FCC Measurement/Technical Report on # Telematic Control Unit ZONAR SCM1 Contains FCC ID (Cellular): LHJ-BL28NARD1 Contains IC (Cellular): 2807E-BL28NARD1 FCC ID (Bluetooth): 2AJW5-SCM1 IC (Bluetooth): 21979-SCM1 ## Simultaneous Transmissions Test Report Reference: MDE_CONTI_2152_FCC_01_REV01 #### **Test Laboratory:** 7layers GmbH Borsigstrasse 11 40880 Ratingen Germany #### Note: The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory. 7layers GmbH Borsigstraße 11 40880 Ratingen, Germany T +49 (0) 2102 749 0 F +49 (0) 2102 749 350 Geschäftsführer/ Managing Directors: Sebastian Doose Stefan Kischka Bernhard Retka Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company www.7layers.com | | | Co | | |--|--|----|--| | | | | | | 1 | Applied Standards and Test Summary | 3 | |------------|---|----------| | 1.1 | Applied Standards | 3 | | 1.2 | FCC-IC Correlation Table | 4 | | 1.3 | Measurement Summary | 7 | | 2 | Revision History / Signatures | 8 | | 3 | Administrative Data | 9 | | 3.1 | Testing Laboratory | 9 | | 3.2 | Project Data | 9 | | 3.3 | Applicant Data | 9 | | 3.4 | Manufacturer Data | 10 | | 4 | Test object Data | 11 | | 4.1 | General EUT Description | 11 | | 4.2 | EUT Main components | 11 | | 4.3 | Ancillary Equipment | 12 | | 4.4
4 - | Auxiliary Equipment | 12
12 | | 4.5
4.6 | EUT Setups Operating Modes / Test Channels | 13 | | 4.7 | Product labelling | 13 | | 5 | Test Results | 14 | | 5.1 | Field strength of spurious radiation | 14 | | 5.2 | Field strength of spurious radiation | 19 | | 5.3 | Field strength of spurious radiation | 25 | | 6 | Test Equipment | 31 | | 6.1 | Test Equipment Hardware | 31 | | 6.2 | Test Equipment Software | 32 | | 7 | Antenna Factors, Cable Loss and Sample Calculations | 33 | | 7.1 | LISN R&S ESH3-Z5 (150 kHz - 30 MHz) | 33 | | 7.2 | Antenna R&S HFH2-Z2 (9 kHz – 30 MHz) | 34 | | 7.3 | Antenna R&S HL562 (30 MHz – 1 GHz) | 35 | | 7.4 | Antenna R&S HF907 (1 GHz – 18 GHz) | 36 | | 7.5 | Antenna EMCO 3160-09 (18 GHz – 26.5 GHz) | 37 | | 7.6 | Antenna EMCO 3160-10 (26.5 GHz – 40 GHz) | 38 | | 8 | Measurement Uncertainties | 39 | | Q | Photo Penort | 40 | #### 1 APPLIED STANDARDS AND TEST SUMMARY #### 1.1 APPLIED STANDARDS #### Type of Authorization Certification for a cellular mobile device. #### **Applicable FCC Rules** Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2, 22, 24 and 27 (10-1-21 Edition). The following subparts are applicable to the results in this test report. Part 2, Subpart J - Equipment Authorization Procedures, Certification Part 22, Subpart H – Cellular Radiotelephone Service § 22.905 – Channels for cellular service § 22.913 - Effective radiated power limits § 22.917 - Emission limitations for cellular equipment Part 24, Subpart E - Broadband PCS § 24.232 – Power and antenna height limits § 24.235 – Frequency stability § 24.238 - Emission limitations for Broadband PCS equipment Part 27; Miscellaneous Wireless Communications Services Subpart C – Technical standards § 27.50 - Power and duty cycle limits § 27.53 – Emission limits § 27.54 – Frequency stability The tests were selected and performed with reference to: - FCC Public Notice 971168 applying "Measurement guidance for certification of licensed digital transmitters" 971168 D01 v03r01, 2018-04-09 - ANSI C63.26: 2015 #### 1.2 FCC-IC CORRELATION TABLE # Correlation of measurement requirements for Cellular Mobile Devices from FCC and ISED Canada | Measurement | FCC reference | ISED reference | |---|----------------------|---| | RF Output Power | § 2.1046
§ 22.913 | RSS-GEN Issue 5, 6.12
RSS-132 Issue 3, 5.4 | | Peak-Average-Ratio | - | RSS 132 Issue 3: 5.4 | | Emission and Occupied bandwidth | § 2.1049 | RSS-GEN Issue 5, 6.7 | | Spurious Emission at
Antenna Terminals | § 2.1051
§ 22.917 | RSS-GEN Issue 5, 6.13
RSS-132 Issue 3, 5.5 | | Band Edge Compliance | § 2.1051
§ 22.917 | RSS-GEN Issue 4, 6.13
RSS-132 Issue 3, 5.5 | | Frequency stability | § 2.1055
§ 22.355 | RSS-GEN Issue 5, 6.11
RSS-132 Issue 3: 5.3 | | Field strength of spurious radiation | § 2.1053
§ 22.917 | RSS-GEN Issue 5, 6.13
RSS-132 Issue 3: 5.5 | # Correlation of measurement requirements for Cellular Mobile Devices from FCC and ISED Canada | Measurement | FCC reference | ISED reference | |---|----------------------|---| | RF Output Power | § 2.1046
§ 24.232 | RSS-GEN Issue 5, 6.12
RSS-133 Issue 6, 6.4 | | Peak-Average-Ratio | § 24.232 | RSS 133 Issue 6: 6.4 | | Emission and Occupied bandwidth | § 2.1049 | RSS-GEN Issue 5, 6.7 | | Spurious Emission at
Antenna Terminals | § 2.1051
§ 24.238 | RSS-GEN Issue 5, 6.13
RSS-133 Issue 6, 6.5 | | Band Edge Compliance | § 2.1051
§ 24.238 | RSS-GEN Issue 5, 6.13
RSS-133 Issue 6, 6.5 | | Frequency stability | § 2.1055
§ 24.235 | RSS-GEN Issue 5, 6.11
RSS-133 Issue 6: 6.3 | | Field strength of spurious radiation | § 2.1053
§ 24.236 | RSS-GEN Issue 5, 6.13
RSS-133 Issue 6: 6.5 | # Correlation of measurement requirements for Cellular Mobile Devices from FCC and ISED Canada | Measurement | FCC reference | ISED reference | |---|---------------------|---| | RF Output Power | § 2.1046
§ 27.50 | RSS-GEN Issue 5, 6.12
RSS-130 Issue 2, 4.6.2/4.6.3
RSS-139 Issue 3, 6.5
RSS-199 Issue 3, 4.4 | | Peak to Average-Ratio | § 27.50 | RSS-130 Issue 2: 4.6.1
RSS 139 Issue 3: 6.5
RSS-199 Issue 3, 4.4 | | Emission and Occupied bandwidth | § 2.1049 | RSS-GEN Issue 5, 6.7 | | Spurious Emission at
Antenna Terminals | § 2.1051
§ 27.53 | RSS-GEN Issue 5, 6.13
RSS-130 Issue 2: 4.7.1/4.7.2
RSS-139 Issue 3, 6.6
RSS-199 Issue 3, 4.5 | | Band Edge Compliance | § 2.1051
§ 27.53 | RSS-GEN Issue 5, 6.13
RSS-130 Issue 2: 4.7.1/4.7.2
RSS-139 Issue 3, 6.6
RSS-199 Issue 3, 4.5 | | Frequency stability | § 2.1055
§ 27.54 | RSS-GEN Issue 5, 6.11
RSS-130 Issue 2: 4.5
RSS-139 Issue 3: 6.4
RSS-199 Issue 3, 4.3 | | Field strength of spurious radiation | § 2.1053
§ 27.53 | RSS-GEN Issue 5, 6.13
RSS-130 Issue 2: 4.7.1/4.7.2
RSS-139 Issue 3: 6.6
RSS-199 Issue 3, 4.5 | #### 1.3 MEASUREMENT SUMMARY | 47 CFR CHAPTER I FCC PART 22 Subpart H | § 2.1053 § | 3 22.917 | | | |---|-----------------|-------------|----------|--------| | Field strength of spurious radiation The measurement was performed accord 5.5.2.3.1 | ling to ANSI C6 | 3.26: 2015; | Final Re | esult | | OP-Mode Radio Technology, Measurement method | Setup | Date | FCC | IC | | GSM 850 D + BT Classic TX, radiated | S01_AG02 | 2022-09-20 | Passed | Passed | | 47 CFR CHAPTER I FCC PART 24 Subpart E | § 2.1053 § | 24.236 | | | | Field strength of spurious radiation The measurement was performed accord 5.5.2.3.1 | ling to ANSI C6 | 3.26: 2015; | Final Re | esult | | OP-Mode Radio Technology, Measurement method | Setup | Date | FCC | IC | | GSM 1900 D + BT Classic TX, radiated | S01_AG02 | 2022-09-20 | Passed | Passed | | 47 CFR CHAPTER I FCC PART 27 Subpart C | § 2.1053 § | § 27.53 | | | | Field strength of spurious radiation The measurement was performed accord 5.5.2.3.1 | ling to ANSI C6 | 3.26: 2015; | Final Re | esult | | OP-Mode Radio Technology, Measurement method | Setup | Date | FCC | IC | | LTE Band 7 D + BT Classic TX, radiated | S01 AG02 | | | | N/A: Not applicable N/P: Not performed #### 2 REVISION HISTORY / SIGNATURES | Report version control | | | | | | |------------------------|--------------|--------------------|------------------|--|--| | Version | Release date | Change Description | Version validity | | | | initial | 2022-10-24 | | valid | | | | REV01 | 2022-11-04 | FCC ID changed | valid | | | #### COMMENT: Not all applicable tests were performed, according to "KDB996369 D04 Module Integration Guide v02" spot checks for Simultaneous Transmissions for only radiated spurious emissions tests above 1 GHz were performed, because the device contains a pre-certified Cellular Module "Continental Modem BL28NA-RD1" and a "Qualcomm QCA6564AU" Bluetooth Chip Solution. (responsible for accreditation scope) Dipl.-Ing. Daniel Gall (responsible for testing and report) B.Eng. Jasmin Urowski ayers 7 layers GmbH, Borsigstr. 11 40880 Ratingen, Germany Phone +49 (0)2102 749 0 #### 3 ADMINISTRATIVE DATA #### 3.1 TESTING LABORATORY Company Name: 7layers GmbH Address: Borsigstr. 11 40880 Ratingen Germany The test facility is accredited by the following accreditation organisation: Laboratory accreditation no: DAkkS D-PL-12140-01-01 | -02 | -03 FCC Designation Number: DE0015 FCC Test Firm Registration: 929146 ISED CAB Identifier DE0007; ISED#: 3699A Responsible for accreditation scope: Dipl.-Ing. Daniel Gall Report Template Version: 2022-05-25 3.2 PROJECT DATA Responsible for testing and report: B.Eng. Jasmin Urowski Employees who performed the tests: documented internally at 7Layers Date of Report: 2022-11-04 Testing Period: 2022-09-20 3.3 APPLICANT DATA Company Name: Continental Automotive GmbH Address: Heinrich-Hertz-Str. 45 78052, Villingen-Schwenningen Germany Contact Person: Dr. Marion Grüner #### 3.4 MANUFACTURER DATA | Company Name: | please see Applicant Data | |-----------------|---------------------------| | Address: | | | Contact Person: | | #### 4 TEST OBJECT DATA #### 4.1 GENERAL EUT DESCRIPTION | Kind of Device product description |
Telematics Control Unit | |------------------------------------|---| | Product name | SCM1 | | Type / Model | ZONAR V4C | | Declared EUT data by | the supplier | | Power Supply Type | DC | | Nominal Voltage /
Frequency | 12 – 24 V | | Test Voltage /
Frequency | 12 V | | Highest internal frequency | 2690 MHz (highest channel from LTE Band 7) | | General Description | SCM1 is a vehicle mounted telematics device incorporating - GPS for vehicle location and tracking, - Dual mode Bluetooth for peripheral connectivity - and an LTE/UMTS/GSM data-modem for offloading data to backend servers. | #### 4.2 EUT MAIN COMPONENTS | Sample Name | Sample Code | Description | | |------------------|-----------------------|-----------------|--| | EUT 16 | DE1480002ag02 | Radiated Sample | | | Sample Parameter | | Value | | | Serial No. | IMEI: 352763680008833 | | | | HW Version | С | | | | SW Version | Leap 24.5 | | | | Comment | | | | NOTE: The short description is used to simplify the identification of the EUT in this test report. #### 4.3 ANCILLARY EQUIPMENT For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results. | Device | Details
(Manufacturer, Type Model, HW, SW,
S/N) | Description | |--------|---|-------------| | - | - | - | #### 4.4 AUXILIARY EQUIPMENT For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results. | Device | Details
(Manufacturer, Type Model, HW,
SW, S/N) | Description | |--------|---|-----------------------| | AUX A | Panorama Antennas,
Model: AGPS26-SRGR, -, -, - | External GNSS antenna | #### 4.5 EUT SETUPS This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards. | Setup | Combination of EUTs | Description and Rationale | |----------|---------------------|---------------------------| | S01_AG02 | EUT 16+ AUX A | Radiated Setup | #### 4.6 OPERATING MODES / TEST CHANNELS This chapter describes the operating modes of the EUTs used for testing. #### Simultaneous Transmissions: - GPRS 850, TX on 836.5 MHz + 2.4 GHz Bluetooth Classic, TX on 2402 MHz - GPRS 1900, TX on 1880 MHz + 2.4 GHz Bluetooth Classic, TX on 2441 MHz - LTE eFDD7, TX on 2535 MHz + 2.4 GHz Bluetooth Classic, TX on 2480 MHz #### 4.7 PRODUCT LABELLING #### 4.7.1 FCC ID LABEL Please refer to the documentation of the applicant. #### 4.7.2 LOCATION OF THE LABEL ON THE EUT Please refer to the documentation of the applicant. #### 5 TEST RESULTS #### 5.1 FIELD STRENGTH OF SPURIOUS RADIATION Standard FCC PART 22 Subpart H #### The test was performed according to: ANSI C63.26: 2015; 5.5.2.3.1 #### 5.1.1 TEST DESCRIPTION This test case is intended to demonstrate compliance to the applicable radiated spurious emission measurements per § 2.1053 and RSS-GEN 6.13. The limit and requirements come from the applicable rule part and ISED RSS-Standard for the operating band of the cellular device. The EUT was connected to the test setup according to the following diagram: Frequency Range: 30 MHz - 1 GHz: Test Setup; Spurious Emission Radiated (SAC), 30 MHz- 1GHz Frequency Range: 1 GHz - 26.5 GHz Test Setup; Spurious Emission Radiated (FAC), 1 GHz-26.5 GHz The test set-up was made in accordance to the general provisions of ANSI C63.26 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated. The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered from a DC power source. #### 1. Measurement above 30 MHz and up to 1 GHz #### **Step 1:** Preliminary scan This is a preliminary test to identify the highest amplitudes relative to the limit. Settings for step 1: - Antenna distance: 3 m - Detector: Peak - RBW: 1 MHz - VBW: 1 MHz - Sweep time: coupled - Turntable angle range: -180° to 90° - Turntable step size: 90° - Height variation range: 1 – 3 m - Height variation step size: 2 m - Polarisation: Horizontal + Vertical Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified. #### Step 2: Adjustment measurement In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency. For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted. - Detector: Peak - Measured frequencies: in step 1 determined frequencies - RBW: 100 kHz - VBW: 100 kHz - Sweep time: coupled - Turntable angle range: ± 45 ° around the determined value - Height variation range: ± 100 cm around the determined value - Antenna Polarisation: max. value determined in step 1 #### Step 3: Final measurement with RMS detector With the settings determined in step 3, the final measurement will be performed: EMI receiver settings for step 4: - Detector: RMQ - Measured frequencies: in step 1 determined frequencies - RBW: 100 kHz - VBW: 100 kHz - Sweep time: 1 s After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement. #### 3. Measurement above 1 GHz The following modifications apply to the measurement procedure for the frequency range above 1 GHz: #### Step 1: The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber. All steps were performed with one height (1.5 m) of the receiving antenna only. The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 °. The turn table step size (azimuth angle) for the preliminary measurement is 45 °. - Antenna distance: 3 m Detector: PeakRBW: 1 MHzVBW: 3 MHz - Sweep time: coupled - Turntable angle range: -180° to 90° - Turntable step size: 90° - Polarisation: Horizontal + Vertical #### Step 2: Due to the fact, that in this frequency range the test is performed in a fully anechoic room, the height scan of the receiving antenna instep 2 is omitted. Instead of this, a maximum search with a step size \pm 45° for the elevation axis is performed. The turn table azimuth will slowly vary by \pm 22.5°. The elevation angle will slowly vary by $\pm 45^{\circ}$ EMI receiver settings (for all steps): Detector: Peak,RBW: 1 MHzVBW: 3 MHz - Sweep time: 100 ms Step 3: Spectrum analyser settings for step 3: - Detector: RMS - Measured frequencies: in step 1 determined frequencies - RBW: 1 MHz - VBW: 3 MHz - Sweep Time: 1 s #### 5.1.2 TEST REQUIREMENTS / LIMITS #### FCC Part 2.1053; Measurement required: Field strength of spurious radiation: Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, independent sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph (c) of $\S 2.1049$, as appropriate. #### Part 22, Subpart H - Cellular Radiotelephone Service #### § 22 917 – Emission limitations for cellular equipment (a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB. #### RSS-132; 5.5 Transmitter Unwanted Emissions Mobile and base station equipment shall comply with the limits in (i) and (ii) below. - 1. In the first 1.0 MHz band immediately outside and adjacent to each of the sub-bands specified in Section 5.1, the power of emissions per any 1% of the occupied bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log₁₀p (watts). - 2. After the first 1.0 MHz
immediately outside and adjacent to each of the sub-bands, the power of emissions in any 100 kHz bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log₁₀ p (watts). If the measurement is performed using 1% of the occupied bandwidth, power integration over 100 kHz is required. #### 5.1.3 TEST PROTOCOL Ambient temperature: 24 °C Air Pressure: 1004 hPa Humidity: 38 % GPRS 850, TX on 836.5 MHz + 2.4 GHz Bluetooth Classic, TX on 2402 MHz | Spurious Freq. [MHz] | Spurious Level [dBm] | Detector | RBW
[kHz] | Limit
[dBm] | Margin to Limit
[dB] | |----------------------|----------------------|----------|--------------|----------------|-------------------------| | - | - | PEAK | 1000 | -13 | >20 | Remark: Please see next sub-clause for the measurement plot. # 5.1.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE) Radio Technology = GSM 850 Data traffic on mid CH + BT Classic TX on low CH, Measurement method = radiated (S01_AG02) Remark: Marker on intentional transmitter BT low CH #### **Final Result** | Frequency
(MHz) | MaxPeak
(dBm) | Limit
(dBm) | Margin
(dB) | Meas. Time
(ms) | Bandwidth
(kHz) | Height (cm) | Pol | Azimuth (deg) | Elevation (deg) | Corr.
(dB) | |--------------------|------------------|----------------|----------------|--------------------|--------------------|-------------|-----|---------------|-----------------|---------------| | | | | | | | | | | | | #### 5.1.5 TEST EQUIPMENT USED - Radiated Emissions FAR #### 5.2 FIELD STRENGTH OF SPURIOUS RADIATION Standard FCC PART 24 Subpart E #### The test was performed according to: ANSI C63.26: 2015; 5.5.2.3.1 #### 5.2.1 TEST DESCRIPTION This test case is intended to demonstrate compliance to the applicable radiated spurious emission measurements per § 2.1053 and RSS-GEN 6.13. The limit and requirements come from the applicable rule part and ISED RSS-Standard for the operating band of the cellular device. The EUT was connected to the test setup according to the following diagram: Frequency Range: 30 MHz - 1 GHz: Test Setup; Spurious Emission Radiated (SAC), 30 MHz- 1GHz Frequency Range: 1 GHz - 26.5 GHz Test Setup; Spurious Emission Radiated (FAC), 1 GHz-26.5 GHz The test set-up was made in accordance to the general provisions of ANSI C63.26 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated. The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered from a DC power source. #### 1. Measurement above 30 MHz and up to 1 GHz #### **Step 1:** Preliminary scan This is a preliminary test to identify the highest amplitudes relative to the limit. Settings for step 1: - Antenna distance: 3 m Detector: PeakRBW: 1 MHzVBW: 3 MHzSweep time: 1 s - Turntable angle range: -180° to 90° - Turntable step size: 90° Height variation range: 1 – 3 m Height variation step size: 2 m Polarisation: Horizontal + Vertical Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified. #### **Step 2:** Adjustment measurement In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency. For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted. - Detector: Peak - Measured frequencies: in step 1 determined frequencies - RBW: 1 MHz - VBW: 3 MHz - Sweep time: 100 ms - Turntable angle range: ± 45 ° around the determined value - Height variation range: ± 100 cm around the determined value - Antenna Polarisation: max. value determined in step 1 #### **Step 3:** Final measurement with RMS detector With the settings determined in step 3, the final measurement will be performed: EMI receiver settings for step 4: - Detector: RMQ - Measured frequencies: in step 1 determined frequencies - RBW: 1 MHz - VBW: 3 MHz - Sweep time: 1 s After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement. #### 3. Measurement above 1 GHz The following modifications apply to the measurement procedure for the frequency range above 1 GHz: #### Step 1: The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber. All steps were performed with one height (1.5 m) of the receiving antenna only. The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 °. The turn table step size (azimuth angle) for the preliminary measurement is 45 °. - Antenna distance: 3 m Detector: PeakRBW: 1 MHzVBW: 3 MHz - Sweep time: coupled - Turntable angle range: -180° to 90° - Turntable step size: 90° - Polarisation: Horizontal + Vertical #### Step 2: Due to the fact, that in this frequency range the test is performed in a fully anechoic room, the height scan of the receiving antenna instep 2 is omitted. Instead of this, a maximum search with a step size \pm 45° for the elevation axis is performed. The turn table azimuth will slowly vary by \pm 22.5°. The elevation angle will slowly vary by $\pm 45^{\circ}$ EMI receiver settings (for all steps): Detector: Peak,RBW: 1 MHzVBW: 3 MHz - Sweep time: 100 ms #### Step 3: Spectrum analyser settings for step 3: - Detector: RMS - Measured frequencies: in step 1 determined frequencies - RBW: 1 MHz - VBW: 3 MHz - Sweep Time: 1 s #### 5.2.2 TEST REQUIREMENTS / LIMITS #### FCC Part 2.1053; Measurement required: Field strength of spurious radiation: Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, independent sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph (c) of §2.1049, as appropriate. #### Part 24, Subpart E - Broadband PCS #### § 24 238 - Emission limitations for Broadband PCS equipment - a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. - b) Measurement procedure. Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 1 MHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. #### **RSS-133**; 6.5 Transmitter Unwanted Emissions Mobile and base station equipment shall comply with the limits in (1) and (2) below. - 1. In the 1.0 MHz bands immediately outside and adjacent to the equipment's operating frequency block, the emission power per any 1% of the emission bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least $43 + 10 \log_{10}p$ (watts). - 2. After the first 1.0 MHz, the emission power in any 1 MHz bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log₁₀p (watts). If the measurement is performed using 1% of the emission bandwidth, power integration over 1.0 MHz is required. #### 5.2.3 TEST PROTOCOL Ambient temperature: 24 °C Air Pressure: 1013 hPa Humidity: 42 % GPRS 1900, TX on 1880 MHz + 2.4 GHz Bluetooth Classic, TX on 2441 MHz | Spurious Freq. [MHz] | Spurious Level [dBm] | Detector | RBW
[kHz] | Limit
[dBm] | Margin to Limit
[dB] | |----------------------|----------------------|----------|--------------|----------------|-------------------------| | - | - | PEAK | 1000 | -13 | >20 | Remark: Please see next sub-clause for the measurement plot. # 5.2.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE) Radio Technology = GSM 1900 Data traffic on mid CH + BT Classic TX on mid CH, Measurement method = radiated (S01_AG02) Remark: Marker on intentional transmitter BT mid CH and GSM 1900 mid CH #### Final Result | i iiiai_itesaii | • | | | | | | | | | | |--------------------|------------------|----------------|----------------|--------------------|--------------------|-------------|-----|---------------|-----------------|---------------| |
Frequency
(MHz) | MaxPeak
(dBm) | Limit
(dBm) | Margin
(dB) | Meas. Time
(ms) | Bandwidth
(kHz) | Height (cm) | Pol | Azimuth (deg) | Elevation (deg) | Corr.
(dB) | | | | | | | | | | | | | #### 5.2.5 TEST EQUIPMENT USED - Radiated Emissions FAR #### 5.3 FIELD STRENGTH OF SPURIOUS RADIATION Standard FCC PART 27 Subpart C #### The test was performed according to: ANSI C63.26: 2015; 5.5.2.3.1 #### 5.3.1 TEST DESCRIPTION This test case is intended to demonstrate compliance to the applicable radiated spurious emission measurements per § 2.1053 and RSS-GEN 6.13. The limit and requirements come from the applicable rule part and ISED RSS-Standard for the operating band of the cellular device. The EUT was connected to the test setup according to the following diagram: Frequency Range: 30 MHz - 1 GHz: Test Setup; Spurious Emission Radiated (SAC), 30 MHz- 1GHz Frequency Range: 1 GHz - 26.5 GHz Test Setup; Spurious Emission Radiated (FAC), 1 GHz-26.5 GHz The test set-up was made in accordance to the general provisions of ANSI C63.26 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated. The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered from a DC power source. #### 1. Measurement above 30 MHz and up to 1 GHz #### **Step 1:** Preliminary scan This is a preliminary test to identify the highest amplitudes relative to the limit. Settings for step 1: - Antenna distance: 3 m Detector: PeakRBW: 1 MHzVBW: 3 MHz - Sweep time: coupled - Turntable angle range: -180° to 90° - Turntable step size: 90° Height variation range: 1 – 3 m Height variation step size: 2 m Polarisation: Horizontal + Vertical Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified. #### **Step 2:** Adjustment measurement In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency. For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted. - Detector: Peak - Measured frequencies: in step 1 determined frequencies - RBW: 1 MHz - VBW: 1 MHz - Sweep time: 100 ms - Turntable angle range: \pm 45 ° around the determined value - Height variation range: ± 100 cm around the determined value - Antenna Polarisation: max. value determined in step 1 #### **Step 3:** Final measurement with RMS detector With the settings determined in step 3, the final measurement will be performed: EMI receiver settings for step 4: - Detector: RMQ - Measured frequencies: in step 1 determined frequencies - RBW: 1MHz - VBW: 1 MHz - Sweep time: 1 s After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement. #### 3. Measurement above 1 GHz The following modifications apply to the measurement procedure for the frequency range above 1 GHz: #### Step 1: The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber. All steps were performed with one height (1.5 m) of the receiving antenna only. The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 °. The turn table step size (azimuth angle) for the preliminary measurement is 45 °. - Antenna distance: 3 m Detector: PeakRBW: 1 MHzVBW: 3 MHz - Sweep time: coupled - Turntable angle range: -180° to 90° - Turntable step size: 90° - Polarisation: Horizontal + Vertical #### Step 2: Due to the fact, that in this frequency range the test is performed in a fully anechoic room, the height scan of the receiving antenna instep 2 is omitted. Instead of this, a maximum search with a step size \pm 45° for the elevation axis is performed. The turn table azimuth will slowly vary by \pm 22.5°. The elevation angle will slowly vary by $\pm 45^{\circ}$ EMI receiver settings (for all steps): Detector: Peak,RBW: 1 MHzVBW: 3 MHz - Sweep time: 100 ms #### Step 3: Spectrum analyser settings for step 3: - Detector: RMS - Measured frequencies: in step 1 determined frequencies - RBW: 1 MHz - VBW: 3 MHz - Sweep Time: 1 s Page 29 of 40 #### 5.3.2 TEST REQUIREMENTS / LIMITS #### FCC Part 2.1053; Measurement required: Field strength of spurious radiation: Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, independent sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph (c) of §2.1049, as appropriate. #### FCC Part 27; Miscellaneous Wireless Communication Services #### **Subpart C - Technical standards** #### §27.53 - Emission limits #### Band 7: - (m) For BRS and EBS stations, the power of any emissions outside the licensee's frequency bands of operation shall be attenuated below the transmitter power (P) measured in watts in accordance with the standards below. If a licensee has multiple contiguous channels, out-of-band emissions shall be measured from the upper and lower edges of the contiguous channels. - (4) For mobile digital stations, the attenuation factor shall be not less than $40 + 10 \log (P) dB$ on all frequencies between the channel edge and 5 megahertz from the channel edge, $43 + 10 \log (P) dB$ on all frequencies between 5 megahertz and X megahertz from the channel edge, and $55 + 10 \log (P) dB$ on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that $43 + 10 \log (P) dB$ on all frequencies between 2490.5 MHz and 2496 MHz and $55 + 10 \log (P) dB$ at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees. #### RSS-199; 4.5 Transmitter unwanted emissions In the 1 MHz band immediately outside and adjacent to the channel edge, the unwanted emission power shall be measured with a resolution bandwidth of at least 1% of the occupied bandwidth for base station and fixed subscriber equipment, and 2% for mobile subscriber equipment. Beyond the 1 MHz band, a resolution bandwidth of 1 MHz shall be used. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full required measurement bandwidth of 1 MHz, or 1% or 2% of the occupied bandwidth, as applicable. Equipment shall comply with the following unwanted emission limits: b. for mobile subscriber equipment, the power of any unwanted emissions measured as above shall be attenuated (in dB) below the transmitter power, P (dBW), by at least: - $40 + 10 \log_{10} p$ from the channel edges to 5 MHz away - $43 + 10 \log_{10} p$ between 5 MHz and X MHz from the channel edges, and - 55 + 10 log₁₀ p at X MHz and beyond from the channel edges In addition, the attenuation shall not be less than $43 + 10 \log_{10} p$ on all frequencies between 2490.5 MHz and 2496 MHz, and $55 + 10 \log_{10} p$ at or below 2490.5 MHz. In (b), p is the transmitter power measured in watts and X is 6 MHz or the equipment occupied bandwidth, whichever is greater. #### 5.3.3 TEST PROTOCOL Ambient temperature: 24 °C Air Pressure: 1004 hPa Humidity: 38 % LTE Band eFDD7, TX on 2535 MHz + 2.4 GHz Bluetooth Classic, TX on 2480 MHz | Spurious Freq. [MHz] | Spurious Level [dBm] | Detector | RBW
[kHz] | Limit
[dBm] | Margin to Limit
[dB] | |----------------------|----------------------|----------|--------------|----------------|-------------------------| | - | - | PEAK | 1000 | -13 | >20 | Remark: Please see next sub-clause for the measurement plot. ## 5.3.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE) Radio Technology = LTE Band 7 Data traffic on mid CH + BT Classic TX on high CH, Measurement method = radiated (S01_AG02) Remark: Marker on intentional transmitter BT high CH and LTE Band 7 mid CH #### **Final Result** | Frequency
(MHz) | MaxPeak
(dBm) | Limit
(dBm) | Margin
(dB) | Meas. Time
(ms) | Bandwidth
(kHz) | Height (cm) | Pol | Azimuth (deg) | Elevation (deg) | Corr.
(dB) | |--------------------|------------------|----------------|----------------|--------------------|--------------------|-------------|-----|---------------|-----------------|---------------| | | | | | | | | | | | | #### 5.3.5 TEST EQUIPMENT USED - Radiated Emissions FAR ### 6 TEST EQUIPMENT #### 6.1 TEST EQUIPMENT HARDWARE 1 Radiated Emissions FAR Radiated Emissions in a fully anechoic room |
Ref.No. | Device Name | Description | Manufacturer | Serial Number | Last
Calibration | Calibration
Due | |---------|---------------------------------|---|--------------------------------------|--------------------------------|---------------------|--------------------| | 1.1 | Opus10 TPR
(8253.00) | T/P Logger 13 | Lufft Mess- und
Regeltechnik GmbH | 13936 | 2021-10 | 2023-10 | | 1.2 | AMF-
7D00101800-
30-10P-R | Broadband
Amplifier 100
MHz - 18 GHz | Miteq | | | | | 1.3 | | High Pass
Filter | Trilithic | 9942012 | | | | 1.4 | | Antenna Mast | Maturo GmbH | - | | | | 1.5 | Anechoic
Chamber 03 | FAR, 8.80m x
4.60m x
4.05m (I x w x
h) | Albatross Projects | P26971-647-001-
PRB | 2021-04 | 2023-04 | | 1.6 | Fluke 177 | Digital
Multimeter 03
(Multimeter) | Fluke Europe B.V. | 86670383 | 2022-06 | 2024-06 | | 1.7 | JS4-18002600-
32-5P | Broadband
Amplifier 18
GHz - 26 GHz | Miteq | 849785 | | | | 1.8 | FSW 43 | Spectrum
Analyzer | Rohde & Schwarz
GmbH & Co. KG | 103779 | 2021-06 | 2023-06 | | 1.9 | 3160-09 | Standard Gain | EMCO Elektronic
GmbH | 00083069 | | | | 1.10 | WHKX 7.0/18G-
8SS | High Pass
Filter | Wainwright
Instruments GmbH | 09 | | | | 1.11 | 4HC1600/12750
-1.5-KK | High Pass
Filter | Trilithic | 9942011 | | | | 1.12 | TT 1.5 WI | | Maturo GmbH | - | | | | 1.13 | HL 562
ULTRALOG | Biconical-log- | Rohde & Schwarz
GmbH & Co. KG | 100609 | 2022-06 | 2025-06 | | 1.14 | VLFX-650+ | Low Pass Filter
DC650 MHz | Mini-Circuits | 15542 | | | | 1.15 | 5HC3500/18000
-1.2-KK | | Trilithic | 200035008 | | | | 1.16 | Opus 20 THI
(8120.00) | | Lufft Mess- und
Regeltechnik GmbH | 115.0318.0802.0
33 | 2020-10 | 2022-10 | | 1.17 | TD1.5-10kg | EUT Tilt Device
(Rohacell) | Maturo GmbH | TD1.5-
10kg/024/37907
09 | | | | 1.18 | PAS 2.5 - 10 kg | Antenna Mast | Maturo GmbH | - | | | | 1.19 | AFS42-
00101800-25-S-
42 | Broadband
Amplifier 25
MHz - 18 GHz | Miteq | 2035324 | | | | 1.20 | HF 907 | Double-ridged
horn | Rohde & Schwarz | 102444 | 2021-09 | 2024-09 | The calibration interval is the time interval between "Last Calibration" and "Calibration Due" ## 6.2 TEST EQUIPMENT SOFTWARE | Semi-Anechoic Chamber: | | | | | |------------------------------|----------|--|--|--| | Software | Version | | | | | EMC32 Measurement Software | 10.60.10 | | | | | INNCO Mast Controller | 1.02.62 | | | | | MATURO Mast Controller | 12.19 | | | | | MATURO Turn-Table Controller | 30.10 | | | | | Fully-Anechoic Chamber: | | | | | | Software | Version | | | | | EMC32 Measurement Software | 10.60.10 | | | | | MATURO Turn-Unit Controller | 11.10 | | | | | MATURO Mast Controller | 12.10 | | | | | MATURO Turntable Controller | 12.11 | | | | #### 7 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN. #### 7.1 LISN R&S ESH3-Z5 (150 KHZ - 30 MHZ) | Frequency | | Corr. | |-----------|---|-------| | MHz | | dB | | 0.15 | | 10.1 | | 5 | | 10.3 | | 7 | | 10.5 | | 10 | | 10.5 | | 12 | | 10.7 | | 14 | | 10.7 | | 16 | | 10.8 | | 18 | | 10.9 | | 20 | | 10.9 | | 22 | | 11.1 | | 24 | | 11.1 | | 26 | - | 11.2 | | 28 | | 11.2 | | 30 | | 11.3 | | | cable | |-----------|-----------| | LISN | loss | | insertion | (incl. 10 | | loss | dB | | ESH3- | atten- | | Z5 | uator) | | dB | dB | | 0.1 | 10.0 | | 0.1 | 10.2 | | 0.2 | 10.3 | | 0.2 | 10.3 | | 0.3 | 10.4 | | 0.3 | 10.4 | | 0.4 | 10.4 | | 0.4 | 10.5 | | 0.4 | 10.5 | | 0.5 | 10.6 | | 0.5 | 10.6 | | 0.5 | 10.7 | | 0.5 | 10.7 | | 0.5 | 10.8 | #### Sample calculation U_{LISN} (dB μ V) = U (dB μ V) + Corr. (dB) U = Receiver reading LISN Insertion loss = Voltage Division Factor of LISN Corr. = sum of single correction factors of used LISN, cables, switch units (if used) Linear interpolation will be used for frequencies in between the values in the table. #### 7.2 ANTENNA R&S HFH2-Z2 (9 KHZ - 30 MHZ) | ,,,,,, | | | |-----------|----------|-------| | | | | | | AF | | | Frequency | HFH-Z2) | Corr. | | MHz | dB (1/m) | dB | | 0.009 | 20.50 | -79.6 | | 0.01 | 20.45 | -79.6 | | 0.015 | 20.37 | -79.6 | | 0.02 | 20.36 | -79.6 | | 0.025 | 20.38 | -79.6 | | 0.03 | 20.32 | -79.6 | | 0.05 | 20.35 | -79.6 | | 0.08 | 20.30 | -79.6 | | 0.1 | 20.20 | -79.6 | | 0.2 | 20.17 | -79.6 | | 0.3 | 20.14 | -79.6 | | 0.49 | 20.12 | -79.6 | | 0.490001 | 20.12 | -39.6 | | 0.5 | 20.11 | -39.6 | | 0.8 | 20.10 | -39.6 | | 1 | 20.09 | -39.6 | | 2 | 20.08 | -39.6 | | 3 | 20.06 | -39.6 | | 4 | 20.05 | -39.5 | | 5 | 20.05 | -39.5 | | 6 | 20.02 | -39.5 | | 8 | 19.95 | -39.5 | | 10 | 19.83 | -39.4 | | 12 | 19.71 | -39.4 | | 14 | 19.54 | -39.4 | | 16 | 19.53 | -39.3 | | 18 | 19.50 | -39.3 | | 20 | 19.57 | -39.3 | | 22 | 19.61 | -39.3 | | 24 | 19.61 | -39.3 | | 26 | 19.54 | -39.3 | | 28 | 19.46 | -39.2 | | 30 | 19.73 | -39.1 | | (3 11112 | 30 11112 | <u>'</u> | | | | | |----------|----------|----------|-----------|----------|-------------|------------| | cable | cable | cable | cable | distance | d_{Limit} | d_{used} | | loss 1 | loss 2 | loss 3 | loss 4 | corr. | (meas. | (meas. | | (inside | (outside | (switch | (to | (-40 dB/ | distance | distance | | chamber) | chamber) | unit) | receiver) | decade) | (limit) | (used) | | dB | dB | dB | dB | dB | m | m | | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -40 | 30 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -40 | 30 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -40 | 30 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -40 | 30 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -40 | 30 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -40 | 30 | 3 | | 0.2 | 0.1 | 0.1 | 0.1 | -40 | 30 | 3 | | 0.2 | 0.1 | 0.1 | 0.1 | -40 | 30 | 3 | | 0.2 | 0.1 | 0.1 | 0.1 | -40 | 30 | 3 | | 0.2 | 0.1 | 0.1 | 0.1 | -40 | 30 | 3 | | 0.2 | 0.1 | 0.2 | 0.1 | -40 | 30 | 3 | | 0.2 | 0.1 | 0.2 | 0.1 | -40 | 30 | 3 | | 0.2 | 0.1 | 0.2 | 0.1 | -40 | 30 | 3 | | 0.3 | 0.1 | 0.2 | 0.1 | -40 | 30 | 3 | | 0.3 | 0.1 | 0.2 | 0.1 | -40 | 30 | 3 | | 0.3 | 0.1 | 0.2 | 0.1 | -40 | 30 | 3 | | 0.3 | 0.1 | 0.2 | 0.1 | -40 | 30 | 3 | | 0.3 | 0.1 | 0.2 | 0.1 | -40 | 30 | 3 | | 0.3 | 0.1 | 0.2 | 0.1 | -40 | 30 | 3 | | 0.3 | 0.1 | 0.3 | 0.1 | -40 | 30 | 3 | | 0.4 | 0.1 | 0.3 | 0.1 | -40 | 30 | 3 | | | • | | | | | • | #### Sample calculation E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB) U = Receiver reading AF = Antenna factor Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-40 * LOG (d_{Limit} / d_{used})$ Linear interpolation will be used for frequencies in between the values in the table. Table shows an extract of values #### 7.3 ANTENNA R&S HL562 (30 MHZ - 1 GHZ) $(d_{Limit} = 3 m)$ | $d_{Limit} = 3 m)$ | | | | | | | |--------------------|--------------------|-------|--|--|--|--| | Frequency | AF
R&S
HL562 | Corr. | | | | | | MHz | dB (1/m) | dB | | | | | | 30 | 18.6 | 0.6 | | | | | | 50 | 6.0 | 0.9 | | | | | | 100 | 9.7 | 1.2 | | | | | | 150 | 7.9 | 1.6 | | | | | | 200 | 7.6 | 1.9 | | | | | | 250 | 9.5 | 2.1 | | | | | | 300 | 11.0 | 2.3 | | | | | | 350 | 12.4 | 2.6 | | | | | | 400 | 13.6 | 2.9 | | | | | | 450 | 14.7 | 3.1 | | | | | | 500 | 15.6 | 3.2 | | | | | | 550 | 16.3 | 3.5 | | | | | | 600 | 17.2 | 3.5 | | | | | | 650 | 18.1 | 3.6 | | | | | | 700 | 18.5 | 3.6 | | | | | | 750 | 19.1 | 4.1 | | | | | | 800 | 19.6 | 4.1 | | | | | | 850 | 20.1 | 4.4 | | | | | | 900 | 20.8 | 4.7 | | | | | | 950 | 21.1 | 4.8 | | | | | | 1000 | 21.6 | 4.9 | | | | | | cable | cable | cable | cable | distance | d_{Limit} | d_{used} | |----------|----------|---------|-----------|----------|-------------|------------| | loss 1 | loss 2 | loss 3 | loss 4 | corr. | (meas. | (meas. | | (inside | (outside | (switch | (to | (-20 dB/ | distance | distance | | chamber) | chamber) | unit) | receiver) | decade) | (limit) | (used) | | dB | dB | dB | dB | dB | m | m | | 0.29 | 0.04 | 0.23 | 0.02 | 0.0 | 3 | 3 | | 0.39 | 0.09 | 0.32 | 0.08 | 0.0 | 3 | 3 | | 0.56 | 0.14 | 0.47 | 0.08 | 0.0 | 3 | 3 | | 0.73 | 0.20 | 0.59 | 0.12 | 0.0 | 3 | 3 | | 0.84 | 0.21 | 0.70 | 0.11 | 0.0 | 3 | 3 | | 0.98 | 0.24 | 0.80 | 0.13 | 0.0 | 3 | 3 | | 1.04 | 0.26 | 0.89 | 0.15 | 0.0 | 3 | 3 | | 1.18 | 0.31 | 0.96 | 0.13 | 0.0 | 3 | 3 | | 1.28 | 0.35 | 1.03 | 0.19 | 0.0 | 3 | 3 | | 1.39 | 0.38 | 1.11 | 0.22 | 0.0 | 3 | 3 | | 1.44 | 0.39 | 1.20 | 0.19 | 0.0 | 3 | 3 | | 1.55 | 0.46 | 1.24 | 0.23 | 0.0 | 3 | 3 | | 1.59 | 0.43 | 1.29 | 0.23 | 0.0 | 3 | 3 | | 1.67 | 0.34 | 1.35 | 0.22 | 0.0 | 3 | 3 | | 1.67 | 0.42 | 1.41 | 0.15 | 0.0 | 3 | 3 | | 1.87 | 0.54 | 1.46 | 0.25 | 0.0 | 3 | 3 | | 1.90 | 0.46 | 1.51 | 0.25 | 0.0 | 3 | 3 | | 1.99 | 0.60 | 1.56 | 0.27 | 0.0 | 3 | 3 | | 2.14 | 0.60 | 1.63 | 0.29 | 0.0 | 3 | 3 | | 2.22 | 0.60 | 1.66 | 0.33 | 0.0 | 3 | 3 | | 2.23 | 0.61 | 1.71 | 0.30 | 0.0 | 3 | 3 | | | | | | | | | $(d_{Limit} = 10 \text{ m})$ | $(d_{Limit} = 10 \text{ m})$ | 1) | | | | | | | | | |------------------------------|------|------|------|------|------|------|-------|----|---| | 30 | 18.6 | -9.9 | 0.29 | 0.04 | 0.23 | 0.02 | -10.5 | 10 | 3 | | 50 | 6.0 | -9.6 | 0.39 | 0.09 | 0.32 | 0.08 | -10.5 | 10 | 3 | | 100 | 9.7 | -9.2 | 0.56 | 0.14 | 0.47 | 0.08 | -10.5 | 10 | 3 | | 150 | 7.9 | -8.8 | 0.73 | 0.20 | 0.59 | 0.12 | -10.5 | 10 | 3 | | 200 | 7.6 | -8.6 | 0.84 | 0.21 | 0.70 | 0.11 | -10.5 | 10 | 3 | | 250 | 9.5 | -8.3 | 0.98 | 0.24 | 0.80
| 0.13 | -10.5 | 10 | 3 | | 300 | 11.0 | -8.1 | 1.04 | 0.26 | 0.89 | 0.15 | -10.5 | 10 | 3 | | 350 | 12.4 | -7.9 | 1.18 | 0.31 | 0.96 | 0.13 | -10.5 | 10 | 3 | | 400 | 13.6 | -7.6 | 1.28 | 0.35 | 1.03 | 0.19 | -10.5 | 10 | 3 | | 450 | 14.7 | -7.4 | 1.39 | 0.38 | 1.11 | 0.22 | -10.5 | 10 | 3 | | 500 | 15.6 | -7.2 | 1.44 | 0.39 | 1.20 | 0.19 | -10.5 | 10 | 3 | | 550 | 16.3 | -7.0 | 1.55 | 0.46 | 1.24 | 0.23 | -10.5 | 10 | 3 | | 600 | 17.2 | -6.9 | 1.59 | 0.43 | 1.29 | 0.23 | -10.5 | 10 | 3 | | 650 | 18.1 | -6.9 | 1.67 | 0.34 | 1.35 | 0.22 | -10.5 | 10 | 3 | | 700 | 18.5 | -6.8 | 1.67 | 0.42 | 1.41 | 0.15 | -10.5 | 10 | 3 | | 750 | 19.1 | -6.3 | 1.87 | 0.54 | 1.46 | 0.25 | -10.5 | 10 | 3 | | 800 | 19.6 | -6.3 | 1.90 | 0.46 | 1.51 | 0.25 | -10.5 | 10 | 3 | | 850 | 20.1 | -6.0 | 1.99 | 0.60 | 1.56 | 0.27 | -10.5 | 10 | 3 | | 900 | 20.8 | -5.8 | 2.14 | 0.60 | 1.63 | 0.29 | -10.5 | 10 | 3 | | 950 | 21.1 | -5.6 | 2.22 | 0.60 | 1.66 | 0.33 | -10.5 | 10 | 3 | | 1000 | 21.6 | -5.6 | 2.23 | 0.61 | 1.71 | 0.30 | -10.5 | 10 | 3 | #### Sample calculation E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB) U = Receiver reading AF = Antenna factor Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-20 * LOG (d_{Limit}/d_{used})$ Linear interpolation will be used for frequencies in between the values in the table. Tables show an extract of values. ### 7.4 ANTENNA R&S HF907 (1 GHZ - 18 GHZ) | | AF
R&S | | |-----------|-----------|-------| | Frequency | HF907 | Corr. | | MHz | dB (1/m) | dB | | 1000 | 24.4 | -19.4 | | 2000 | 28.5 | -17.4 | | 3000 | 31.0 | -16.1 | | 4000 | 33.1 | -14.7 | | 5000 | 34.4 | -13.7 | | 6000 | 34.7 | -12.7 | | 7000 | 35.6 | -11.0 | | cable loss 1 (relay + cable inside | cable
loss 2
(outside | cable loss 3 (switch unit, atten- uator & | cable | | |------------------------------------|-----------------------------|---|-----------|--| | chamber) | chamber) | pre-amp) | receiver) | | | dB | dB | dB | dB | | | 0.99 | 0.31 | -21.51 | 0.79 | | | 1.44 | 0.44 | -20.63 | 1.38 | | | 1.87 | 0.53 | -19.85 | 1.33 | | | 2.41 | 0.67 | -19.13 | 1.31 | | | 2.78 | 0.86 | -18.71 | 1.40 | | | 2.74 | 0.90 | -17.83 | 1.47 | | | 2.82 | 0.86 | -16.19 | 1.46 | | | Frequency | AF
R&S
HF907 | Corr. | |-----------|--------------------|-------| | MHz | dB (1/m) | dB | | 3000 | 31.0 | -23.4 | | 4000 | 33.1 | -23.3 | | 5000 | 34.4 | -21.7 | | 6000 | 34.7 | -21.2 | | 7000 | 35.6 | -19.8 | | cable
loss 1
(relay
inside | cable
loss 2
(inside | cable
loss 3
(outside | cable
loss 4
(switch
unit,
atten-
uator & | cable
loss 5 (to | used
for
FCC | |-------------------------------------|----------------------------|-----------------------------|--|---------------------|--------------------| | chamber) | chamber) | chamber) | pre-amp) | receiver) | 15.247 | | dB | dB | dB | dB | dB | | | 0.47 | 1.87 | 0.53 | -27.58 | 1.33 | | | 0.56 | 2.41 | 0.67 | -28.23 | 1.31 | | | 0.61 | 2.78 | 0.86 | -27.35 | 1.40 | | | 0.58 | 2.74 | 0.90 | -26.89 | 1.47 | | | 0.66 | 2.82 | 0.86 | -25.58 | 1.46 | | | Frequency | AF
R&S
HF907 | Corr. | |-----------|--------------------|-------| | MHz | dB (1/m) | dB | | 7000 | 35.6 | -57.3 | | 8000 | 36.3 | -56.3 | | 9000 | 37.1 | -55.3 | | 10000 | 37.5 | -56.2 | | 11000 | 37.5 | -55.3 | | 12000 | 37.6 | -53.7 | | 13000 | 38.2 | -53.5 | | 14000 | 39.9 | -56.3 | | 15000 | 40.9 | -54.1 | | 16000 | 41.3 | -54.1 | | 17000 | 42.8 | -54.4 | | 18000 | 44.2 | -54.7 | | cable | | | | | | |----------|--------|--------|----------|----------|-----------| | loss 1 | cable | cable | cable | cable | cable | | (relay | loss 2 | loss 3 | loss 4 | loss 5 | loss 6 | | inside | (High | (pre- | (inside | (outside | (to | | chamber) | Pass) | amp) | chamber) | chamber) | receiver) | | dB | dB | dB | dB | dB | dB | | 0.56 | 1.28 | -62.72 | 2.66 | 0.94 | 1.46 | | 0.69 | 0.71 | -61.49 | 2.84 | 1.00 | 1.53 | | 0.68 | 0.65 | -60.80 | 3.06 | 1.09 | 1.60 | | 0.70 | 0.54 | -61.91 | 3.28 | 1.20 | 1.67 | | 0.80 | 0.61 | -61.40 | 3.43 | 1.27 | 1.70 | | 0.84 | 0.42 | -59.70 | 3.53 | 1.26 | 1.73 | | 0.83 | 0.44 | -59.81 | 3.75 | 1.32 | 1.83 | | 0.91 | 0.53 | -63.03 | 3.91 | 1.40 | 1.77 | | 0.98 | 0.54 | -61.05 | 4.02 | 1.44 | 1.83 | | 1.23 | 0.49 | -61.51 | 4.17 | 1.51 | 1.85 | | 1.36 | 0.76 | -62.36 | 4.34 | 1.53 | 2.00 | | 1.70 | 0.53 | -62.88 | 4.41 | 1.55 | 1.91 | #### Sample calculation E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB) U = Receiver reading AF = Antenna factor Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table. Tables show an extract of values. ### 7.5 ANTENNA EMCO 3160-09 (18 GHZ - 26.5 GHZ) | Frequency | AF
EMCO
3160-09 | Corr. | |-----------|-----------------------|-------| | MHz | dB (1/m) | dB | | 18000 | 40.2 | -23.5 | | 18500 | 40.2 | -23.2 | | 19000 | 40.2 | -22.0 | | 19500 | 40.3 | -21.3 | | 20000 | 40.3 | -20.3 | | 20500 | 40.3 | -19.9 | | 21000 | 40.3 | -19.1 | | 21500 | 40.3 | -19.1 | | 22000 | 40.3 | -18.7 | | 22500 | 40.4 | -19.0 | | 23000 | 40.4 | -19.5 | | 23500 | 40.4 | -19.3 | | 24000 | 40.4 | -19.8 | | 24500 | 40.4 | -19.5 | | 25000 | 40.4 | -19.3 | | 25500 | 40.5 | -20.4 | | 26000 | 40.5 | -21.3 | | 26500 | 40.5 | -21.1 | | • | | , | | | |----------|--------|----------|---------|-----------| | cable | cable | cable | cable | cable | | loss 1 | loss 2 | loss 3 | loss 4 | loss 5 | | (inside | (pre- | (inside | (switch | (to | | chamber) | amp) | chamber) | unit) | receiver) | | dB | dB | dB | dB | dB | | 0.72 | -35.85 | 6.20 | 2.81 | 2.65 | | 0.69 | -35.71 | 6.46 | 2.76 | 2.59 | | 0.76 | -35.44 | 6.69 | 3.15 | 2.79 | | 0.74 | -35.07 | 7.04 | 3.11 | 2.91 | | 0.72 | -34.49 | 7.30 | 3.07 | 3.05 | | 0.78 | -34.46 | 7.48 | 3.12 | 3.15 | | 0.87 | -34.07 | 7.61 | 3.20 | 3.33 | | 0.90 | -33.96 | 7.47 | 3.28 | 3.19 | | 0.89 | -33.57 | 7.34 | 3.35 | 3.28 | | 0.87 | -33.66 | 7.06 | 3.75 | 2.94 | | 0.88 | -33.75 | 6.92 | 3.77 | 2.70 | | 0.90 | -33.35 | 6.99 | 3.52 | 2.66 | | 0.88 | -33.99 | 6.88 | 3.88 | 2.58 | | 0.91 | -33.89 | 7.01 | 3.93 | 2.51 | | 0.88 | -33.00 | 6.72 | 3.96 | 2.14 | | 0.89 | -34.07 | 6.90 | 3.66 | 2.22 | | 0.86 | -35.11 | 7.02 | 3.69 | 2.28 | | 0.90 | -35.20 | 7.15 | 3.91 | 2.36 | | | | | | | #### Sample calculation E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB) U = Receiver reading AF = Antenna factor Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table. Table shows an extract of values. ### 7.6 ANTENNA EMCO 3160-10 (26.5 GHZ - 40 GHZ) | Frequency | AF
EMCO
3160-10 | Corr. | |-----------|-----------------------|-------| | GHz | dB (1/m) | dB | | 26.5 | 43.4 | -11.2 | | 27.0 | 43.4 | -11.2 | | 28.0 | 43.4 | -11.1 | | 29.0 | 43.5 | -11.0 | | 30.0 | 43.5 | -10.9 | | 31.0 | 43.5 | -10.8 | | 32.0 | 43.5 | -10.7 | | 33.0 | 43.6 | -10.7 | | 34.0 | 43.6 | -10.6 | | 35.0 | 43.6 | -10.5 | | 36.0 | 43.6 | -10.4 | | 37.0 | 43.7 | -10.3 | | 38.0 | 43.7 | -10.2 | | 39.0 | 43.7 | -10.2 | | 40.0 | 43.8 | -10.1 | | cable
loss 1
(inside
chamber) | cable
loss 2
(outside
chamber) | cable
loss 3
(switch
unit) | cable
loss 4
(to
receiver) | distance
corr.
(-20 dB/
decade) | d _{Limit}
(meas.
distance
(limit) | d _{used}
(meas.
distance
(used) | |--|---|-------------------------------------|-------------------------------------|--|---|---| | dB | dB | dB | dB | dB | m | m | | 4.4 | | | | -9.5 | 3 | 1.0 | | 4.4 | | | | -9.5 | 3 | 1.0 | | 4.5 | | | | -9.5 | 3 | 1.0 | | 4.6 | | | | -9.5 | 3 | 1.0 | | 4.7 | | | | -9.5 | 3 | 1.0 | | 4.7 | | | | -9.5 | 3 | 1.0 | | 4.8 | | | | -9.5 | 3 | 1.0 | | 4.9 | | | | -9.5 | 3 | 1.0 | | 5.0 | | | | -9.5 | 3 | 1.0 | | 5.1 | | | | -9.5 | 3 | 1.0 | | 5.1 | | | | -9.5 | 3 | 1.0 | | 5.2 | | | | -9.5 | 3 | 1.0 | | 5.3 | | | | -9.5 | 3 | 1.0 | | 5.4 | | | | -9.5 | 3 | 1.0 | | 5.5 | | | | -9.5 | 3 | 1.0 | #### Sample calculation E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB) U = Receiver reading AF = Antenna factor Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table. distance correction = $-20 * LOG (d_{Limit}/d_{used})$ Linear interpolation will be used for frequencies in between the values in the table. Table shows an extract of values. #### 8 MEASUREMENT UNCERTAINTIES | Test Case(s) | Parameter | Uncertainty | |---|--------------------|------------------------| | - Field strength of spurious radiation | Field Strength | ± 5.5 dB | | - Emission and Occupied Bandwidth | Power
Frequency | ± 2.9 dB
± 11.2 kHz | | RF Output PowerPeak to Average Ratio | Power | ± 2.2 dB | | Band Edge ComplianceSpurious Emissions at Antenna
Terminal | Power
Frequency | ± 2.2 dB
± 11.2 kHz | | - Frequency Stability | Frequency | ± 25 Hz | The measurement uncertainties for all parameters are calculated with an expansion factor (coverage factor) k = 1.96. This means, that the true value is in the corresponding interval with a probability of 95 %. The verdicts in this test report are given according the above diagram: | Case | Measured Value | Uncertainty
Range | Verdict | |------|-----------------|-------------------|---------| | 1 | below pass mark | below pass mark | Passed | | 2 | below pass mark | within pass mark | Passed | | 3 | above pass mark | within pass mark | Failed | | 4 | above pass mark | above pass mark | Failed | That means, the laboratory applies, as decision rule (see ISO/IEC 17025:2017), the so called shared risk principle. #### 9 PHOTO REPORT Please see separate photo report.