CERTIFICATION TEST REPORT

Manufacturer: Deister Electronic GMBH

11 Hermann Bahlsen Str

Barsinghausen 30890 GERMANY

Applicant: Deister Electronics USA, Inc.

9817 Godwin Drive, #201

Manassas, Virginia 20110 USA

Product Name: Airlink Spot

Product Description: Airlink Router and Access Rights Update Device for Digital

Locking Systems

Operating

Voltage/Frequency: 24VDC powered using RS485 Line

Model: ALS20*

*Denotes actual model tested as worst-case representative of

product family that includes models ALS20 and ALS20P.

FCC ID: IXLALS20

Testing Commenced: May 15, 2019

Testing Ended: July 19, 2019

Summary of Test Results: In Compliance

The EUT complies with the EMC requirements when manufactured identically as the unit tested in this report, including any required modifications and/or manufacturer's statement. Any changes to the design or build of this unit subsequent to this testing may deem it non-compliant.

Standards:

▼ FCC Part 15 Subpart C, Section 15.249

▼ FCC Part 15 Subpart C, Section 15.215(c) – Additional provisions to the general radiated emission limitations

▼ FCC15.207 - Conducted Limits

▼ FCC Part 15 Subpart A, Section 15.31(e) – Measurement Standards

060818

Report Number: F2P21307-01E Page 1 of 34 Issue Date: July 19, 2019

Model: ALS20

Evaluation Conducted by:

Julius Chiller, EMC/Wireless Engineer

Report Reviewed by:

Ken Littell, Director of EMC & Wireless Operations

F2 Labs 26501 Ridge Road Damascus, MD 20872 Ph 301.253.4500 F2 Labs 16740 Peters Road Middlefield, OH 44062 Ph 440.632.5541 F2 Labs 8583 Zionsville Road Indianapolis, IN 46268 Ph 317.610.0611

This test report may be reproduced in full; partial reproduction only may be made with the written consent of F2 Labs. The results in this report apply only to the equipment tested.

Report Number: F2P21307-01E Page 2 of 34 Issue Date: July 19, 2019

TABLE OF CONTENTS

		_
Section	Title	Page
1	ADMINISTRATIVE INFORMATION	4
2	SUMMARY OF TEST RESULTS/MODIFICATIONS	7
3	TABLE OF MEASURED RESULTS	8
4	ENGINEERING STATEMENT	9
5	EUT INFORMATION AND DATA	10
6	LIST OF MEASUREMENT INSTRUMENTATION	11
7	OCCUPIED BANDWIDTH	12
8	FIELD STRENGTH OF EMISSIONS/RADIATED SPURIOUS	14
9	VARIATION OF THE INPUT POWER	22
10	CONDUCTED EMISSIONS	27
11	PHOTOGRAPHS	32

Page 3 of 34 Report Number: F2P21307-01E Issue Date: July 19, 2019

Model: ALS20

1 ADMINISTRATIVE INFORMATION

1.1 Measurement Location:

F2 Labs in Middlefield, Ohio. Site description and attenuation data are on file with the FCC's Sampling and Measurement Branch at the FCC Laboratory in Columbia, MD.

1.2 Measurement Procedure:

All measurements were performed according to the 2013 version of ANSI C63.10 and recommended FCC procedure of measurement of DXT operating under Section 15.249. A list of the measurement equipment can be found in Section 6.

Report Number: F2P21307-01E Page 4 of 34 Issue Date: July 19, 2019

Model: ALS20

1.3 Uncertainty Budget:

The uncertainty in EMC measurements arises from several factors which affect the results, some associated with environmental conditions in the measurement room, the test equipment being used, and the measurement techniques adopted.

The measurement uncertainty budgets detailed below are calculated from the test and calibration data and are expressed with a 95% confidence factor using a coverage factor of k=2. The Uncertainty for a laboratory are referred to as *U*lab. For Radiated and Conducted Emissions, the Expanded Uncertainty is compared to the *U*cispr values to determine if a specific margin is required to deem compliance.

Ulab

Measurement Range	Combined Uncertainty	Expanded Uncertainty
Radiated Emissions <1 GHz @ 3m	2.54	5.07dB
Radiated Emissions <1 GHz @ 10m	2.55	5.09dB
Radiated Emissions 1 GHz to 2.7 GHz	1.81	3.62dB
Radiated Emissions 2.7 GHz to 18 GHz	1.55	3.10dB
AC Power Line Conducted Emissions, 150kHz to 30 MHz	1.38	2.76dB
AC Power Line Conducted Emissions, 9kHz to 150kHz	1.66	3.32dB

Ucispr

Measurement Range	Expanded Uncertainty			
Radiated Emissions <1 GHz @ 3m	5.2dB			
Radiated Emissions <1 GHz @ 10m	5.2dB			
Radiated Emissions 1 GHz to 2.7 GHz	Under Consideration			
Radiated Emissions 2.7 GHz to 18 GHz	Under Consideration			
AC Power Line Conducted Emissions, 150kHz to 30 MHz	3.6dB			
AC Power Line Conducted Emissions, 9kHz to 150kHz	4.0dB			

If *U*lab is less than or equal to *U*cispr, then:

- · compliance is deemed to occur if no measured disturbance exceeds the disturbance limit;
- · non-compliance is deemed to occur if any measured disturbance exceeds the disturbance limit.

If *U*lab is greater than *U*cispr in table 1, then:

- compliance is deemed to occur if no measured disturbance, increased by (\emph{U} lab \emph{U} cispr), exceeds the disturbance limit;
- non-compliance is deemed to occur if any measured disturbance, increased by (*U*lab *U*cispr), exceeds the disturbance limit.

Note: Only measurements listed in the tables above that relate to tests included in this Test Report are applicable.

Report Number: F2P21307-01E Page 5 of 34 Issue Date: July 19, 2019

1.4 **Document History:**

Document Number	Description	Issue Date	Approved By
F2P21307-01E	First Issue	July 19, 2019	K. Littell

Page 6 of 34 Report Number: F2P21307-01E Issue Date: July 19, 2019

2 **SUMMARY OF TEST RESULTS**

Test Name	Standard(s)	Results
-20dB Occupied Bandwidth	CFR 47 Part 15.215(c)	Complies
Field Strength of Emissions	CFR 47 Part 15.249(a)(d)	Complies
Radiated Spurious Emissions	CFR 47 Part 15.249(d) / Part 15.209	Complies
Variation of the Input Power	CFR 47 Part 15.31(e)	Complies
Conducted Emissions	CFR 47 Part 15.207(a)	Complies

Modifications Made to the Equipment	
None	

3 **TABLE OF MEASURED RESULTS**

Test	920.8 MHz
Field Strength of Fundamental at 24VDC input	88.5 dBµV/m 26.6 mV/m
Limit for Fundamental	93.97 dBµV/m 50 millivolts/meter
-20dB Occupied Bandwidth (MHz)	0.116
Variation of input power to 85% of the lowest rated power to the EUT: Field Strength of Fundamental at lowest 10.2VDC input.	87.5 dBµV/m 23.7 mV/m
Variation of input power to 115% of the highest rated power to the EUT: Field Strength of Fundamental at 27.6VDC input	88.5 dBµV/m 26.6 mV/m
Variation of input power to 115% of the highest rated power to the EUT: Field Strength of Fundamental at 57 VDC input from PoE	88.3 dBµV/m 26.6 mV/m
Variation of input power to 85% of the highest rated power to the EUT: Field Strength of Fundamental at 41 VDC input from PoE	88.1 dBµV/m 25.4 mV/m

Page 8 of 34 Report Number: F2P21307-01E Issue Date: July 19, 2019

Model: ALS20

4 ENGINEERING STATEMENT

This report has been prepared on behalf of Deister Electronics USA, Inc., to provide documentation for the testing described herein. This equipment has been tested and found to comply with part 15.249 of the FCC Rules using ANSI C63.10 2013 standard. The test results found in this test report relate only to the items tested.

060818

Report Number: F2P21307-01E Page 9 of 34 Issue Date: July 19, 2019

Order Number: F2P21307 Applicant: Deister Electronics USA, Inc.

Model: ALS20

5 EUT INFORMATION AND DATA

5.1 Equipment Under Test:

Product: Airlink Spot

Model: ALS20*

*Denotes actual model tested as worst-case representative of product family that

includes models ALS20 and ALS20P.

Serial No.: 3226501094 FCC ID: **IXLALS20**

5.2 Trade Name:

Deister Electronics USA, Inc.

5.3 Power Supply:

24VDC powered using RS485 line

5.4 Applicable Rules:

CFR 47, Part 15.249

5.5 Equipment Category:

Radio Transmitter

5.6 Antenna:

1dBi Gain Integral Antenna

5.7 Accessories:

N/A

5.8 Test Item Condition:

The equipment to be tested was received in good condition.

5.9 Testing Algorithm:

EUT was configured to continuously transmit on its one frequency of 920.8 MHz.

060818

Report Number: F2P21307-01E Page 10 of 34 Issue Date: July 19, 2019

6 LIST OF MEASUREMENT INSTRUMENTATION

Equipment Type	Asset Number	Manufacturer	Model	Serial Number	Calibration Due Date
Shielded Chamber	CL166-E	Albatross Projects	B83117-DF435- T261	US140023	Aug. 30, 2019
Temp/Hum. Recorder	CL261	Extech	445814	04	Mar. 6, 2020
Temp/Hum. Recorder	CL263	Extech	445814	06	Mar. 6, 2020
Receiver	CL151	Rohde & Schwarz	ESU40	100319	Oct. 25, 2019
Antenna, JB3 Combination			JB3	A030315	Oct. 11, 2019
Horn Antenna			3115	9809-5580	Jan. 31, 2021
Loop Antenna	CL194	AH Systems, Inc.	SAS-562B	281	May 23, 2020
Pre-Amplifier	CL153	Agilent	83006-69007	MY39500791	Aug. 24, 2019
Transient Limiter	CL102	Hewlett Packard	11947A	3107A03325	Feb. 7, 2020
Spectrum Analyzer	CL147	Agilnt	E7402A	MY45101241	Jan. 25, 2020
LISN	LISN CL181 Com-Power		LI-125A	191226	July 3, 2021
LISN	LISN CL182 Com-Power		LI-125A	191225	July 3, 2021
Software:	Software: Tile Version 3.4.B.3		Software Verific	ed: May 15, 2019; c	July 19, 2019
Software:	EMC	32, Version 8.53.0	Softwar	e Verified: May 15,	2019

Report Number: F2P21307-01E Page 11 of 34 Issue Date: July 19, 2019

Model: ALS20

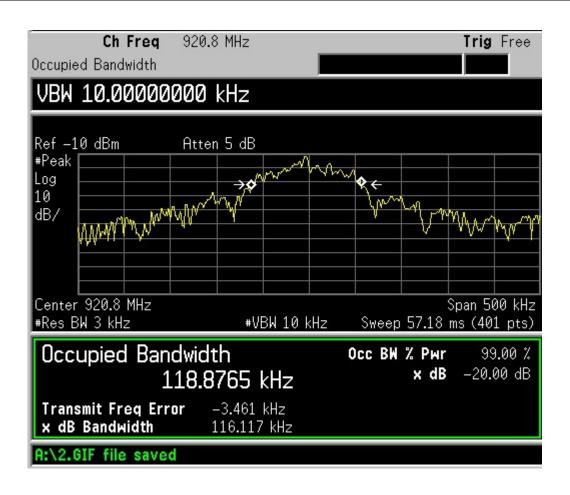
7 FCC PART 15.215(e), OCCUPIED BANDWIDTH

7.1 Requirements:

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the -20dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage.

Bandwidth measurements were made at the 920.8 frequency. The bandwidth was measured using the analyzer's measurement function.

060818


Report Number: F2P21307-01E Page 12 of 34 Issue Date: July 19, 2019

Order Number: F2P21307

7.2 Occupied Bandwidth Test Data

Test Date(s):	May 15, 2019	Test Engineer(s):	J. Chiller
		Air Temperature:	22.3°C
Standards:	CFR 47 Part 15.215(c)	Relative Humidity:	36%

Report Number: F2P21307-01E Page 13 of 34 Issue Date: July 19, 2019

Model: ALS20

8 FCC PART 15.249(a)(d) – FIELD STRENGTH OF EMISSIONS FROM INTENTIONAL RADIATORS

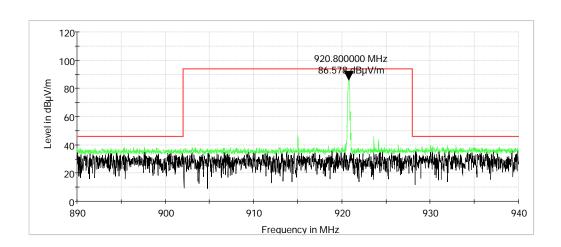
(a) Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)
902-928 MHz	50	500
2400-2483.5 MHz	50	500
5725-5875 MHz	50	500
24.0-24.25 GHz	250	2500

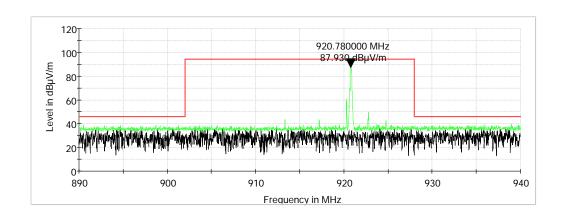
(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

NOTE: During the pre-scan evaluation, the EUT was rotated in all three orthogonal positions to find the maximum emissions. The orthogonal position that showed the highest emissions was used. The antenna was raised between 1 and 4 meters and the EUT turntable was rotated 360 degrees to maximize the emissions.

Report Number: F2P21307-01E Page 14 of 34 Issue Date: July 19, 2019

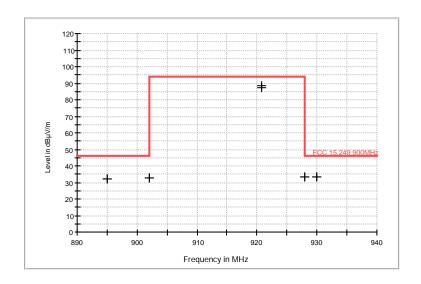


Order Number: F2P21307 Model: ALS20


Test Data - Field Strength of Emissions from Intentional Radiators 8.1

Test Date(s):	May 15, 2019	Test Engineer(s):	J. Chiller
Ctondondo.	ds: CFR 47 Part 15.249(a)	Air Temperature:	22.3°C
Standards:		Relative Humidity:	36%

Characterization Scan, 24V, Vertical


Characterization Scan, 24V, Horizontal

Report Number: F2P21307-01E Page 15 of 34 Issue Date: July 19, 2019

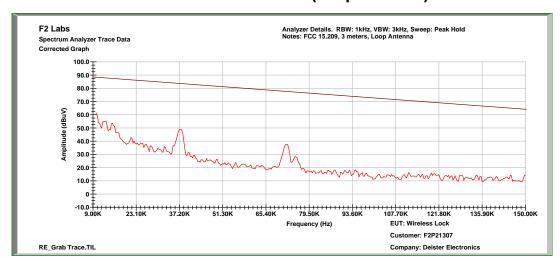
Frequency (MHz)	Antenna Polarization	Antenna Height (cm)	Azimuth (degrees)	Reading (dBµV)	Cable Loss & Antenna Factor (dB)	Emission (dBµV/m)	Limit (dBµV/m)	Margin (dB)
895.000000	V	110.00	53.00	19.0	13.3	32.30	46.0	-13.7
895.000000	Н	100.00	10.00	19.1	13.3	32.40	46.0	-13.6
902.000000	Н	100.00	10.00	19.1	13.5	32.60	46.0	-13.4
902.000000	V	110.00	53.00	19.1	13.5	32.60	46.0	-13.4
920.800000	V	110.00	53.00	74.8	13.7	88.50	94.0	-5.5
920.800000	Н	100.00	10.00	73.6	13.7	87.30	94.0	-6.7
928.000000	V	110.00	53.00	19.2	13.8	33.00	46.0	-13.0
928.000000	Н	100.00	10.00	19.3	13.8	33.10	46.0	-12.9
930.000000	V	110.00	53.00	19.3	13.9	33.20	46.0	-12.8
930.000000	Н	100.00	10.00	19.3	13.9	33.20	46.0	-12.8

Model: ALS20

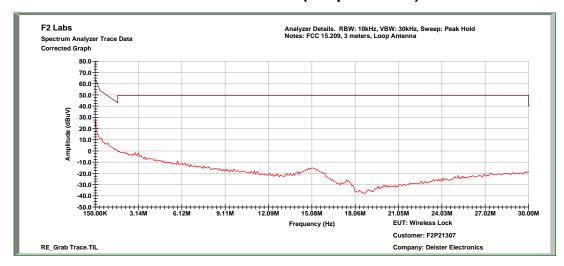
8.2 Test Data – Spurious Emissions

Notes: Plots are peak, max hold pre-scan data included only to determine what frequencies to investigate and measure. During the pre-scan evaluation, the EUT was rotated in all three orthogonal positions to find the maximum emissions. The orthogonal position that showed the highest emissions was used. At some frequencies, no emissions from the EUT were measurable over the ambient noise floor. The readings did not change with EUT on and EUT off. DC powered using RS485 was determined worst-case.

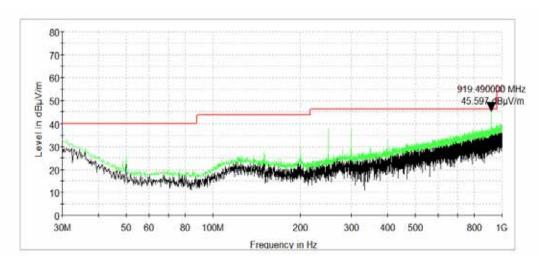
At least 6 of the highest frequencies were measured per ANSI 63.4 in a 3-meter anechoic chamber. Frequencies below 1GHz were measured using a quasi-peak detector. The antenna was raised between 1 and 4 meters and the EUT turntable was rotated 360 degrees to maximize the emissions. Some of the frequencies did not change with the EUT on or off. At those frequencies, the test distance was shortened to 1 meter and still no emissions from the EUT were visible or over the ambient or limit. Frequencies were scanned from 9kHz to 10 GHz and the highest emissions are listed below.

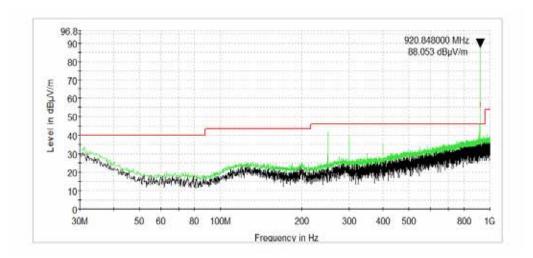

In the following plots, the black line indicates ambient noise and the red line indicates the measurement with the EUT on. Emissions to be found by the EUT were measured and listed in tables below.

Report Number: F2P21307-01E Page 17 of 34 Issue Date: July 19, 2019

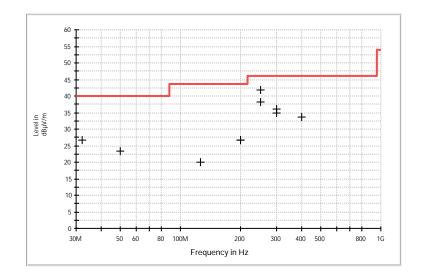


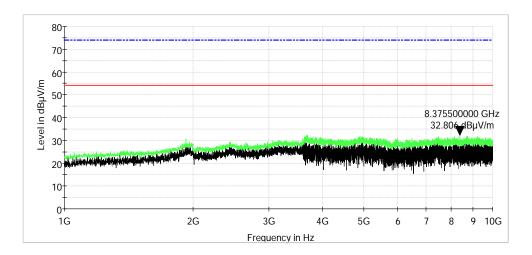
Test Date(s):	May 15, 2019	Test Engineer(s):	J. Chiller
Standards:	CFR 47 Part 15.249(d) / Part 15.209	Air Temperature:	22.8°C
		Relative Humidity:	36%


0.009 MHz to 0.15 MHz (Loop Antenna)

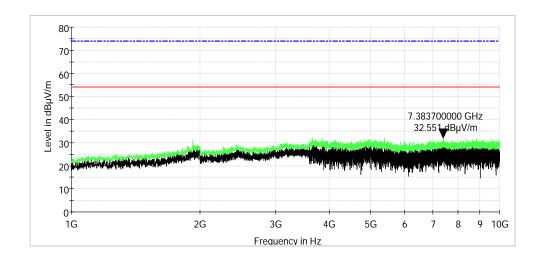

0.15 MHz to 30 MHz (Loop Antenna)

Characterization Scan: 30 MHz to 1000 MHz, Vertical


Characterization Scan: 30 MHz to 1000 MHz, Horizontal


Measurements: 30 MHz to 1000 MHz

Frequency (MHz)	Antenna Polarization	Antenna Height (cm)	Azimuth (degrees)	Reading (dBµV)	Cable Loss & Antenna Factor (dB)	Emission (dBµV/m)	Limit (dBµV/m)	Margin (dB)
32.120000	V	100.00	0.00	20.2	6.4	26.60	40.0	-13.4
50.000000	V	100.00	0.00	28.5	-5.0	23.50	40.0	-16.5
124.880000	Н	110.00	0.00	19.4	0.6	20.00	43.5	-23.5
199.960000	V	100.00	0.00	26.3	0.5	26.80	43.5	-16.7
199.960000	V	100.00	0.00	26.3	0.5	26.80	43.5	-16.7
250.000000	Н	110.00	163.00	41.8	-0.1	41.70	46.0	-4.3
250.000000	V	110.00	39.00	38.4	-0.1	38.30	46.0	-7.7
300.040000	Н	110.00	132.00	34.2	2.0	36.20	46.0	-9.8
300.040000	V	110.00	213.00	32.8	2.0	34.80	46.0	-11.2
399.960000	Н	110.00	51.00	29.1	4.7	33.80	46.0	-12.2



Report Number: F2P21307-01E Page 20 of 34 Issue Date: July 19, 2019

Characterization Scan: 1 GHz to 10 GHz, Vertical

Characterization Scan: 1 GHz to 10 GHz, Horizontal

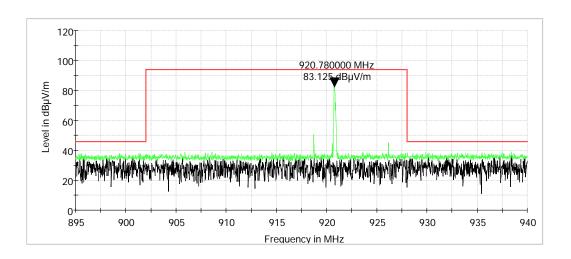
F2

9 VARIATION OF THE INPUT POWER, 15.31(e)

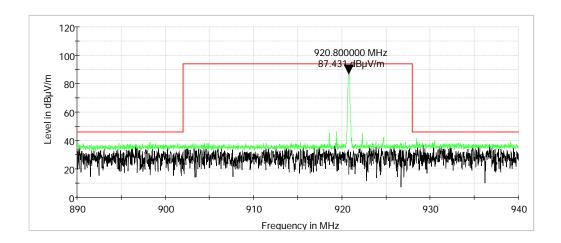
For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

This DC powered device powered using RS485 is rated for 12 – 24VDC so the 85% was taken from the 12V and the 115% was taken from the 24V.

PoE standard voltage range is 40.8VDC – 57VDC with the nominal voltage at 48VDC.


DC powered using RS485 was determined worst-case.

RESULTS: The results showed that the fundamental frequency did not move outside the frequency band and the field strength did not increase above the limit during the variations.

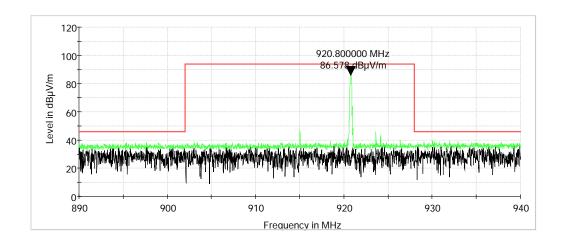

060818

Report Number: F2P21307-01E Page 22 of 34 Issue Date: July 19, 2019

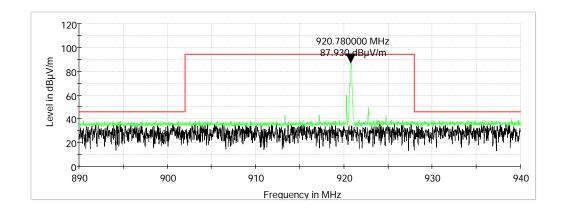
Characterization Scan, 10.2V, Vertical

Characterization Scan, 10.2V, Horizontal

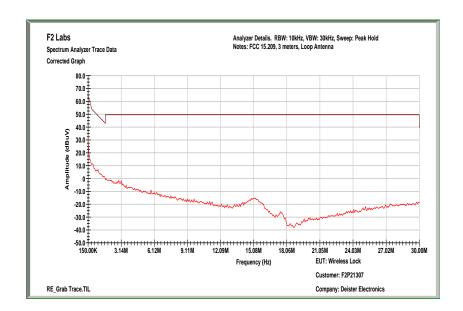



Order Number: F2P21307

Measurements: 10.2V


Frequency (MHz)	Antenna Polarization	Antenna Height (cm)	Azimuth (degrees)	Reading (dBµV)	Correction Factors (dB)	Emission (dBµV/m)	Limit (dBµV/m)	Margin (dB)
895.000000	V	110.00	53.00	18.9	13.3	32.20	46.0	-13.8
895.000000	Н	110.00	5.00	19.1	13.3	32.40	46.0	-13.6
902.000000	Н	110.00	5.00	19.1	13.5	32.60	46.0	-13.4
902.000000	V	110.00	53.00	19.1	13.5	32.60	46.0	-13.4
920.800000	V	110.00	53.00	73.2	13.7	86.90	94.0	-7.1
920.800000	Н	110.00	5.00	73.8	13.7	87.50	94.0	-6.5
928.000000	V	110.00	53.00	19.3	13.8	33.10	46.0	-12.9
928.000000	Н	110.00	5.00	19.3	13.8	33.10	46.0	-12.9
930.000000	V	110.00	53.00	19.4	13.9	33.30	46.0	-12.7
930.000000	Н	110.00	5.00	19.4	13.9	33.30	46.0	-12.7

Characterization Scan, 27.6V, Vertical



Characterization Scan, 27.6V, Horizontal

Measurements: 27.6V

Frequency (MHz)	Antenna Polarization	Antenna Height (cm)	Azimuth (degrees)	Reading (dBµV)	Cable Loss & Antenna Factor (dB)	Emission (dBµV/m)	Limit (dBµV/m)	Margin (dB)
895.000000	V	110.00	53.00	19.0	13.3	32.30	46.0	-13.7
895.000000	Н	100.00	10.00	19.1	13.3	32.40	46.0	-13.6
902.000000	Н	100.00	10.00	19.1	13.5	32.60	46.0	-13.4
902.000000	V	110.00	53.00	19.1	13.5	32.60	46.0	-13.4
920.800000	V	110.00	53.00	74.8	13.7	88.50	94.0	-5.5
920.800000	Н	100.00	10.00	73.6	13.7	87.30	94.0	-6.7
928.000000	V	110.00	53.00	19.2	13.8	33.00	46.0	-13.0
928.000000	Н	100.00	10.00	19.3	13.8	33.10	46.0	-12.9
930.000000	V	110.00	53.00	19.3	13.9	33.20	46.0	-12.8
930.000000	Н	100.00	10.00	19.3	13.9	33.20	46.0	-12.8

Model: ALS20

10 CONDUCTED EMISSIONS

10.1 Requirements

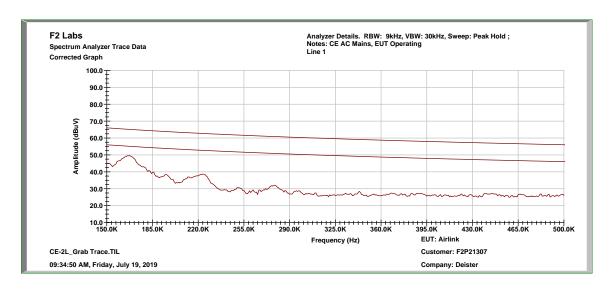
In accordance with FCC CFR 47 Part 15.207(a), "Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

	Conducted Limit (dBµV)			
Frequency of Emission (MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

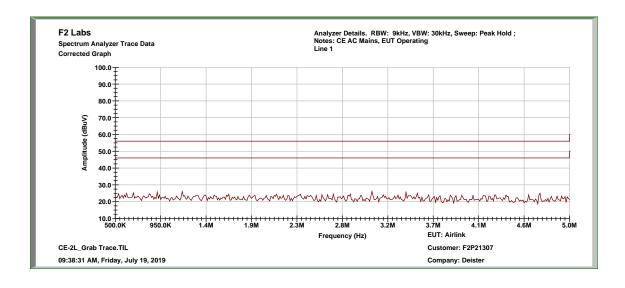
^{*}Decreases with the logarithm of the frequency.

10.2 Procedure

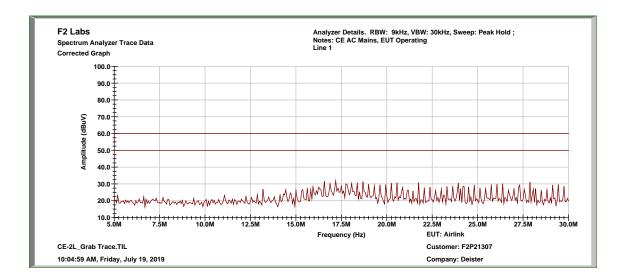
The EUT was placed on a 1.0 x 1.5 meter non-conductive table, 0.8 meter above a horizontal ground plane and 0.4 meter from a vertical ground plane. Power was provided to the EUT through a LISN bonded to a 3 x 2 meter ground plane. The LISN and peripherals were supplied power through a filtered AC power source. The output of the LISN was connected to the input of the receiver via a transient limiter, and emissions in the range 150 kHz to 30 MHz were measured. The measurements were recorded using the quasi-peak and average detectors as directed by the standard, and the resolution bandwidth during testing was 9 kHz. The raw measurements were corrected to allow for attenuation from the LISN, transient limiter and cables. The DC powered using RS485 was determined worst-case and the following data is for that power source.


060818

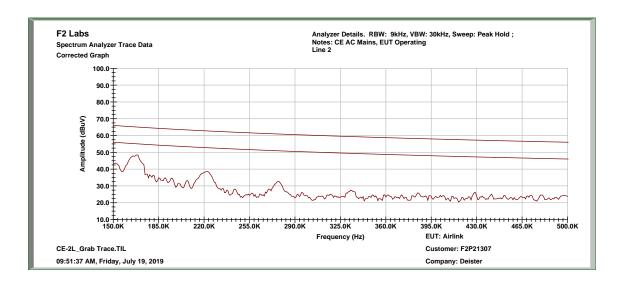
Report Number: F2P21307-01E Page 27 of 34 Issue Date: July 19, 2019

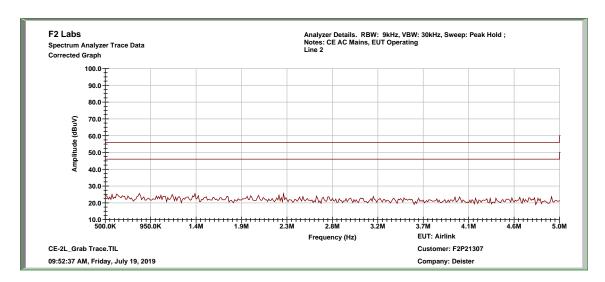

10.3 Conducted Emissions Test Data

Test Date(s):	July 19, 2019	Test Engineer:	J. Chiller
Rule:	15.207	Air Temperature:	22.0° C
Test Results:	Complies	Relative Humidity:	41%


Conducted Test - Line 1: 0.15 MHz to 0.5 MHz

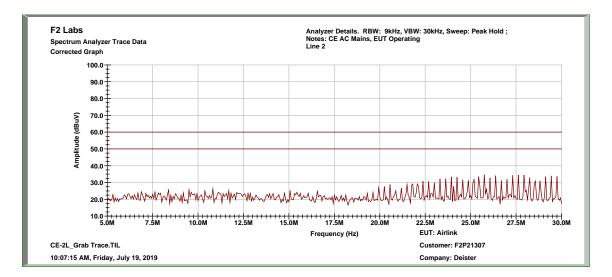
Conducted Test - Line 1: 0.5 MHz to 5.0 MHz


Conducted Test - Line 1: 5.0 MHz to 30.0 MHz


Note: There were no measurable points. The peak emissions were below the Average and Quasi-peak limits.

Report Number: F2P21307-01E Page 29 of 34 Issue Date: July 19, 2019

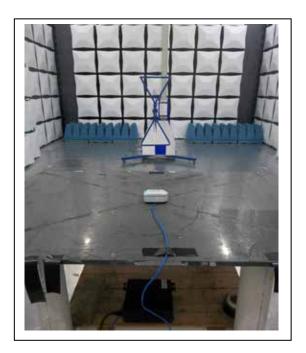
Conducted Test - Line 2: 0.15 MHz to 0.5 MHz



Conducted Test - Line 2: 0.5 MHz to 5.0 MHz

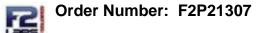
Report Number: F2P21307-01E Page 30 of 34 Issue Date: July 19, 2019

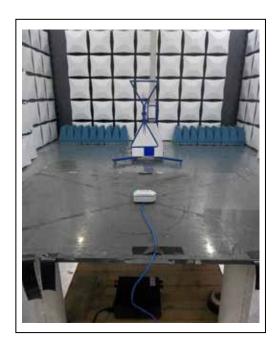
Conducted Test - Line 2: 5.0 MHz to 30.0 MHz


Note: There were no measurable points. The peak emissions were below the Average and Quasi-peak limits.

Order Number: F2P21307

11 PHOTOGRAPHS


Field Strength of Emissions, Occupied Bandwidth, Voltage Variations


Loop Antenna

Report Number: F2P21307-01E Page 32 of 34 Issue Date: July 19, 2019

Radiated Spurious Emissions: Less than 1 GHz

Radiated Spurious Emissions: Greater than 1 GHz

Report Number: F2P21307-01E Page 33 of 34 Issue Date: July 19, 2019

Conducted Emissions

Report Number: F2P21307-01E Page 34 of 34 Issue Date: July 19, 2019