Supplemental "Transmit Simultaneously" Test Report Report No.: RF160714C04-2 FCC ID: PY316200340 Test Model: C7800 Received Date: July 14, 2016 Test Date: Nov. 17 to Dec. 06, 2016 Issued Date: Dec. 13, 2016 Applicant: NETGEAR INC. Address: 350 East Plumeria Drive, San Jose CA 96134, USA Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C. Test Location (1): E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C. Test Location (2): No. 49, Ln. 206, Wende Rd., Shangshan Tsuen, Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan R.O.C. This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. This report should not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies. # **Table of Contents** | R | eleas | e Control Record | . 3 | |---|--|---|--| | 1 | (| Certificate of Conformity | . 4 | | 2 | ; | Summary of Test Results | . 5 | | | 2.1
2.2 | Measurement Uncertainty | | | 3 | (| General Information | . 6 | | | 3.2 | General Description of EUT Test Mode Applicability and Tested Channel Detail Description of Support Units Configuration of System under Test | 10
12 | | 4 | - | Test Types and Results | 14 | | | 4.1.2
4.1.3
4.1.4
4.1.5
4.1.6
4.1.7
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7
4.2.8
4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6 | Radiated Emission and Bandedge Measurement. Limits of Radiated Emission and Bandedge Measurement Test Instruments Test Procedures. Deviation from Test Standard Test Setup. EUT Operating Conditions. Test Results Conducted Emission Measurement Limits of Conducted Emission Measurement Test Instruments Test Procedures. Deviation from Test Standard Test Setup. EUT Operating Conditions. Test Results (Mode 1). Test Results (Mode 2). Conducted Out of Band Emission Measurement Limits of Conducted Out of Band Emission Measurement Test Setup. Test Instruments Test Procedures. Deviation from Test Standard EUT Operating Conditions. Test Results | 14
15
17
17
18
19
22
22
22
23
23
23
24
26
28
28
28
28
28
28
28
28
28 | | 5 | | Pictures of Test Arrangements | | | Α | | | 31 | # **Release Control Record** | Issue No. | Description | Date Issued | |---------------|-------------------|---------------| | RF160714C04-2 | Original release. | Dec. 13, 2016 | #### **Certificate of Conformity** 1 Product: AC3200 WiFi Cable Modem Router **Brand:** NETGEAR Test Model: C7800 Sample Status: ENGINEERING SAMPLE Applicant: NETGEAR INC. Test Date: Nov. 17 to Dec. 06, 2016 **Standards:** 47 CFR FCC Part 15, Subpart C (Section 15.247) ANSI C63.10: 2013 The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report. Prepared by: ______, Date: ______, Dec. 13, 2016 Dec. 13, 2016 Approved by : Date: May Then / Manager # 2 Summary of Test Results | 47 CFR FCC Part 15, Subpart C (SECTION 15.247) | | | | | | | |--|---|--------|---|--|--|--| | FCC
Clause | Test Item | Result | Remarks | | | | | 15.207 | AC Power Conducted Emission | PASS | Meet the requirement of limit. Minimum passing margin is -18.00dB at 11.71875MHz. | | | | | 15.205 /
15.209 /
15.247(d) | Radiated Emissions and Band Edge
Measurement | PASS | Meet the requirement of limit. Minimum passing margin is -2.4dB at 4874.00MHz. | | | | # 2.1 Measurement Uncertainty Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2: | Measurement | Frequency | Expanded Uncertainty $(k=2)$ (\pm) | |------------------------------------|----------------|--------------------------------------| | Conducted Emissions at mains ports | 150kHz ~ 30MHz | 1.83 dB | | Radiated Emissions up to 1 GHz | 30MHz ~ 1GHz | 5.34 dB | | | 1GHz ~ 6GHz | 3.41 dB | | Radiated Emissions above 1 GHz | 6GHz ~ 18GHz | 3.49 dB | | | 18GHz ~ 40GHz | 3.30 dB | ## 2.2 Modification Record There were no modifications required for compliance. # 3 General Information # 3.1 General Description of EUT | Product | AC3200 WiFi Cable Modem Router | |-----------------------|--| | Brand | NETGEAR | | Test Model | C7800 | | Status of EUT | ENGINEERING SAMPLE | | Power Supply Rating | DC 19V from power adapter | | Modulation Type | CCK, DQPSK, DBPSK for DSSS
64QAM, 16QAM, QPSK, BPSK for OFDM
256QAM for OFDM in 11ac mode and VHT20/40 mode in 2.4GHz band | | Modulation Technology | DSSS,OFDM | | Transfer Rate | 802.11b: up to 11Mbps
802.11a / g: up to 54Mbps
802.11n: up to 600Mbps
802.11ac: up to 1733.3Mbps | | Operating Frequency | 2.4GHz: 2.412 ~ 2.462GHz
5GHz: 5.18 ~ 5.24GHz, 5.745 ~ 5.825GHz | | Number of Channel | 2.4GHz: 802.11b, 802.11g, 802.11n (HT20), VHT20: 11 802.11n (HT40), VHT40: 7 5GHz: 802.11a, 802.11n (HT20), 802.11ac (VHT20): 9 802.11n (HT40), 802.11ac (VHT40): 4 802.11ac (VHT80): 2 | | Output Power | 2.4GHz: CDD Mode: 997.948mW Beamforming Mode(NSS1): 562.494 mW Beamforming Mode(NSS2): 997.948mW 5GHz: 5.18GHz ~ 5.24GHz: CDD Mode: 955.585mW Beamforming Mode(NSS1):597.263mW Beamforming Mode(NSS2): 597.263mW 5.745GHz ~ 5.825GHz: CDD Mode: 981.188mW Beamforming Mode(NSS1):754.849mW Beamforming Mode(NSS2): 981.188mW | | Antenna Type | Refer to Note | | Antenna Connector | Refer to Note | | Accessory Device | Adapter x1 | | Data Cable Supplied | RJ45 Cable(unshielded, 1.45m) | #### Note: 1. Simultaneously transmission condition. | Condition | Technology | | | | | |--|---------------|-------------|--|--|--| | 1 | WLAN (2.4GHz) | WLAN (5GHz) | | | | | Note: The emission of the simultaneous operation has been evaluated and no non-compliance was found. | | | | | | 2. The EUT must be supplied with a power adapter and following different models could be chosen as following table: | No | Brand Name | Model No. | PN | Spec. | |----|------------|---------------|--------------|--| | 1 | NETGEAR | AD2003F10 | 332-10631-01 | Input: 100-120V~50/60Hz 1.5A
Output: 19V / 3.16A
Power cord (Unshielded, 1.8m) | | 2 | NETGEAR | 2ABS060K 1 NA | | Input: 100-120V~50/60Hz 1.7A
Output: 19V / 3.16A
Power cord (Unshielded, 1.8m) | Note: From the above adapterss, the radiated emission worse case was found in Adapter 1. Therefore only the test data of the mode was recorded in this report. 3. The antennas provided to the EUT, please refer to the following table: | Antenna
No. | Transmitter
Circuit | Antenna Gain(dBi) | Frequency range
(GHz ~ GHz) | Antenna
Type | Connecter Type | |----------------|------------------------|-------------------|--------------------------------|-----------------|----------------| | | | 3.06 | 2.4~2.4835 | | | | 1 | Chain (0) | 2.68 | 5.15~5.25 | Dipole | i-pex(MHF) | | | | 2.55 | 5.725~5.85 | | | | | | 3.06 | 2.4~2.4835 | | | | 2 | Chain (1) | 2.68 | 5.15~5.25 | Dipole | i-pex(MHF) | | | | 2.55 | 5.725~5.85 | | | | | | 3.06 | 2.4~2.4835 | | | | 3 | Chain (2) | 2.68 | 5.15~5.25 | Dipole | i-pex(MHF) | | | | 2.55 | 5.725~5.85 | | | | | | 3.06 | 2.4~2.4835 | | | | 4 | Chain (3) | 2.68 | 5.15~5.25 | Dipole | i-pex(MHF) | | | | 2.55 | 5.725~5.85 | | | 4. The Directional gain table: | Frequency (MHz) | Max Gain (dBi) | |--------------------|-----------------------------------| | 2.4GHz band | 8.49dBi (Nss=1) , 5.48dBi (Nss=2) | | 5GHz (UNII-1) band | 8.15dBi (Nss=1), 5.14dBi (Nss=2) | | 5GHz (UNII-3) band | 7.21dBi (Nss=1), 4.2dBi (Nss=2) | #### Note: 1. Non-TxBF mode & TxBF mode antenna gain refer to KDB 662911 F 2) f) (ii) $$Directional Gain = 10 \cdot \log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^{2}}{N_{ANT}} \right]$$ ## where Each antenna is driven by no more than one spatial stream; $N_{\rm SS}$ = the number of independent spatial streams of data; N_{ANT} = the total number of antennas $g_{j,k} = 10^{G_k/20}$ if the kth antenna is being fed by spatial stream j, or zero if it is not; G_k is the gain in dBi of the kth antenna. 5. The EUT incorporates a MIMO function. | 5. The EOT incorporates | | IGHz Band | | |-------------------------|-----------------|-------------|------------| | MODULATION MODE | DATA RATE (MCS) | TX & RX CON | FIGURATION | | 802.11b | 1 ~ 11Mbps | 4TX | 4RX | | 802.11g | 6 ~ 54Mbps | 4TX | 4RX | | | MCS 0~7 | 4TX | 4RX | | 802.11n (HT20) | MCS 8~15 | 4TX | 4RX | | 002.1111 (П120) | MCS16~23 | 4TX | 4RX | | | MCS 24~31 | 4TX | 4RX | | | MCS 0~7 | 4TX | 4RX | | 000 11m (UT40) | MCS 8~15 | 4TX | 4RX | | 802.11n (HT40) | MCS16~23 | 4TX | 4RX | | | MCS 24~31 | 4TX | 4RX | | | 5 | GHz Band | | | MODULATION MODE | DATA RATE (MCS) | TX & RX CON | FIGURATION | | 802.11a | 6 ~ 54Mbps | 4TX | 4RX | | | MCS 0~7 | 4TX | 4RX | | 000 11m /UT00\ | MCS 8~15 | 4TX | 4RX | | 802.11n (HT20) | MCS16~23 | 4TX | 4RX | | | MCS 24~31 | 4TX | 4RX | | | MCS 0~7 | 4TX | 4RX | | 802.11n (HT40) | MCS 8~15 | 4TX | 4RX | | 002.11f1 (F140) | MCS16~23 | 4TX | 4RX | | | MCS 24~31 | 4TX | 4RX | | | MCS 0~8, Nss=1 | 4TX | 4RX | | 900 11aa (\/UT00\ | MCS 0~8, Nss=2 | 4TX | 4RX | | 802.11ac (VHT20) | MCS 0~9, Nss=3 | 4TX | 4RX | | | MCS 0~8, Nss=4 | 4TX | 4RX | | | MCS 0~9, Nss=1 | 4TX | 4RX | | 802.11ac (VHT40) | MCS 0~9, Nss=2 | 4TX | 4RX | | 002.11ac (VH140) | MCS 0~9, Nss=3 | 4TX | 4RX | | | MCS 0~9, Nss=4 | 4TX | 4RX | | | MCS 0~9, Nss=1 | 4TX | 4RX | | 900 11cc (\/UT00\ | MCS 0~9, Nss=2 | 4TX | 4RX | | 802.11ac (VHT80) | MCS 0~9, Nss=3 | 4TX | 4RX | | | MCS 0~9, Nss=4 | 4TX | 4RX | #### Note: - 1. All of modulation mode support beamforming function except 802.11a/b/g modulation mode. - 2. The modulation and bandwidth are similar for 802.11n mode for 20MHz (40MHz) and 802.11ac mode for 20MHz (40MHz), therefore investigated worst case to representative mode in test report. (Final test mode refer section 3.2.1) - 6. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual. ## 3.1.1 Test Mode Applicability and Tested Channel Detail | EUT | | APPLICA | ABLE TO | | PECOPIPTION | |-------------------|-------|---------|---------|------|----------------| | CONFIGURE
MODE | RE≥1G | RE<1G | PLC | APCM | DESCRIPTION | | 1 | V | V | √ | V | With adapter 1 | | 2 | - | - | √ | - | With adapter 2 | Where **RE≥1G:** Radiated Emission above 1GHz & Bandedge Measurement RE<1G: Radiated Emission below 1GHz PLC: Power Line Conducted Emission **APCM:** Antenna Port Conducted Measurement NOTE: 1. The EUT had been pre-tested on the positioned of each 2 axis. The worst case was found when positioned on X-plane. 2. -"means no effect. #### **Radiated Emission Test (Above 1GHz):** Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. | MODE | AVAILABLE
CHANNEL | TESTED
CHANNEL | MODULATION
TECHNOLOGY | MODULATION
TYPE | |-----------------------|------------------------|-------------------|--------------------------|--------------------| | 802.11n (HT20) | 1 to 11 | 6 | OFDM | BPSK | | +
802.11ac (VHT20) | 36 to 48
149 to 165 | 157 | OFDM | BPSK | #### Radiated Emission Test (Below 1GHz): Following channel(s) was (were) selected for the final test as listed below. | MODE | AVAILABLE
CHANNEL | TESTED
CHANNEL | MODULATION
TECHNOLOGY | MODULATION
TYPE | |-----------------------|------------------------|-------------------|--------------------------|--------------------| | 802.11n (HT20) | 1 to 11 | 6 | OFDM | BPSK | | +
802.11ac (VHT20) | 36 to 48
149 to 165 | 157 | OFDM | BPSK | #### **Power Line Conducted Emission Test:** Following channel(s) was (were) selected for the final test as listed below. | MODE | AVAILABLE
CHANNEL | TESTED
CHANNEL | MODULATION
TECHNOLOGY | MODULATION
TYPE | |-----------------------|------------------------|-------------------|--------------------------|--------------------| | 802.11n (HT20) | 1 to 11 | 6 | OFDM | BPSK | | +
802.11ac (VHT20) | 36 to 48
149 to 165 | 157 | OFDM | BPSK | Report No.: RF160714C04-2 Page No. 10 / 31 Report Format Version: 6.1.1 <u>Conducted Out-Band Emission Measurement:</u> ⊠ Following channel(s) was (were) selected for the final test as listed below. | MODE | AVAILABLE
CHANNEL | TESTED
CHANNEL | MODULATION
TECHNOLOGY | MODULATION
TYPE | |-----------------------|------------------------|-------------------|--------------------------|--------------------| | 802.11n (HT20) | 1 to 11 | 6 | OFDM | BPSK | | +
802.11ac (VHT20) | 36 to 48
149 to 165 | 157 | OFDM | BPSK | # **Test Condition:** | APPLICABLE TO | PLICABLE TO ENVIRONMENTAL CONDITIONS | | TESTED BY | |---------------|--------------------------------------|--------------|--------------| | RE≥1G | 23deg. C, 66%RH | 120Vac, 60Hz | Terry Huang | | RE<1G | 25deg. C, 66%RH | 120Vac, 60Hz | Jyunchun Lin | | PLC | 23deg. C, 73%RH | 120Vac, 60Hz | Andy Ho | | ОВ | 25deg. C, 60%RH | 120Vac, 60Hz | Gary Cheng | # 3.2 Description of Support Units The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests. | ID | Product | Brand | Model No. | Serial No. | FCC ID | Remarks | |----|-------------|-----------|-----------|------------|---------|-----------------| | A. | Laptop | DELL | E5430 | HYV4VY1 | FCC DoC | Provided by Lab | | B. | Laptop | LENOVO | E440 | PF071LWC | NA | Provided by Lab | | C. | USB Disk3.0 | Transcend | 16GB | NA | NA | Provided by Lab | | D. | USB Disk3.0 | Transcend | 16GB | NA | NA | Provided by Lab | #### Note: ^{1.} All power cords of the above support units are non-shielded (1.8m). | ID | Descriptions | Qty. | Length (m) | Shielding
(Yes/No) | Cores (Qty.) | Remarks | |----|---------------|------|------------|-----------------------|--------------|--------------------| | 1. | DC Cable | 1 | 1.8 | No | 0 | Supplied by client | | 2. | RJ-45 Cable | 1 | 10 | No | 0 | Provided by Lab | | 3. | RJ-45 Cable | 1 | 10 | No | 0 | Provided by Lab | | 4. | Coaxial Cable | 1 | 10 | Yes | 0 | Provided by Lab | Report No.: RF160714C04-2 Page No. 12 / 31 Report Format Version: 6.1.1 #### 4 Test Types and Results # 4.1 Radiated Emission and Bandedge Measurement ## 4.1.1 Limits of Radiated Emission and Bandedge Measurement Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power: | Frequencies
(MHz) | Field Strength
(microvolts/meter) | Measurement Distance
(meters) | |----------------------|--------------------------------------|----------------------------------| | 0.009 ~ 0.490 | 2400/F(kHz) | 300 | | 0.490 ~ 1.705 | 24000/F(kHz) | 30 | | 1.705 ~ 30.0 | 30 | 30 | | 30 ~ 88 | 100 | 3 | | 88 ~ 216 | 150 | 3 | | 216 ~ 960 | 200 | 3 | | Above 960 | 500 | 3 | #### NOTE: - 1. The lower limit shall apply at the transition frequencies. - 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$. - 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation. Report No.: RF160714C04-2 Page No. 14 / 31 Report Format Version: 6.1.1 # 4.1.2 Test Instruments | DESCRIPTION & | | | CALIBRATED | CALIBRATED | |---|---|-------------------------------|---------------|---------------| | MANUFACTURER | MODEL NO. | SERIAL NO. | DATE | UNTIL | | Test Receiver
Keysight | N9038A | MY54450088 | July 20, 2016 | July 19, 2017 | | Pre-Amplifier ^(*)
EMCI | EMC001340 | 980142 | Jan. 20, 2016 | Jan. 19, 2018 | | Loop Antenna ^(*) Electro-Metrics | EM-6879 | 264 | Dec. 16, 2014 | Dec. 15, 2016 | | RF Cable | NA | LOOPCAB-001
LOOPCAB-002 | Jan. 18, 2016 | Jan. 17, 2017 | | Pre-Amplifier Mini-Circuits | ZFL-1000VH2
B | AMP-ZFL-01 | Nov. 10, 2016 | Nov. 09, 2017 | | Trilog Broadband Antenna SCHWARZBECK | VULB 9168 | 9168-406 | Jan. 04, 2016 | Jan. 03, 2017 | | RF Cable | 8D | 966-4-1
966-4-2
966-4-3 | Apr. 02, 2016 | Apr. 01, 2017 | | Fixed attenuator
Mini-Circuits | UNAT-5+ | PAD-3m-4-01 | Oct. 05, 2016 | Oct. 04, 2017 | | Horn_Antenna
SCHWARZBECK | BBHA 9120D | 9120D-783 | Jan. 19, 2016 | Jan. 18, 2017 | | Pre-Amplifier Agilent | 8449B | 3008A01922 | Sep. 18, 2016 | Sep. 17, 2017 | | RF Cable | EMC104-SM-
SM-2000
EMC104-SM-
SM-5000
EMC104-SM-
SM-5000 | 150318
150323
150324 | Mar. 30, 2016 | Mar. 29, 2017 | | Pre-Amplifier
EMCI | EMC184045 | 980143 | Jan. 15, 2016 | Jan. 14, 2017 | | Horn_Antenna
SCHWARZBECK | BBHA 9170 | BBHA9170608 | Jan. 08, 2016 | Jan. 07, 2017 | | RF Cable | SUCOFLEX
102 | 36432/2
36441/2 | Jan. 16, 2016 | Jan. 15, 2017 | | Software | ADT_Radiated _V8.7.08 | NA | NA | NA | | Antenna Tower & Turn Table
Max-Full | MF-7802 | MF780208410 | NA | NA | | Boresight Antenna Fixture | FBA-01 | FBA-SIP02 | NA | NA | | Spectrum Analyzer
R&S | FSV40 | 100964 | June 28, 2016 | June 27, 2017 | | Power meter
Anritsu | ML2495A | 0824006 | May 26, 2016 | May 25, 2017 | | Power sensor
Anritsu | MA2411B | 0738172 | May 26, 2016 | May 25, 2017 | #### Note: - 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA. - 2. *The calibration interval of the above test instruments is 24 months and the calibrations are traceable to NML/ROC and NIST/USA. - 3. Loop antenna was used for all emissions below 30 MHz. - 4. The test was performed in 966 Chamber No. 4. - 5. The FCC Site Registration No. is 292998 - 6. The CANADA Site Registration No. is 20331-2 - 7. Tested Date: Nov. 17 to Dec. 06, 2016 Report No.: RF160714C04-2 Page No. 16 / 31 Report Format Version: 6.1.1 #### 4.1.3 Test Procedures #### For Radiated emission below 30MHz - a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation. - b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - c. Both X and Y axes of the antenna are set to make the measurement. - d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. #### NOTE: 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz. #### For Radiated emission above 30MHz - a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation. - b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz. - f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary. #### Note: - 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz. - 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz. - 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz. - 4. All modes of operation were investigated and the worst-case emissions are reported. #### 4.1.4 Deviation from Test Standard No deviation. Report No.: RF160714C04-2 Page No. 17 / 31 Report Format Version: 6.1.1 # 4.1.5 Test Setup # For Radiated emission below 30MHz ## For Radiated emission 30MHz to 1GHz ## For Radiated emission above 1GHz For the actual test configuration, please refer to the attached file (Test Setup Photo). # 4.1.6 EUT Operating Conditions - a. Connected the EUT with the Laptop which is placed on remote site. - b. Contorlling software (MTool.exe Ver.2.0.3.2) has been activated to set the EUT on specific status. #### 4.1.7 Test Results **Above 1GHz Data** FREQUENCY RANGE 1GHz ~ 40GHz DETECTOR FUNCTION Peak (PK) Average (AV) | | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M | | | | | | | | |-----|---|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------| | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | 1 | 4874.00 | 59.0 PK | 74.0 | -15.0 | 4.00 H | 38 | 58.1 | 0.9 | | 2 | 4874.00 | 46.4 AV | 54.0 | -7.6 | 4.00 H | 38 | 45.5 | 0.9 | | 3 | 7311.00 | 56.6 PK | 74.0 | -17.4 | 1.13 H | 41 | 49.2 | 7.4 | | 4 | 7311.00 | 43.0 AV | 54.0 | -11.0 | 1.13 H | 41 | 35.6 | 7.4 | | 5 | 11570.00 | 62.0 PK | 74.0 | -12.0 | 1.80 H | 222 | 48.9 | 13.1 | | 6 | 11570.00 | 47.0 AV | 54.0 | -7.0 | 1.80 H | 222 | 33.9 | 13.1 | | 7 | 17355.00 | 56.9 PK | 74.0 | -17.1 | 1.86 H | 153 | 38.1 | 18.8 | | 8 | 17355.00 | 45.2 AV | 54.0 | -8.8 | 1.86 H | 153 | 26.4 | 18.8 | | | | ANTENNA | A POLARITY | / & TEST DI | STANCE: V | ERTICAL A | T 3 M | | | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | 1 | 4874.00 | 62.4 PK | 74.0 | -11.6 | 2.21 V | 118 | 61.5 | 0.9 | | 2 | 4874.00 | 51.6 AV | 54.0 | -2.4 | 2.21 V | 118 | 50.7 | 0.9 | | 3 | 7311.00 | 56.9 PK | 74.0 | -17.1 | 2.22 V | 44 | 49.5 | 7.4 | | 4 | 7311.00 | 47.7 AV | 54.0 | -6.3 | 2.22 V | 44 | 40.3 | 7.4 | | 5 | 11570.00 | 63.6 PK | 74.0 | -10.4 | 2.03 V | 209 | 50.5 | 13.1 | | 6 | 11570.00 | 51.5 AV | 54.0 | -2.5 | 2.03 V | 209 | 38.4 | 13.1 | | 7 | 17355.00 | 56.1 PK | 74.0 | -17.9 | 1.87 V | 146 | 37.3 | 18.8 | | 8 | 17355.00 | 43.6 AV | 54.0 | -10.4 | 1.87 V | 146 | 24.8 | 18.8 | # REMARKS: - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. The other emission levels were very low against the limit. - 4. Margin value = Emission Level Limit value ## **Below 1GHz Data:** | FREQUENCY RANGE | 1 9kHz ~ 1(4Hz | DETECTOR
FUNCTION | Quasi-Peak (QP) | |-----------------|----------------|----------------------|-----------------| |-----------------|----------------|----------------------|-----------------| | | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M | | | | | | | | |-----|---|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------| | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | 1 | 30.99 | 32.3 QP | 40.0 | -7.7 | 1.00 H | 106 | 42.3 | -10.0 | | 2 | 47.95 | 32.2 QP | 40.0 | -7.8 | 1.56 H | 306 | 40.9 | -8.7 | | 3 | 250.00 | 39.2 QP | 46.0 | -6.8 | 1.43 H | 79 | 49.2 | -10.0 | | 4 | 375.00 | 37.5 QP | 46.0 | -8.5 | 1.00 H | 250 | 43.5 | -6.0 | | 5 | 874.99 | 39.6 QP | 46.0 | -6.4 | 1.00 H | 220 | 36.2 | 3.4 | | 6 | 899.99 | 37.6 QP | 46.0 | -8.4 | 1.50 H | 188 | 33.8 | 3.8 | | | | ANTENNA | POLARITY | & TEST DI | STANCE: V | ERTICAL A | T 3 M | | | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | 1 | 42.95 | 35.2 QP | 40.0 | -4.8 | 1.00 V | 226 | 44.0 | -8.8 | | 2 | 93.78 | 31.2 QP | 43.5 | -12.3 | 1.50 V | 143 | 45.3 | -14.1 | | 3 | 250.00 | 34.5 QP | 46.0 | -11.5 | 1.50 V | 206 | 44.5 | -10.0 | | 4 | 375.00 | 37.5 QP | 46.0 | -8.5 | 1.05 V | 337 | 43.5 | -6.0 | | 5 | 625.00 | 35.3 QP | 46.0 | -10.7 | 1.43 V | 148 | 35.3 | 0.0 | | 6 | 899.99 | 38.1 QP | 46.0 | -7.9 | 1.46 V | 255 | 34.3 | 3.8 | # **REMARKS:** - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. The other emission levels were very low against the limit. - 4. Margin value = Emission Level Limit value ## 4.2 Conducted Emission Measurement ## 4.2.1 Limits of Conducted Emission Measurement | Eroguepov (MHz) | Conducted Limit (dBuV) | | | | | |-----------------|------------------------|---------|--|--|--| | Frequency (MHz) | Quasi-peak | Average | | | | | 0.15 - 0.5 | 66 - 56 | 56 - 46 | | | | | 0.50 - 5.0 | 56 | 46 | | | | | 5.0 - 30.0 | 60 | 50 | | | | Note: 1. The lower limit shall apply at the transition frequencies. ## 4.2.2 Test Instruments | DESCRIPTION & MANUFACTURER | MODEL NO. | SERIAL NO. | CALIBRATED DATE | CALIBRATED UNTIL | |--|-------------------------|------------|-----------------|------------------| | Test Receiver
R&S | ESCS 30 | 847124/029 | Oct. 24, 2016 | Oct. 23, 2017 | | Line-Impedance
Stabilization Network
(for EUT)
R&S | ESH3-Z5 | 848773/004 | Oct. 26, 2016 | Oct. 25, 2017 | | Line-Impedance
Stabilization Network
(for Peripheral)
R&S | ENV216 | 100072 | June 13, 2016 | June 12, 2017 | | RF Cable | 5D-FB | COCCAB-001 | Sep. 30, 2016 | Sep. 29, 2017 | | 10 dB PAD
Mini-Circuits | HAT-10+ | CONATT-004 | June 20, 2016 | June 19, 2017 | | Software
BVADT | BVADT_Cond_
V7.3.7.4 | NA | NA | NA | #### Note: - 1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA. - 2. The test was performed in Shielded Room No. 1. - 3 Tested Date: Nov. 22, 2016 ^{2.} The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz. #### 4.2.3 Test Procedures - a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument. - b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference. - c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded. **NOTE:** The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz. #### 4.2.4 Deviation from Test Standard No deviation. #### 4.2.5 Test Setup Note: 1.Support units were connected to second LISN. For the actual test configuration, please refer to the attached file (Test Setup Photo). ## 4.2.6 EUT Operating Conditions Same as 4.1.6. # 4.2.7 Test Results (Mode 1) | Phase | Line (L) | Detector Function | Quasi-Peak (QP) /
Average (AV) | |-------|----------|-------------------|-----------------------------------| |-------|----------|-------------------|-----------------------------------| | | Phase Of Power : Line (L) | | | | | | | | | | |----|---------------------------|-------------------|-------|----------------|-------|---------------------------------------|-------|-------|----------------|--------| | No | Frequency | Correction Factor | | g Value
uV) | | Emission Level Limit
(dBuV) (dBuV) | | | Margin
(dB) | | | | (MHz) | (dB) | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | | 1 | 0.15000 | 10.20 | 31.97 | 11.81 | 42.17 | 22.01 | 66.00 | 56.00 | -23.83 | -33.99 | | 2 | 0.17344 | 10.20 | 30.20 | 12.55 | 40.40 | 22.75 | 64.79 | 54.79 | -24.39 | -32.04 | | 3 | 3.47656 | 10.30 | 19.71 | 12.64 | 30.01 | 22.94 | 56.00 | 46.00 | -25.99 | -23.06 | | 4 | 8.69922 | 10.64 | 26.08 | 20.61 | 36.72 | 31.25 | 60.00 | 50.00 | -23.28 | -18.75 | | 5 | 11.71875 | 10.93 | 26.24 | 21.07 | 37.17 | 32.00 | 60.00 | 50.00 | -22.83 | -18.00 | | 6 | 14.19531 | 11.21 | 25.16 | 19.77 | 36.37 | 30.98 | 60.00 | 50.00 | -23.63 | -19.02 | - 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. The emission levels of other frequencies were very low against the limit. - 3. Margin value = Emission level Limit value - 4. Correction factor = Insertion loss + Cable loss - 5. Emission Level = Correction Factor + Reading Value | Phase | Neutral (N) | Detector Function | Quasi-Peak (QP) /
Average (AV) | |-------|-------------|-------------------|-----------------------------------| |-------|-------------|-------------------|-----------------------------------| | | Phase Of Power : Neutral (N) | | | | | | | | | | |----|------------------------------|-------------------|-------|---|-------|-------|----------------|-------|--------|--------| | No | Frequency | Correction Factor | | ding Value Emission Level Limit dBuV) (dBuV) (dBuV) | | | Margin
(dB) | | | | | | (MHz) | (dB) | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | | 1 | 0.15781 | 10.19 | 36.22 | 23.35 | 46.41 | 33.54 | 65.58 | 55.58 | -19.17 | -22.04 | | 2 | 0.28281 | 10.20 | 21.40 | 10.64 | 31.60 | 20.84 | 60.73 | 50.73 | -29.13 | -29.89 | | 3 | 0.48594 | 10.24 | 19.05 | 13.36 | 29.29 | 23.60 | 56.24 | 46.24 | -26.95 | -22.64 | | 4 | 8.52734 | 10.53 | 25.97 | 20.64 | 36.50 | 31.17 | 60.00 | 50.00 | -23.50 | -18.83 | | 5 | 11.01172 | 10.72 | 23.95 | 18.87 | 34.67 | 29.59 | 60.00 | 50.00 | -25.33 | -20.41 | | 6 | 14.28516 | 11.02 | 25.33 | 20.00 | 36.35 | 31.02 | 60.00 | 50.00 | -23.65 | -18.98 | - 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. The emission levels of other frequencies were very low against the limit. - 3. Margin value = Emission level Limit value - 4. Correction factor = Insertion loss + Cable loss - 5. Emission Level = Correction Factor + Reading Value # 4.2.8 Test Results (Mode 2) | Phase | Line (L) | Detector Function | Quasi-Peak (QP) / | |-------|----------|-------------------|-------------------| | | | | Average (AV) | | | Phase Of Power : Line (L) | | | | | | | | | | |----|---------------------------|-------------------|-------|---|-------|-----------------------------|-------|-------|--------|--------| | No | Frequency | Correction Factor | | Reading Value Emission Level Limit (dBuV) (dBuV) (dBuV) | | Limit Margin
(dBuV) (dB) | | _ | | | | | (MHz) | (dB) | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | | 1 | 0.15000 | 10.20 | 37.77 | 23.30 | 47.97 | 33.50 | 66.00 | 56.00 | -18.03 | -22.50 | | 2 | 0.18125 | 10.20 | 33.58 | 18.22 | 43.78 | 28.42 | 64.43 | 54.43 | -20.65 | -26.01 | | 3 | 0.28281 | 10.22 | 22.17 | 10.54 | 32.39 | 20.76 | 60.73 | 50.73 | -28.34 | -29.97 | | 4 | 0.43516 | 10.24 | 11.41 | -0.14 | 21.65 | 10.10 | 57.15 | 47.15 | -35.50 | -37.05 | | 5 | 11.27344 | 10.88 | 11.52 | 6.76 | 22.40 | 17.64 | 60.00 | 50.00 | -37.60 | -32.36 | | 6 | 29.02734 | 11.84 | 5.79 | -1.99 | 17.63 | 9.85 | 60.00 | 50.00 | -42.37 | -40.15 | - 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. The emission levels of other frequencies were very low against the limit. - 3. Margin value = Emission level Limit value - 4. Correction factor = Insertion loss + Cable loss - 5. Emission Level = Correction Factor + Reading Value | Phase | Neutral (N) | Detector Function | Quasi-Peak (QP) /
Average (AV) | |-------|-------------|-------------------|-----------------------------------| | | Phase Of Power : Neutral (N) | | | | | | | | | | | |----|------------------------------|-------------------|-------|----------------------|-------|-----------------------|-------|-----------------|--------|----------------|--| | No | Frequency | Correction Factor | | Reading Value (dBuV) | | Emission Level (dBuV) | | Limit
(dBuV) | | Margin
(dB) | | | | (MHz) | (dB) | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | | | 1 | 0.15000 | 10.19 | 37.35 | 23.34 | 47.54 | 33.53 | 66.00 | 56.00 | -18.46 | -22.47 | | | 2 | 0.17734 | 10.18 | 33.28 | 19.29 | 43.46 | 29.47 | 64.61 | 54.61 | -21.15 | -25.14 | | | 3 | 0.23594 | 10.18 | 26.37 | 11.84 | 36.55 | 22.02 | 62.24 | 52.24 | -25.69 | -30.22 | | | 4 | 0.28281 | 10.20 | 20.29 | 9.04 | 30.49 | 19.24 | 60.73 | 50.73 | -30.24 | -31.49 | | | 5 | 11.08984 | 10.73 | 11.61 | 6.36 | 22.34 | 17.09 | 60.00 | 50.00 | -37.66 | -32.91 | | | 6 | 27.45703 | 11.39 | 5.00 | 0.02 | 16.39 | 11.41 | 60.00 | 50.00 | -43.61 | -38.59 | | - 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. The emission levels of other frequencies were very low against the limit. - 3. Margin value = Emission level Limit value - 4. Correction factor = Insertion loss + Cable loss - 5. Emission Level = Correction Factor + Reading Value #### 4.3 Conducted Out of Band Emission Measurement #### 4.3.1 Limits of Conducted Out of Band Emission Measurement Below 20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth). #### 4.3.2 Test Setup #### 4.3.3 Test Instruments Refer to section 4.1.2 to get information of above instrument. #### 4.3.4 Test Procedures #### **MEASUREMENT PROCEDURE REF** - 1. Set the RBW = 100 kHz. - 2. Set the VBW ≥ 300 kHz. - 3. Detector = peak. - 4. Sweep time = auto couple. - 5. Trace mode = max hold. - 6. Allow trace to fully stabilize. - 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW. #### **MEASUREMENT PROCEDURE OOBE** - 1. Set RBW = 100 kHz. - 2. Set VBW ≥ 300 kHz. - 3. Detector = peak. - 4. Sweep = auto couple. - 5. Trace Mode = max hold. - 6. Allow trace to fully stabilize. - 7. Use the peak marker function to determine the maximum amplitude level. #### 4.3.5 Deviation from Test Standard No deviation. #### 4.3.6 EUT Operating Conditions The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually. #### 4.3.7 Test Results The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 20dB offset below D1. It shows compliance with the requirement. Report No.: RF160714C04-2 Page No. 28 / 31 Report Format Version: 6.1.1 | 5 Pictures of Test Arrangements | |---| | Please refer to the attached file (Test Setup Photo). | ## Appendix - Information on the Testing Laboratories We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025. If you have any comments, please feel free to contact us at the following: Linko EMC/RF Lab Hsin Chu EMC/RF/Telecom Lab Tel: 886-2-26052180 Tel: 886-3-6668565 Fax: 886-2-26051924 Fax: 886-3-6668323 Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892 Email: service.adt@tw.bureauveritas.com Web Site: www.bureauveritas-adt.com The address and road map of all our labs can be found in our web site also. --- END ---