

Report No: JYTSZE201003705

FCC REPORT

Applicant:	Swagtek
Address of Applicant:	10205 NW 19th St. Suite 101, Miami, FL, 33172
Equipment Under Test (E	EUT)
Product Name:	5.7 inch 3G Smart Phone
Model No.:	X57A, NEO, W57A
Trade mark:	LOGIC, iSWAG, UNONU
FCC ID:	O55573120
Applicable standards:	FCC CFR Title 47 Part 15 Subpart B
Date of sample receipt:	16 Oct., 2020
Date of Test:	17 Oct., to 05 Nov., 2020
Date of report issued:	06 Nov., 2020
Test Result:	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version 2

	-	
Version No.	Date	Description
00	06 Nov., 2020	Original

Tested by:

Mike.OU Test Engineer Winner Thang Project Engineer

06 Nov., 2020 Date:

06 Nov., 2020

Date:

Reviewed by:

3 Contents

			Page
1	С	COVER PAGE	1
2	v	/ERSION	2
3	C	CONTENTS	3
		EST SUMMARY	
4	1		4
5	G	GENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	Test Mode	5
	5.4	Measurement Uncertainty	
	5.5	DESCRIPTION OF SUPPORT UNITS	
	5.6	RELATED SUBMITTAL(S) / GRANT (S)	
	5.7	DESCRIPTION OF CABLE USED	
	5.8 5.9	Additions to, deviations, or exclusions from the method Laboratory Facility	
	5.9 5.10		
	5.10		
~			
6	I	EST RESULTS AND MEASUREMENT DATA	8
	6.1	CONDUCTED EMISSION	
	6.2	RADIATED EMISSION	
7	т	EST SETUP PHOTO	19
8	Е	EUT CONSTRUCTIONAL DETAILS	
-		-	

4 Test Summary

Test Item	Section in CFR 47	Result		
Conducted Emission	Part 15.107	Pass		
Radiated Emission	Part 15.109	Pass		
Remark: 1. Pass: The EUT complies with the essential requirements in the standard. 2. N/A: The EUT not applicable of the test item.				
Test Method: ANSI C63.4:2014				

5 General Information

5.1 Client Information

Applicant:	Swagtek
Address:	10205 NW 19th St. Suite 101, Miami, FL, 33172
Manufacturer:	Swagtek
Address:	10205 NW 19th St. Suite 101, Miami, FL, 33172
Factory:	Swagtek
Address:	10205 NW 19th St. Suite 101, Miami, FL, 33172

5.2 General Description of E.U.T.

Product Name:	5.7 inch 3G Smart Phone
Model No.:	X57A, NEO, W57A
Power supply:	Rechargeable Li-ion Battery DC3.8V-2350mAh
AC adapter:	Model: A31A-050100U-US1
	Input: AC100-240V, 50/60Hz, 0.2A
	Output: DC 5.0V, 1000mA
Remark:	Model No.: X57A, NEO, W57A, were identical inside, the electrical circuit design, layout, components used and internal wiring.
	LOGIC model corresponds to the trademark X57A.
	iSWAG model correspond to the trademark NEO.
	UNONU model corresponds to the trademark W57A.
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

5.3 Test Mode

Operating mode Detail description				
PC mode	Keep the EUT in Downloading mode(Worst case)			
Charging+Recording mode	Keep the EUT in Charging+Recording mode			
Charging+Playing mode	Keep the EUT in Charging+Playing mode			
FM mode	Keep the EUT in FM receiver mode			
GPS mode	Keep the EUT in GPS receiver mode			
The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and				

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.5 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX7070	2J8XSZ2	DoC
DELL	MONITOR	SE2018HR	3M7QPY2	DoC
DELL	KEYBOARD	KB216d	N/A	DoC
DELL	MOUSE	MS116t1	N/A	DoC
HP	Printer	HP LaserJet P1007	VNFP409729	DoC

5.6 Related Submittal(s) / Grant (s)

This is an original grant, no related submittals and grants.

5.7 Description of Cable Used

Cable Type	Description	Length	From	То
Detached USB Cable	Shielding	1.0m	EUT	PC/Adapter
Detached headset cable	Unshielded	1.2m	EUT	Headset

5.8 Additions to, deviations, or exclusions from the method

No

5.9 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <u>https://portal.a2la.org/scopepdf/4346-01.pdf</u>

5.10 Laboratory Location

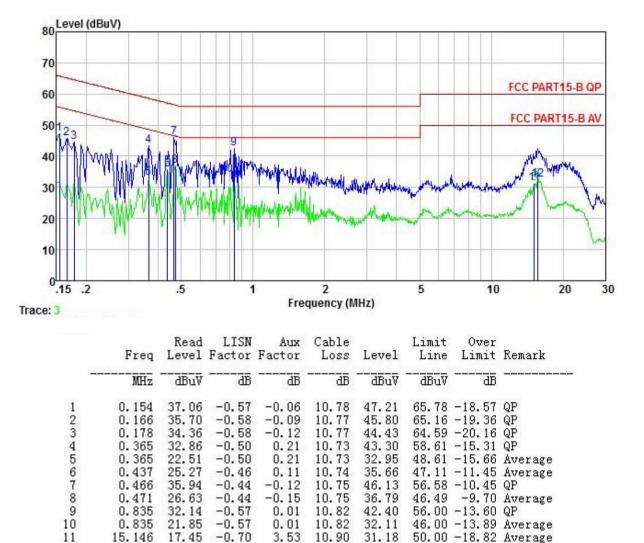
JianYan Testing Group Shenzhen Co., Ltd. Address: No.110~116, Building B, Jinyuan Business Building, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info@ccis-cb.com, Website: <u>http://www.ccis-cb.com</u>

5.11 Test Instruments list

Radiated Emission:							
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
3m SAC	SAEMC	9m*6m*6m	966	07-22-2020	07-21-2021		
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-07-2020	03-06-2021		
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-07-2020	03-06-2021		
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-07-2020	03-06-2021		
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2020	06-21-2021		
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2019	11-17-2020		
EMI Test Software	AUDIX	E3	Version: 6.110919b				
Pre-amplifier	HP	8447D	2944A09358	03-07-2020	03-06-2021		
Pre-amplifier	CD	PAP-1G18	11804	03-07-2020	03-06-2021		
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-05-2020	03-04-2021		
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2019	11-17-2020		
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-05-2020	03-04-2021		
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2020	03-06-2021		
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2020	03-06-2021		
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2020	03-06-2021		

Conducted Emission:							
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-05-2020	03-04-2021		
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-05-2020	03-04-2021		
LISN	CHASE	MN2050D	1447	03-05-2020	03-04-2021		
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2020	07-20-2021		
Cable	HP	10503A	N/A	03-05-2020	03-04-2021		
EMI Test Software	AUDIX	E3	Version: 6.110919b				

6 Test results and Measurement Data


6.1 Conducted Emission

Test Requirement:	FCC Part 15 B Section 15.107						
Test Frequency Range:	150kHz to 30MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9kHz, VBW=30kHz						
Limit:	Frequency range (MHz)	Limit (dBµV)					
		Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	0.5-30 * Decreases with the logarithm	60 of the frequency	50				
Test setup:	Reference Plane	or the frequency.					
	Test table/Insulation plane Remark: E. U. T: Equipment Under Test LISN: Line impedence Stabilization Network Test table height=0.8m	EMI Receiver					
Test procedure	 The E.U.T and simulators are impedance stabilization netw coupling impedance for the n The peripheral devices are a LISN that provides a 500hm/ termination. (Please refers to photographs). Both sides of A.C. line are interference. In order to fin positions of equipment and according to ANSI C63.4(la 	rork(L.I.S.N.). The prov neasuring equipment. Iso connected to the m 50uH coupling impeda the block diagram of t checked for maximum d the maximum emissi all of the interface cat	ide a 50ohm/50uH ain power through a nce with 50ohm he test setup and conducted on, the relative oles must be changed				
Test Instruments:	Refer to section 5.11 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Pass						

Measurement data:

Product name:	5.7 inch 3G Smart Phone	Product model:	X57A
Test by:	Mike	Test mode:	Charging & Recording mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

Notes:

12

1. An initial pre-scan was performed on the line and neutral lines with peak detector.

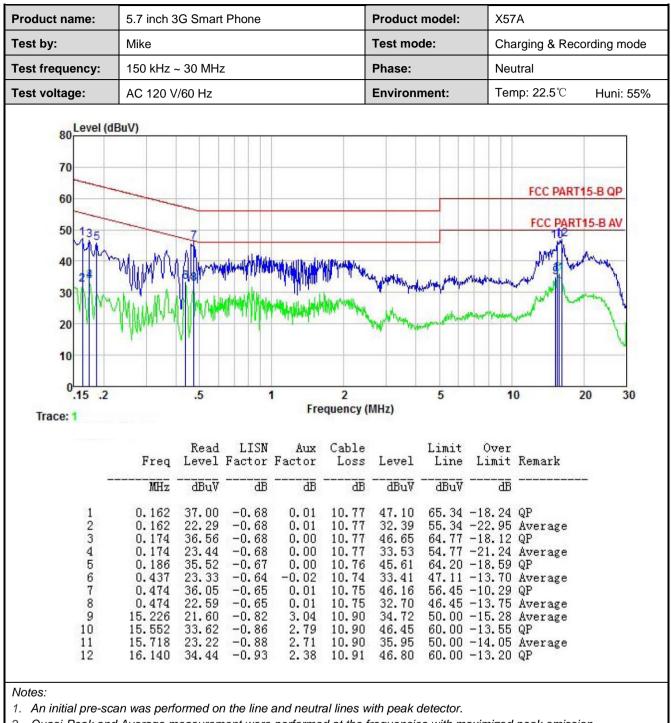
-0.72

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

3.22

10.90

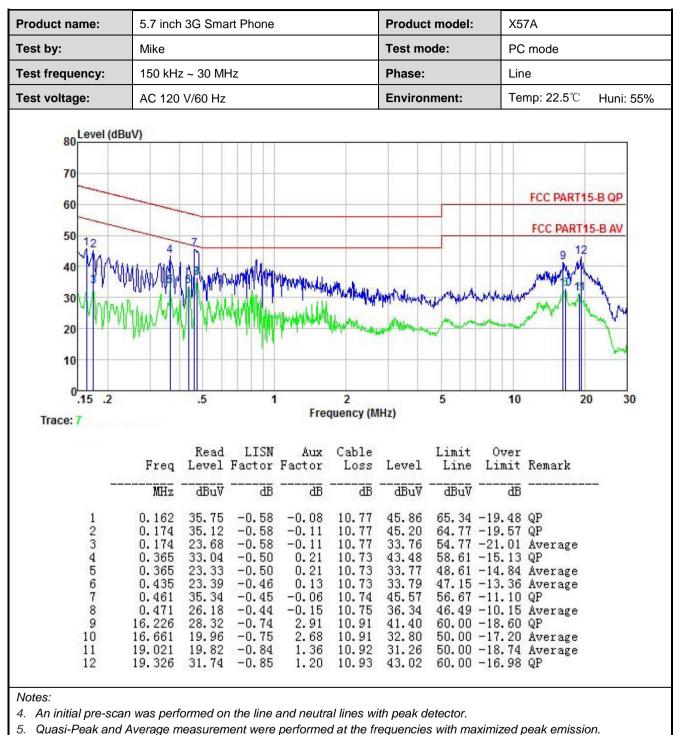
32.58


50.00 -17.42 Average

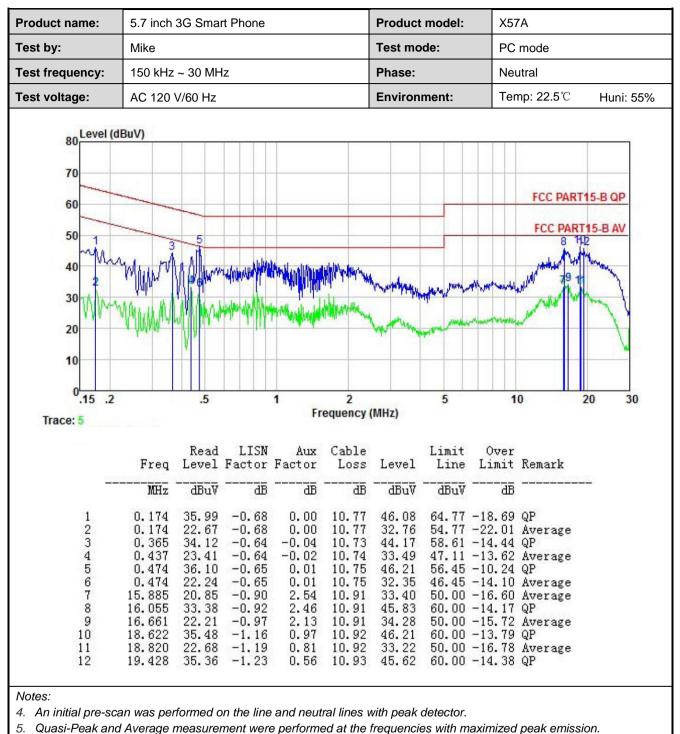
3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

19.18

15.635



2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

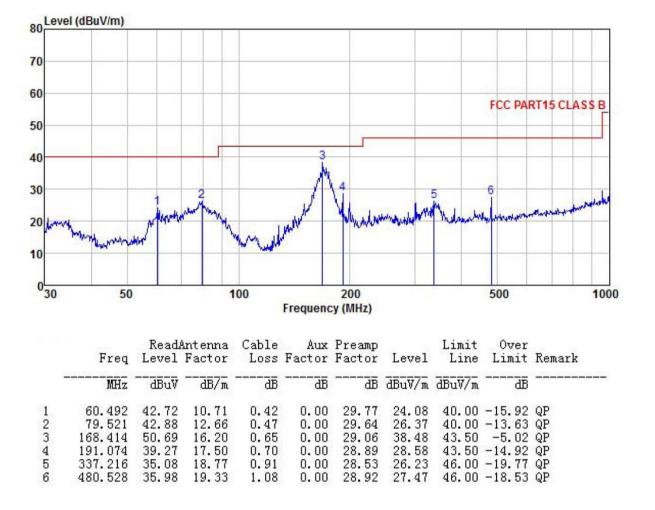

3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.2 Radiated Emission

Test Requirement:	FCC Part 15 B Se	ection 15.10	9					
Test Frequency Range:	30MHz to 6000M	Hz						
Test site:	Measurement Dis	tance: 3m (Sem	i-Anechoic (Chamber)			
Receiver setup:	Frequency Detector			RBW	VBW	Remark		
	30MHz-1GHz	Quasi-pea			300kHz	Quasi-peak Value		
	Pea		1MHz		3MHz	Peak Value		
	Above 1GHz RMS			1MHz	3MHz	Average Value		
Limit:	Frequenc	v	Limit (dBuV/m @3m)			Remark		
	30MHz-88M	1Hz		40.0	· · ·	Quasi-peak Value		
	88MHz-216	MHz	43.5			Quasi-peak Value		
	216MHz-960	MHz		46.0		Quasi-peak Value		
	960MHz-1G	GHz		54.0		Quasi-peak Value		
		1-		54.0		Average Value		
	Above 1G	72		74.0		Peak Value		
Test setup:	Below 1GHz							
		EUT		Horn Antenna Horn Antenna ence Plane	Antenna Tower			
Test Procedure:	ground at a 3 m degrees to dete 2. The EUT was s which was mou 3. The antenna he ground to deter	neter semi-a ermine the p set 3 meters unted on the eight is varie rmine the ma	anec bositi awa top ed fro axim	hoic camber on of the hig ay from the in of a variable om one mete num value of	The table ghest radiat nterference height an er to four m the field st	e-receiving antenna, tenna tower. leters above the		



	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.11 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	All of the observed value above 6GHz ware the niose floor , which were no recorded

Measurement Data:

Belefi Terlei			
Product Name:	5.7 inch 3G Smart Phone	Product Model:	X57A
Test By:	Mike	Test mode:	PC mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

Remark:

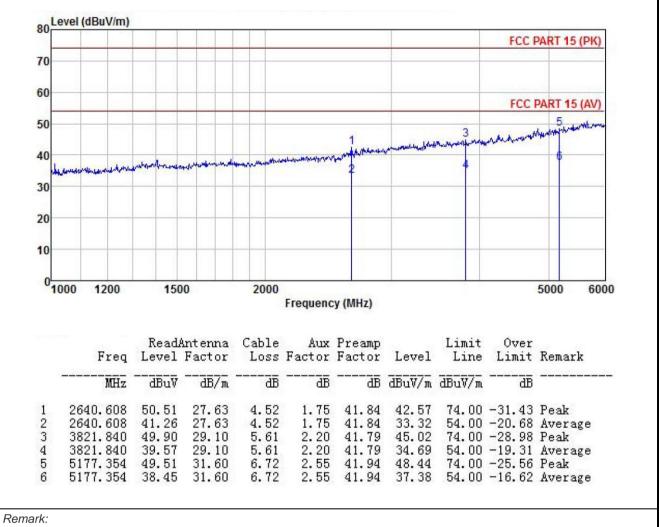
1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor.

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

3. The Aux Factor is a notch filter switch box loss, this item is not used.

Product Name:	5.7 inch 3			Product	Model:	X57A	X57A				
est By:	Mike			Test mode:		PC m	PC mode				
est Frequency:	30 MHz ~	1 GHz				Polarizat	ion:	Horiz	Horizontal		
est Voltage:	AC 120/60)Hz				Environr	nent:	Temp	Temp: 24°C Huni: 57		
Lovel (dBu)//	-										
80 Level (dBuV/											
70			_					_			
60			_								
00								FCC PAR	CC PART15 CLASS B		
50					_						
40				1	3		4	5		6	
30				1	N.	mappin	Â,				
50	1			14	Var		$ \rangle '$		A. J.	hilling	
				. Star	10.		1 1 1	Munud	NAMAN LAN	1 m	
20				Marin	1.1.1.		Thinks	Unitermot	Antholise .	494	
20 10 ^{Malutor}	markenseller	working	manumanit	when	1.1/1		highed	Vicettimet	(Karakilara	***	
10 Mahamana	Contraction of the contraction o	warne	warment	where a	1.0		highed	Vuunna	Kankline		
a second	50	warne	100	Frequen	200 cy (MHz)		highed	500	Kanykilan	1000	
10 Mahamana	Contraction of the contraction o	water	100	Frequen	200 cy (MHz)		hurd	500	- Konsteller	1000	
10 400 100 100 100 100 100 100 100 100 1	50	Intenna	Cable	Aux	cy (MHz) Preamp	Level	Limit	Over	Remark	1000	
10 400 100 100 100 100 100 100 100 100 1	50 ReadA q Level	Intenna	Cable	Aux Factor	cy (MHz) Preamp Factor	Level dBuV/m	Line	Over	Remark	1000	
10 0 30 Fre MH 1 46.34 2 171.39 3 191.07 4 338.40	50 ReadA q Level z dBuV 0 42.26 3 52.02 4 46.99 0 44.59	ntenna Factor dB/m 12.98 16.58 17.50 18.78	Cable Loss dB 0.38 0.66 0.70 0.91	Aux Factor dB 0.00 0.00 0.00 0.00 0.00	cy (MHz) Preamp Factor 29.85 29.04 28.89 28.53	Level dBuV/m 25.77 40.22 36.30 35.75	Line dBuV/m 40.00 43.50 43.50 46.00	Over Limit 	QP QP QP QP QP	1000	
10 0 30 Fre MH 1 46.34	50 ReadA q Level z dBuV 0 42.26 3 52.02 4 46.99 0 44.59 8 46.16	ntenna Factor dB/m 12.98 16.58 17.50	Cable Loss dB 0.38 0.66 0.70	Aux Factor dB 0.00 0.00 0.00 0.00 0.00 0.00	cy (MHz) Preamp Factor 29.85 29.04 28.89 28.53 28.92	Level <u>dBuV/m</u> 25.77 40.22 36.30 35.75 37.65	Line dBuV/m 40.00 43.50 43.50 46.00 46.00	Over Limit 	QP QP QP QP QP QP	1000	

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor.


2. The emission levels of other frequencies are very lower than the limit and not show in test report.

3. The Aux Factor is a notch filter switch box loss, this item is not used.

Above 1GHz:

Product Name:	5.7 inch 3G Smart Phone	Product Model:	X57A
Test By:	Mike	Test mode:	PC mode
Test Frequency:	1 GHz ~ 6 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor.

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

fest By:		5.7 inch 3G Smart Phone Mike					Product Model:		X57A			
							Test mod	le:	PC mo	PC mode		
est Freque	ency:	1 GHz ~ 6	GHz				Polarizat	ion:	Horizontal			
Fest Voltag	je:	AC 120/60	Hz				Environn	nent:	Temp:	Temp: 24°C Huni: 5		
Lo	vel (dBuV/m											
80									FCC	PART 15 (F	PK)	
70												
60			_									
60									FCC	PART 15 (AV)	
50			_					3		5 marchit	Ano	
40					un han humit Alt	nonmentalistic	- malinanous	etimpus to a new	the year the above	6		
1.0000	monore when the	calification where the	with	Hall Strand and a start	and the second		2	4				
30												
20			_							_		
10												
0100	0 1200	150	0	2000		ou (MUI-)				5000	6000	
					Frequen	C y (MHZ)						
	Erec	ReadA Level	Intenna			Preamp	Level	Limit	Over	Remark		
-		kin the mented										
	MHz		dB/m	dB	dB	dВ	dBuV/m	dBuV/m	dB			
1	2996.645		28.40 28.40	4.89 4.89	1.89	41.51 41.51	42.53 32.16	74.00	-31.47	Peak Average		
2 3	2996.645		28.94	4.89	2.20				-29.13			
4	3690.292		28.94	5.49	2.20			54.00		Average		
5	4855.339	49.67	30.90	6.44		41.83		74.00	-26.36			
6	4855.339	39.86	30.90	6.44	2.46					Average		
Remark:												
1. Final Le	vel = Rece	iver Read I	evel + Ant	enna Fa	ctor + Cal	ole Loss –	Preampli	fier Facto	r.			