Parameters of Probe: EX3DV4 - SN:7678 # Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity ^F
(S/m) | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k = 2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41,9 | 0.89 | 11.14 | 11.14 | 11.14 | 0.49 | 0.83 | ±12.0% | | 835 | 41.5 | 0.90 | 10.73 | 10.73 | 10.73 | 0.51 | 0.81 | ±12.0% | | 900 | 41.5 | 0.97 | 10.60 | 10.60 | 10.60 | 0.46 | 0.85 | ±12.0% | | 1750 | 40.1 | 1.37 | 8.63 | 8.63 | 8.63 | 0.41 | 0.86 | ±12.0% | | 1900 | 40.0 | 1.40 | 8.55 | 8.55 | 8.55 | 0.41 | 0.86 | ±12.0% | | 2300 | 39.5 | 1,67 | 8.53 | 8.53 | 8.53 | 0.36 | 0,90 | ±12.0% | | 2450 | 39.2 | 1.80 | 8.34 | 8.34 | 8.34 | 0.34 | 0.90 | ±12.0% | | 2600 | 39.0 | 1.96 | 8.11 | 8.11 | 8.11 | 0.36 | 0.90 | ±12.0% | | 3500 | 37.9 | 2.91 | 7.10 | 7.10 | 7.10 | 0.30 | 1.35 | ±13.1% | | 3700 | 37.7 | 3.12 | 7.06 | 7.06 | 7.06 | 0.30 | 1.35 | ±13.1% | | 5200 | 36.0 | 4.66 | 5.67 | 5.67 | 5.67 | 0.40 | 1.80 | ±13.1% | | 5300 | 35.9 | 4.76 | 5.50 | 5.50 | 5.50 | 0.40 | 1.80 | ±13.1% | | 5600 | 35.5 | 5.07 | 4.95 | 4.95 | 4.95 | 0.40 | 1.80 | ±13.1% | | 5800 | 35.3 | 5.27 | 5.00 | 5.00 | 5.00 | 0.40 | 1.80 | ±13.1% | C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. Extra frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide:R22) Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ (k=2) # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ±0.5% (k=2) # Dynamic Range f(SAR_{head}) (TEM cell, feval = 1900 MHz) Uncertainty of Linearity Assessment: ±0.6% (k=2) # **Conversion Factor Assessment** # Deviation from Isotropy in Liquid ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst S Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client BTL Certificate No: D750V3-1145_May22 # **CALIBRATION CERTIFICATE** Object D750V3 - SN:1145 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: May 27, 2022 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) 100 4 | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-22 (No. 217-03525) | Apr-23 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 04-Apr-22 (No. 217-03527) | Apr-23 | | Type-N mismatch combination | SN: 310982 / 06327 | 04-Apr-22 (No. 217-03528) | Apr-23 | | Reference Probe EX3DV4 | SN: 7349 | 31-Dec-21 (No. EX3-7349_Dec21) | Dec-22 | | DAE4 | SN: 601 | 02-May-22 (No. DAE4-601_May22) | May-23 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 | | | Name | Function | Signature | | Calibrated by: | Joanna Lleshaj | Laboratory Technician | Applicay. | | Approved by: | Sven Kühn | Technical Manager | CA. | Cal Data (Cartificate No.) Issued: May 31, 2022 Cabadulad Calibration This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D750V3-1145 May22 Page 1 of 6 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### **Additional Documentation:** c) DASY System Handbook Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | 1 17 1 | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 750 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.9 ± 6 % | 0.89 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | 7.0 | | # SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.15 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.55 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | | |---|--------------------|--------------------------|--| | SAR measured | 250 mW input power | 1.39 W/kg | | | SAR for nominal Head TSL parameters | normalized to 1W | 5.54 W/kg ± 16.5 % (k=2) | | ### Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 55.5 Ω - 2.5 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 24.9 dB | | ### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.033 ns | |----------------------------------|----------|
After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| | | | Certificate No: D750V3-1145_May22 Page 4 of 6 ### **DASY5 Validation Report for Head TSL** Date: 27.05.2022 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1145 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.89 \text{ S/m}$; $\varepsilon_r = 40.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(10.11, 10.11, 10.11) @ 750 MHz; Calibrated: 31.12.2021 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 02.05.2022 Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 60.37 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 3.32 W/kg SAR(1 g) = 2.15 W/kg; SAR(10 g) = 1.39 W/kg Smallest distance from peaks to all points 3 dB below = 20 mm Ratio of SAR at M2 to SAR at M1 = 65.1% Maximum value of SAR (measured) = 2.87 W/kg # Impedance Measurement Plot for Head TSL In Collaboration with # CALIBRATION LABORATORY Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, Chi Fax: +86-10-62304633-2504 http://www.chinattl.cn CALIBRATION **CNAS L0570** Client E-mail: cttl@chinattl.com BTL Tel: +86-10-62304633-2079 Certificate No: Z21-60123 # **CALIBRATION CERTIFICATE** Object D835V2 - SN: 4d084 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: April 13, 2021 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRP2 | 106276 | 12-May-20 (CTTL, No.J20X02965) | May-21 | | Power sensor NRP6A | 101369 | 12-May-20 (CTTL, No.J20X02965) | May-21 | | ReferenceProbe EX3DV4 | SN 7307 | 29-May-20(SPEAG,No.EX3-7307_May20) | May-21 | | DAE4 | SN 777 | 08-Jan-21(CTTL-SPEAG,No.Z21-60003) | Jan-22 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 01-Feb-21 (CTTL, No.J21X00593) | Jan-22 | | NetworkAnalyzer E5071C | MY46110673 | 14-Jan-21 (CTTL, No.J21X00232) | Jan-22 | Name Function Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: April 19, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z21-60123 Page 1 of 6 Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z21-60123 Page 2 of 6 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1 | DASY52 | V52.10,4 | |--------------------------|--| | Advanced Extrapolation | | | Triple Flat Phantom 5.1C | | | 15 mm | with Spacer | | dx, dy, dz = 5 mm | | | 835 MHz ± 1 MHz | | | | Advanced Extrapolation Triple Flat Phantom 5.1C 15 mm dx, dy, dz = 5 mm | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.1 ± 6 % | 0.91 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.40 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.53 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm^3 (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 1.58 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.29 W/kg ± 18.7 % (k=2) | Certificate No: Z21-60123 Page 3 of 6 # Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.6Ω- 3.12jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 30.0dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.301 ns |
--|----------| | The state of s | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| | Wallatada by | SPEAG | Certificate No: Z21-60123 #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d084 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.906$ S/m; $\varepsilon_r = 41.05$; $\rho = 1000$ kg/m³ Phantom section: Right Section DASY5 Configuration: Probe: EX3DV4 - SN7307; ConvF(10.2, 10.2, 10.2) @ 835 MHz; Calibrated: 2020-05-29 Date: 04.13.2021 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn777; Calibrated: 2021-01-08 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) ### Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.50 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.63 W/kg SAR(1 g) = 2.4 W/kg; SAR(10 g) = 1.58 W/kg Smallest distance from peaks to all points 3 dB below = 16.5 mm Ratio of SAR at M2 to SAR at M1 = 66.2% Maximum value of SAR (measured) = 3.20 W/kg 0 dB = 3.20 W/kg = 5.05 dBW/kg Certificate No: Z21-60123 # Impedance Measurement Plot for Head TSL | Asset No. : | E-534 | Model No. : | D835MHzV2 | Serial No. : | 4d084 | |--|--------------------------------|---|---|--------------------------|--| | Environmental | 22.9°C, 52 % | Original Cal. Date : | | Next Cal. Date : | April 12, 2024 | | | • | Standa | | | | | | | IEEE Recommended | Practice for Determining | the Peak Spatial-Averag | ged Specific Absorpito | | 1 | IEEE Std 1528-2013 | Rate(SAR) in the Human Head from Wireless Communication Devices: Measurement Texhniques, June 2013 | | | rices: Measurement | | 2 | IEC 62209-2 | Procedure to deter | mine the Specific Absorp | tion Rate (SAR) for wire | eless communication | | 2 | ILC 02209-2 | devices used in clos | e proximity to the human | body(frequency range | of 30 MHz to 6 GHz), | | 3 | KDB865664 | SA | R Measurement Requirer | ments for 100 MHz to 6 | GHz | | | | Equipment | Information | | | | Equipment : | Manufacturer : | Model No. : | Serial No. : | Cal.Organization: | Cal. Date : | | Power Amplifier | EMCI | EMC053035 | 980869 | N/A | December 7, 2021 | | Power Meter | Anritsu | MA2487A | 6K00004714 | N/A | August 15, 2021 | | Power Sensor | Anritsu | MA2491A | 34138 | N/A | August 15, 2021 | | Directional Coupler | Woken | TS-PCC0M-05 | 107090019 | N/A | N/A | | Signal Generator | R&S | SMB100A | 113244 | N/A | August 2, 2021 | | ENA Network Analyzer | Agilent | E5071C | MY46524658 | N/A | March 21, 2022 | | Model No | | | For Head Tissue | | | | | Item | Original Cal. Result | Verified on 2022/04/08 | Deviation | Result | | | Impedance, transformed to feed | 50.6Ω-3.12jΩ | 47.8Ω+0.4jΩ | <5Ω | Pass | | D835V2 | Return Loss(dB) | -30 | -27.268 | 9.1% | Pass | | D835 V Z | SAR Value for | | | | | | | 1g(mW/g) | 2.4 | 2.52 | 5.0% | Pass | | | SAR Value for | 1.58 | 1.63 | 3.2% | Pass | | | 10g(mW/g) | 1.50 | 1.03 | 3.270 | 1 033 | | | Impedance Test-Head | | | Return Loss-Head | | | 5071C Network Analyzer 3 Active Ch/Tore 2 Personne 3 Stimulus 4 My/Analyzer | Short Sur- | Projec | ESOTIC Network Analyzer Lactive Chi/Trace 2 Response 3 Stimulus 4 Mix/Analysis | | | | NIEEE 533 smith (8±30) scale 1.0000 [73] >1 835.00000 NNZ 47.755 α 392.66 κn | 24-89E DH | Format Seath (ref b) Log Mag Phase Crosp Delay Small K = 3 × Folar Lin Mag SWR Real Imagnary Expand Phase Popular Phase Return | Pixel S11 cog wag 10.00de/ set 0.00de (7) 50.00 20.00 30.00 20.00 10.00 -10.00 -70.00 -10.00 -40.00 | | System Frist Ziven Sina Ont Dimp Serent Pala Serent Pala Malport Text Selop Miss Sertice Backlight O O O Firmmen Service Med India Recture Texture India Ind | #### Validation Report for Head TSL Test Laboratory: BTL Date: 2022/04/08 #### System Check_H835 Frequency: 835 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 23.0°C; Liquid Temperature: 22.0°C Medium parameters used: f = 835 MHz; σ = 0.906 S/m; g_{c} = 42.767; ρ = 1000 kg/m³ DASY5 Configuration: - Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value - Area Scan Setting: Find Secondary Maximum Within: 2.0 do and with a point of the greater than 0.0012W/kg - Electronics: DAE4 Sn1486; Calibrated: 2021/6/1 - Probe: EX3DV4 - SN7369; ConvF(9.97, 9.97, 9.97) @ 835 MHz; Calibrated: 2021/6/3 - Sensor-Surface: 2mm (Mechanical Surface Detection) - Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 AA; Serial: 1240 #### Configuration/Pin=250mW/Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 3.19 W/kg ####
Configuration/Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 60.72 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 3.81 W/kg SAR(1 g) = 2.52 W/kg; SAR(10 g) = 1.63 W/kg Smallest distance from peaks to all points 3 dB below = 16 mm Ratio of SAR at M2 to SAR at M1 = 65.9% Maximum value of SAR (measured) = 3.23 W/kg Calibrator: Jerry Chang Approver: Peter Chen ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client BTI Certificate No: D1800V2-2d210_May22 # **CALIBRATION CERTIFICATE** Object D1800V2 - SN:2d210 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: May 30, 2022 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |--|--------------------|--|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-22 (No. 217-03525) | Apr-23 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 04-Apr-22 (No. 217-03527) | Apr-23 | | Type-N mismatch combination | SN: 310982 / 06327 | 04-Apr-22 (No. 217-03528) | Apr-23 | | Reference Probe EX3DV4 | SN: 7349 | 31-Dec-21 (No. EX3-7349_Dec21) | Dec-22 | | DAE4 | SN: 601 | 02-May-22 (No. DAE4-601_May22) | May-23 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 | | | Name | Function | Signature | | Calibrated by: | Aidonia Georgiadou | Laboratory Technician | X1 20 | | A and a second business of the second | 0 1/21 | 4.7.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | 1 | | Approved by: | Sven Kühn | Technical Manager | SA | | | | | | Issued: June 2, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL N/A tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 1800 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.8 ± 6 % | 1.37 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.49 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 38.2 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.95 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 19.9 W/kg ± 16.5 % (k=2) | # Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 49.5 Ω - 2.6 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 31.6 dB | | # General Antenna Parameters and Design | Electrical Delay (one direction) | 1.212 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the
Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|---------| | | 0, 2, 0 | # **DASY5 Validation Report for Head TSL** Date: 30.05.2022 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:2d210 Communication System: UID 0 - CW; Frequency: 1800 MHz Medium parameters used: f = 1800 MHz; $\sigma = 1.37 \text{ S/m}$; $\varepsilon_r = 38.8$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.63, 8.63, 8.63) @ 1800 MHz; Calibrated: 31.12.2021 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 02.05.2022 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 • DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 108.6 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 17.8 W/kg # SAR(1 g) = 9.49 W/kg; SAR(10 g) = 4.95 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 53.5% Maximum value of SAR (measured) = 14.9 W/kg # Impedance Measurement Plot for Head TSL ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client BTL Certificate No: D1900V2-5d208_May22 # **CALIBRATION CERTIFICATE** Object D1900V2 - SN:5d208 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: May 23, 2022 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-22 (No. 217-03525) | Apr-23 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 04-Apr-22 (No. 217-03527) | Apr-23 | | Type-N mismatch combination | SN: 310982 / 06327 | 04-Apr-22 (No. 217-03528) | Apr-23 | | Reference Probe EX3DV4 | SN: 7349 | 31-Dec-21 (No. EX3-7349_Dec21) | Dec-22 | | DAE4 | SN: 601 | 02-May-22 (No. DAE4-601_May22) | May-23 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 | | | Name | Function | Signature | | Calibrated by: | Michael Weber | Laboratory Technician | M. Wese | | Approved by: | Sven Kühn | Technical Manager | < | Issued: May 30, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL _ tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" # **Additional Documentation:** c) DASY System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 1900 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.0 ± 6 % | 1.40 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | 0.00 | # SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 10.1 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 40.2 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.23 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.8 W/kg ± 16.5 % (k=2) | ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 53.4 Ω + 4.6 j Ω | | | |--------------------------------------|--------------------------------|--|--| | Return Loss | - 25,2 dB | | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.203 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| | Mandactured by | SPEAG | | | | Certificate No: D1900V2-5d208_May22 Page 4 of 6 ### DASY5 Validation Report for Head TSL Date: 23.05.2022 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d208 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.4 \text{ S/m}$; $\varepsilon_r = 39$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.43, 8.43, 8.43) @ 1900 MHz; Calibrated: 31.12.2021 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 02.05.2022 Phantom: Flat Phantom 5.0 (front); Type: OD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration for Head
Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 110.4 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 19.0 W/kg SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.23 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 53.7% Maximum value of SAR (measured) = 15.8 W/kg # Impedance Measurement Plot for Head TSL ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client BTL Certificate No: D2600V2-1111_May22 # **CALIBRATION CERTIFICATE** Object D2600V2 - SN:1111 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: May 25, 2022 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-22 (No. 217-03525) | Apr-23 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 04-Apr-22 (No. 217-03527) | Apr-23 | | Type-N mismatch combination | SN: 310982 / 06327 | 04-Apr-22 (No. 217-03528) | Apr-23 | | Reference Probe EX3DV4 | SN: 7349 | 31-Dec-21 (No. EX3-7349_Dec21) | Dec-22 | | DAE4 | SN: 601 | 02-May-22 (No. DAE4-601_May22) | May-23 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 | | | Name | Function | Signature | | Calibrated by: | Aidonia Georgiadou | Laboratory Technician | TER | | Approved by: | Sven Kühn | Technical Manager | CC | Issued: June 7, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2600V2-1111 May22 Page 2 of 6 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2600 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.6 ± 6 % | 2.02 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | |) | # SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 14.2 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 55.8 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.26 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.7 W/kg ± 16.5 % (k=2) | Certificate No: D2600V2-1111_May22 # Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 48.3 $Ω$ - 7.3 j $Ω$ | | |--------------------------------------|----------------------|--| | Return Loss | - 22.3 dB | | ### General Antenna Parameters and Design | 1 | | |----------------------------------|----------| | Electrical Delay (one direction) | 1.151 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | SPEAG | |-------| | • | Certificate No: D2600V2-1111_May22 Page 4 of 6 ### **DASY5 Validation Report for Head TSL** Date: 25.05.2022 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1111 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.02 \text{ S/m}$; $\varepsilon_r = 37.6$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(7.84, 7.84, 7.84) @ 2600 MHz; Calibrated: 31.12.2021 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 02.05.2022 • Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 • DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 117.3 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 29.5 W/kg SAR(1 g) = 14.2 W/kg; SAR(10 g) = 6.26 W/kg Smallest distance from peaks to all points 3 dB below = 8.9 mm Ratio of SAR at M2 to SAR at M1 = 47.9% Maximum value of SAR (measured) = 24.4 W/kg 0 db - 24.4 W/kg - 15.00 db W/kg # Impedance Measurement Plot for Head TSL