

Königswinkel 10 32825 Blomberg, Germany Phone: +49 (0) 52 35 / 95 00-0 Fax: +49 (0) 52 35 / 95 00-10 office@phoenix-testlab.de www.phoenix-testlab.de

Test Report

Report Number:

F231200E2

Equipment under Test (EUT):

Cerabar PMP43

Applicant:

Endress+Hauser SE+Co. KG

Manufacturer:

Endress+Hauser SE+Co. KG

References

- [1] ANSI C63.10-2020, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
- [2] FCC CFR 47 Part 15, Radio Frequency Devices
- [3] 558074 D01 15.247 Meas Guidance v05r02 (April 2019), GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEM, FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM DEVICES OPERATING UNDER SECTION 15.247 OF THE FCC RULES
- [4] RSS-247, Issue 2 (2023-08) Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices
- [5] RSS-Gen, Issue 5 Amendment 2 (2021-02) General Requirements for Compliance of Radio Apparatus

 Examiner:
 Martin EPPINGER
 Report Number:
 F231200E2

 Date of Issue:
 21.11.2024
 Order Number:
 23-111200

 Page 2 of 38

Test Result

The requirements of the tests performed as shown in the overview (clause 4) were fulfilled by the equipment under test. The complete test results are presented in the following.

"Passed" indicates that the equipment under test conforms with the relevant limits of the testing.

"Passed" indicates that the equipment under test conforms with the relevant limits of the testing standard without taking any measurement uncertainty into account as stated in clause 1.3 of ANSI C63.10 (2020). However, the measurement uncertainty is calculated and shown in this test report.

Tested and written by:	
	Signature
Reviewed and approved by:	
	Signature

This test report is only valid in its original form.

Any reproduction of its contents in extracts without written permission of the accredited test laboratory PHOENIX TESTLAB GmbH is prohibited.

The test results herein refer only to the tested sample. PHOENIX TESTLAB GmbH is not responsible for any generalisations or conclusions drawn from these test results concerning further samples. Any modification of the tested samples is prohibited and leads to the invalidity of this test report. Each page necessarily contains the PHOENIX TESTLAB Logo and the TEST REPORT NUMBER.

 Examiner:
 Martin EPPINGER
 Report Number:
 F231200E2

 Date of Issue:
 21.11.2024
 Order Number:
 23-111200

 Page 3 of 38

C	onte	ents:	Page
1	lde	entification	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Test Laboratory	5
	1.4	EUT (Equipment under Test)	6
	1.5	Technical Data of Equipment	7
	1.6	Dates	8
2	Op	perational States	9
	2.1	Description of function of the EUT	9
3	Ad	Iditional Information	9
4	Ov	verview	10
5	Re	esults	11
	5.1	Test setups	11
	5.2	Transmit antenna performance considerations	19
	5.3	Duty cycle	20
	5.4	DTS fundamental emission output power	21
	5.5	DTS band-edge emission measurements	23
	5.6	Radiated emissions	26
	5.7	AC power-line conducted emissions	34
6	Me	easurement Uncertainties	36
7	Te	st Equipment used for Tests	37
8	Te	st site Verification	38
9	Re	port History	38
10) Lis	st of Annexes	38

1 Identification

1.1 Applicant

Name:	Endress+Hauser SE+Co. KG
Address:	Hauptstr. 1 79689 Maulburg
Country:	Germany
Name for contact purposes:	Mr. Florian SEIDLER
Phone:	+49 7622-28-0
eMail address:	florian.seidler@endress.com
Applicant represented during the test by the following person:	-

1.2 Manufacturer

Name:	Endress+Hauser SE+Co. KG
Address:	Hauptstr. 1 79689 Maulburg
Country:	Germany
Name for contact purposes:	Mr. Florian SEIDLER
Phone:	+49 7622-28-0
eMail address:	florian.seidler@endress.com
Manufacturer represented during the test by the following person:	-

1.3 Test Laboratory

The tests were carried out by: PHOENIX TESTLAB GmbH

Königswinkel 10 32825 Blomberg Germany

accredited by Deutsche *Akkreditierungsstelle GmbH (DAkkS)* according to DIN EN ISO/IEC 17025:2018. The accreditation is only valid for the scope of accreditation listed in the annex of the certificate D-PL-17186-01-00, FCC Test Firm Designation Number DE0004, FCC Test Firm Registration Number 469623, CAB Identifier DE0003 and ISED# 3469A.

 Examiner:
 Martin EPPINGER
 Report Number:
 F231200E2

 Date of Issue:
 21.11.2024
 Order Number:
 23-111200

 Page 5 of 38

1.4 EUT (Equipment under Test)

Test object: *	Pressure measuring device
Model name: *	Cerabar PMP43
Model number: *	PMP43
Order number: *	NA
FCC ID: *	LCGPMX43
IC certification number: *	2519A-PMX43
PMN: *	PMP43
HVIN: *	PMP43-1
FVIN: *	NA

	EUT number
	1
Serial number: *	W1000C01225
PCB identifier: *	Display Board: 71599584 Mainboard: 71439136 Terminal Board: 71508546
Hardware version: *	01.00.00
Software version: *	S140 V7.2.0 (Soft device)

^{*} Declared by the applicant

One EUT was used for all tests.

Note: PHOENIX TESTLAB GmbH does not take samples. The samples used for tests are provided

exclusively by the applicant.

 Examiner:
 Martin EPPINGER
 Report Number:
 F231200E2

 Date of Issue:
 21.11.2024
 Order Number:
 23-111200

 Page 6 of 38

1.5 Technical Data of Equipment

General EUT data			
Power supply EUT: *	DC		
Supply voltage EUT: *	U _{nom} = 24 V _{DC}	U _{min} = 12 V _{DC}	U _{max} = 30 V _{DC}
Temperature range: *	-40°C to +85°C		

Ports / Connectors				
	Connector		Length	Shielding
Identification	EUT	Ancillary	during test	(Yes / No)
4-Wire I/O Link communication & DC	M12	USB-A	2.0 m	No

Bluetooth® low energy frequencies			
Channel 00	2402 MHz	Channel 01	2404 MHz
Channel 02	2406 MHz	Channel 03	2408 MHz
Channel 18	2438 MHz	Channel 19	2440 MHz
Channel 36	2474 MHz	Channel 37	2476 MHz
Channel 38	2478 MHz	Channel 39	2480 MHz

 Examiner:
 Martin EPPINGER
 Report Number:
 F231200E2

 Date of Issue:
 21.11.2024
 Order Number:
 23-111200

 Page 7 of 38

Bluetooth® low energy radio mode			
Fulfils radio specification: *1	Bluetooth® low energy (BLE) 5.2		
Radio chip: *1	Nordic nRF52840 (SoC)		
Antenna type: *1	PCB IFA Antenna		
Antenna name: *1	n/a		
Antenna gain: *2	-2.2 dBi		
	BLE (1 Mbps PHY)	GFSK	
Type of modulation, *1	BLE (2 Mbps PHY)	GFSK	
Type of modulation: *1	BLE (500 kbps coded PHY)	GFSK	
	BLE (125 kbps coded PHY)	GFSK	
	BLE (1 Mbps PHY)	2402 – 2480 MHz	
Operating frequency renge: *1	BLE (2 Mbps PHY)	2402 – 2480 MHz	
Operating frequency range: *1	BLE (500 kbps coded PHY)	2402 – 2480 MHz	
	BLE (125 kbps coded PHY)	2402 – 2480 MHz	
	BLE (1 Mbps PHY)	40 (2 MHz channel spacing)	
Number of channels: *1	BLE (2 Mbps PHY)	40 (2 MHz channel spacing)	
Number of Charmers.	BLE (500 kbps coded PHY)	40 (2 MHz channel spacing)	
	BLE (125 kbps coded PHY)	40 (2 MHz channel spacing)	

1.5.1 Ancillary Equipment / Equipment used for testing

Equipment used for testing		
AC adapter *2	PHOENIX CONTACT MINI-PS.100-240AC/24DC/1.3 Used for AC power line conducted	
Laptop*2	Fujitsu LIFEBOOK U748	
FTDI Adapter: *1 Used for test mode configuration		

1.6 Dates

Date of receipt of test sample:	24.01.2024
Start of test:	25.04.2024
End of test:	13.06.2024

Examiner: Martin EPPINGER
Date of Issue: 21.11.2024 Report Number: F231200E2 Order Number: 23-111200 Page 8 of 38

^{*1} declared by the applicant *2 based on the antenna test report F231200E4 by Phoenix TESTLAB GmbH

^{*1} Provided by the applicant *2 Provided by the laboratory

2 Operational States

2.1 Description of function of the EUT

The EUT is a pressure measuring device for hygiene applications with a touch display.

During all radiated tests, the EUT was supplied by 24 V DC

2.1.1 Operation modes

Operation mode #	Radio technology	Frequency [MHz]	Channel / Band	Modulation / Mode	Data rate	Power setting
1	Bluetooth© LE	2402	0	GFSK	2 Mbit/s	"pos8dBm"
2	Bluetooth© LE	2480	39	GFSK	2 Mbit/s	"pos8dBm"

The are the worst cases as pretests have shown.

3 Additional Information

All tests were carried out using an unmodified sample.

 Examiner:
 Martin EPPINGER
 Report Number:
 F231200E2

 Date of Issue:
 21.11.2024
 Order Number:
 23-111200

 Page 9 of 38

4 Overview

Application	Frequency range [MHz]	FCC 47 CFR Part 15 section [2]	RSS-247 [4] RSS-Gen [5]	Tested EUT	Status
Maximum peak conducted output power	2400.0 - 2483.5	15.247 (b) (3), (4)	5.4 (d) [4]	1	Passed*3
Maximum conducted output power	2400.0 - 2483.5	15.247 (b) (3), (4)	5.4 (d) [4]	-	-
DTS Bandwidth / 99% Bandwidth	2400.0 - 2483.5	15.247 (a) (2)	5.2 (a) [4]	-	Not tested*
Peak Power Spectral Density	2400.0 - 2483.5	15.247 (e)	5.2 (b) [4]	-	Not tested*
Average Power Spectral Density	2400.0 - 2483.5	15.247 (e)	5.2 (b) [4]	-	Not tested*
Band edge compliance	2400.0 - 2483.5	15.247 (d) 15.205 (a) 15.209 (a)	5.5 [4]	1	Passed*2
Maximum unwanted emissions	0.009 - 26,500*1	15.247 (d) 15.205 (a) 15.209 (a)	8.9 [5]	1	Passed*2*1
Antenna Requirement	-	15.203 15.247 (b)	6.8 [5] 5.4 (f) (ii) [4]	-	-
Conducted emissions on supply line	0.15 – 30	15.207 (a)	8.8 [5]	1	Passed

^{*} Not tested, because the tests were not ordered by the applicant.

 Examiner:
 Martin EPPINGER
 Report Number:
 F231200E2

 Date of Issue:
 21.11.2024
 Order Number:
 23-111200

 Page 10 of 38

As declared by the applicant the highest radio clock frequency is 2.48 GHz.

Therefore, the radiated emission measurement must be carried out up to 10th of the highest radio clock frequency in this case 26.5 GHz.

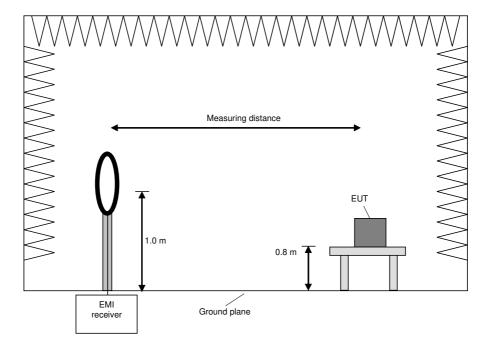
Only the worst were tested as pretests have shown,

The maximum peak conducted output power was tested in the report "F230973E4" from PHOENIX TESTLAB, because the PCB with its Radio module and its layout is the exact same as in the EUT, with the FCC ID LCGFMR43L and IC certification number 2519A-43L, tested in this report, as defined by the applicant.

5 Results

5.1 Test setups

5.1.1 Radiated: 9 kHz to 30 MHz


5.1.1.1 Preliminary measurement 9 kHz to 30 MHz

In the first stage a preliminary measurement is performed in a semi-anechoic chamber at a measuring distance of 3 meters. Table-top devices are set up on a non-conducting support with a size of 1 m by 1.5 m and a height of 80 cm. Floor-standing devices are placed directly on the turntable / ground plane. The setup of the equipment under test is in accordance with [1].

The frequency range 9 kHz to 30 MHz is monitored with an EMI receiver while the system and its cables are manipulated to find out the configuration with the maximum emission levels if applicable. The EMI receiver is set to MAX hold mode. The EUT and the measuring antenna are rotated around their vertical axis to find the maximum emission levels.

The resolution bandwidth of the EMI receiver is set to the following values:

Frequency range	Resolution bandwidth
9 kHz to 150 kHz	200 Hz
150 kHz to 30 MHz	9 kHz

Procedure preliminary measurement:

Pre-scans are performed in the frequency range 9 kHz to 150 kHz and 150 kHz to 30 MHz. The following procedure is used:

- 1) Monitor the frequency range with the measuring antenna facing the EUT and an EUT / turntable azimuth of 0 °.
- 2) Manipulate the system cables to produce the maximum levels of emissions.

3) Rotate the EUT by 360 ° to maximize the detected signals.

 Examiner:
 Martin EPPINGER
 Report Number:
 F231200E2

 Date of Issue:
 21.11.2024
 Order Number:
 23-111200

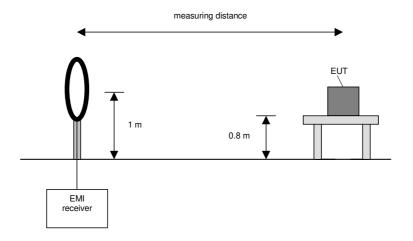
 Page 11 of 38

- 4) Measure the frequencies of the highest detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency values.
- 5) If the EUT is portable or ceiling mounted, repeat steps 1 to 4 with other orientations (x,y,z) of the EUT.
- 6) Rotate the measuring antenna and repeat steps 1 to 5.

 Examiner:
 Martin EPPINGER
 Report Number:
 F231200E2

 Date of Issue:
 21.11.2024
 Order Number:
 23-111200

 Page 12 of 38


5.1.1.2 Final measurement 9 kHz to 30 MHz

In the second stage a final measurement is performed on an open area test site with no conducting ground plane at a measuring distance of 3 m, 10 m, or 30 m. If the standard requires larger measuring distances for a given frequency, the results are extrapolated according to section 15.31 (f) (2) [2]. The final measurement is performed with an EMI receiver set to Quasi-Peak detector, except for the frequency bands 9 kHz to 90 kHz and 110 kHz to 490 kHz where an Average detector is used according section 15.209 (d) [2].

At the frequencies, which were detected during the preliminary measurements, the final measurement is performed while rotating the EUT and the measuring antenna in the range of 0 ° to 360 ° around their vertical axis until the maximum level value is found.

The resolution bandwidth of the EMI receiver is set to the following values:

Frequency range	Resolution bandwidth	Measuring time	
9 kHz to 150 kHz	200 Hz	1 s	
150 kHz to 30 MHz	9 kHz	1 s	

Procedure final measurement:

The following procedure is used:

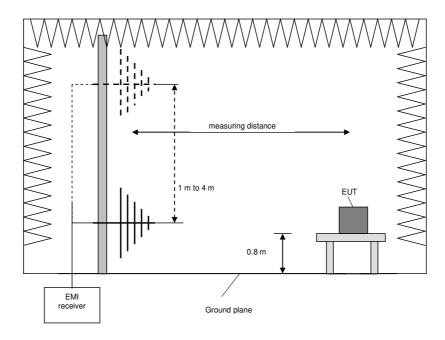
- 1) Monitor the selected frequencies from the preliminary measurement with the measuring antenna facing the EUT and an EUT azimuth of 0 °.
- 2) Rotate the EUT by 360 ° to maximize the detected signals.
- 3) Rotate the measuring antenna and repeat steps 1 to 2 until the maximum value is found and note it.
- 4) If the EUT is portable or ceiling mounted, repeat steps 1 to 3 with other orientations (x,y,z) of the EUT.

 Examiner:
 Martin EPPINGER
 Report Number:
 F231200E2

 Date of Issue:
 21.11.2024
 Order Number:
 23-111200

 Page 13 of 38

5.1.2 Radiated: 30 MHz to 1 GHz


5.1.2.1 Preliminary and final measurement 30 MHz to 1 GHz

The preliminary and final measurements are performed in a semi-anechoic chamber with a metal ground plane at a measuring distance of 3 meters. Table-top devices are set up on a non-conducting support with a size of 1 m by 1.5 m and a height of 80 cm. Floor-standing devices are placed directly on the turntable / ground plane. The setup of the equipment under test is in accordance with [1].

During the tests the EUT is rotated in the range of 0 $^{\circ}$ to 360 $^{\circ}$, the measuring antenna is set to horizontal and vertical polarization and raised and lowered in the range from 1 m to 4 m to find the maximum level of emissions.

The resolution bandwidth of the EMI receiver is set to the following values:

Test	Frequency range	Step-size	Resolution bandwidth	Measuring time	Detector
Preliminary measurement	30 MHz to 1 GHz	30 kHz	120 kHz	-	Peak Average
Frequency peak search	± 120 kHz	10 kHz	120 kHz	1 s	Peak
Final measurement	30 MHz to 1 GHz	-	120 kHz	1 s	QuasiPeak

 Examiner:
 Martin EPPINGER
 Report Number:
 F231200E2

 Date of Issue:
 21.11.2024
 Order Number:
 23-111200

 Page 14 of 38

Procedure preliminary measurement:

The following procedure is used:

- 1) Set the measuring antenna to 1 m height.
- 2) Monitor the frequency range at horizontal polarization of the measuring antenna and an EUT / turntable azimuth of 0 °.
- 3) Rotate the EUT by 360° to maximize the detected signals.
- 4) Repeat steps 2 to 3 with the vertical polarization of the measuring antenna.
- 5) Increase the height of the measuring antenna for 0.5 m and repeat steps 2 to 4 until the final height of 4 m is reached.
- 6) The highest values for each frequency are saved by the software, including the measuring antenna height and polarization and the turntable azimuth for that value.

Procedure final measurement:

The following procedure is used:

- 1) Select the highest frequency peaks (lowest margin to the limit) for the final measurement.
- 2) The software determines the exact peak frequencies by doing a partial scan with reduced step size of the pre-scan of the selected peaks.
- 3) If the EUT is portable or ceiling mounted, find the worst-case EUT orientation (x,y,z) for the final test.
- 4) The worst-case measuring antenna height is found via varying the height by +/- 0.5 m from the value obtained in the preliminary measurement while monitoring the emission level.
- 5) The worst-case turntable position is found via varying the turntable azimuth by +/- 30° from the value obtained in the preliminary measurement while monitoring the emission level.
- 6) The final measurement is performed at the worst-case measuring antenna height and the worst-case turntable azimuth.
- 7) Steps 2 to 6 are repeated for each frequency peak selected in step 1.

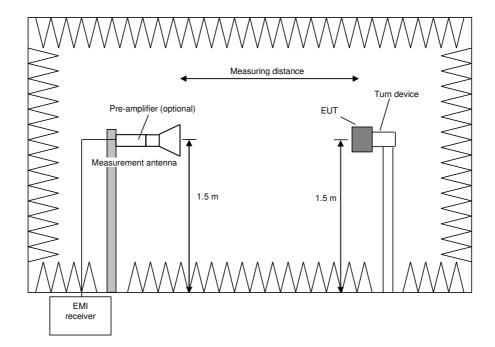
5.1.3 Radiated: 1 GHz to 40 GHz

5.1.3.1 Preliminary and final measurement 1 to 40 GHz

The preliminary and final measurements are performed in a fully anechoic chamber at a measuring distance of 3 meters. Table-top devices are set up on a non-conducting turn device at the height of 1.5 m. The setup of the equipment under test is in accordance with [1].

During the tests the EUT is rotated in the range of 0 $^{\circ}$ to 360 $^{\circ}$ and the measuring antenna is set to horizontal and vertical polarization to find the maximum level of emissions. After these steps, the measurement is repeated after reorientating the EUT in 30 $^{\circ}$ steps.

The resolution bandwidth of the EMI receiver is set to the following values:


Test	Frequency range	Step-size	Resolution bandwidth	Measuring time	Detector
Preliminary measurement	1 - 40 GHz	250 kHz	1 MHz	-	Peak Average
Final measurement	1 - 40 GHz	-	1 MHz	100 ms	Peak Average

 Examiner:
 Martin EPPINGER
 Report Number:
 F231200E2

 Date of Issue:
 21.11.2024
 Order Number:
 23-111200

 Page 15 of 38

 Examiner:
 Martin EPPINGER
 Report Number:
 F231200E2

 Date of Issue:
 21.11.2024
 Order Number:
 23-111200

 Page 16 of 38

Procedure preliminary measurement:

The following procedure is used:

- 1) Monitor the frequency range at horizontal polarisation of the measuring antenna and an EUT / turntable azimuth of 0 $^{\circ}$.
- 2) Rotate the EUT by 360° to maximize the detected signals.
- 3) Repeat steps 1 to 2 with the vertical polarisation of the measuring antenna.
- 4) Repeat steps 1 to 3 with the EUT reorientated by an angle of 30° (60°, 90°, 120° and 150°), according to 6.6.5.4 in [1].
- 5) The highest values for each frequency are saved by the software, including the measuring antenna polarization, the turntable azimuth and the turn device elevation for that value.

Procedure final measurement:

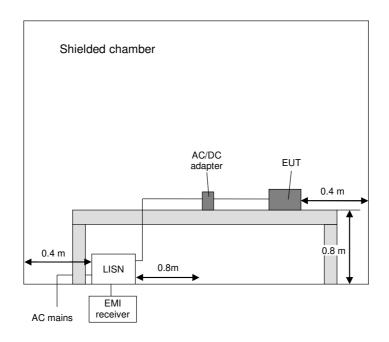
The following procedure is used:

- 1) Set the turntable and the turn device to the position which leads to the highest emission for the first frequency identified in the preliminary measurements.
- 2) Set the measurement antenna to the polarisation which leads to the highest emission for the first frequency identified in the preliminary measurements.
- 3) Set the spectrum analyser to EMI mode with Peak and Average detector activated.
- 4) The worst-case turntable position is found via varying the turntable azimuth by +/- 30° from the value obtained in the preliminary measurement while monitoring the emission level.
- 5) The final measurement is performed at the worst-case turntable azimuth.
- 6) Repeat steps 1 to 5 for each frequency detected during the preliminary measurements.

5.1.4 Conducted: AC power line

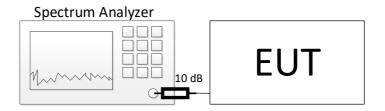
The test is carried out in a shielded chamber. Table-top devices are set up on a non-conducting support with a size of 1 m by 1.5 m and a height of 80 cm above the ground plane. Floor-standing devices are placed directly on the ground plane. In case of DC powered equipment, which is not exclusively powered by a battery, it is connected to the LISN via a suitable AC/DC adaptor. The setup of the equipment under test is in accordance with [1].

The frequency range 150 kHz to 30 MHz is measured with an EMI receiver set to MAX hold mode with Peak and Average detectors and a resolution bandwidth of 9 kHz. A scan is carried out on the phase and neutral line of the AC mains network. If emissions less than 10 dB below the appropriable limit are detected, these emissions are measured with an Average and Quasi-Peak detector on all lines.


Frequency range	Resolution bandwidth	Measuring time
150 kHz to 30 MHz	9 kHz	5 s

 Examiner:
 Martin EPPINGER
 Report Number:
 F231200E2

 Date of Issue:
 21.11.2024
 Order Number:
 23-111200


 Page 17 of 38

5.1.5 Conducted: Antenna port

	Test setup (conducted)					
Used	Antenna connector	Comment				
\boxtimes	Temporary antenna connector	As provided by the applicant				
	Normal antenna connector	-				

The 10 dB external attenuation are considered in all relevant plots

 Examiner:
 Martin EPPINGER
 Report Number:
 F231200E2

 Date of Issue:
 21.11.2024
 Order Number:
 23-111200

 Page 18 of 38

5.2 Transmit antenna performance considerations

Test setup (Transmit antenna performance considerations)				
Integral antenna Antenna gain ≤ 6dBi Comment				

	Antenna gain calculation				
		2480 MHz			
	output power* Bm]	6.1			
	ed EIRP EIRP]	3.9			
	na Gain Bi]	-2.2			
Pos	ition	Position 2			
Position of	Azimuth	312			
maximum gain	Polarisation	V			

^{*} During the antenna chart measurements, the PCB antenna was supplied with a CW rf-signal generated by the EUT.

For details see document: F231200E4

 Examiner:
 Martin EPPINGER
 Report Number:
 F231200E2

 Date of Issue:
 21.11.2024
 Order Number:
 23-111200

 Page 19 of 38

5.3 Duty cycle

5.3.1 Test setup (Duty cycle)

	Test setup (Duty cycle)					
Used	Setup	See sub-clause	Comment			
	Radiated: 1 GHz to 40 GHz	5.1.3	-			
\boxtimes	Conducted: Antenna port	5.1.5	-			

5.3.2 Test method (Duty cycle)

	Test method (Duty cycle)						
Used	Used Sub-Clause [1] Name of method Applicability Comment						
	11.6. a)	Diode detector	No limitation	-			
\boxtimes	11.6. b)	Zero span	No limitation	-			

5.3.3 Test results (Duty cycle)

Ambient temperature:	22 °C
Relative humidity:	40 %

Date:	08.05.2024
Tested by:	Martin EPPINGER

No DCCF is applied, duty cycle ≥ 98%.

Test equipment (please refer to chapter 7 for details)	
15	

 Examiner:
 Martin EPPINGER
 Report Number:
 F231200E2

 Date of Issue:
 21.11.2024
 Order Number:
 23-111200

 Page 20 of 38

5.4 DTS fundamental emission output power

5.4.1 Test setup (DTS fundamental emission output power)

	Test setup (DTS fundamental emission output power)			
Used	Setup	See sub-clause	Comment	
□ Radiated: 1 GHz to 40 GHz			-	
\boxtimes	Conducted: Antenna port	5.1.5	-	

5.4.2 Test method (DTS fundamental emission output power)

	Test method (Maximum peak conducted output power)				
Used	Sub-Clause [1]	Name of method	Applicability	Comment	
\boxtimes	11.9.1.1	RBW ≥ DTS bandwidth - Zero span mod		Zero span mode	
	11.9.1.2	PKPM1 Peak power meter method*1	-	-	

VBW of the peak power meter has to be > OBW of the fundamental.

5.4.3 Test results (DTS fundamental emission output power)

Ambient temperature:	21.7 °C	Date:	16.02.2024
Relative humidity:	53.5 %	Tested by:	B. ROHDE

5.4.3.1 Maximum peak conducted output power:

The maximum peak conducted output power was measured in the test report "F230973E4" by PHOENIX TESTLAB GmbH According to the applicant the hardware from that product is the same as in the present EUT, with the FCC ID LCGFMR43L and IC certification number 2519A-43L and therefore the conducted measurements were taken from the above-mentioned report.

Operation	Reading	Corr. Fact.	Result	Limit	Antenna Gain	e.i.r.p.	Limit e.i.r.p.
mode	[dBm]	[dB]	[dBm]	[dBm]	[dBi]	[dBm]	[dBm]
2	6.6	0.0	6.6	30	-2.2	4.4	30

 Examiner:
 Martin EPPINGER
 Report Number:
 F231200E2

 Date of Issue:
 21.11.2024
 Order Number:
 23-111200

 Page 21 of 38

5.4.3.2 Maximum conducted average output power:

The maximum conducted average output power was measured in the test report "F230973E4" by PHOENIX TESTLAB GmbH According to the applicant the hardware from that product is the same as in the present EUT, with the FCC ID LCGFMR43L and IC certification number 2519A-43L and therefore the conducted measurements were taken from the above-mentioned report.

Operation mode	Reading [dBm]	Corr. Fact. [dB]	Result [dBm]	Limit [dBm]	Antenna Gain [dBi]	e.i.r.p. [dBm]	Limit e.i.r.p. [dBm]
2	6.5	0.0	6.5	30	-2.2	4.3	30

Test result: Passed

Test equipment (please refer to chapter 7 for details)
15

 Examiner:
 Martin EPPINGER
 Report Number:
 F231200E2

 Date of Issue:
 21.11.2024
 Order Number:
 23-111200

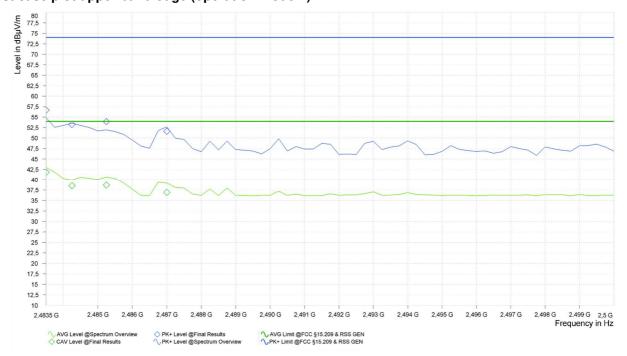
 Page 22 of 38

5.5 DTS band-edge emission measurements

5.5.1 Test setup (Band edge – restricted bands)

	Test setup (Band edge – restricted bands)			
Used	Setup	See sub-clause	Comment	
\boxtimes	Radiated: 1 GHz to 40 GHz	5.1.3		
	Conducted: Antenna port	-		

5.5.2 Test method (Band edge – restricted bands)

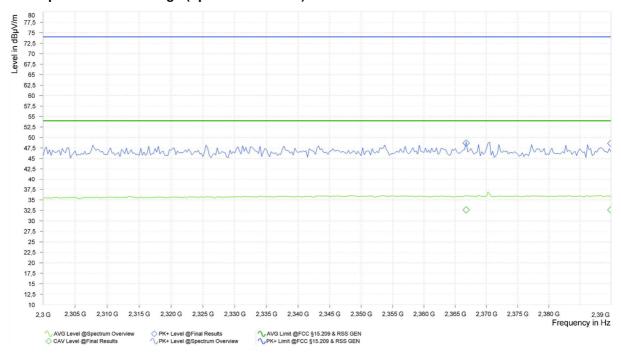

	Test method (Band edge – restricted bands)			
Used	sed Sub-Clause [1] Name of method Applicability Comment			
\boxtimes	11.12.1	Standard method	No limitations	
	11.12.3.1	Marker-delta method		See 6.10.6 [3] 2 MHz from band
	11.12.3.2	Integration method		2 MHz from band

5.5.3 Test results (Band edge – restricted bands)

Ambient temperature:	22.1 °C
Relative humidity:	42 %

Date:	08.05.2024
Tested by:	Martin EPPINGER

Worst case plot upper band edge (operation mode 2):


 Examiner:
 Martin EPPINGER
 Report Number:
 F231200E2

 Date of Issue:
 21.11.2024
 Order Number:
 23-111200

 Page 23 of 38

Worst case plot lower band edge (operation mode 1):

Upper band edge (operation mode 2):

Frequency	Result (Pk)	Result (Avg)	Limit	Margin	Deleviseties	Elevation	Azimuth
[MHz]	[dB(µV/m)]	[dB(µV/m)]	[dB(µV/m)]	[dB]	Polarization	[deg]	[deg]
2,483.500	56.64	-	74.00	17.36	V	90	87
2,483.500	-	41.80	54.00	12.20	V	90	87
2,484.250	53.25	-	74.00	20.75	٧	60	51
2,484.250	-	38.52	54.00	15.48	٧	60	51
2,485.250	53.92	-	74.00	20.08	V	90	69
2,485.250	-	38.67	54.00	15.33	٧	90	69
2,487.000	51.64	-	74.00	22.36	V	90	70
2,487.000	-	36.93	54.00	17.07	V	90	70

 Examiner:
 Martin EPPINGER
 Report Number:
 F231200E2

 Date of Issue:
 21.11.2024
 Order Number:
 23-111200

 Page 24 of 38

Lower band edge (operation mode 1):

Frequency	Result (Pk)	Result (Avg)	Limit	Margin		Elevation	Azimuth
[MHz]	[dB(µV/m)]	[dB(µV/m)]	[dB(µV/m)]	[dB]	Polarization	[deg]	[deg]
2,366.750	48.66	-	74.00	25.34	V	60	254
2,366.750	-	32.60	54.00	21.40	V	60	254
2,390.000	48.60	-	74.00	25.40	V	0	9
2,390.000	-	32.62	54.00	21.38	V	0	9

Test result: Passed

Test equipment (please refer to chapter 7 for details)

4, 6 – 12

 Examiner:
 Martin EPPINGER
 Report Number:
 F231200E2

 Date of Issue:
 21.11.2024
 Order Number:
 23-111200

 Page 25 of 38

5.6 Radiated emissions

5.6.1 Test setup (Maximum unwanted emissions)

	Test setup (Maximum unwanted emissions)						
Used	Setup	See sub-clause	Comment				
\boxtimes	Radiated: 9 kHz to 30 MHz / 30 MHz to 1 GHz / 1 GHz to 40 GHz	5.1	-				
	Conducted: Antenna port	-	-				

5.6.2 Test method (Maximum unwanted emissions)

☐ Test method (radiated) see sub-clause 5.1 as described herein

5.6.3 Test results (Maximum unwanted emissions)

5.6.3.1 Test results preliminary measurement 9 kHz to 30 MHz

Ambient temperature:	22.8 °C	Date:	24.04.2024
Relative humidity:	51 %	Tested by:	Martin EPPINGER

Position of EUT: For tests for f between 9 kHz to 30 MHz, the EUT was set-up on a table with a height

of 80 cm. The distance between EUT and antenna was 3 m.

Cable guide: For detail information of test set-up and the cable guide refer to the pictures in the

annex A in the test report.

Test record: The measurement value was already corrected by 40 dB/decade as described in 47

CFR 15.31(f)(2) regarding to the measurement distance as requested in 47 CFR

15.209(a)

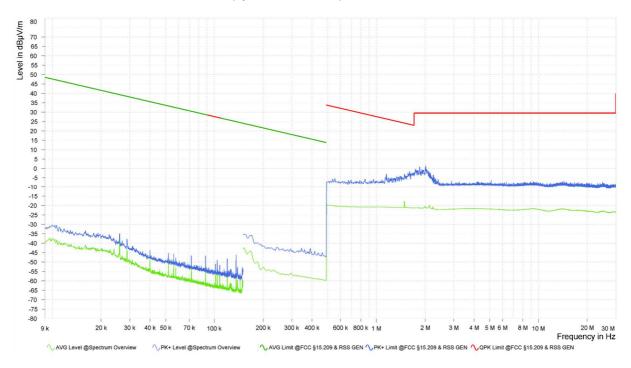
Calculations:

 $Result @ norm. \ dist. \ [dB\mu V/m] = \\ Reading \ [dB\mu V] + AF \ [dB/m] + Distance \ corr. \ fact. \ [dB]$

Result @ norm. dist. [dB μ A/m] = Result @ norm. dist. [dB μ V/m] - 20 x log₁₀ (377 Ω)

 $Margin \ [dB] = \\ Limit \ [dB(\mu V | \mu A)/m] - Result \ [dB(\mu V | \mu A)/m]$

 Examiner:
 Martin EPPINGER
 Report Number:
 F231200E2


 Date of Issue:
 21.11.2024
 Order Number:
 23-111200

 Page 26 of 38

Worst case plot:

Spurious emissions from 9 kHz to 30 MHz (operation mode 1):

Remark: No emissions close than 20 dB to the limit, so no final measurement will be carried out.

Test equipment (please refer to chapter 7 for details)

6 - 12, 16

 Examiner:
 Martin EPPINGER
 Report Number:
 F231200E2

 Date of Issue:
 21.11.2024
 Order Number:
 23-111200

 Page 27 of 38

5.6.3.2 Test results (30 MHz - 1 GHz)

Ambient temperature:	24.1 °C
Relative humidity:	51.0 %

Date: 05.06.2024
Tested by: Daniel BRUSCHINSKI

Position of EUT: For tests for f between 30 MHz to 1 GHz, the EUT was set-up on a table with a height

of 80 cm. The distance between EUT and antenna was 3 m.

Cable guide: For detail information of test set-up and the cable guide refer to the pictures in the

annex A in the test report.

Test record: Plots for each frequency range are submitted below.

Calculations:

Result $[dB\mu V/m]$ = Reading $[dB\mu V]$ + Correction $[dB\mu V/m]$

Correction $[dB\mu V/m] = AF [dB/m] + Cable attenuation [dB] + optional preamp gain [dB]$

Margin [dB] = Limit [dB μ V/m] - Result [dB μ V/m]

The measured points and the limit line in the following diagram refer to the standard measurement of the emitted interference in compliance with the above-mentioned standard. The measured points marked with ">" are the measured results of the standard subsequent measurement in a semi-anechoic chamber.

 Examiner:
 Martin EPPINGER
 Report Number:
 F231200E2

 Date of Issue:
 21.11.2024
 Order Number:
 23-111200

 Page 28 of 38

Worst case plot:

Spurious emissions from 30 MHz to 1 GHz (operation mode 2):

Result tables:

(Operation mode 2):

Frequency	Result (QP)	Limit	Margin	Correction	Height	Azimuth	Pol.
[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dB/m]	[cm]	[deg]	(H/V)
47.880	31.03	40.00	8.97	14.98	1.01	1	V
71.940	16.44	40.00	23.56	14.96	1.02	175	V
120.120	18.60	43.50	24.90	17.49	1.91	261	Н
336.000	16.88	46.00	29.12	19.92	1.14	135	V
529.830	21.91	46.00	24.09	24.62	1.22	269	٧
910.230	23.56	46.00	22.44	29.92	3.25	-15	V

Test result: Passed

Test equipment (please refer to chapter 7 for details)
7 – 15

 Examiner:
 Martin EPPINGER
 Report Number:
 F231200E2

 Date of Issue:
 21.11.2024
 Order Number:
 23-111200

 Page 29 of 38

5.6.3.3 Test results (radiated 1 GHz to 40 GHz)

Ambient temperature:	22.1 °C		
Relative humidity:	42.1 %		

Date:	08.05.2024
Tested by:	Martin EPPINGER

Position of EUT: For tests for f between 1 GHz and the 10th harmonic, the EUT was set-up on a

positioner device with a height of 150 cm. The distance between EUT and antenna

was 3 m.

Cable guide: For detail information of test set-up and the cable guide refer to the pictures in the

annex A in the test report.

Test record: Plots for each frequency range are submitted below.

Remark: -

Calculation:

Max Peak [dB μ V/m] = Reading [dB μ V] + Correction [dB μ V/m] Average [dB μ V/m] = Reading [dB μ V] + Correction [dB μ V/m]

Correction [dBμV/m] = AF [dB/m] + Cable attenuation [dB] + optional preamp gain [dB]+DCCF* [dB]

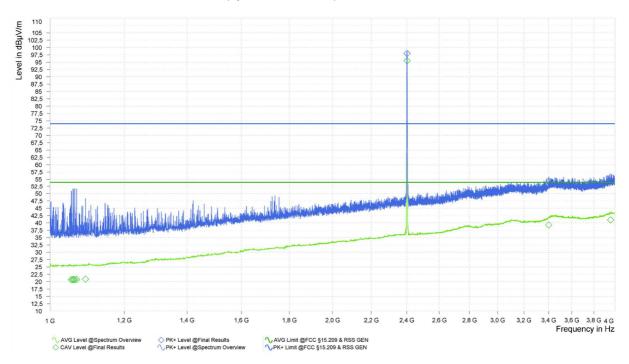
* (if applicable – only for Average values, that are fundamental related)

Margin [dB] = Limit [dB μ V/m] – Max Peak | Average [dB μ V/m]

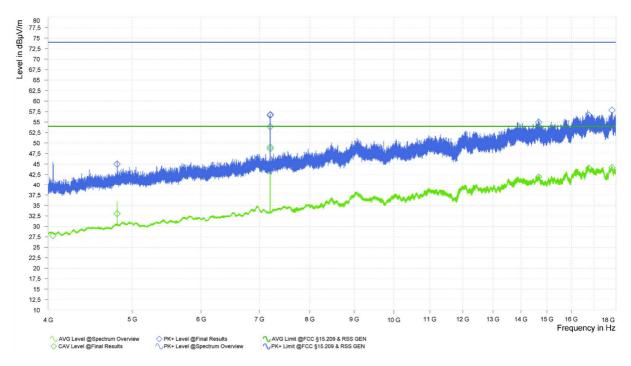
The curves in the diagram only represent the maximum measured value for each frequency point of all preliminary measurements, which were carried out with various EUT and antenna positions.

The top measured curve represents the peak measurement. The measured points marked with "\overline{\sigma}" are frequency points for the final peak detector measurement. These values are indicated in the following table. The bottom measured curve represents the average measurement. The measured points marked with "\overline{\sigma}" are frequency points for the final average detector measurement.

 Examiner:
 Martin EPPINGER
 Report Number:
 F231200E2


 Date of Issue:
 21.11.2024
 Order Number:
 23-111200

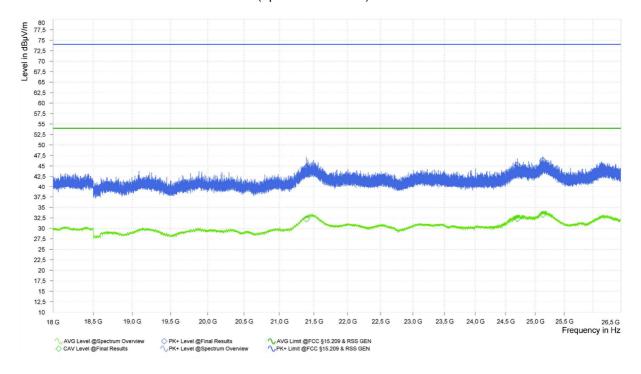
 Page 30 of 38



Worst case plots:

Spurious emissions from 1 GHz to 4 GHz (operation mode 1):

Spurious emissions from 4 GHz to18 GHz (operation mode 1):


 Examiner:
 Martin EPPINGER
 Report Number:
 F231200E2

 Date of Issue:
 21.11.2024
 Order Number:
 23-111200

 Page 31 of 38

Spurious emissions from 18 GHz to 26.5 GHz (operation mode 1):

 Examiner:
 Martin EPPINGER
 Report Number:
 F231200E2

 Date of Issue:
 21.11.2024
 Order Number:
 23-111200

 Page 32 of 38

Result tables:

Operation mode 1:

Frequency	MaxPeak	Pk Limit	Pk Margin	Average	Avg Limit	Avg Margin	Pol	Elevation	Azimuth	Corr.
[MHz]	[dB(µV/m)]	[dB(µV/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[H/V]	[deg]	[deg]	[dB]
1,053.750	38.03	74.00	35.97	20.68	54.00	33.32	Н	120	324	26.04
1,058.000	38.05	74.00	35.95	20.69	54.00	33.31	Η	120	328	26.09
1,059.250	38.18	74.00	35.82	20.68	54.00	33.32	Η	120	329	26.10
1,062.750	38.01	74.00	35.99	20.69	54.00	33.31	Ι	120	328	26.15
1,067.750	37.59	74.00	36.41	20.76	54.00	33.24	Ι	120	331	26.22
1,091.000	38.41	74.00	35.59	20.85	54.00	33.15	Η	120	331	26.14
2,402.000	97.97	-	Fund.	95.51	-	Fund.	٧	90	67	35.25
3,401.750	54.36	74.00	19.64	39.30	54.00	14.70	٧	150	261	39.82
3,960.000	55.74	74.00	18.26	41.03	54.00	12.97	Ι	60	318	40.94
4,052.000	40.58	74.00	33.42	27.80	54.00	26.20	Н	30	226	6.63
4,803.000	44.98	74.00	29.02	33.06	54.00	20.94	Η	0	201	9.68
7,204.750	56.66	74.00	17.34	49.06	54.00	4.94	٧	120	91	13.54
7,206.000	53.91	74.00	20.09	44.72	54.00	9.28	٧	120	91	13.55
7,207.250	56.78	74.00	17.22	48.63	54.00	5.37	>	120	101	13.57
14,678.500	54.91	74.00	19.09	41.89	54.00	12.11	٧	60	218	27.19
16,757.500	56.66	74.00	17.34	44.00	54.00	10.00	٧	60	125	29.45
17,823.750	57.83	74.00	16.17	44.14	54.00	9.86	٧	60	336	30.67
21,393.000	44.65	74.00	29.35	32.26	54.00	21.74	Η	0	48	11.36
24,698.250	45.20	74.00	28.80	32.33	54.00	21.67	Н	90	96	11.24
25,128.750	46.30	74.00	27.70	33.31	54.00	20.69	Н	90	243	11.55

Test result: Passed

Test equipment (please refer to chapter 7 for details)

1, 3 – 12

 Examiner:
 Martin EPPINGER
 Report Number:
 F231200E2

 Date of Issue:
 21.11.2024
 Order Number:
 23-111200

 Page 33 of 38

13.06.2024 M. EPPINGER

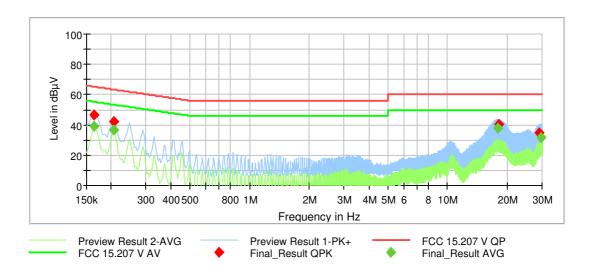
5.7 AC power-line conducted emissions

5.7.1 Test setup (Conducted emissions on power supply lines)

	Test setup (Conducted emissions on power supply lines)					
Used	Used Setup See sub-clause Comment					
\boxtimes	Conducted: AC power line	5.1.4	-			
	Not applicable, because	-	-			

5.7.2 Test method (Conducted emissions on power supply lines)

	Test setup (Conducted emissions on power supply lines)							
Used	Used Clause [3] Name of method Sub-clause Comment							
\boxtimes	6.2.3.2	Tabletop equipment testing	5.1.4	-				
	6.2.3.3	Floor-standing equipment testing	-	-				


The AC power adaptor provided by Phoenix Testlab was used for the tests: PHOENIX CONTACT MINI-PS.100-240AC/24DC/1.3

The power adaptor itself was supplied by 120V_{AC} 60Hz.

5.7.3 Test results (Conducted emissions on power supply lines)

í			
	Ambient temperature:	22 °C	Date:
	Relative humidity:	36 %	Tested by:

The curves in the diagrams below only represent for each frequency point the maximum measured value of all preliminary measurements which were made for each power supply line. The top measured curve represents the peak measurement and the bottom measured curve the average measurement. The quasi-peak measured points are marked by ◆ and the average measured points by ◆.

 Examiner:
 Martin EPPINGER
 Report Number:
 F231200E2

 Date of Issue:
 21.11.2024
 Order Number:
 23-111200

 Page 34 of 38

Frequency	QuasiPeak	Average	Limit	Margin	Line	PE	Corr.
[MHz]	[dB(µV)]	[dB(µV)]	[dB(µV)]	[dB]			[dB]
0.164400		39.15	55.24	16.09	L1	GND	9.8
0.164400	46.79		65.24	18.45	L1	GND	9.8
0.205800		36.76	53.37	16.61	L1	GND	9.8
0.205800	42.12		63.37	21.25	L1	GND	9.8
18.046500		38.01	50.00	11.99	L1	GND	10.9
18.088800	40.62		60.00	19.38	L1	GND	10.9
29.186700	34.87		60.00	25.13	L1	GND	11.2
29.682600		31.97	50.00	18.03	L1	GND	11.2

Test result: Passed

Test equipment (please refer to chapter 7 for details)

17 – 22

 Examiner:
 Martin EPPINGER
 Report Number:
 F231200E2

 Date of Issue:
 21.11.2024
 Order Number:
 23-111200

 Page 35 of 38

6 Measurement Uncertainties

Conducted measurements									
Measurement method	Standard used for calculating measurement uncertainty	Expanded measurement uncertainty (95 %) Ulab							
Frequency error	ETSI TR 100 028	4.5×10 ⁻⁸							
Bandwidth measurements	-	9.0×10 ⁻⁸							
Conducted emissions using a spectrum analyzer	Conducted emissions using a spectrum analyzer								
< 3.6 GHz	ETSI TR 100 028	2.3 dB							
3.6 – 8 GHz	ETSI TR 100 028	2.8 dB							
8 – 22 GHz	ETSI TR 100 028	3.2 dB							
22 – 40 GHz	ETSI TR 100 028	3.6 dB							
Power measurements									
Power meter	ETSI TR 100 028	0.9 dB							
Conducted emissions from 150 kHz to 30 MHz with LISN	CISPR 16-4-2	2.8 dB							

	Radiated measuremen	nts					
Frequency error							
(Semi-) Anechoic chamber	ETSI TR 100 028	4.5×10 ⁻⁸					
OATS	ETSI TR 100 028	4.5×10 ⁻⁸					
Test fixture	ETSI TR 100 028	4.5×10 ⁻⁸					
Bandwidth measurements							
(Semi-) Anechoic chamber	-	9.0×10 ⁻⁸					
OATS	-	9.0×10 ⁻⁸					
Test fixture	-	9.1×10 ⁻⁸					
Radiated field strength M20							
CBL6112B @ 3 m 30 MHz – 1 GHz	CISPR 16-4-2	5.3 dB					
R&S HL050 @ 3 m	R&S HL050 @ 3 m						
1 – 6 GHz	CISPR 16-4-2	5.1 dB					
6 – 18 GHz	CISPR 16-4-2	5.4 dB					
Flann Standard Gain Horns 12 – 40 GHz	-	5.9 dB					
Radiated field strength M276							
R&S HL562E @ 3 m 30 MHz – 1 GHz	CISPR 16-4-2	4.8 dB					
R&S HL050 @ 3 m	-						
1 – 6 GHz	CISPR 16-4-2	5.1 dB					
6 – 18 GHz	CISPR 16-4-2	5.4 dB					
Flann Standard Gain Horns 12 – 40 GHz	-	5.9 dB					
OATS							
Field strength measurements below 30 MHz on OATS without ground plane	-	4.4 dB					

 Examiner:
 Martin EPPINGER
 Report Number:
 F231200E2

 Date of Issue:
 21.11.2024
 Order Number:
 23-111200

 Page 36 of 38

7 Test Equipment used for Tests

No.	Test equipment	Туре	Manufacturer	Serial No.	PM. No.	Cal. Date	Cal Due
1	Low Noise Amplifier 100 MHz - 18 GHz	LNA-30- 00101800-25- 10P	Narda-Miteq	2110917	482967	20.02.2024	02.2026
2	Low Noise Amplifier 12 GHz - 18 GHz	LNA-30- 12001800-13- 10P	Narda-Miteq	2173737	483430	19.02.2024 02.2026	
3	Low Noise Amplifier 18 GHz - 26.5 GHz	LNA-30- 18002650-20- 10P	Narda-Miteq	2110911	482969	19.02.2024 02.2026	
4	LogPer. antenna	HL050	Rohde & Schwarz	100908	482977	22.09.2022	09.2025
5	Standard gain horn 18 GHz - 26 GHz	20240-20	Flann	266399	483026	Calibration not	necessary
6	EMC test software	Elektra V5.05	Rohde & Schwarz		483755	Calibration not	necessary
7	RF Switch Matrix	OSP220	Rohde & Schwarz	101391	482976	Calibration not	necessary
8	Turntable	TT3.0-3t	Maturo	825/2612/.01	483224	Calibration not	necessary
9	Antenna support	BAM 4.5-P-10kg	Maturo	222/2612.01	483225	Calibration not	necessary
10	Controller	NCD	Maturo	474/2612.01	483226	Calibration not necessary	
11	Semi Anechoic Chamber M276	SAC5-2	Albatross Projects	C62128-A540- A138-10-0006	483227	Calibration not necessary	
12	EMI Test receiver	ESW44	Rohde & Schwarz	101828	482979	21.02.2024	02.2026
13	Attenuator 6 dB	WA2-6	Weinschel	8254	410119	Calibration not	necessary
14	Ultralog Antenna	HL562E	Rohde & Schwarz	101079	482978	24.04.2024	04.2027
15	Signal & Spectrum Analyzer	FSW43	Rohde & Schwarz	100586 & 100926	481720	17.03.2023	03.2025
16	Loop antenna	HFH2-Z2	Rohde & Schwarz	100417	481912	21.02.2024	02.2026
17	LISN	NSLK8128	Schwarzbeck	8128155	480058	28.02.2024	02.2026
18	Power supply AC	AC6803A AC Quelle 2000VA	Keysight	JPVJ002509	482350	Calibration not necessary	
19	Software	EMC32 10.60.20	Rohde & Schwarz		483961	Calibration not	necessary
20	Shielded chamber M4	B83117-S1-X158	Siemens	190075	480088	Calibration not necessary	
21	EMI Receiver / Spectrum Analyser	ESIB 26	Rohde & Schwarz	100292	481182	22.02.2024	02.2026
22	Transient Filter Limiter	CFL 9206A	Teseq GmbH	38268	481982	28.03.2024	03.2026

 Examiner:
 Martin EPPINGER
 Report Number:
 F231200E2

 Date of Issue:
 21.11.2024
 Order Number:
 23-111200

 Page 37 of 38

8 Test site Verification

Test equipment	PM. No.	Frequency range	Type of validation	According to	Val. Date	Val Due
Shielded chamber M4	480088	9 kHz – 30 MHz	GND-Plane	ANSI C63.4-2014	08.11.2022	07.11.2025
Semi anechoic chamber M276	483227	30 – 1000 MHz	NSA	ANSI C63.4-2014 ANSI C63.4a-2017	01.03.2023	28.02.2026
Semi anechoic chamber M276	483227	1 -18 GHz	SVSWR	CISPR 16-1-4 + Cor1:2010 + A1:2012 +A2:2017	28.02.2023	27.02.2026

9 Report History

Report Number	Date	Comment
F231200E2	21.11.2024	Initial Test Report
-	-	-
-	-	-

10 List of Annexes

Annex A	Test Setup Photos	8 pages
Annex B	EUT External Photos	6 pages
Annex C	EUT Internal Photos	13 pages

---- end of test report ----

 Examiner:
 Martin EPPINGER
 Report Number:
 F231200E2

 Date of Issue:
 21.11.2024
 Order Number:
 23-111200

 Page 38 of 38