br>Serial#: RK164201509 | N/A              |
| HP                              | Elite<br>Book<br>6930p | Laptop PC                 | N/A                                        | N/A              |
| Dell                            | Studio<br>XPS          | Instrumentation PC        | N/A                                        | N/A              |


# **Auxillary Equipment**

| Company               | Description                                                                             | Part Number    | Serial Number |
|-----------------------|-----------------------------------------------------------------------------------------|----------------|---------------|
| Nokia                 | FOUC 10GHz SFP Module<br>(Plugs into RRH Opt Ports)                                     | 473842A.101    | KR16180010011 |
| Nokia                 | APAF AC Power Supply<br>Mounts on RRH and provides DC<br>power to RRH via 1 Meter cable | 474676A.x21    | A9183050057   |
| RLC Electronics       | 2.4GHz High Pass Filter -2 Watt <sup>1</sup>                                            | F-100-3000-5-R | 0028          |
| RLC Electronics       | 1.1GHz High Pass Filter -2 Watt <sup>1</sup>                                            | F-14699        | 0050          |
| Microwave<br>Circuits | 1.4GHz Low Pass Filter -100 Watt <sup>1</sup>                                           | L13502G1       | 2454-01       |
| Weinschel             | Attenuator 20dB -150 Watt <sup>1</sup>                                                  | 66-20-33-LIM   | BZ2075        |
| Weinschel             | Attenuator 40dB -250 Watt <sup>1</sup>                                                  | 58-40-43-LIM   | TC909         |
| Weinschel             | Attenuator 10dB -250 Watt <sup>1</sup>                                                  | 58-10-43-LIM   | TD446         |
| Huber & Suhner        | RF Cable -0.5 meter <sup>1</sup>                                                        | Sucoflex 104   | 553624/4      |
| Huber & Suhner        | RF Cable -1 meter <sup>1</sup>                                                          | Sucoflex 106   | 297370        |
| Note 1: Used only in  | antenna port RF conducted emission te                                                   | sting.         |               |



NTS Test Report No. PR087585 Rev. 1 Page **13** of **66** 

**AHLJA Connector Layout:** 





| Name  | Qty | Connector Type                                                 | Purpose (and Description)                      |
|-------|-----|----------------------------------------------------------------|------------------------------------------------|
| DC In | 1   | Quick Disconnect                                               | 2-pole Power Circular Connector                |
| GND   | 1   | Screw lug (2xM5/1xM8)                                          | Ground                                         |
| ANT   | 4   | 4.3-10                                                         | RF signal for Transmitter/Receiver (50 Ohm)    |
| Unit  | 1   | LED                                                            | Unit Status LED                                |
| EAC   | 1   | MDR26                                                          | External Alarm Interface (4 alarms)            |
| OPT   | 2   | SFP+ cage                                                      | Optical Interface                              |
| RET   | 1   | 8-pin circular connector conforming<br>to IEC 60130-9 – Ed.3.0 | AISG 2.0 to external devices                   |
| Fan   | 1   | Molex Microfit                                                 | Power for RRH Fan. Located on the side of RRH. |

# **EUT External Interfaces**

## **EUT Interface Ports**

The I/O cabling configuration during testing was as follows:

| Cable                     | Туре    | Shield | Length  | Used in Test | Quantity | Termination                |
|---------------------------|---------|--------|---------|--------------|----------|----------------------------|
|                           |         |        |         |              |          |                            |
| RRH Power Input           | Power   | No     | ~ 2 m   | Yes          | 1        | APAF or DC Power<br>Supply |
| Earth                     | Earth   | No     | ~ 1.5 m | Yes          | 1        | Lab earth ground           |
| Antenna                   | RF      | Yes    | ~ 2 m   | Yes          | 4        | 50Ω Loads                  |
| External Alarm            | Signal  | Yes    | ~ 3 m   | Yes          | 1        | Un-terminated              |
| Remote Electrical<br>Tilt | Signal  | Yes    | ~ 3 m   | Yes          | 1        | Un-terminated              |
| Multimode Optical         | Optical | No     | >6 m    | Yes          | 1        | System Module              |

## **EUT Operation**

During testing, the EUT was transmitting continuously with 100% duty-cycle at full power on all chains.

## **EUT Software**

The laptop PC connects to the System Module over the LMP (Ethernet) port. The system module controls the RRH via the optical interface. The laptop is used for changing configuration settings, monitoring tests and controlling the BTS. The following software versions are used for the testing:

(1) RRH Unit Software: FRM58.08.R09



- (2) System Module Software: FL00\_FSM4\_9999\_180828\_021891
- (3) BTS Site Manager: BTSSiteEM-FL00-0000\_000533\_000000

# Modifications

No modifications were made to the EUT during testing.



# TESTING

## **General Information**

Antenna port measurements were taken with NTS personnel (Jose Mendez) at Nokia premises located at 6000 Connection Drive; Irving, Texas 75309.

Radiated emissions and frequency accuracy/stability measurements were taken at NTS Plano branch located at 1701 E Plano Pkwy #150 Plano, TX 75074.

Radiated spurious emissions measurements were taken at the NTS Plano Anechoic Chamber listed below. The sites conform to the requirements of ANSI C63.4-2014: "American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz" and CISPR 16-1-4:2010-04: "Specification for radio disturbance and immunity measuring apparatus and methods - Part 1-4: Radio disturbance and immunity measuring apparatus – Antennas and test sites for radiated disturbance measurements". They are on file with the FCC and Industry Canada.

| <b>C:</b> 4a | Registratio                                     | Location   |                                            |
|--------------|-------------------------------------------------|------------|--------------------------------------------|
| Site         | FCC                                             | Canada     | Location                                   |
| Chamber 1    | A2LA Accredited<br>Designation Number<br>US1077 | IC 4319A-2 | 1701 E Plano Pkwy #150<br>Plano, TX 75074. |

Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements.

## **Measurement Procedures**

The RMS average output power, peak power output, emission bandwidth, conducted spurious, conducted band edge and carrier frequency accuracy/stability measurements were performed with a spectrum analyzer. The EUT was operated at maximum RF output power for all tests. While measuring one transmit chain, the other one was terminated with termination blocks. All measurements were corrected for the insertion loss of the RF network (attenuators, filters, and cables) inserted between the RF port of the EUT and the spectrum analyzer. Block diagrams and photographs of the test setups are provided below.

The 26dB emission bandwidth was measured in accordance with section 4 of FCC KDB 971168 D01v03r01 and ANSI C63.26 section 5.4. The 99% occupied bandwidth was measured in accordance with section 6.7 of RSS-Gen Issue 5. For both measurements, an occupied bandwidth built-in function in the spectrum analyzer was used and Keysight Benchvue Software was used to capture the spectrum analyzer screenshots. Spectrum analyzer settings are shown on their corresponding plots in test results section.

The emissions at the band edges were captured with Keysight Benchvue Software with settings described in the corresponding sections of the FCC and IC regulatory requirements. Spectrum analyzer settings are shown on their corresponding plots in test results section.

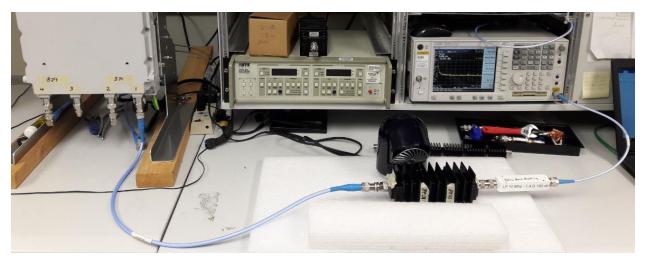


Average output power measurements were performed in accordance with sections 5.2 of FCC KDB 971168 D01v03r01 and ANSI C63.26 and the screenshots were captured using Keysight Benchvue Software. Peak power measurements were performed as described in section 5.1 of KDB 971168 D01v03r01 and ANSI C63.26-2015 section 5.2.3.3 and the screenshots were captured using Keysight Benchvue Software. The peak to average power ratio (PAPR) has been calculated as described in section 5.7 of KDB971168 D01v03r01 and ANSI C63.26-2015 section 5.2.6. Analyzer settings are shown on their corresponding plots in test results section.

Conducted spurious emissions on AHLJA Antenna Ports 1&2 were captured with Keysight Benchvue Software across the 9kHz-21GHz frequency span. A low pass filter was used to reduce measurement instrumentation noise floor for the frequency ranges below 20MHz. A high pass filter was used to reduce measurement instrumentation noise floor for the frequency ranges above 6GHz. The total measurement RF path loss of the test setup (attenuators, filters and test cables) were accounted for by the spectrum analyzer reference level offset. Spectrum analyzer settings are described in the corresponding test result section. Conducted spurious emissions on AHLJA Antenna Ports 3&4 were captured with Keysight Benchvue Software across the 9kHz-8GHz frequency span. A high pass filter was used to reduce measurement instrumentation noise floor for the frequency ranges above 1.1GHz. The total measurement RF path loss of the test setup (attenuators, high pass filter and test cables) were accounted for by the spectrum analyzer reference level offset. Spectrum analyzer settings are described in the corresponding test result section.


For frequency stability/accuracy measurements, the EUT was placed inside a temperature chamber with all support and test equipment located outside of the chamber. Temperature was varied across the specified range in 10-degree increments and EUT was allowed enough time to stabilize at each temperature step (a minimum of 30 minutes per step). The input voltage was varied as required by FCC/IC regulatory requirements.

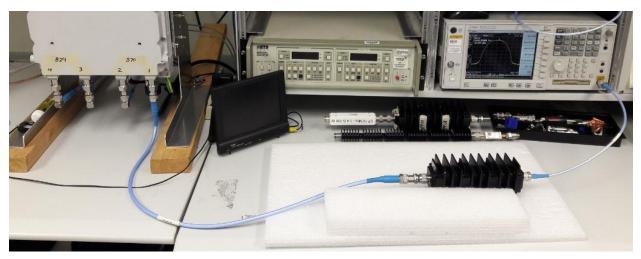
Transmitter radiated spurious emissions measurements were made in accordance with ANSI C63.4-2014 by measuring the field strength of the emissions from the device at 3m test distance for emissions below 10 GHz and at 1m test distance for emissions above 10 GHz. The eirp limit as specified in the relevant rule part(s) is converted to a field strength at the test distance and the emissions from the EUT are then compared to that limit. Only emissions within 20dB of this limit are subjected to a substitution measurement in accordance with TIA-603. Both preliminary and final measurements were performed at the same FCC listed test chamber. Preliminary scans were performed with TILE6 software. This software corrected the measurements for antenna factors, cable losses and pre-amplifier gains. Both polarizations of the receiving antenna were scanned from 30MHz to 21GHz with a peak detector (RBW=1MHz, VBW=3MHz, with trace max hold over multiple sweeps). Based on the preliminary scan results, frequencies of interest have been maximized via rotating the EUT 360 degrees and varying the height of the test antenna (1m to 4m). Final measurements were also taken with the peak detector as described above. A biconilog antenna was used for 30MHz-1GHz range. A double ridged waveguide horn antenna was used for 1-18GHz range and a smaller horn antenna was used for 18-21GHz range. The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height. EUT was placed on a non-conductive RF transparent structure to provide 80cm height from the ground floor for frequencies < 1GHz and 150cm height from the ground floor for frequencies > 1GHz in accordance with ANSI C63.26-2015. A motorized turntable allowed it to be rotated during testing to determine the angle with the highest level of emissions.




## Antenna Port Conducted RF Measurement Test Setup Diagrams

The following setups were used in the RF conducted emissions testing for AHLJA Antenna Ports 1 and 2. The photographs of the test setups are also provided.




Setup for 9kHz to 150kHz and 150kHz to 20MHz Measurements



Photograph of 9kHz to 150kHz and 150kHz to 20MHz Test Setup



Setup for 20MHz to 3GHz and 3GHz to 6GHz Measurements



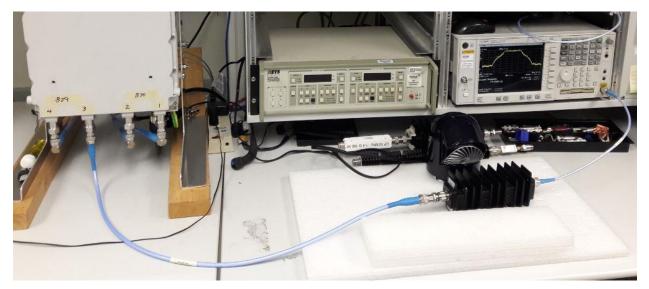
Photograph of 20MHz to 3GHz and 3GHz to 6GHz Test Setup



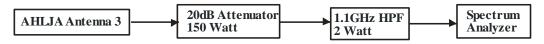


Setup for 6GHz to 21GHz Measurements

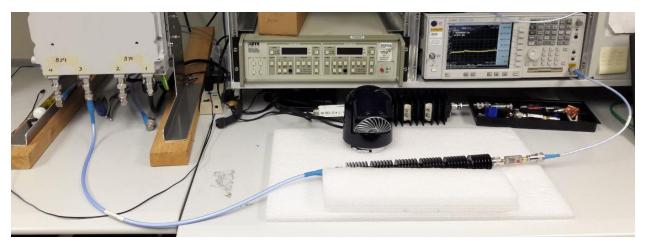



Photograph of for 6GHz to 21GHz Test Setup




The following setups were used in the RF conducted emissions testing for AHLJA Antenna Ports 3 and 4. The photographs of the test setups are also provided.




Setup for 9kHz to 150kHz, 150kHz to 20MHz and 20MHz to 1100MHz Measurements



Photograph of 9kHz to 150kHz, 150kHz to 20MHz and 20MHz to 1100MHz Test Setup

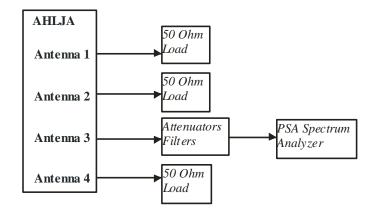


Setup for 1.1GHz to 8GHz Measurements



Photograph of 1.1GHz to 8GHz Test Setup




# **Test Measurement Equipment**

| NTS<br>Equipment #   | Description                       | Manufacturer    | Model                       | Calibration<br>Duration    | Calibration<br>Due Date    |
|----------------------|-----------------------------------|-----------------|-----------------------------|----------------------------|----------------------------|
| WC020917             | Bilog Antenna                     | ETS-Lindgren    | 3142D                       | 24 Months                  | 11/15/2019                 |
| WC025240             | Spectrum Analyzer                 | Agilent         | E4446A                      | 12 Months                  | 3/3/2019                   |
| WC021471             | Preamp                            | MITEQ           | AM-1431-<br>N11975C         | 12 Months                  | 2/6/2019                   |
| WC021478             | Preamp                            | HP              | 8449B                       | 12 Months                  | 3/19/2019                  |
| WC021206             | Horn Antenna                      | ETS-Lindgren    | 3115                        | 12 Months                  | 1/12/2019                  |
| WC021208             | Small Horn Antenna                | EMCO            | 3116                        | 12 Months                  | 11/15/2018                 |
| WC038434             | Preamp                            | MITEQ           | JS32-<br>00104000-<br>62-5P | 12 Months                  | 10/13/2018                 |
| WC021859             | Spectrum Analyzer                 | Agilent         | E4440A                      | 12 Months                  | 9/6/2019                   |
| WC027005             | True RMS Multimeter               | Fluke           | 87V                         | 12 Months                  | 7/17/2019                  |
| WC021659             | Chamber<br>(Temperature/Humidity) | Thermotron      | S-16-<br>Mini-Max           | No Calibration<br>Required | No Calibration<br>Required |
| WC038555             | Controller<br>(Temperature)       | Watlow          | F4                          | 12 Months                  | 8/22/2019                  |
| 120194 <sup>1</sup>  | PSA Spectrum Analyzer             | Agilent         | E4440A                      | 12 Months                  | 10/25/2018                 |
| NM06345 <sup>1</sup> | ENA Network Analyzer              | Keysight        | E5063A                      | 12 Months                  | 11/20/2018                 |
| NM04509 <sup>1</sup> | Network Analyzer                  | Rohde & Schwarz | ZVL 3                       | 12 Months                  | 2/03/2019                  |
| NM06374 <sup>1</sup> | MXG Analog Signal<br>Gen          | Keysight        | N5183B                      | 36 Months                  | 02/04/2021                 |
| Note 1: Custome      | er equipment                      |                 |                             |                            |                            |



# APPENDIX A: ANTENNA PORT TEST DATA FOR BAND 29 (722-728MHZ)

All conducted RF measurements in this section were made at AHLJA antenna ports 3 and 4 for the Band 29 measurements. The test setup used is provided below.



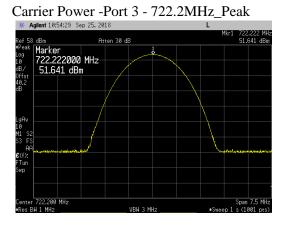




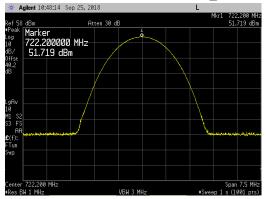
## **RF** Output Power

RF output power has been measured in both Peak and RMS Average terms for each Band 29 (722 to 728MHz) transmit chain (AHLJA Antenna Ports 3&4) at the bottom, middle and top frequency channels for a NB-IoT stand-alone single carrier (QPSK). RMS Average power was measured as described in section 5.2 of KDB 971168 D01v03r01 and ANSI C63.26-2015 sections 5.2.4.3 & 5.2.4.4. Peak power was measured as described in section 5.1 of KDB 971168 D01v03r01 and ANSI C63.26-2015 section 5.2.3.3. The peak to average power ratio (PAPR) has been calculated as described in section 5.7 of KDB971168 D01v03r01 and ANSI C63.26-2015 section 5.2.6.

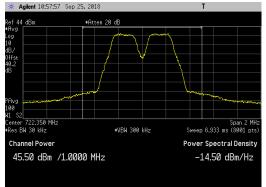
The RMS Average power output on Antenna Ports 3&4 (3GPP frequency band 29) was also measured using two carriers per antenna port on the bottom, middle and top channels (with minimum spacing between carrier frequencies). Based upon these multi-carrier power measurements the antenna port with the highest RMS Average power output for 3GPP frequency band 29 is to be used for the remaining radio compliance conducted measurements. The port power measurements are required to be performed with multiple carriers to produce maximum power output on the port. The maximum single carrier power output is 20 watts while the maximum port power output is 40 watts for ports 3&4. All results are presented in tabular form below. The highest measured values for carrier peak power, carrier average power and port average power are highlighted. Measurements were rounded off to the nearest tenth.

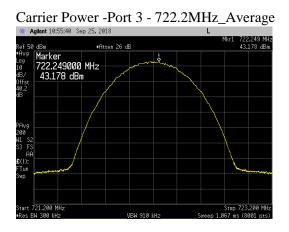

| Antenna Port<br>RF Channel | Carrier Frequencies | Measurement          | Peak (dBm) | Average (dBm) | PAPR (dB) |
|----------------------------|---------------------|----------------------|------------|---------------|-----------|
| Port 3                     | 722.2 MHz           | <b>Carrier Power</b> | 51.6       | 43.2          | 8.4       |
| <b>Bottom Channel</b>      | 722.2 and 722.5 MHz | Port Power           | N/A        | 45.5          | N/A       |
| Port 3                     | 725.0 MHz           | <b>Carrier Power</b> | 51.6       | 42.9          | 8.7       |
| Middle Channel             | 725.0 and 725.3 MHz | Port Power           | N/A        | 45.6          | N/A       |
| Port 3                     | 727.8 MHz           | <b>Carrier Power</b> | 51.4       | 43.0          | 8.4       |
| Top Channel                | 727.5 and 727.8 MHz | Port Power           | N/A        | 45.5          | N/A       |
| Port 4                     | 722.2 MHz           | <b>Carrier Power</b> | 51.7       | 43.2          | 8.5       |
| <b>Bottom Channel</b>      | 722.2 and 722.5 MHz | Port Power           | N/A        | 45.7          | N/A       |
| Port 4                     | 725.0 MHz           | <b>Carrier Power</b> | 51.6       | 43.2          | 8.4       |
| Middle Channel             | 725.0 and 725.3 MHz | Port Power           | N/A        | 45.5          | N/A       |
| Port 4                     | 727.8 MHz           | <b>Carrier Power</b> | 51.1       | 42.8          | 8.3       |
| Top Channel                | 727.5 and 727.8 MHz | Port Power           | N/A        | 45.1          | N/A       |

Port 3 has the highest middle channel RMS average port power and was selected for all the remaining antenna port conducted emission tests.

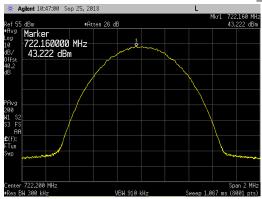

All measurement results are provided in the following pages. The total measurement RF path loss of the test setup (attenuator and test cables) was 40.2 dB and is accounted for by the spectrum analyzer reference level offset.

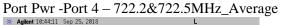


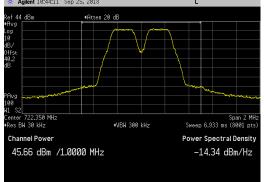

## Power Plots at Antenna Ports 3 and 4 for the Bottom Channel (Single and Multicarrier):




Carrier Power -Port 4 – 722.2MHz\_Peak

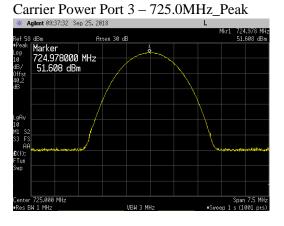




Port Pwr -Port 3 – 722.2&722.5MHz\_Average

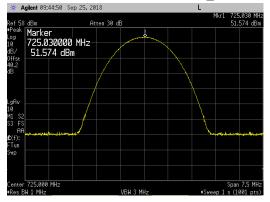




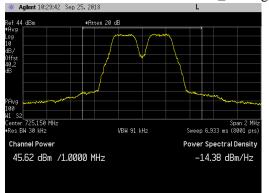


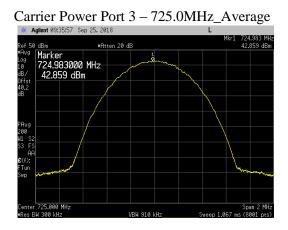









## Power Plots at Antenna Ports 3 and 4 for the Middle Channel (Single and Multicarrier):




Carrier Power Port 4 – 725.0MHz\_Peak




Port Pwr Port 3 - 725.0&725.3MHz\_Average

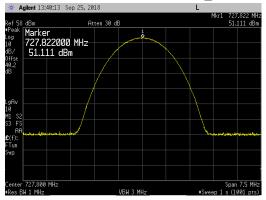






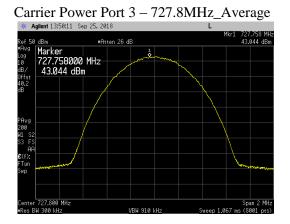
Port Pwr Port 4 – 725.0&725.3MHz\_Average

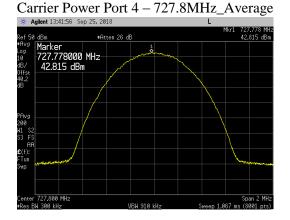


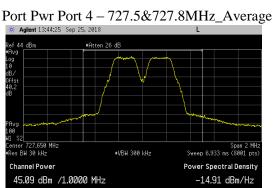

Carrier Power Port 4 – 725.0MHz\_Average



## Power Plots at Antenna Ports 3 and 4 for the Top Channel (Single and Multicarrier):


Carrier Power Port 3 – 727.8MHz\_Peak Agilent 13:48:57 Sep 25, 2018 L Mkr1 727.808 MH 51.422 dBm Atten 30 dB Marker 727.808000 MHz 51.422 dBm 800 MHz VRW 3 M


Carrier Power Port 4 – 727.8MHz\_Peak




₩ Agilent 13:47:38 Sep 25, 2018 əf 44 dBr ∎Atten 26 dE 521 inter 727.650 MHz es BW 30 kHz Span 2 MH Sweep 6.933 ms (8001 pts Channel Power Power Spectral Density 45.48 dBm /1.0000 MHz -14.52 dBm/Hz

Port Pwr Port 3 – 727.5&727.8MHz\_Average

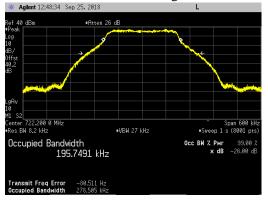






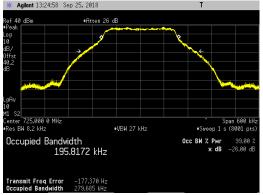


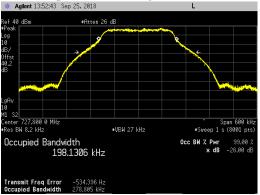
## Emission Bandwidth (26 dB down and 99%)


Emission bandwidth measurements were made at antenna ports 3&4 on the bottom, middle and top channels. The AHLJA was operated at maximum RF output power for NB-IoT stand-alone single carrier (QPSK). The results are provided in the following table. The largest emission bandwidth is highlighted.

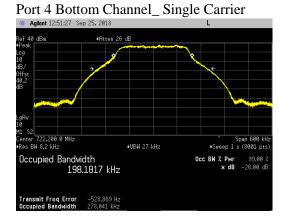
| Antenna Port | RF Channel     | Emission Bandwidth (kHz) |          |  |
|--------------|----------------|--------------------------|----------|--|
|              |                | 26dB                     | 99%      |  |
|              | Bottom Channel | 278.505                  | 195.7491 |  |
| Port 3       | Middle Channel | 279.685                  | 195.8172 |  |
|              | Top Channel    | 278.805                  | 198.1306 |  |
|              | Bottom Channel | 278.041                  | 198.1817 |  |
| Port 4       | Middle Channel | 278.805                  | 197.9537 |  |
|              | Top Channel    | 286.583                  | 198.0871 |  |

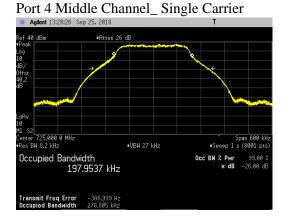
Emission bandwidth measurement data are provided in the following pages.

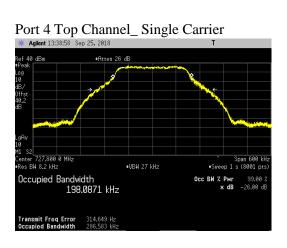




# Emission Bandwidth Plots at Antenna Ports 3 and 4 for the Bottom, Middle and Top Frequency Channels:




Port 3 Bottom Channel\_ Single Carrier


## Port 3 Middle Channel\_Single Carrier
















## **Antenna Port Conducted Band Edge**

Conducted band edge measurements were made at RRH antenna port 3. The RRH was operated at maximum power with a single carrier at the band edge frequencies. Measurements were also performed with two carriers (with minimum spacing between carrier frequencies) per antenna port on the bottom and top channels. Two carriers are required to produce maximum port power output. The maximum single carrier power output is 20 watts while the maximum port power output is 40 watts for ports 3&4.

Another multicarrier test case based upon KDB 971168 D03v01 using three carriers per antenna port was performed with two carriers (with minimum spacing between carrier frequencies) at the lower band edge and a third carrier (with maximum spacing between the other two carrier frequencies) at the upper band edge.

The power of any emission outside of the authorized operating frequency range cannot exceed -13 dBm as specified in FCC 27.53(g).

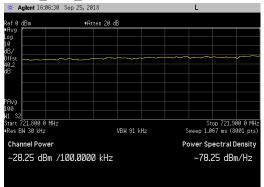
Measurements were performed with the spectrum analyzer in the RMS average mode over 100 traces. In the 100kHz bands outside and adjacent to the frequency block, a resolution bandwidth of 30kHz as allowed by FCC 27.53(g) was used. In the 100 to 200kHz frequency range outside the band edge (i.e.: 721.8 to 721.9MHz and 728.1 to 728.2MHz bands) the RBW was set to 30kHz and the power integrated over 100kHz. In the 200kHz to 22.2MHz frequency range outside the band edge (i.e.: 701.8 to 721.8MHz and 728.2 to 748.2MHz bands) a 100kHz RBW and 300kHz VBW was used.

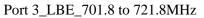
The results are summarized in the following table. The highest (worst case) emissions from the measurement data are provided.

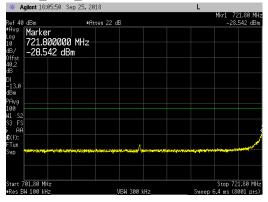
| Band 29 Carrier Frequency                                                                                 | Port 3  | (dBm)   |
|-----------------------------------------------------------------------------------------------------------|---------|---------|
| Carrier Power and Port Power                                                                              | Lower   | Upper   |
| Single Carrier at Bottom Channel (722.2MHz)/Top Channel (727.8MHz)<br>20W per Carrier and 20W per Port    | -14.416 | -14.704 |
| Two Carriers at Bot Chs (722.2 & 722.5MHz)/Top Chs (727.5 & 727.8MHz)<br>20W per Carrier and 40W per Port | -14.925 | -14.617 |
| Three Carriers at Bot Chs (722.2 & 722.5MHz) and at Top Ch (727.8MHz)<br>13W per Carrier and 40W per Port | -16.158 | -16.041 |

The total measurement RF path loss of the test setup (attenuator and test cables) was 40.2 dB and is accounted for by the spectrum analyzer reference level offset. The display line on the plots reflects the required limit.

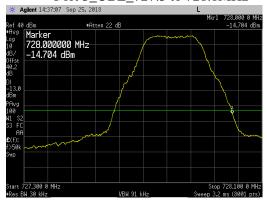
Conducted band edge measurements are provided in the following pages.

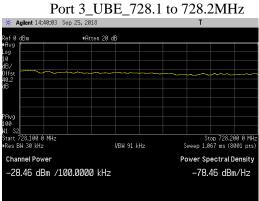


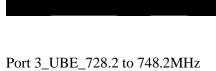


# Band 29 Single Carrier at 20W/Carrier and 20W/Port -Lower and Upper Band Edge Plots:

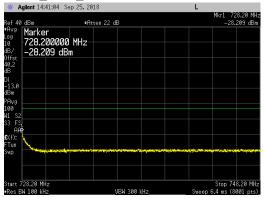



Carrier at Bottom Channel (722.2MHz)


## Port 3\_LBE\_721.8 to 721.9MHz

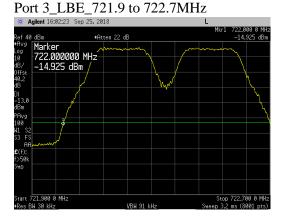



# Carrier at Top Channel (727.8MHz) Port 3\_UBE\_727.3 to 728.1MHz



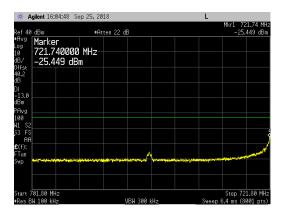




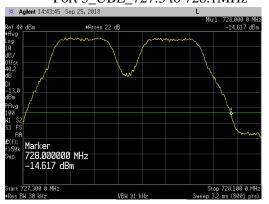


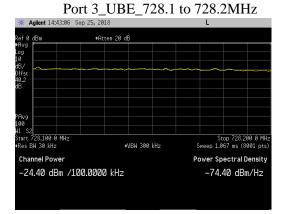



## Band 29 Two Carriers at 20W/Carrier and 40W/Port -Lower and Upper Band Edge Plots:

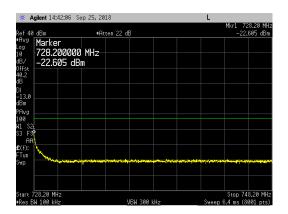



Carriers at BCs (722.2 & 722.5MHz)


## Port 3\_LBE\_721.8 to 721.9MHz

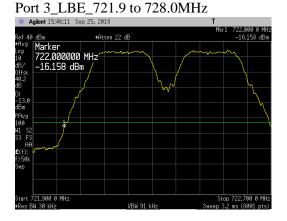



Port 3\_LBE\_701.8 to 721.8MHz



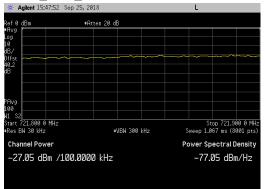

## Carrier at TCs (727.5 & 727.8MHz) Port 3\_UBE\_727.3 to 728.1MHz



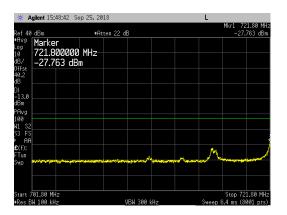



## Port 3\_UBE\_728.2 to 748.2MHz

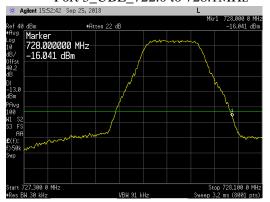


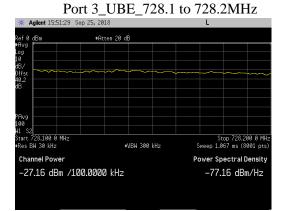



## Band 29 Three Carriers at 13W/Carrier and 40W/Port -Lower and Upper Band Edge Plots:

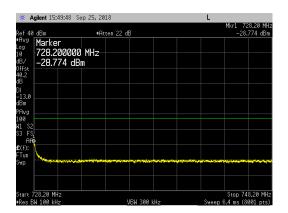



Carriers at 722.2, 722.5 & 727.8MHz


## Port 3\_LBE\_721.8 to 721.9MHz




Port 3\_LBE\_701.8 to 721.8MHz




## Carriers at 722.2, 722.5 & 727.8MHz Port 3\_UBE\_722.0 to 728.1MHz





## Port 3\_UBE\_728.2 to 748.2MHz





## **Transmitter Antenna Port Conducted Emissions**

Transmitter conducted emission measurements were made at RRH antenna port 3. Measurements were performed over the 9kHz to 8GHz frequency range. The RRH was operated at maximum power with a single carrier on the Band 29 middle channel (725.0MHz). Measurements were also performed with two carriers (with minimum spacing between carrier frequencies) per antenna port on the middle channels (725.0 & 725.3MHz). Two carriers are required to produce maximum port power output. The maximum single carrier power output is 20 watts while the maximum port power output is 40 watts for ports 3&4.

Another multicarrier test case based upon KDB 971168 D03v01 using three carriers per antenna port was performed with two carriers (with minimum spacing between carrier frequencies) at the lower band edge (722.2 & 722.5MHz) and a third carrier (with maximum spacing between the other two carrier frequencies) at the upper band edge (727.8MHz).

The power of any emission outside of the authorized operating frequency range cannot exceed -13 dBm as specified in FCC 27.53(g). The required measurement parameters include a 100kHz bandwidth with power measured in average value (since transmitter power was measured in average value).

Measurements were performed with a spectrum analyzer using a peak detector with max hold over 50 sweeps or with the spectrum analyzer using average detector in RMS average mode over 100 traces.

The limit for the 9kHz to 150kHz frequency range was adjusted to -33dBm to correct for a spectrum analyzer RBW of 1kHz versus required RBW of 100kHz [i.e.: -33dBm = -13dBm  $-10\log(100$ kHz/1kHz)]. The limit for the 150kHz to 20MHz frequency range was adjusted to -23dBm to correct for a spectrum analyzer RBW of 10kHz versus required RBW of 100kHz [i.e.: -23dBm = -13dBm  $-10\log(100$ kHz/10kHz)]. The required limit of -13dBm with a RBW of  $\geq 100$ kHz was used for all other frequency ranges. The spectrum analyzer settings that were used for this test are summarized in the following table.

| Frequency Range           | RBW        | VBW        | Number of<br>Data Points | Detector     | Sweep<br>Time | Max Hold<br>over | Offset<br>Note 1 |
|---------------------------|------------|------------|--------------------------|--------------|---------------|------------------|------------------|
| 9kHz to 150kHz            | 1kHz       | 3kHz       | 8001                     | Average      | Auto          | Note 2           | 40.2dB           |
| 150kHz to 20MHz           | 10kHz      | 30kHz      | 8001                     | Average      | Auto          | Note 2           | 40.1dB           |
| 20MHz to<br>1100MHz       | 1MHz       | 3MHz       | 8001                     | Average      | Auto          | Note 2           | 40.2dB           |
| 1.1GHz to 8GHz            | 2MHz       | 6MHz       | 8001                     | Peak         | Auto          | 50 Sweeps        | 22.5dB           |
| Note 1. The total measure | surement I | RE nath lo | ss of the test setu      | n (attenuato | rs filters    | and test cables  | ) is             |

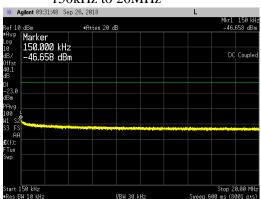
Note 1: The total measurement RF path loss of the test setup (attenuators, filters and test cables) is accounted for by the spectrum analyzer reference level offset.

Note 2: Max Hold not used and instead measurements were performed with the spectrum analyzer in the RMS average mode over 100 traces.

A high pass filter was used to reduce measurement instrumentation noise floor for the frequency range above 1100MHz. The total measurement RF path loss of the test setup (attenuators, high pass filter and test cables) as shown in the table is accounted for by the spectrum analyzer reference level offset. The display line on the plots reflects the required limit.

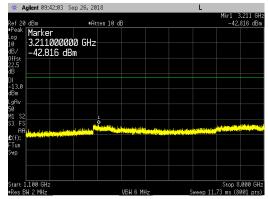
Conducted spurious emission plots/measurements are provided in the following pages.




# Band 29 Single Carrier at Middle Channel (725.0MHz) with 20W/Carrier and 20W/Port:

9kHz to 150kHz

| 🔆 Agilent 09:29:20 Sep 26,                            | 2018        | L                      |      |
|-------------------------------------------------------|-------------|------------------------|------|
|                                                       | Atten 10 dB | Mkr1 9.0<br>-38.313 c  |      |
| <sup>*Avg</sup> Marker                                |             |                        |      |
| <sup>10</sup> 9.000 kHz<br><sup>dB/</sup> -38.313 dBm |             | DC Cour                | bled |
| 0ffst<br>40.2<br>dB                                   |             |                        |      |
| DI 4                                                  |             |                        |      |
| -33.0 %                                               |             |                        |      |
| PAva Introduction                                     | N WWWWWWWWW | www.whowww.            | h. 1 |
| \$3 FS                                                |             |                        | 1    |
| £(f):                                                 |             |                        |      |
| f<50k<br>Swp                                          |             |                        |      |
|                                                       |             |                        |      |
| Start 9.0 kHz                                         |             | Stop 150.0             | kHz  |
| •Res BW 1 kHz                                         | VBW 3 kHz   | Sweep 426.1 ms (8001 p |      |


## 20MHz to 1100MHz

| * A                  | gilent 09:       | 32 <b>:</b> 48 Se    | p 26, 20               | 18       |          |    | L         |           |                      |
|----------------------|------------------|----------------------|------------------------|----------|----------|----|-----------|-----------|----------------------|
| Ref 50               | dBm              |                      | +At                    | ten 24 d | В        |    |           |           | .020 GHz<br>827 dBm  |
| Log<br>10<br>dB/     |                  | r<br>00000<br>27 dBr |                        |          |          |    |           |           |                      |
| Offst<br>40.2<br>dB  |                  |                      |                        |          |          |    |           |           |                      |
| DI<br>-13.0<br>dBm   |                  |                      |                        |          |          |    |           |           |                      |
| PAvg<br>100<br>W1 S2 |                  |                      |                        |          |          |    |           |           |                      |
| S3 FS<br>AA<br>€(f): |                  |                      |                        |          |          |    |           |           |                      |
| FTun<br>Swp          |                  |                      | el un la de a bishe ha |          |          | 1  |           | i da da a | \$                   |
|                      |                  |                      |                        |          |          |    |           |           |                      |
| Start 2<br>#Res B    | 0 MHz<br>W 1 MHz |                      |                        |          | VBW 3 MF | łz | Sweep 3.7 |           | .100 GHz<br>301 pts) |



## 150kHz to 20MHz

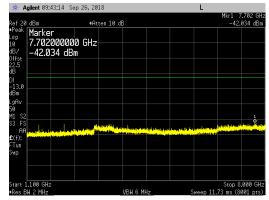
## 1.1GHz to 8GHz





## Band 29 Two Carriers at Middle Channels (725.0 & 725.3MHz) with 20W/Carrier and 40W/Port:

9kHz to 150kHz


| <b>* Agilent</b> 09:35:16 Sep 26,                      | 2018                    | L                 |                       |
|--------------------------------------------------------|-------------------------|-------------------|-----------------------|
| Ref 0 dBm                                              | Atten 10 dB             |                   | l 9.4 kHz<br>.402 dBm |
| <sup>*Avg</sup> Marker                                 |                         |                   |                       |
| <sup>109</sup> 9.400 kHz<br><sup>dB/</sup> -38.402 dBm |                         | DO                | Coupled               |
| 0ffst<br>40.2<br>dB                                    |                         |                   |                       |
| DI A                                                   |                         |                   |                       |
| -33.0                                                  | 6 1 A 1 A 1 A 1 A       |                   |                       |
| PAvg                                                   | ral and the property wi | MANNAMANA         | MAN, 1                |
| W1 52<br>S3 FS                                         |                         |                   | , v. v₩               |
| θΑ<br>€(f):                                            |                         |                   |                       |
| f<50k<br>Swp                                           |                         |                   |                       |
|                                                        |                         |                   |                       |
| Start 9.0 kHz                                          |                         | Stop 1            | 150.0 kHz             |
| *Res BW 1 kHz                                          | VBW 3 kHz               | Sweep 426.1 ms (8 |                       |

## 20MHz to 1100MHz

| * A                  | gilent 09:       | 38:16 Se             | p 26, 20 | 18              |          |    | L        |           |                     |
|----------------------|------------------|----------------------|----------|-----------------|----------|----|----------|-----------|---------------------|
| Ref 50               | dBm              |                      | +At      | ten 24 d        | В        |    |          |           | .039 GHz<br>792 dBm |
| 109<br>10<br>dB/     |                  | r<br>00000<br>92 dBr |          |                 |          |    |          |           |                     |
| 0ffst<br>40.2<br>dB  |                  |                      |          |                 |          |    |          |           |                     |
| DI<br>-13.0<br>dBm   |                  |                      |          |                 |          |    |          |           |                     |
| PAvg<br>100<br>W1 S2 |                  |                      |          |                 |          |    |          |           |                     |
| S3 FS<br>AA<br>€(f): |                  |                      |          |                 |          |    |          |           |                     |
| FTun<br>Swp          | tiya ya ya ka ta |                      |          | i, in the state |          |    |          |           | \$                  |
| onp.                 |                  |                      |          |                 |          |    |          |           |                     |
| Start 2              | 0 MHz            |                      |          |                 |          |    |          | Stop 1.   | 100 GHz             |
| Res B                | W 1 MHz          |                      |          |                 | VBW 3 MH | lz | Weep 3.7 | 33 ms (80 | 001 pts)_           |

# 150kHz to 20MHz ★ Agilent 09:37:17 Sep 26, 2013 L Ref 10 dBm •Atten 20 dB •Mer1 300 kHz \*Hvog 300.000 kHz -40.088 dBm 0C Coupled 01 0 0 0 0 0 •23.0 0 0 0 0 •40.1 0 0 0 0 •23.0 0 0 0 0 •40.1 0 0 0 0 •40.1 0 0 0 0 •23.0 0 0 0 0 0 •23.0 0 0 0 0 0 •40.1 0 0 0 0 0 •40.1 0 0 0 0 0 •40.1 0 0 0 0 0 0 •100 0 0 0 0 0 0 0 •23.0 0 0 0 0 0 0 0 0 •100 0</t

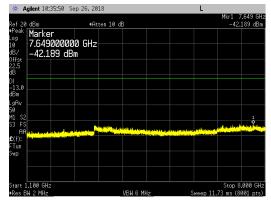
### 1.1GHz to 8GHz





# Band 29 Three Carriers at BCs (722.2 & 722.5MHz) & TC (727.8MHz) with 13W/Carrier and 40W/Port:

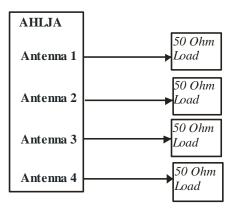
## 9kHz to 150kHz


| <b>Agilent</b> 10:29:24                       | Sep 26, 2018                |                   | L           |                             |
|-----------------------------------------------|-----------------------------|-------------------|-------------|-----------------------------|
| Ref Ø dBm                                     | Atten 10 d                  | В                 |             | Mkr1 9.0 kHz<br>-37.103 dBm |
| <sup>*Avg</sup> Marker<br>Log<br>10 9.000 kHz |                             |                   |             |                             |
| 10 9.000 kHz<br>dB/<br>Offst -37.103 c        |                             |                   |             | DC Coupled                  |
| 40.2<br>dB                                    |                             |                   |             |                             |
| DI                                            |                             |                   |             |                             |
| dBm<br>PAvg                                   | he how with a set of the MA | A A second had    | mmm         |                             |
| MI 32                                         | . Marah MAA 3 4 1           | una handa an an d | www.www.vh  | Winny Man                   |
| S3 FS<br>AA                                   |                             |                   |             |                             |
| £(f):<br>f<50k<br>Swp                         |                             |                   |             |                             |
| 4#C                                           |                             |                   |             |                             |
| Start 9.0 kHz                                 |                             |                   |             | top 150.0 kHz               |
| *Res BW 1 kHz                                 |                             | VBW 3 kHz         | Sweep 426.1 |                             |

## 20MHz to 1100MHz

| ж А                  | gilent 10:        | 33:06 Se             | p 26, 20 | 18       |          |    |          | L        |                      |                      |
|----------------------|-------------------|----------------------|----------|----------|----------|----|----------|----------|----------------------|----------------------|
| Ref 50               | dBm               |                      | #Ati     | ten 24 d | В        |    |          |          |                      | .035 GHz<br>126 dBm  |
| Log<br>10<br>dB/     |                   | r<br>00000<br>26 dBi |          |          |          |    |          |          |                      |                      |
| Offst<br>40.2<br>dB  |                   |                      |          |          |          |    |          |          |                      |                      |
| DI<br>-13.0<br>dBm   |                   |                      |          |          |          |    |          |          |                      |                      |
| PAvg<br>100          |                   |                      |          |          |          |    |          |          |                      |                      |
| W1 S2<br>S3 FS<br>AA |                   |                      |          |          |          |    |          |          |                      |                      |
| £(f):<br>FTun<br>Swp |                   |                      |          |          |          |    | يبدأ ليب |          |                      | 1<br>Ø               |
| out                  |                   |                      |          |          |          |    |          |          |                      |                      |
| Start 2<br>#Res B    | 20 MHz<br>W 1 MHz |                      |          |          | VBW 3 MF | lz |          | weep 3.7 | Stop 1.<br>33 ms (80 | .100 GHz<br>301 pts) |

# Stop 20:00 HHz Stop 20:00 HHz


## 1.1GHz to 8GHz





#### **Transmitter Radiated Spurious Emissions**

During radiated emission testing all antenna ports of the base station were terminated with 500hm termination blocks as shown in the diagram below.

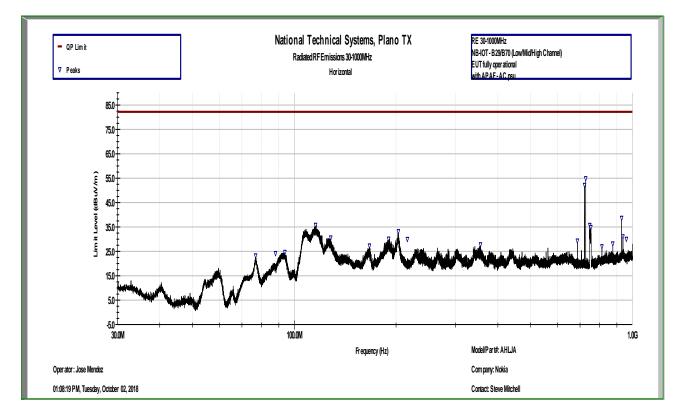


See ANSI C63.26-2015 paragraph 5.1 for details of test setup requirements. Based on antenna port conducted spurious emissions tests results, preliminary scans for radiated spurious emissions were performed in 30MHz - 21GHz frequency range.

One radiated emission test configuration (with the RRH fan assembly and RRH AC Power Supply options) were used to prove compliance for both 3GPP Band 29 and the 3GPP Band 70 frequency bands. The Band 29 IoT carriers were enabled on the bottom and top frequency channels at maximum power (20 watts per carrier and 40 watts per antenna port) on Antenna ports 3 & 4. The Band 70 IoT carriers were enabled on the bottom, middle and top frequency channels at maximum power (20 watts per antenna port) on Antenna ports 1 & 2. The RRH antenna ports are to be terminated using RF cables/loads. Final maximized radiated emissions are measured in these modes. The carrier configuration for the radiated emission testing is provided below.

| <b>Frequency Band</b> | Antenna Port | EARFCN                    | Transmit Frequency | <b>Carrier Power</b> |
|-----------------------|--------------|---------------------------|--------------------|----------------------|
| Band 70               | 1            | 13113 (Bottom Channel)    | 1995.2 MHz         | 20 Watts             |
| Band 70               | 1            | 13116 (Bottom Channel +3) | 1995.5 MHz         | 20 Watts             |
| Band 70               | 1            | 13359 (Top Channel)       | 2019.8 MHz         | 20 Watts             |
| Band 70               | 2            | 13233 (Middle Channel -3) | 2007.2 MHz         | 20 Watts             |
| Band 70               | 2            | 13236 (Middle Channel)    | 2007.5 MHz         | 20 Watts             |
| Band 70               | 2            | 13239 (Middle Channel +3) | 2007.8 MHz         | 20 Watts             |
| Band 29               | 3            | 11133 (Bottom Channel)    | 722.2 MHz          | 20 Watts             |
| Band 29               | 3            | 11189 (Top Channel)       | 727.8 MHz          | 20 Watts             |
| Band 29               | 4            | 11133 (Bottom Channel)    | 722.2 MHz          | 20 Watts             |
| Band 29               | 4            | 11189 (Top Channel)       | 727.8 MHz          | 20 Watts             |

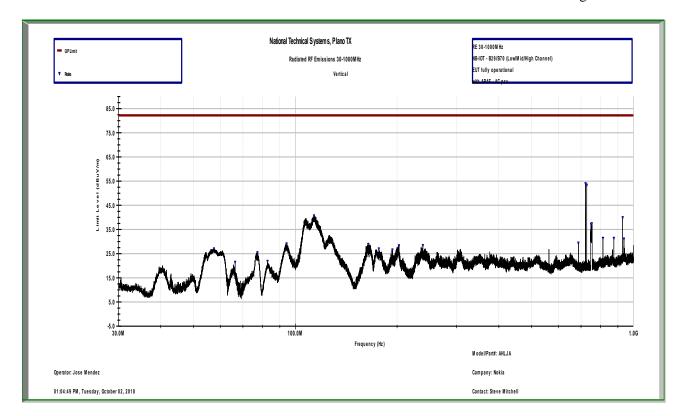
Antenna Ports and Band 29/70 Carriers at Maximum Power (20W/carrier)




| Frequency | Peaks Raw        | Antenna      | Pre Amp | Cable Loss | Peaks  | Limit  | Margin             | Tower | Turntable |        |
|-----------|------------------|--------------|---------|------------|--------|--------|--------------------|-------|-----------|--------|
| MHz       | dBuV/m           | dB           | dB      | dB         | dBuV/m | dBuV/m | dB                 | cm    | Degrees   | H/V    |
| 19247.1   | 36.267           | 45.012       | -27.467 | 4.9        | 58.712 | 91.7   | -32.988            | 300   | 359       | V      |
| 17772.9   | 29.942           | 47.442       | -28.718 | 8.095      | 56.761 | 91.7   | -34.939            | 100   | 1         | V      |
| 18298.8   | 34.608           | 44.87        | -27.728 | 4.9        | 56.65  | 91.7   | -35.05             | 300   | 359       | V      |
| 17963.4   | 28.152           | 48.544       | -28.891 | 8.952      | 56.603 | 91.7   | -35.097            | 100   | 1         | Н      |
| 13339.6   | 34.538           | 41.058       | -28.346 | 9.231      | 56.481 | 91.7   | -35.219            | 100   | 1         | н      |
| 13298     | 34.027           | 40.817       | -28.315 | 9.16       | 56.02  | 91.7   | -35.68             | 100   | 1         | V      |
| 17989.4   | 25.059           | 48.723       | -28.914 | 9.07       | 53.721 | 91.7   | -37.979            | 100   | 1         | V      |
| 18816.8   | 30.985           | 44.768       | -27.925 | 4.9        | 52.728 | 91.7   | -38.972            | 242   | 1         | Н      |
| 19614.7   | 30.411           | 44.911       | -28.288 | 4.9        | 51.935 | 91.7   | -39.765            | 300   | 1         | Н      |
| 20015.2   | 30.801           | 44.656       | -28.524 | 4.913      | 51.845 | 91.7   | -39.855            | 300   | 1         | Н      |
| 18297.5   | 29.607           | 44.872       | -27.728 | 4.9        | 51.65  | 91.7   | -40.05             | 300   | 359       | V      |
| 19498.2   | 29.568           | 45.027       | -27.958 | 4.9        | 51.536 | 91.7   | -40.164            | 300   | 130       | V      |
| 20415.9   | 28.383           | 44.684       | -28.361 | 4.946      | 49.654 | 91.7   | -42.046            | 300   | 1         | Н      |
| 20771.3   | 27.157           | 44.986       | -27.765 | 4.975      | 49.353 | 91.7   | -42.347            | 300   | 1         | Н      |
| 18568.1   | 27.152           | 44.82        | -27.781 | 4.9        | 49.091 | 91.7   | -42.609            | 300   | 1         | Н      |
| 20805     | 26.88            | 45.012       | -27.85  | 4.978      | 49.021 | 91.7   | -42.679            | 300   | 1         | V      |
| 11713     | 34.296           | 39.491       | -28.843 | 3.646      | 48.595 | 91.7   | -43.105            | 100   | 1         | V      |
| 11785.7   | 34.085           | 39.539       | -28.873 | 3.682      | 48.434 | 91.7   | -43.266            | 100   | 1         | н      |
| 18324.3   | 24.78            | 44.844       | -27.724 | 4.9        | 46.799 | 91.7   | -44.901            | 300   | 359       | V      |
| 17847.5   | 17.955           | 47.913       | -28.786 | 8.427      | 45.451 | 91.7   | -46.249            | 100   | 1         | H      |
| 14156.9   | 26.697           | 42.054       | -29.512 | 3.003      | 42.241 | 91.7   | -49.459            | 100   | 1         | Н      |
| 12650.3   | 21.662           | 39.382       | -30.109 | 7.314      | 38.445 | 91.7   | -53.255            | 100   | 1         | Н      |
| 10109.9   | 27.342           | 38.544       | -31.23  | 3.126      | 37.756 | 91.7   | -53.944            | 100   | 1         | V      |
| 14959.2   | 21.079           | 39.384       | -29.232 | 3.396      | 34.627 | 91.7   | -57.073            | 100   | 1         | V      |
| 9359.51   | 3.22E+01         | 37.706       | -38.8   | 3.4        | 34.466 | 82.2   | -47.734            | 100   | 359       | H      |
| 7860.78   | 2.95E+01         | 36.509       | -38.102 | 6.1        | 33.967 | 82.2   | -48.233            | 100   | 359       | Н      |
| 3229.70   | 3.40E+01         | 30.897       | -37.116 | 4.657      | 32.454 | 82.2   | -49.746            | 100   | 359       | Н      |
| 107.79    | 60.166           | 9.021        | -37.74  | 0.942      | 32.388 | 82.2   | -49.812            | 100   | 132       | V      |
| 8542.33   | 2.71E+01         | 37.354       | -38.237 | 4.861      | 31.096 | 82.2   | -51.104            | 100   | 359       | H      |
| 4015.06   | 3.04E+01         | 32.542       | -36.881 | 4.988      | 31.029 | 82.2   | -51.171            | 100   | 359       | н      |
| 7194.63   | 24.121           | 35.766       | -37.387 | 6.579      | 29.077 | 82.2   | -53.123            | 100   | 359       | V      |
| 4010.18   | 27.112           | 32.56        | -36.887 | 4.982      | 27.766 | 82.2   | -54.434            | 100   | 359       | V      |
| 8537.71   | 23.121           | 37.347       | -38.222 | 4.878      | 27.125 | 82.2   | -55.075            | 100   | 359       | v      |
| 1889.08   | 26.656           | 27.474       | -38.043 | 9.125      | 25.212 | 82.2   | -56.988            | 100   | 226       | V      |
| 875.01    | 34.343           | 27.474       | -36.781 | 2.98       | 23.212 | 82.2   | -57.458            | 231   | 257       | V      |
| 113.33    | 51.572           | 8.767        | -37.742 | 0.966      | 23.563 | 82.2   | -58.637            | 100   | 1         | V      |
| 9439.61   | 20.934           | 37.742       | -38.8   | 3.376      | 23.252 | 82.2   | -58.948            | 100   | 359       | v      |
| 1889.79   | 2.37E+01         | 27.473       | -38.042 | 9.099      | 22.217 | 82.2   | -59.983            | 100   | 359       | H      |
| 1859.45   | 24.21            | 27.272       | -38.042 | 8.486      | 21.912 | 82.2   | -60.288            | 100   | 1         | V      |
| 108.13    | 47.83            | 9            | -37.74  | 0.944      | 20.033 | 82.2   | -62.167            | 325   | 359       | Н      |
| 748.27    |                  |              |         | 2.457      |        | 82.2   |                    | 142   |           |        |
|           | 30.922<br>25.791 | 23.2<br>24.2 | -36.663 | 2.457      | 19.917 |        | -62.283<br>-66.009 | 142   | 1         | н<br>ц |
| 875.01    |                  |              | -36.781 |            | 16.191 | 82.2   |                    |       | 85        | H      |
| 750.33    | 21.993           | 23.3         | -36.67  | 2.466      | 11.09  | 82.2   | -71.11             | 100   | 1         | V      |
| 929.62    | 19.188           | 25.7         | -36.955 | 2.968      | 10.904 | 82.2   | -71.296            | 121   | 1         | H      |
| 203.39    | 35.382           | 11.3         | -37.514 | 1.226      | 10.393 | 82.2   | -71.807            | 325   | 157       | H      |
| 753.48    | 18.442           | 23.4         | -36.68  | 2.48       | 7.642  | 82.2   | -74.558            | 249   | 1         | V      |
| 115.69    | 34.649           | 8.631        | -37.741 | 0.963      | 6.502  | 82.2   | -75.698            | 213   | 359       | H      |
| 929.61    | 14.528           | 25.7         | -36.955 | 2.968      | 6.244  | 82.2   | -75.956            | 283   | 359       | V      |

# RE Data for NB-IOT - B29/B70 (Low/Mid/High Channel):

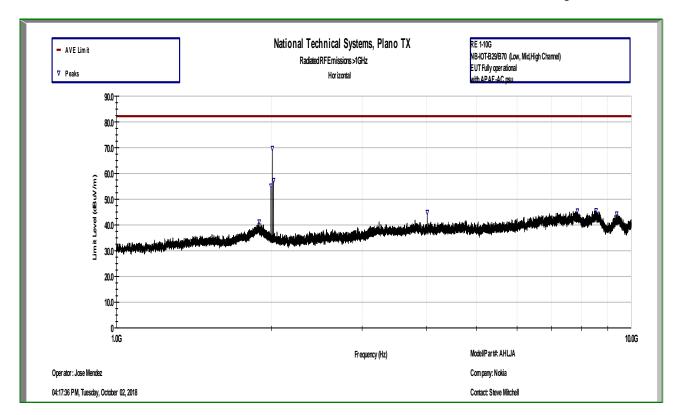



A three-meter measurement distance was used for radiated emission less than 10GHz. A one-meter measurement distance was used for radiated emission greater than 10GHz. The highest radiated emissions detected were more than 20dB below the three-meter limit of 82.2dBuV/m and the one -meter limit of 91.7dBuV/m (equivalent to -13dBm EIRP). Since all maximized measurements were more than 20dB below these levels, substitution measurements were not performed. TILE software was used for all preliminary scans and plots that are included on the following pages.



Radiated Spurious Emissions 30MHz-1GHz Horizontal at 3m NB-IOT - B29/B70 (Low/Mid/High Channel)

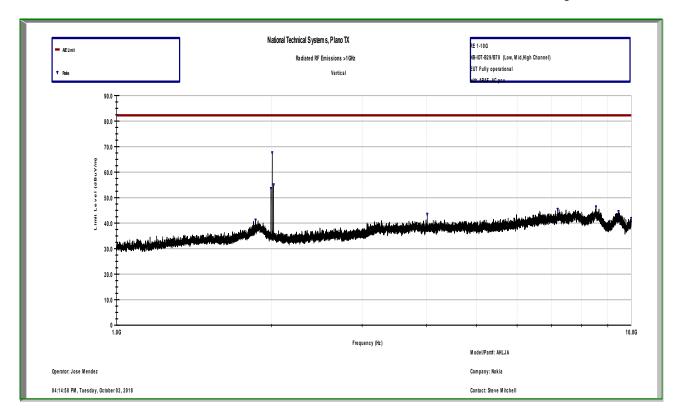



NTS Test Report No. PR087585 Rev. 1 Page 40 of 66



Radiated Spurious Emissions 30MHz-1GHz Vertical at 3m NB-IOT - B29/B70 (Low/Mid/High Channel)

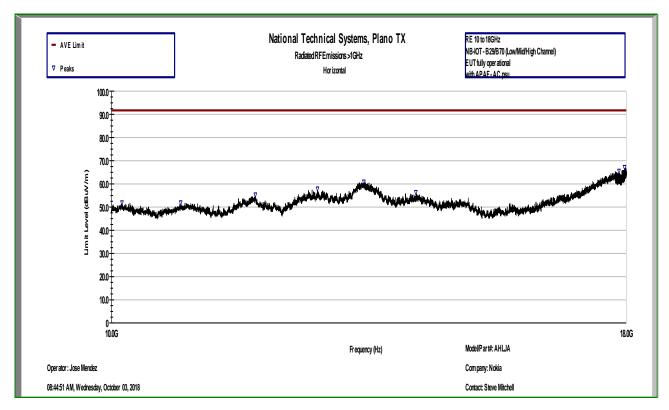



NTS Test Report No. PR087585 Rev. 1 Page **41** of **66** 



Radiated Spurious Emissions 1-10GHz Horizontal at 3m NB-IOT - B29/B70 (Low/Mid/High Channel)

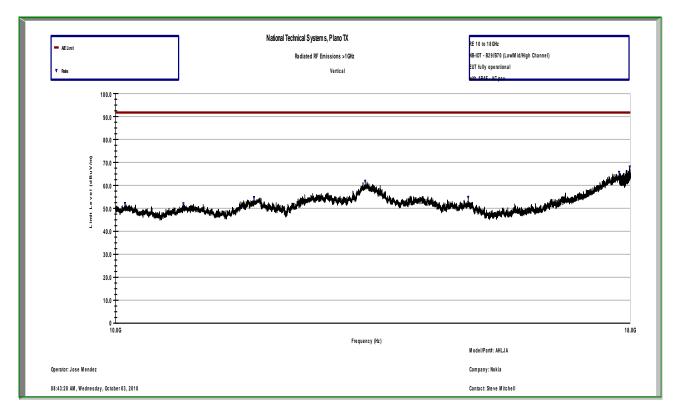



NTS Test Report No. PR087585 Rev. 1 Page **42** of **66** 



Radiated Spurious Emissions 1-10GHz Vertical at 3m NB-IOT - B29/B70 (Low/Mid/High Channel)

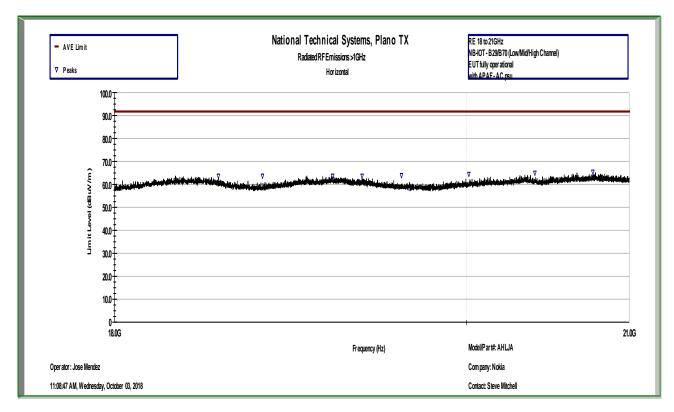



NTS Test Report No. PR087585 Rev. 1 Page **43** of **66** 



Radiated Spurious Emissions 10-18GHz Horizontal at 1m NB-IOT - B29/B70 (Low/Mid/High Channel)

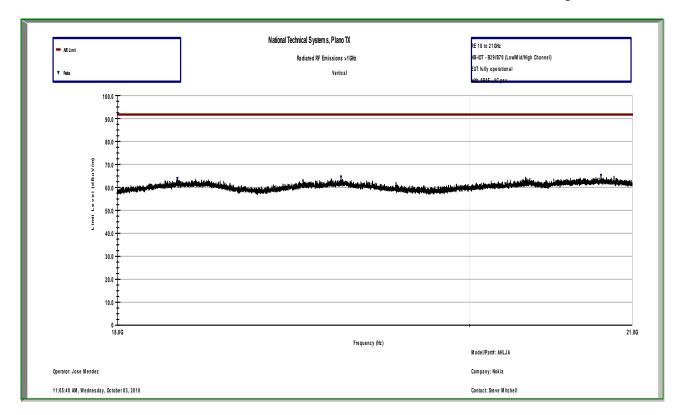



NTS Test Report No. PR087585 Rev. 1 Page 44 of 66



Radiated Spurious Emissions 10-18GHz Vertical at 1m NB-IOT - B29/B70 (Low/Mid/High Channel)




NTS Test Report No. PR087585 Rev. 1 Page **45** of **66** 



Radiated Spurious Emissions 18-21GHz Horizontal at 1m NB-IOT - B29/B70 (Low/Mid/High Channel)



NTS Test Report No. PR087585 Rev. 1 Page **46** of **66** 



Radiated Spurious Emissions 18-21GHz Vertical at 1m NB-IOT - B29/B70 (Low/Mid/High Channel)



#### **Frequency Stability/Accuracy**

Measurement methods are detailed in KDB 971168 D01v03r01 section 9 and ANSI C63.26-2015. Section 27.54 defines the frequency deviation limit as follows: "The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation." Carrier frequency stability of the EUT at extreme temperatures and voltages was measured. The frequency stability was measured as follows:

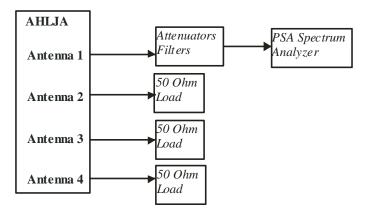
- (1) EUT transmitting with NB-IoT stand-alone carriers at the bottom and top frequency channels (722.2 and 727.8MHz) on port 3 at maximum carrier power
- (2) The EUT temperature was stabilized at each temperature step (for a minimum of 30 minutes) prior to frequency accuracy/band edge measurements measurement.
- (3) RF conducted emissions measurements were performed at the lower and upper band edges to insure regulatory compliance (< -13dBm) as detailed in the band edge measurement section.

The nominal operating voltage of the product is declared as 48VDC for the DC power configuration. The nominal operating voltage of the product is declared as 120VAC for the AC power configuration. The band edge measurement results are listed below for extreme voltages and temperatures.

| Percentage of                 | DC Voltage (VDC)                 | Band Edge Readings (dBm) at 20°C |                     |  |  |
|-------------------------------|----------------------------------|----------------------------------|---------------------|--|--|
| <b>Rated Supply</b>           | DC Voltage (VDC)                 | Lower                            | Upper               |  |  |
| 85%                           | 40.8                             | -14.1                            | -14.3               |  |  |
| 100%                          | 48.0                             | -14.4                            | -14.2               |  |  |
| 115%                          | 55.2                             | -14.2                            | -14.6               |  |  |
|                               |                                  |                                  |                     |  |  |
| Percentage of                 | AC Voltage (VAC)                 | Band Edge Readings (dBr          | n) at 20°C          |  |  |
| Percentage of<br>Rated Supply | AC Voltage (VAC)                 | Band Edge Readings (dBr<br>Lower | n) at 20°C<br>Upper |  |  |
| 0                             | <b>AC Voltage (VAC)</b><br>102.0 |                                  |                     |  |  |
| Rated Supply                  |                                  | Lower                            | Upper               |  |  |

#### **Extreme Voltages:**

## **Extreme Temperatures:**


| Temperature | 0     | adings (dBm) at<br>VDC | Band Edge Readings (dBm) at<br>120VAC |       |  |  |
|-------------|-------|------------------------|---------------------------------------|-------|--|--|
|             | Lower | Upper                  | Lower                                 | Upper |  |  |
| -30 °C      | -14.9 | -15.1                  | -13.8                                 | -14.8 |  |  |
| -20 °C      | -14.2 | -15.2                  | -14.1                                 | -14.7 |  |  |
| -10 °C      | -14.2 | -14.0                  | -13.9                                 | -14.9 |  |  |
| 0 °C        | -13.9 | -14.2                  | -15.1                                 | -14.3 |  |  |
| 10 °C       | -14.0 | -13.9                  | -14.3                                 | -14.5 |  |  |
| 20 °C       | -14.5 | -14.1                  | -13.8                                 | -13.8 |  |  |
| 30 °C       | -14.2 | -14.7                  | -13.8                                 | -13.7 |  |  |
| 40 °C       | -13.9 | -14.4                  | -13.7                                 | -14.4 |  |  |
| 50 °C       | -14.2 | -14.7                  | -14.2                                 | -14.0 |  |  |

Based on the results above, the highest recorded band edge measurement (-13.9dBm for DC power configuration and -13.6dBm for AC power configuration) ensures that the transmitted signal remains in its authorized frequency block at extreme voltages and temperatures. The results above are deemed sufficient to demonstrate the RRH meets regulatory frequency stability requirements.



# APPENDIX B: ANTENNA PORT TEST DATA FOR BAND 70 (1995-2020MHZ)

All conducted RF measurements for this test effort in this section were made at AHLJA antenna ports 1 and 2 for the Band 70 measurements. The test setup used is provided below.



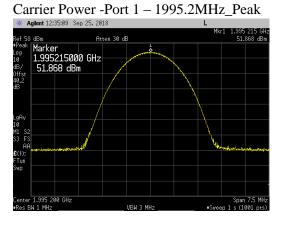
Test Setup Used for Conducted RF Measurements on AHLJA



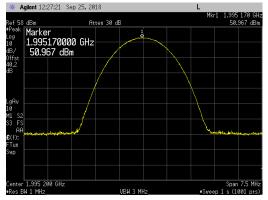
## **RF** Output Power

RF output power has been measured in both Peak and RMS Average terms for each Band 70 (1995 to 2020MHz) transmit chain (AHLJA Antenna Ports 1&2) at the bottom, middle and top frequency channels for NB-IoT standalone single carriers (QPSK). RMS Average power was measured as described in section 5.2 of KDB 971168 D01v03r01 and ANSI C63.26-2015 sections 5.2.4.3 & 5.2.4.4. Peak power was measured as described in section 5.1 of KDB 971168 D01v03r01 and ANSI C63.26-2015 section 5.2.3.3. The peak to average power ratio (PAPR) has been calculated as described in section 5.7 of KDB971168 D01v03r01 and ANSI C63.26-2015 section 5.2.6.

The RMS Average power output on Antenna Ports 1&2 (3GPP frequency band 70) was also measured using three carriers per antenna port on the bottom, middle and top channels (with minimum spacing between carrier frequencies). Based upon these multi-carrier power measurements the antenna port with the highest RMS average power output for 3GPP frequency band 70 is to be used for the remaining radio compliance conducted measurements. The port power measurements are required to be performed with multiple carriers to produce maximum power output on the port. The maximum single carrier power output is 20 watts while the maximum port power output is 60 watts for ports 1&2. All results are presented in tabular form below. The highest measured values for carrier peak power, carrier average power and port average power are highlighted. Measurements were rounded off to the nearest tenth.

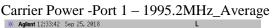

| Antenna Port<br>RF Channel | Carrier Frequencies         | Measurement          | Peak<br>(dBm) | Average<br>(dBm) | PAPR<br>(dB) |
|----------------------------|-----------------------------|----------------------|---------------|------------------|--------------|
| Port 1                     | 1995.2 MHz                  | <b>Carrier Power</b> | 51.9          | 42.8             | 9.1          |
| <b>Bottom Channel</b>      | 1995.2, 1995.5 & 1995.8 MHz | Port Power           | N/A           | 47.3             | N/A          |
| Port 1                     | 2007.5 MHz                  | <b>Carrier Power</b> | 51.9          | 42.9             | 9.0          |
| Middle Channel             | 2007.2, 2007.5 & 2007.8 MHz | Port Power           | N/A           | 47.3             | N/A          |
| Port 1                     | 2019.8 MHz                  | <b>Carrier Power</b> | 50.9          | 42.9             | 8.0          |
| Top Channel                | 2019.2, 2019.5 & 2019.8 MHz | Port Power           | N/A           | 47.2             | N/A          |
| Port 2                     | 1995.2 MHz                  | <b>Carrier Power</b> | 51.0          | 42.7             | 8.3          |
| Bottom Channel             | 1995.2, 1995.5 & 1995.8 MHz | Port Power           | N/A           | 47.1             | N/A          |
| Port 2                     | 2007.5 MHz                  | <b>Carrier Power</b> | 51.8          | 42.8             | 9.0          |
| Middle Channel             | 2007.2, 2007.5 & 2007.8 MHz | Port Power           | N/A           | 47.0             | N/A          |
| Port 2                     | 2019.8 MHz                  | <b>Carrier Power</b> | 51.6          | 42.6             | 9.0          |
| Top Channel                | 2019.2, 2019.5 & 2019.8 MHz | Port Power           | N/A           | 47.0             | N/A          |

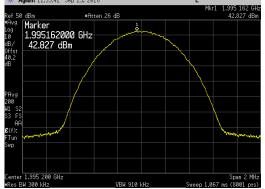
Port 1 had the highest middle channel RMS average port power and was selected for all the remaining antenna port conducted emission tests.


All measurement results are provided in the following pages. The total measurement RF path loss of the test setup (attenuator and test cables) was 40.2 dB and is accounted for by the spectrum analyzer reference level offset.



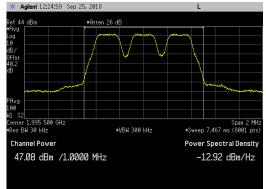

## Power Plots at Antenna Ports 1 and 2 for the Bottom Channel (Single and Multicarrier):





Carrier Power -Port 2 – 1995.2MHz\_Peak



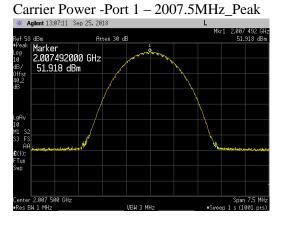
Port Pwr\_Port 1\_1995.2, 1995.5, 1995.8MHz\_Ave



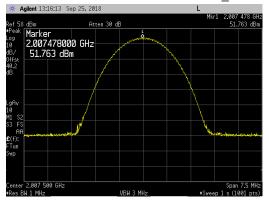




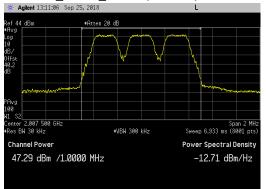

Carrier Power -Port 2 - 1995.2MHz\_Average

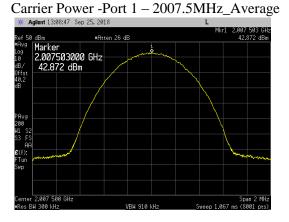




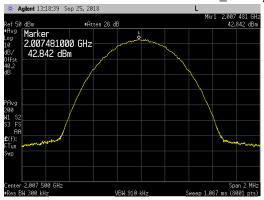


Port Pwr\_Port 2\_1995.2, 1995.5, 1995.8MHz \_Ave

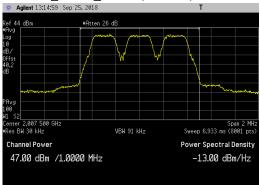



## Power Plots at Antenna Ports 1 and 2 for the Middle Channel (Single and Multicarrier):




Carrier Power -Port 2 – 2007.5MHz \_Peak

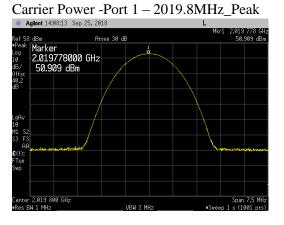




Port Pwr\_Port 1\_2007.2, 2007.5, 2007.8MHz\_Ave

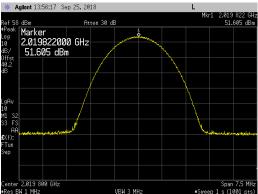






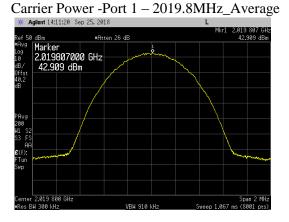


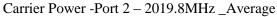


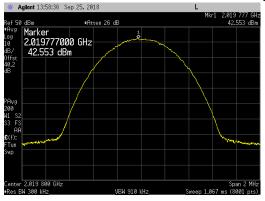


Port Pwr\_Port 2\_2007.2, 2007.5, 2007.8MHz \_Ave

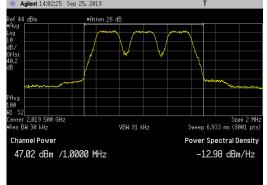


## Power Plots at Antenna Ports 1 and 2 for the Top Channel (Single and Multicarrier):





Carrier Power -Port 2 – 2019.8MHz \_Peak





Center 2.013 800 GHz +Res Bil 1 MHz VEN 3 MHz VEN 3 MHz •Sweep 1 s (1001 pts) Port Pwr\_Port 1\_2019.2, 2019.5, 2019.8MHz\_Ave \* Aglient 14:86:28 Sep 25, 2018 L Ref 44 dbm •Atten 26 dB USH 3 MHz VEN 3 MHz •Sweep 1 s (1001 pts)







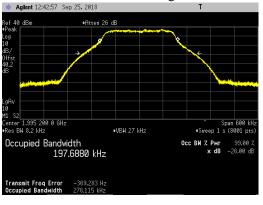




# Port Pwr\_Port 2\_2019.2, 2019.5, 2019.8MHz \_Ave

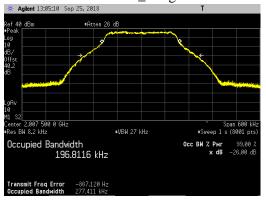


## Emission Bandwidth (26 dB down and 99%)

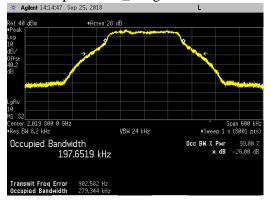

Emission bandwidth measurements were made at antenna ports 1&2 on the bottom, middle and top channels. The AHLJA was operated at maximum RF output power for NB-IoT stand-alone single carrier (QPSK). The results are provided in the following table. The largest emission bandwidth is highlighted.

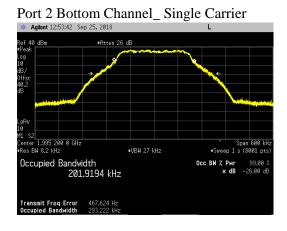
| Antenna Port | RF Channel     | Emission Bandwidth (MHz) |          |  |  |
|--------------|----------------|--------------------------|----------|--|--|
|              | Ki Chamiei     | 26dB                     | 99%      |  |  |
|              | Bottom Channel | 278.115                  | 197.6880 |  |  |
| Port 1       | Middle Channel | 277.411                  | 196.8116 |  |  |
|              | Top Channel    | 279.344                  | 197.6519 |  |  |
|              | Bottom Channel | 293.222                  | 201.9194 |  |  |
| Port 2       | Middle Channel | 278.297                  | 197.8375 |  |  |
|              | Top Channel    | 278.131                  | 197.9972 |  |  |

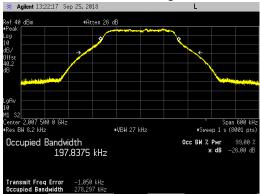
Emission bandwidth measurement data are provided in the following pages.

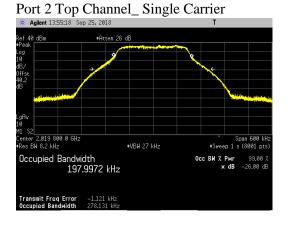



# Emission Bandwidth Plots at Antenna Ports 1 and 2 for the Bottom, Middle and Top Frequency Channels:





Port 1 Bottom Channel\_ Single Carrier


Port 1 Middle Channel\_Single Carrier














#### Port 2 Middle Channel\_ Single Carrier \* Aglient 13:22:17 Sop 25, 2018 L



#### **Antenna Port Conducted Band Edge**

Conducted band edge measurements were made at RRH antenna port 1. The RRH was operated at maximum power with a single carrier at the band edge frequencies. Measurements were also performed with three carriers (with minimum spacing between carrier frequencies) per antenna port on the bottom and top channels. Three carriers are required to produce maximum port power output. The maximum single carrier power output is 20 watts while the maximum port power output is 60 watts for ports 1&2.

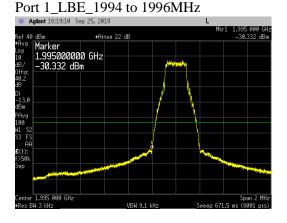
Another multicarrier test case based upon KDB 971168 D03v01 using three carriers per antenna port was performed with two carriers (with minimum spacing between carrier frequencies) at the lower band edge and a third carrier (with maximum spacing between the other two carrier frequencies) at the upper band edge.

The power of any emission outside of the authorized operating frequency range cannot exceed -13 dBm as specified in section 27.53(h)(1) and FCC DA 13-2409 items 25 and 47.

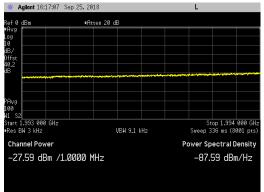
Measurements were performed with the spectrum analyzer in the RMS average mode over 100 traces. In the 1MHz bands outside and adjacent to the frequency block, a resolution bandwidth of 1% of the measured emission bandwidth (3kHz) per 27.53(h)(3) and FCC DA 13-2409 items 25&47 was used. In the 1 to 2MHz frequency range outside the band edge (i.e.: 1993 to 1994MHz and 2021 to 2022MHz bands) the RBW was set to 1% of the measured emission bandwidth (3kHz) and the power integrated over 1MHz. In the 2MHz to 22MHz frequency range outside the band edge (i.e.: 1973 to 1993MHz and 2022 to 2042MHz bands) a 1MHz RBW and 3MHz VBW was used.

The results are summarized in the following table. The highest (worst case) emissions from the measurement data are provided.

| Band 70 Carrier Frequency                                                                                                | Port 1 (dBm) |         |  |
|--------------------------------------------------------------------------------------------------------------------------|--------------|---------|--|
| Carrier Power and Port Power                                                                                             | Lower        | Upper   |  |
| Single Carrier at Bottom Channel (1995.2MHz)/Top Channel (2019.8MHz)<br>20W per Carrier and 20W per Port                 | -23.007      | -26.661 |  |
| Three Carriers at BCs (1995.2, 1995.5, 1995.8MHz)/TCs (2019.2, 2019.5,<br>2019.8MHz)<br>20W per Carrier and 60W per Port | -20.113      | -21.618 |  |
| Three Carriers at BCs (1995.2 and 1995.5MHz) and at TC (1995.8MHz)<br>20W per Carrier and 60W per Port                   | -22.767      | -26.800 |  |

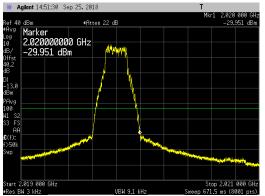

The total measurement RF path loss of the test setup (attenuator and test cables) was 40.2 dB and is accounted for by the spectrum analyzer reference level offset. The display line on the plots reflects the required limit.

Conducted band edge measurements are provided in the following pages.

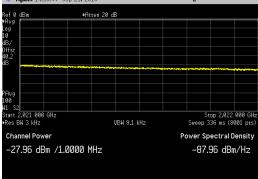



## Band 70 Single Carrier at 20W/Carrier and 20W/Port -Lower and Upper Band Edge Plots:

Carrier at Bottom Channel (1995.2MHz)



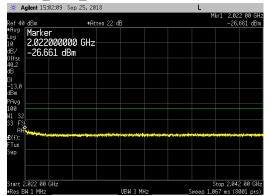

Port 1\_LBE\_1993 to 1994MHz




Carrier at Top Channel (2019.8MHz)

Port 1\_UBE\_2019 to 2021MHz

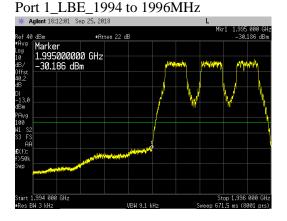



#### Port 1\_UBE\_2021 to 2022MHz \* Agient 14:56:44 Sep 25, 2018 L

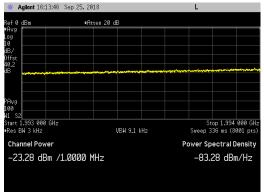


Port 1\_LBE\_1973 to 1993MHz

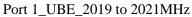
| 🗱 Agilent 16:15:41 Sei                                               | J ZD, Z0IO |                                                                                                                 |    |                                                                                                                | L                                                                                                               | 1 000 00 00                |
|----------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------|----|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------|
| f 40 dBm                                                             | #Atten 2   | 22 dB                                                                                                           |    |                                                                                                                | Mkr1                                                                                                            | 1.992 96 GH<br>-23.007 dBm |
| <ul> <li>Marker</li> <li>1.992960000</li> <li>-23.007 dBm</li> </ul> |            |                                                                                                                 |    |                                                                                                                |                                                                                                                 |                            |
| fst<br>.2                                                            |            |                                                                                                                 |    |                                                                                                                |                                                                                                                 |                            |
| 3.0                                                                  |            |                                                                                                                 |    |                                                                                                                |                                                                                                                 |                            |
| im 🛛                                                                 |            |                                                                                                                 |    |                                                                                                                |                                                                                                                 |                            |
| 0<br>0                                                               |            |                                                                                                                 |    |                                                                                                                |                                                                                                                 |                            |
| 52<br>FS                                                             |            |                                                                                                                 |    |                                                                                                                |                                                                                                                 |                            |
| f):<br>un                                                            | ****       | ing for the state of |    | a second and the second se | in the second |                            |
| ip qu                                                                |            |                                                                                                                 |    |                                                                                                                |                                                                                                                 |                            |
|                                                                      |            |                                                                                                                 |    |                                                                                                                |                                                                                                                 |                            |
| art 1.973 00 GHz                                                     |            |                                                                                                                 |    |                                                                                                                | Stor                                                                                                            | o 1.993 00 GHz             |
| es BW 1 MHz                                                          |            | VBW 3 M                                                                                                         | Hz | Sw                                                                                                             |                                                                                                                 | ms (8001 pts)              |

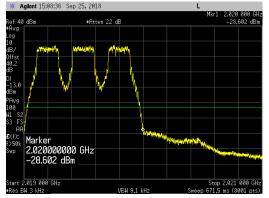

## Port 1\_UBE\_2022 to 2042MHz

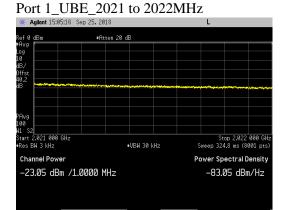




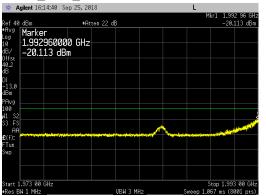

## Band 70 Three Carriers at 20W/Carrier and 60W/Port -Lower and Upper Band Edge Plots:


Carriers at BCs (1995.2, 1995.5, 1995.8MHz)





Port 1\_LBE\_1993 to 1994MHz




Carriers at TCs (2019.2, 2019.5, 2019.8MHz)

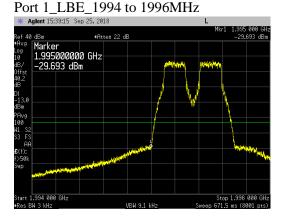







Port 1\_LBE\_1973 to 1993MHz

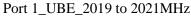


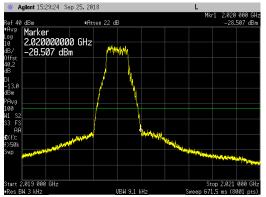

## Port 1\_UBE\_2022 to 2042MHz





## Band 70 Three Carriers at 20W/Carrier and 60W/Port -Lower and Upper Band Edge Plots:


Carriers at 1995.2, 1995.5, 2019.8MHz



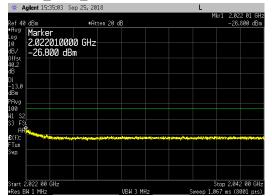

Port 1\_LBE\_1993 to 1994MHz



Carriers at 1995.2, 1995.5, 2019.8MHz






# Port 1\_UBE\_2021 to 2022MHz



Port 1\_LBE\_1973 to 1993MHz

| 🔆 👫 🗛               | gilent 15:                               | 41:37 Se | p 25, 20         | 18                           |         |    | L              |                |                      |
|---------------------|------------------------------------------|----------|------------------|------------------------------|---------|----|----------------|----------------|----------------------|
| Ref 40              | dBm                                      |          | +At              | ten 22 di                    | в       |    | М              |                | 2 89 GHz<br>767 dBm  |
| L09<br>10<br>dB/    | 1.99289000                               |          |                  |                              |         |    |                |                |                      |
| Offst<br>40.2<br>dB |                                          |          |                  |                              |         |    |                |                |                      |
| DI<br>-13.0         |                                          |          |                  |                              |         |    |                |                |                      |
| dBm<br>PAvg<br>100  |                                          |          |                  |                              |         |    |                |                |                      |
| 41 S2<br>53 FS      |                                          |          |                  |                              |         |    |                |                | 1                    |
| AA<br>£(f):         | a an |          | entre entre foto | en fra år stade til former b |         |    | <br>ular adams | ayu nyada digi | <u>يونيا بعملالي</u> |
| FTun<br>Swp         |                                          |          |                  |                              |         |    |                |                |                      |
|                     |                                          |          |                  |                              |         |    |                |                |                      |
|                     | .973 00                                  | GHz      |                  |                              |         |    |                |                | 3 00 GHz             |
| rkes B              | W 1 MHz                                  |          |                  |                              | VBW 3 M | 12 | <br>weep 1.0   | 07 MS (8       | oer pts)_            |

## Port 1\_UBE\_2022 to 2042MHz





### **Transmitter Antenna Port Conducted Emissions**

Transmitter conducted emission measurements were made at RRH antenna port 1. Measurements were performed over the 9kHz to 21GHz frequency range. The RRH was operated at maximum power with a single carrier on the Band 70 middle channel (2007.5MHz). Measurements were also performed with three carriers (with minimum spacing between carrier frequencies) per antenna port on the middle channels (2007.2, 2007.5, 2007.8MHz). Three carriers are required to produce maximum port power output. The maximum single carrier power output is 20 watts while the maximum port power output is 60 watts for ports 1&2. Another multicarrier test case based upon KDB 971168 D03v01 using three carriers per antenna port was performed with two carriers (with minimum spacing between carrier frequencies) at the lower band edge (1995.2 & 1995.5MHz) and a third carrier (with maximum spacing between the other two carrier frequencies) at the upper band edge (2019.8MHz).

The power of any emission outside of the authorized operating frequency range cannot exceed -13 dBm for a 1MHz resolution bandwidth as specified in section 27.53(h)(1 & 3) and FCC DA 13-2409 items 25& 47. The required measurement parameters include a 1MHz bandwidth with power measured in average value (since transmitter power was measured in average value).

Measurements were performed with a spectrum analyzer using a peak detector with max hold over 50 sweeps (except for the 20MHz to 3GHz frequency range). Measurements for the 20MHz to 3GHz frequency range was performed with the spectrum analyzer in the RMS average mode over 100 traces.

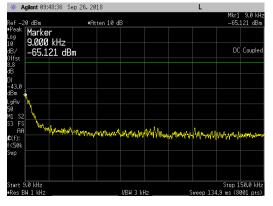
The limit for the 9kHz to 150kHz frequency range was adjusted to -43dBm to correct for a spectrum analyzer RBW of 1kHz versus required RBW of 1MHz [i.e.: -43dBm = -13dBm  $-10\log(1000$ kHz/1kHz)]. The limit for the 150kHz to 20MHz frequency range was adjusted to -33dBm to correct for a spectrum analyzer RBW of 10kHz versus required RBW of 1MHz [i.e.: -33dBm = -13dBm  $-10\log(1000$ kHz/10kHz)]. The required RBW of 1MHz [i.e.: -33dBm = -13dBm  $-10\log(1000$ kHz/10kHz)]. The required limit of -13dBm with a RBW of  $\geq 1$ MHz was used for all other frequency ranges. The spectrum analyzer settings that were used for this test are summarized in the following table.

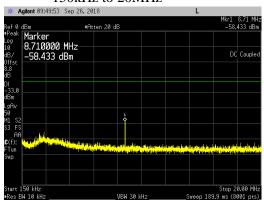
| Frequency Range     | RBW   | VBW   | Number of<br>Data Points | Detector | Sweep<br>Time | Max Hold<br>over | Offset<br>Note 1 |
|---------------------|-------|-------|--------------------------|----------|---------------|------------------|------------------|
| 9kHz to 150kHz      | 1kHz  | 3kHz  | 8001                     | Peak     | Auto          | 50 Sweeps        | 8.8dB            |
| 150kHz to 20MHz     | 10kHz | 30kHz | 8001                     | Peak     | Auto          | 50 Sweeps        | 8.8dB            |
| 20MHz to<br>3000MHz | 1MHz  | 3MHz  | 8001                     | Average  | Auto          | Note 2           | 40.2dB           |
| 3GHz to 6GHz        | 1MHz  | 3MHz  | 8001                     | Peak     | Auto          | 50 Sweeps        | 40.1dB           |
| 6GHz to 21GHz       | 2MHz  | 6MHz  | 8001                     | Peak     | Auto          | 50 Sweeps        | 28.0dB           |
|                     |       |       | C 1                      | ,        | 01            | 1 11             | 、 •              |

Note 1: The total measurement RF path loss of the test setup (attenuators, filters and test cables) is accounted for by the spectrum analyzer reference level offset.

Note 2: Max Hold not used and instead measurements were performed with the spectrum analyzer in the RMS average mode over 100 traces.

A high pass filter was used to reduce measurement instrumentation noise floor for the frequency range above 6GHz. A low pass filter was used to reduce instrumentation noise for the frequency ranges below 20MHz. The total measurement RF path loss of the test setup (attenuators, low pass filter and test cables) as shown in the table is accounted for by the spectrum analyzer reference level offset. The display line on



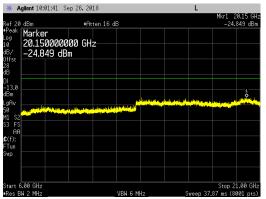


the plots reflects the required limit. Conducted spurious emission plots/measurements are provided in the following pages.



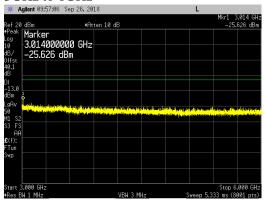
## Band 70 Single Carrier at Middle Channel (2007.5MHz) with 20W/Carrier and 20W/Port:

#### 9kHz to 150kHz



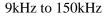


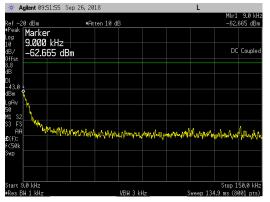

#### 150kHz to 20MHz


#### 20MHz to 3000MHz

| ж А                 | gilent 09: | 56:17 Se        | p 26, 20 | 18       | L        |      |  |     |            |           |                    |
|---------------------|------------|-----------------|----------|----------|----------|------|--|-----|------------|-----------|--------------------|
| Ref 50              | JD         |                 | -0-      |          | <u>,</u> |      |  |     |            | Mkr1      | 465 MHz<br>357 dBm |
|                     |            |                 | •Ht      | ten 24 d | 5        |      |  |     |            | -20.      | 557 dBM            |
| ≢Avg<br>Log<br>10   | Marke      | r<br>00000      | мц.,     |          |          |      |  |     |            |           |                    |
| dB/                 |            | 66666<br>57 dBr |          |          |          |      |  |     |            |           |                    |
| Offst<br>40.2<br>dB |            |                 |          |          |          |      |  |     |            |           |                    |
| dB                  |            |                 |          |          |          |      |  |     |            |           |                    |
| DI<br>-13.0         |            |                 |          |          |          |      |  |     |            |           |                    |
| dBm                 |            |                 |          |          |          |      |  |     |            |           |                    |
| PAvg                |            |                 |          |          |          |      |  |     |            |           |                    |
| 100<br>W1 S2        |            |                 |          |          |          |      |  |     |            |           |                    |
| \$3 FS              |            |                 |          |          |          |      |  |     |            |           |                    |
| AA                  |            |                 |          |          |          |      |  |     |            |           |                    |
| £(f):               |            |                 |          |          |          |      |  |     |            |           |                    |
| FTun                |            | dentes Viet, un |          |          |          |      |  | -   | den sie sp |           |                    |
| Swp                 |            |                 |          |          |          |      |  |     |            |           |                    |
|                     |            |                 |          |          |          |      |  |     |            |           |                    |
| Start 2             | 0 MHz      |                 |          |          |          |      |  |     |            | Stop 3.   | 000 GHz            |
|                     | W 1 MHz    |                 |          |          | VBW 3 Mł | lz _ |  | Swe | ep 9.0     | 67 ms (80 |                    |

#### 6GHz to 21GHz

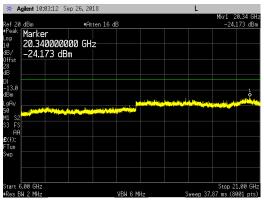


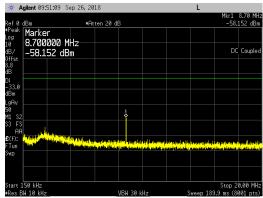


#### 3GHz to 6GHz

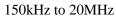




Band 70 Three Carriers at Middle Chs (2007.2, 2007.5, 2007.8MHz) with 20W/Carrier and 60W/Port:



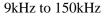


#### 20 MHz to 3000 MHz

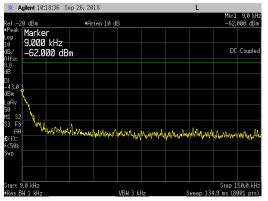
| ж А                  |                  |                      |     |                  |          |    |  |                   |  |                      |
|----------------------|------------------|----------------------|-----|------------------|----------|----|--|-------------------|--|----------------------|
| Ref 50               | dBm              |                      | +At | ten 24 di        | в        |    |  |                   |  | .659 GHz<br>193 dBm  |
|                      |                  | r<br>00000<br>93 dBr |     |                  |          |    |  |                   |  |                      |
| Offst<br>40.2<br>dB  |                  |                      |     |                  |          |    |  |                   |  |                      |
| DI<br>-13.0<br>dBm   |                  |                      |     |                  |          |    |  |                   |  |                      |
| PAvg<br>100          |                  |                      |     |                  |          |    |  |                   |  |                      |
| W1 S2<br>S3 FS<br>AA |                  |                      |     |                  |          |    |  |                   |  |                      |
| €(f):<br>FTun<br>Swp |                  |                      |     | e je na felhager |          | \$ |  | e wie i die en ee |  |                      |
|                      |                  |                      |     |                  |          |    |  |                   |  |                      |
| Start 2<br>•Res B    | 0 MHz<br>W 1 MHz |                      |     |                  | VBW 3 MI | lz |  | Sweep 9.0         |  | .000 GHz<br>001 pts) |

#### 6GHz to 21GHz





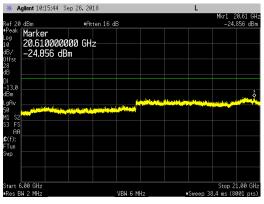


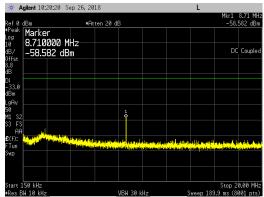


## 3GHz to 6GHz

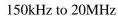




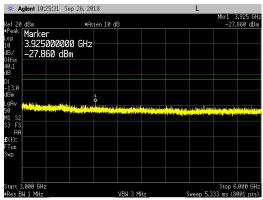
Band 70 Three Carriers at BCs (1995.2 & 1995.5MHz) & TC (2019.8MHz) with 20W/Carrier and 60W/Port:





#### 20MHz to 3000MHz

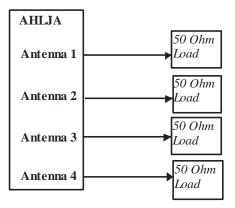
| <b>₩</b> A           | gilent 10: | 24:23 Se | p 26, 20 | 18        |          |    |   | L     |            |                        |
|----------------------|------------|----------|----------|-----------|----------|----|---|-------|------------|------------------------|
| Ref 50               | dBm        |          | +At      | ten 24 di | в        |    |   |       |            | 2.997 GHz<br>6.995 dBm |
| #Avg<br>Log<br>10    | Marke      |          | 0 GHz    |           |          |    | h |       |            | *                      |
| ⊥ø<br>dB/<br>Offst   |            | 95 dBi   |          |           |          |    |   |       |            |                        |
| 40.2<br>dB           |            |          |          |           |          |    |   |       |            |                        |
| DI<br>-13.0          |            |          |          |           |          |    |   |       |            |                        |
| dBm<br>PAvg          |            |          |          |           |          |    |   |       |            |                        |
| 100<br>W1 S2         |            |          |          |           |          |    |   |       |            |                        |
| S3 FS<br>AA<br>€(f): |            |          |          |           |          |    |   |       |            |                        |
| FTun<br>Swp          |            |          |          |           |          |    |   |       |            | <sup>1</sup>           |
| onp.                 |            |          |          |           |          |    |   |       |            |                        |
| Start 2              | a Mil-     |          |          |           |          |    |   |       |            | 3.000 GHz              |
|                      | W 1 MHz    |          |          |           | VBW 3 Mł | lz |   | Sweep | 9.067 ms ( |                        |


#### 6GHz to 21GHz








#### 3GHz to 6GHz





#### **Transmitter Radiated Spurious Emissions**

During radiated emission testing all antenna ports of the base station were terminated with 500hm termination blocks as shown in the diagram below.



See ANSI C63.26-2015 paragraph 5.1 for details of test setup requirements. Based on antenna port conducted spurious emissions tests results, preliminary scans for radiated spurious emissions were performed in 30MHz - 21GHz frequency range.

One radiated emission test configuration (with the RRH fan assembly and RRH AC Power Supply options) were used to prove compliance for both 3GPP Band 29 and the 3GPP Band 70 frequency bands. The Band 29 IoT carriers were enabled on the bottom and top frequency channels at maximum power (20 watts per carrier and 40 watts per antenna port) on Antenna ports 3 & 4. The Band 70 IoT carriers were enabled on the bottom, middle and top frequency channels at maximum power (20 watts per carrier and 60 watts per antenna ports 1 & 2. The RRH antenna ports are to be terminated using RF cables/loads. Final maximized radiated emissions are measured in these modes. The carrier configuration for the radiated emission testing is provided below.

| Frequency | Antenna | EARFCN                    | Transmit   | Carrier  |
|-----------|---------|---------------------------|------------|----------|
| Band      | Port    |                           | Frequency  | Power    |
| Band 70   | 1       | 13113 (Bottom Channel)    | 1995.2 MHz | 20 Watts |
| Band 70   | 1       | 13116 (Bottom Channel +3) | 1995.5 MHz | 20 Watts |
| Band 70   | 1       | 13359 (Top Channel)       | 2019.8 MHz | 20 Watts |
| Band 70   | 2       | 13233 (Middle Channel -3) | 2007.2 MHz | 20 Watts |
| Band 70   | 2       | 13236 (Middle Channel)    | 2007.5 MHz | 20 Watts |
| Band 70   | 2       | 13239 (Middle Channel +3) | 2007.8 MHz | 20 Watts |
| Band 29   | 3       | 11133 (Bottom Channel)    | 722.2 MHz  | 20 Watts |
| Band 29   | 3       | 11189 (Top Channel)       | 727.8 MHz  | 20 Watts |
| Band 29   | 4       | 11133 (Bottom Channel)    | 722.2 MHz  | 20 Watts |
| Band 29   | 4       | 11189 (Top Channel)       | 727.8 MHz  | 20 Watts |

Antenna Ports and Band 29/70 Carriers at Maximum Power (20W/carrier)

Radiated spurious emission plots/measurement results are in Appendix A.



#### **Frequency Stability/Accuracy**

Measurement methods are detailed in KDB 971168 D01v03r01 section 9 and ANSI C63.26-2015. Section 27.54 defines the frequency deviation limit as follows: "The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation." Carrier frequency stability of the EUT at extreme temperatures and voltages was measured. The frequency stability was measured as follows:

- (1) EUT transmitting with NB-IoT stand-alone carriers at the bottom and top frequency channels (1995.2 and 2019.8MHz) on port 1 at maximum carrier power.
- (2) The EUT temperature was stabilized at each temperature step (for a minimum of 30 minutes) prior to frequency accuracy/band edge measurements measurement.
- (3) RF conducted emissions measurements were performed at the lower and upper band edges to insure regulatory compliance (< -13dBm) as detailed in the band edge measurement section.

The nominal operating voltage of the product is declared as 48VDC for the DC power configuration. The nominal operating voltage of the product is declared as 120VAC for the AC power configuration. The band edge measurement results are listed below for extreme voltages and temperatures.

| Percentage of Rated           | DC Valtage (VDC)                                                                 | Band Edge Readings (dBm) at 20°C |                      |  |
|-------------------------------|----------------------------------------------------------------------------------|----------------------------------|----------------------|--|
| Supply                        | DC Voltage (VDC)                                                                 | Lower                            | Upper                |  |
| 85%                           | 40.8                                                                             | -31.1                            | -31.3                |  |
| 100%                          | 48.0                                                                             | -30.8                            | -31.9                |  |
| 115%                          | 55.2                                                                             | -32.4                            | -32.5                |  |
|                               | AC Voltege (VAC)                                                                 | Band Edge Readings (dBm) at 20°C |                      |  |
| Percentage of Rated           | $\mathbf{A} \mathbf{C} \mathbf{V}$ oltago ( $\mathbf{V} \mathbf{A} \mathbf{C}$ ) | Band Edge Readings (dl           | Bm) at 20°C          |  |
| Percentage of Rated<br>Supply | AC Voltage (VAC)                                                                 | Band Edge Readings (dl<br>Lower  | Bm) at 20°C<br>Upper |  |
| 0                             | AC Voltage (VAC)                                                                 | <u> </u>                         |                      |  |
| Supply                        |                                                                                  | Lower                            | Upper                |  |

## **Extreme Voltages:**

#### **Extreme Temperatures:**

| Temperature | Band Edge Rea<br>48V | -     | Band Edge Readings (dBm) at<br>120VAC |       |  |
|-------------|----------------------|-------|---------------------------------------|-------|--|
|             | Lower                | Upper | Lower                                 | Upper |  |
| -30 °C      | -32.6                | -32.5 | -30.9                                 | -31.5 |  |
| -20 °C      | -31.4                | -31.2 | -29.4                                 | -30.9 |  |
| -10 °C      | -31.2                | -32.2 | -30.5                                 | -31.1 |  |
| 0 °C        | -30.9                | -31.7 | -32.4                                 | -31.5 |  |
| 10 °C       | -32.9                | -30.5 | -31.8                                 | -31.4 |  |
| 20 °C       | -32.5                | -32.2 | -29.9                                 | -31.6 |  |
| 30 °C       | -30.7                | -32.0 | -30.5                                 | -29.8 |  |
| 40 °C       | -32.6                | -31.9 | -30.9                                 | -30.7 |  |
| 50 °C       | -30.4                | -31.9 | -29.9                                 | -30.3 |  |

Based on the results above, the highest recorded band edge measurement (-30.4dBm for DC power configuration and -29.4dBm for AC power configuration) ensures that the transmitted signal remains in its authorized frequency block at extreme voltages and temperatures. The results above are deemed sufficient to demonstrate the RRH meets regulatory frequency stability requirements.



NTS Test Report No. PR087585 Rev. 1 Page **66** of **66** 

**End of Report**