

Report No. : FR450331-01

RADIO TEST REPORT

FCC ID	2BNVN9WRWDC24210USA	
Equipment	Wine Aerator	
Brand Name	KAIROS	
Model Name	9WRWDC24210	
Applicant	MEGADOTS LIMITED	
	FLAT 305 2 CUTTER LANE, LONDON, ENGLANI SE10 0ZT	D
Manufacturer	MEGADOTS LIMITED	
	FLAT 305 2 CUTTER LANE, LONDON, ENGLANI SE10 0ZT	C
Standard	47 CFR FCC Part 15.255	

The product was received on Jan. 21, 2025, and testing was started from Feb. 03, 2025 and completed on Apr. 11, 2025. We, Sporton International Inc. Hsinchu Laboratory, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2020 47 CFR FCC Part 15.255 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. Hsinchu Laboratory, the test report shall not be reproduced except in full.

Approved by: Rex Liao

Sporton International Inc. Hsinchu Laboratory No.8, Ln. 724, Bo'ai St., Zhubei City, Hsinchu County 302010, Taiwan (R.O.C.)

TEL : 886-3-656-9065 FAX : 886-3-656-9085 Report Temp.late No.: CB-A9_3 Ver1.0

Page Number: 1 of 45Issued Date: Apr. 14, 2025Report Version: 04

Table of Contents

Histo	ory of this test report	3
Sum	mary of Test Result	4
1	General Description	5
1.1	Information	5
1.2	Applicable Standards	9
1.3	Testing Location	9
2	Test Configuration of Equipment under Test	10
2.1	Parameters of Test Software Setting	10
2.2	Conformance Tests and Related Test Frequencies	10
2.3	EUT Operation during Test	10
2.4	Accessories	10
2.5	Support Equipment	11
2.6	Far Field Boundary Calculations	11
2.7	Test Setup Diagram	12
3	Transmitter Test Result	15
3.1	AC Power Conducted Emissions	
3.2	Occupied Bandwidth	
3.3	EIRP Power	
3.4	Transmitter Spurious Emissions	
3.5	Frequency Stability	40
3.6	Operation Restriction and Group Installation	
4	Test Equipment and Calibration Data	43
5	Measurement Uncertainty	45
Арре	endix A. Test Photos	

Photographs of EUT v01

Report No.	Version	Description	Issued Date	
FR450331-01	01	Initial issue of report	Mar. 13, 2025	
FR450331-01	02	Remove the blank page in section 4.	Mar. 24, 2025	
FR450331-01	03	1. Update the ref standard to 15.255(c)(2)(iii)(A)Mar. 31, 2022. Update the duty cycle in section 1.1.6		
FR450331-01	04	Update the duty cycle in section 1.1.6.	Apr. 14, 2025	

History of this test report

TEL : 886-3-656-9065 FAX : 886-3-656-9085 Report Temp.late No.: CB-A9_3 Ver1.0 Page Number: 3 of 45Issued Date: Apr. 14, 2025Report Version: 04

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark	
3.1	15.207	AC Power Conducted Emissions	PASS	Note 1	
3.2	15.255(e)	Occupied Bandwidth	PASS	-	
3.3	15.255(c)(2)(iii)(A)	EIRP Power	PASS	-	
-	15.255(c)(2)(iii)(A)	Peak Conducted Power	PASS	Note 2	
3.4	15.255(d)	Transmitter Spurious Emissions	PASS	-	
3.5	15.255(f)	Frequency Stability	PASS	-	
3.6	15.255(a),(h)	Operation Restriction and Group Installation	PASS	-	
Note 1: When the EUT is supplied power by battery, it's not necessary to apply to AC Power Conducted Emissions test.					

Summary of Test Result

Note 2: Field disturbance Sensors/radar (unrestricted radar use-case applications) w/o test.

Conformity Assessment Condition:

1. The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.

2. The measurement uncertainty please refer to each test result in the chapter "Measurement Uncertainty".

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Sam Chen

Report Producer: Sophia Shiung

1 General Description

1.1 Information

1.1.1 RF General Information

RF General Information					
Frequency Range Operating Frequency (GHz) Test Frequency (GHz) Modulation					
57-71 GHz	Channel 1: 61.1 / Channel 2: 61.2 / Channel 3: 61.3 / Channel 4: 61.4	61.1, 61.2, 61.4	CW		

1.1.2 Antenna Information

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	Remark
1	Millitronic Co., LTD	9WRWDC24210	PCB	N/A	6	1TX

Note: The above information was declared by manufacturer.

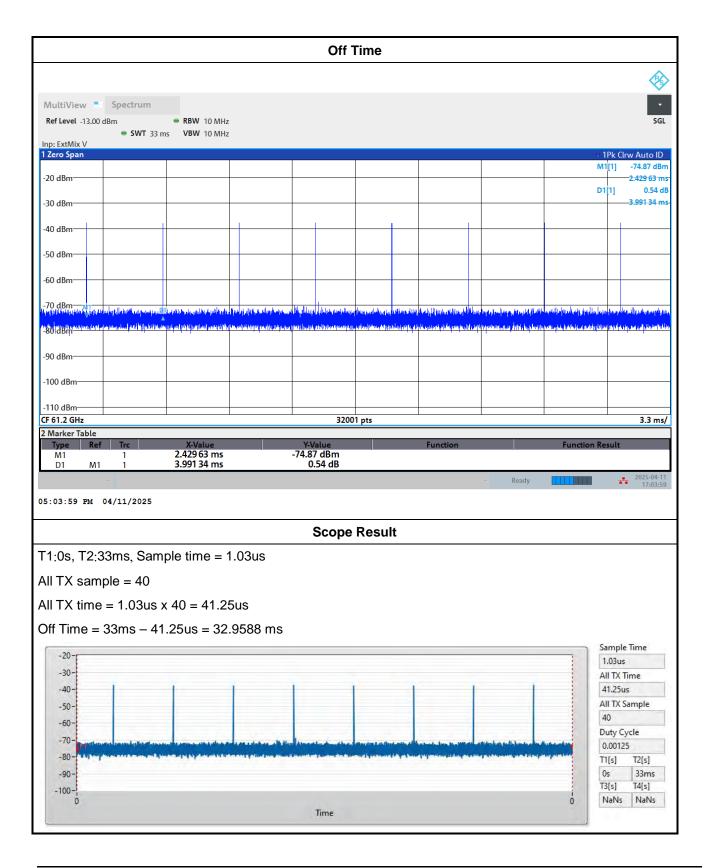
1.1.3 Power Levels

Worst Power Levels	
Applicable power levels	Conducted X EIRP
Frequency (GHz)	Highest (P _{high}):
	Peak Power (dBm)
61.1	6.28
61.2	4.67
61.4	3.06

1.1.4 Operating Conditions

Operating Conditions				
□ -20 °C to +50 °C				
⊠ 0 °C to +45 °C				
Other:				
EUT Power Type	From Lithium-ion E	Battery (3.7V) or host system		
Test Software Version	Tera Term 4.75			
Supply Voltage	AC	State AC voltage	V	
Supply Voltage	DC DC	State DC voltage 5	V	

1.1.5 Equipment Use Condition


	Equipment Use Condition
	Fixed field disturbance sensors at 61-61.5GHz
	Except fixed field disturbance sensors at 61-61.5GHz
	Except fixed field disturbance sensors
	Field disturbance sensors/radar
	For fixed field disturbance sensors that occupy 500 MHz or less
	Field disturbance sensor/radar Personal portable equipment
	Field disturbance Sensors /radar(Outdoor drones/UA uses)
	Field disturbance Sensors /radar(vehicular applications (e.g., in-cabin radars))
\square	Field disturbance Sensors /radar(unrestricted radar use-case applications)
	Field disturbance Sensors /radar(Fixed outdoor or vehicular uses)(except in-cabin)
	For pulsed field disturbance sensors/radars

1.1.6 Duty Cycle

		Spectro	um plot			
TX-on per 33ms (ms)	One pulse off time (ms)	Off time per 33ms (ms)	One pulse time limit (ms)	33r	time per ns limit (ms)	Duty Cycle(%
0.04125	3.99134	32.9588	2		25.5	0.0125
		On	Time			
						R
MultiView Spec	trum					
Ref Level -13.00 dBm	RBW 10 MHz					SGL
	SWT 33 ms VBW 10 MHz					54
np: ExtMix V Zero Span						• 1Pk Clrw Auto ID
						M2[1] -73.86 dBr
-20 dBm						33.000 00 m
-30 dBm						M1[1] -75.57 dBr
-50 dbm						
-40 dBm						
-50 dBm						
-60 dBm						
70 dBm	والمرابع المراجع فالمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع	ومناجزهمين بقررانيان أرقور ليأور بالأليان بمرجع فرواعته بقريق	والمتحد ومعاطفين وتحديه فالمعد باللغ	المحود والمحاولة والمتألفة ومحاولته والمحاو	والمالية والمطالب الإرابان والمرجعة	والموسور فتروال والمراس محاورتها والمرافع
South Barriston Lent - In the start	and in the second and state particular second with the second	idaintai manaiden atai pengena penaket ina anta, mindikada anta ina anta ing	a and and the former and the problem of the later of the second of	al al al a como tra da la da da la constancem	ana dulika katakan shawan sa ka	and the second system (constraints and second states)
-oolubiji						
-90 dBm						
-100 dBm						
-110 dBm						
F 61.2 GHz		3200)1 pts	I	I	3.3 ms
Marker Table						
Type Ref Tro M1 1	: X-Value 0.0 s	Y-Value -75.57 dBm	Fu	nction		Function Result
M2 1	33.0 ms	-73.86 dBm				
					Ready	2025-04-1 17:00:0

TEL : 886-3-656-9065 FAX : 886-3-656-9085 Report Temp.late No.: CB-A9_3 Ver1.0

1.1.7 Table for EUT Information

EUT	Color of Outer	Description
EUT 1	Black	The FLIT has three different housings with different colors, but their
EUT 2	Green	The EUT has three different housings with different colors, but their internal circuit boards are identical.
EUT 3	Red	internal circuit boards are identical.

Note 1: From the above EUTs, the EUT 1 was selected to test and its data was recorded in this report.

Note 2: The above information was declared by manufacturer.

1.2 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15.255
- ANSI C63.10-2020 Section 9. "Procedures for testing millimeter-wave systems"

The following reference test guidance is not within the scope of accreditation of TAF.

- FCC KDB 414788 D01 v01r01 radiation
- FCC KDB 364244 D01 V01

1.3 Testing Location

Testing Location Information				
Test Lab. : Sporton International Inc. Hsinchu Laboratory				
Hsinchu	ADD: No.8, Ln. 724, Bo'ai St., Zhubei City, Hsinchu County 302010, Taiwan (R.O.C.)			
(TAF: 3787)	TEL: 886-3-656-9065 FAX: 886-3-656-9085			
	Test site Designation No. TW3787 with FCC.			
	Conformity Assessment Body Identifier (CABID) TW3787 with ISED.			

Test Condition	Test Site No.	Test Engineer	Test Environment (°C / %)	Test Date
Radiated (Frequency Stability)	TH01-CB	Jay Lo	24.5~24.6 / 56~59	Feb. 06, 2025
Radiated < 1GHz (Others)	03CH05-CB	Alex Kuo	21.9~22.4 / 60~62	Feb. 03, 2025~ Feb. 26, 2025
Radiated > 1GHz (Others)	03CH06-CB		22.5-22.9 / 58-60	Feb. 05, 2025~ Feb. 06, 2025
Radiated > 1GHz (Duty Cycle)	03CH06-CB	Gordon Hung	22.5-22.9 / 58-60	Apr. 11, 2025
AC Conduction	CO02-CB	Joe Chu	23~24 / 50~51	Feb. 07, 2025

2 Test Configuration of Equipment under Test

2.1 Parameters of Test Software Setting

Frequency (GHz)	61.1, 61.2, 61.4	
Software Setting	Default	

2.2 Conformance Tests and Related Test Frequencies

Test Item	Test Frequencies (GHz)
AC Power Conducted Emissions Test Voltage: 120Vac / 60Hz	Random
Occupied Bandwidth	61.1, 61.2, 61.4
EIRP Power	61.1, 61.2, 61.4
Transmitter Spurious Emissions (below 1 GHz)	Random
Transmitter Spurious Emissions (1 GHz-40 GHz)	61.1, 61.2, 61.4
Transmitter Spurious Emissions (above 40 GHz)	61.1, 61.2, 61.4
Frequency Stability	61.2

Note: For AC Power Conducted Emissions test:

Test Mode	Description
1	Charge mode_EUT 1 powered by host system

For Transmitter Spurious Emissions tests:

After evaluating, EUT in Y axis was the worst case, so the measurement will follow this same test configuration.

For Transmitter Spurious Emissions below 1 GHz test:

Test Mode	Description
1	Normal link mode_EUT 1 powered by battery in Y axis
2	Charge mode_EUT 1 powered by host system in Y axis
Mode 2 generated the worst test result, so it was recorded in this report.	

2.3 EUT Operation during Test

During the test, executed the test program to control the EUT continuously transmit RF signal.

2.4 Accessories

N/A

2.5 Support Equipment

For AC Conduction:

	Support Equipment			
No.	No. Equipment Brand Name Model Name FCC ID			FCC ID
А	NB	Lenovo	X260	N/A
В	Console board	Millitronic Co., LTD	Board03	N/A
С	Earphone	e-Power	GT-02	N/A
D	Mouse	Logitech	M-U0026	N/A

For Radiated (Frequency Stability):

	Support Equipment			
No.	No. Equipment Brand Name Model Name FCC ID			
А	NB	DELL	E4300	N/A
В	Console cable	Millitronic Co., LTD	Cable01	N/A
С	Console board	Millitronic Co., LTD	Board03	N/A

For Radiated < 1GHz (Others):

	Support Equipment			
No.	No. Equipment Brand Name Model Name FCC ID		FCC ID	
А	NB	DELL	E4300	N/A
В	Console Board	Millitronic Co., LTD	Board03	N/A
С	Earphone	e-Power	S90W	N/A
D	Mouse	Logitech	M-U0026	N/A

For Radiated > 1GHz (Others) and Radiated > 1GHz (Duty Cycle):

N/A

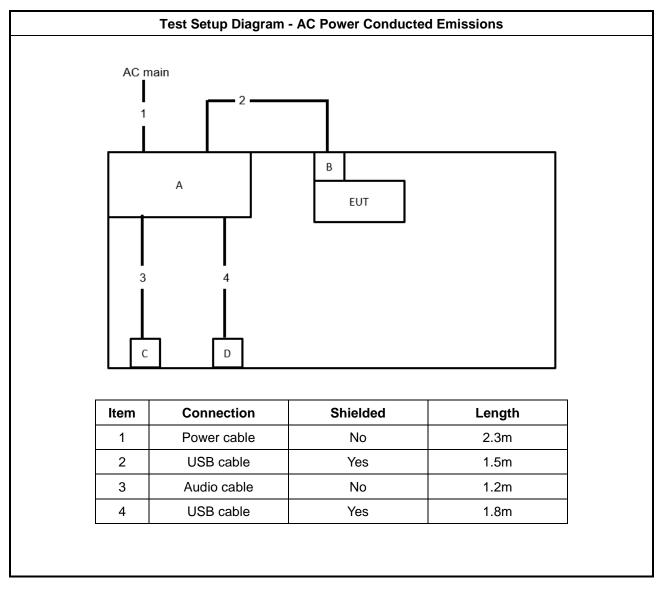
2.6 Far Field Boundary Calculations

The far-field boundary is given as:

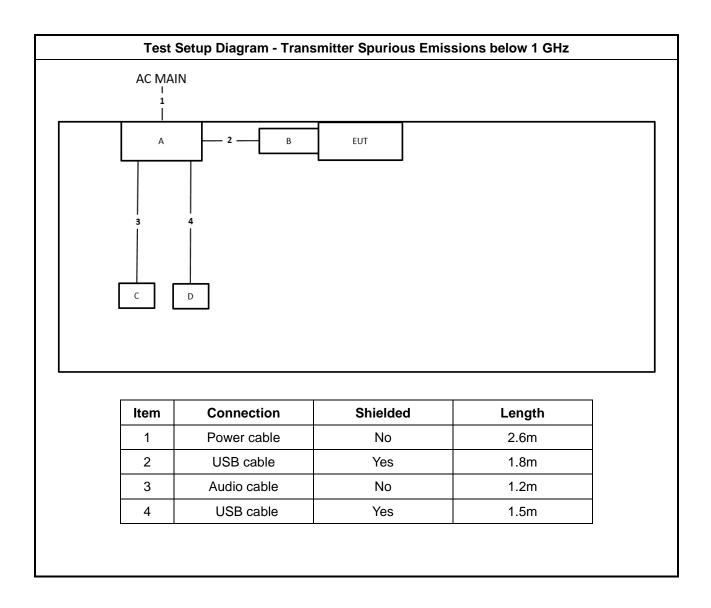
far field = $(2 * L^2) / \lambda$

where:

L = Largest Antenna Dimension, including the reflector, in meters


 λ = wavelength in meters

Far Field (m)				
Frequency (GHz)	L (m)	Lambda (m)	d(Far Field) (m)	d(Far Field) (cm)
61.1	0.0128	0.0049100	0.067	6.67
61.2	0.0128	0.0049020	0.067	6.68
61.4	0.0128	0.0048860	0.067	6.71


Page Number : 11 of 45 Issued Date : Apr. 14, 2025 Report Version : 04

2.7 Test Setup Diagram

Test Setup Diagram - Transmitter Spurious Emissions above 1 GHz	
Test Setup Diagram - Transmitter Spurious Emissions above 1 GHz EUT	

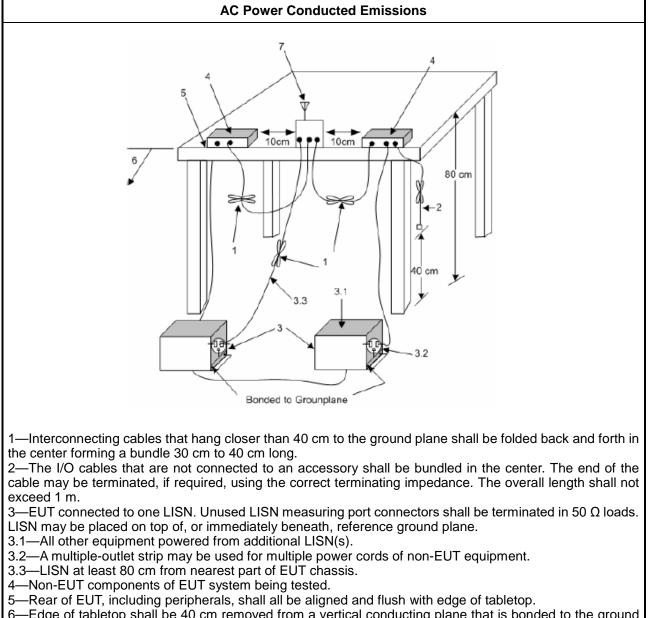
3 Transmitter Test Result

3.1 AC Power Conducted Emissions

3.1.1 Limit of AC Power Conducted Emissions

AC Power Conducted Emissions Limit		
Frequency Emission (MHz) Quasi-Peak Average		
0.15-0.5	66 - 56 *	56 - 46 *
0.5-5	56	46
5-30	60	50
Note: * Decreases with the logarithm of the frequency.		

3.1.2 Measuring Instruments


Refer a measuring instruments list in this test report.

3.1.3 Test Procedures

Method of measurement: Refer as ANSI C63.10-2020, clause 6.2.

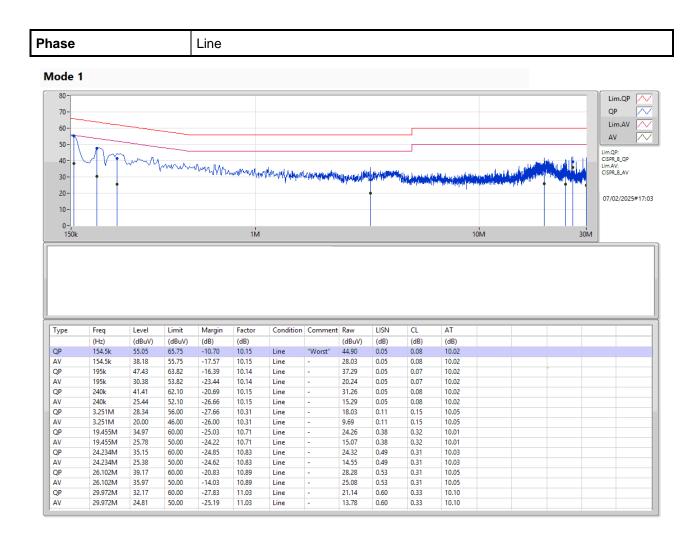
3.1.4 Test Setup

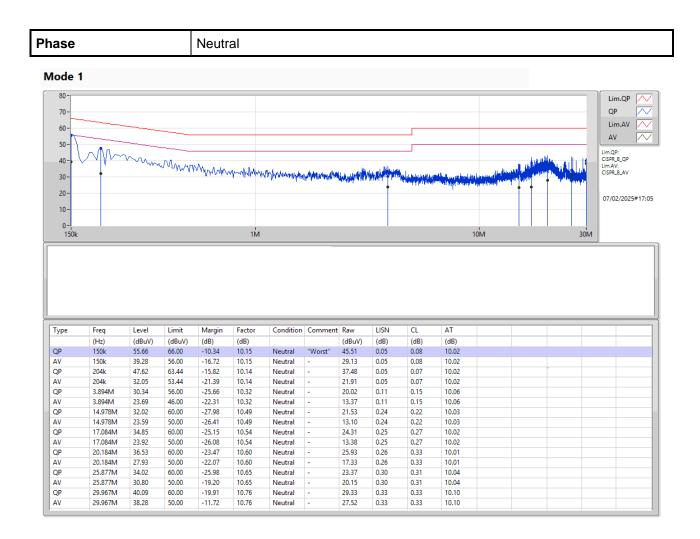
6—Edge of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

.7—Antenna can be integral or detachable. If detachable, then the antenna shall be attached for this test.

3.1.5 Measurement Results Calculation

The measured Level is calculated using:


- a. Corrected Reading: LISN Factor (LISN) + Attenuator (AT/AUX) + Cable Loss (CL) + Read Level (Raw) = Level
- b. Margin = -Limit + Level

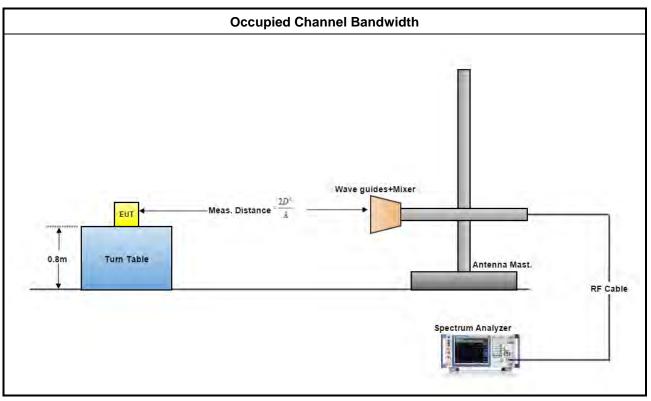

3.1.6 Test Result of AC Power Conducted Emissions

Test Conditions	see ANSI C63.10, clause 5.11
Test Setup	see ANSI C63.10, clause 6.2.3
NOTE 1: If equipm	ent having different channel plan and nominal channel bandwidth modes (see test report
clause 1.	1.1), the measurements are uninfluenced by different channel plan and nominal channel
bandwidth	h modes, may not need to be repeated for all modes. If equipment having different
transmit o	operating modes (see test report clause 1.1.2), the measurements are uninfluenced by
different 1	transmit operating modes, may not need to be repeated for all the operating modes.
Similar, if	f the equipment supports different modulations and/or data rates, the measurements
described	in ANSI C63.10, clause 5.12 may not need to be repeated for all these modulations and
data rates	s. Simple comparison of engineering test across all operating modes, modulations and
data rates	s may need to be performed to define the worse case combination to be used for the
conforma	nce testing.
NOTE 2: ">20dB"	means the tables in this clause should only list values of spurious emissions that exceed
the level of	of 20 dB below the applicable limit, see ANSI C63.4, clause 10.1.8.1.

3.2 Occupied Bandwidth

3.2.1 Limit of Occupied Bandwidth

6dBc Bandwidth (see Note 1)	None
99% Occupied Bandwidth (see Note 2)	None
NOTE 1: The 6dBc bandwidth is the frequency band	dwidth of the signal power at the -6 dBc points when
measured with a 100 kHz resolution bandwi	dth. These measurements shall also be performed at
normal test conditions.	
NOTE 2: The 99% occupied bandwidth is the frequer	ncy bandwidth of the signal power at the 99% channel
power of occupied bandwidth when resolution	on bandwidth should be approximately 1 % to 5 % of
the occupied bandwidth (OBW). These me	easurements shall also be performed at normal test
conditions.	


3.2.2 Measuring Instruments

Refer a measuring instruments list in this test report.

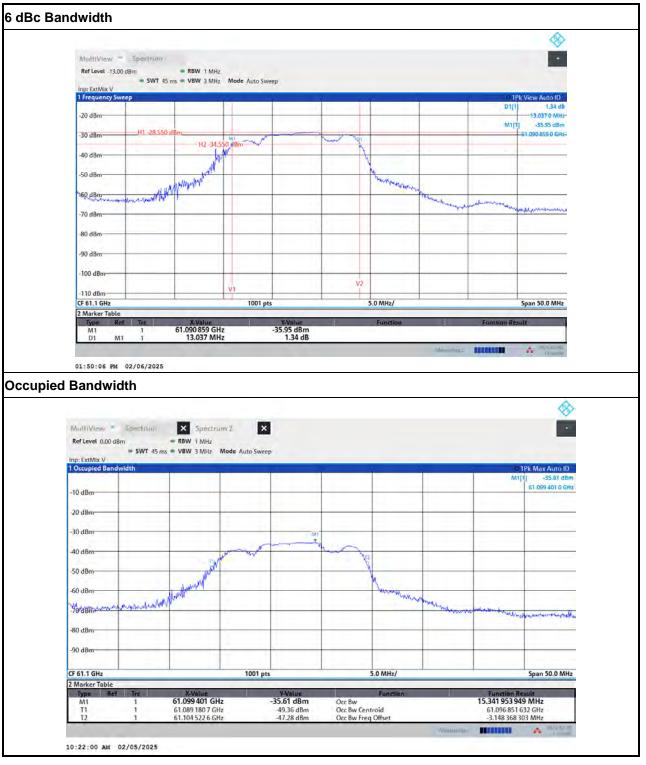
3.2.3 Test Procedures

Method of measurement: Refer as ANSI C63.10-2020, clauses 9.4.

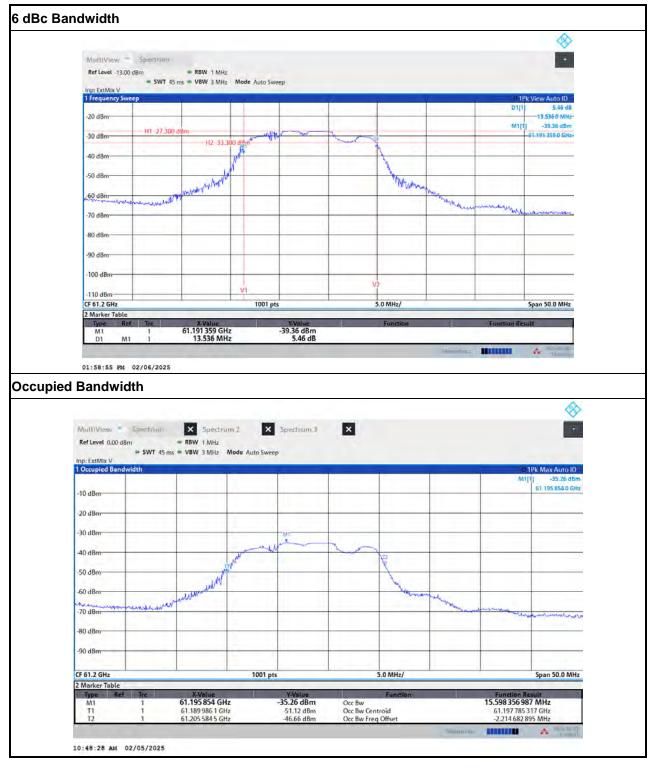
3.2.4 Test Setup

Page Number: 20 of 45Issued Date: Apr. 14, 2025Report Version: 04

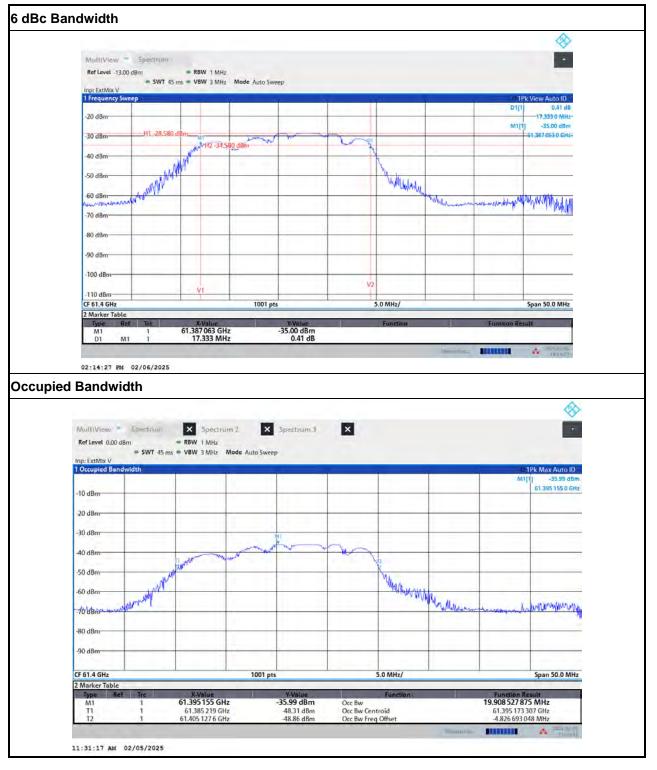
3.2.5 Test Result of Occupied Bandwidth


Test Conditions	see ANSI C63.10, clause 5.11
Test Setup	see ANSI C63.10, clause 9.4
NOTE: If equipme	ent having different transmit operating modes (see test report clause 1.1.2), the
measurem	nents are uninfluenced by different transmit operating modes, may not need to be
repeated	for all the operating modes. Similar, if the equipment supports different modulations
and/or dat	ta rates, the measurements described in ANSI C63.10, clause 5.11 may not need to be
repeated f	for all these modulations and data rates. Simple comparison of engineering test across
all operati	ng modes, modulations and data rates may need to be performed to define the worse
case com	bination to be used for the conformance testing. Refer as ANSI C63.10, clause 15,
observe a	and record with plotted graphs or photographs the worst-case (i.e., widest) occupied
bandwidth	produced by these different modulation sources.

	Test Results							
Test Freq.	Test Freq. 6 dBc Bandwidth 99% Occupied Bandwidth Limit							
(GHz)	(MHz)	(MHz)	(MHz)					
61.1	13.037	15.341	N/A					
61.2	13.536	15.598	N/A					
61.4	17.333	19.908	N/A					


3.2.5.1 Bandwidth Plots

For 61.1 GHz:



For 61.2 GHz:

For 61.4 GHz:

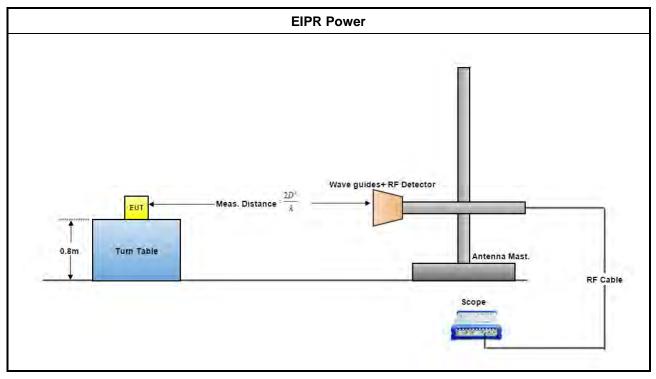
3.3 EIRP Power

3.3.1 Limit of EIRP Power

Applications	Frequency Range (GHz)	Peak (dBm)	Average (dBm)	Duty Cycle Requirement
Field disturbance sensors/radar	57 ~ 71	< 10	N/A	N/A
For fixed field disturbance sensors that occupy 500	61 ~ 61.5	< 43	< 40	N/A
MHz or less	57 ~ 61 & 61.5 ~ 71	< 13	< 10	N/A
Field disturbance sensor/radar Personal portable equipment	59.3 ~ 71	< 10	N/A	N/A
Field disturbance Sensors /radar (Outdoor drones/UA uses)	60 ~ 64	< 20	N/A	At least 16.5 ms off time per 33 ms Operation shall be limited to a maximum of 121.92 m above ground level.
Field disturbance Sensors /radar (vehicular applications (e.g., in-cabin radars))	57 ~ 59.4	Indoor < 20 Outdoor< 30	N/A	N/A
Field fields and Occurry for day	57 04 50	< 3	N/A	N/A
Field disturbance Sensors /radar	57 ~ 61.56	< 20	N/A	At least 16.5 ms off time per 33 ms
(unrestricted radar use-case applications)	57 ~ 64	< 14	N/A	At least 25.5 ms off time per 33 ms
Field disturbance Sensors /radar (Fixed outdoor or vehicular uses) (except in-cabin)	57 ~ 64	< 20	N/A	At least 16.5 ms off time per 33 ms
For pulsed field disturbance sensors/radars	57 ~ 64	< 33	< 13	Pulse duration < 6 ns Duty cycle < 10%, in any 0.3 μs time window
	61.5 ~ 64	< 25	< 5	Any 0.3 µs time window

NOTE: For the applicable limit, see 15.255 (c)

3.3.2 Measuring Instruments


Refer a measuring instruments list in this test report.

3.3.3 Test Procedures

Method of measurement: Refer as ANSI C63.10-2020 clause 9.8.

3.3.4 Test Setup

3.3.5 Test Result of EIRP Power

Test Conditions	see ANSI C63.10, clause 5.11 & clause 9
Test Setup	see ANSI C63.10, clause 9.8
NOTE: If the equip	oment supports different modulations and/or data rates, the measurements described in
ANSI C63.1	0, clause 5.11 may not need to be repeated for all these modulations and data rates.
Simple com	parison of engineering test across all operating modes, modulations and data rates may
need to be	performed to define the worst case combination to be used for the conformance testing.

3.3.6 Test Result of EIRP Power

Freq. (GHz)	Rx Gain (dBi)	P-Peak (dBm)	Test Distance (m)	EIRP-Peak (dBm)	EIRP-Peak Limit (dBm)	Test Result
61.1	23.6	-32.26	0.50	6.28	14	Pass
61.2	23.6	-33.88	0.50	4.67	14	Pass
61.4	23.6	-35.52	0.50	3.06	14	Pass

Calculate the EIRP from the radiated measurement in the far-field using Equation:

 $EIRP = 21.98 - 20log(\lambda) + 20log(D) + P - G$

where:

EIRP: is the equivalent isotropic radiated power, in dBm

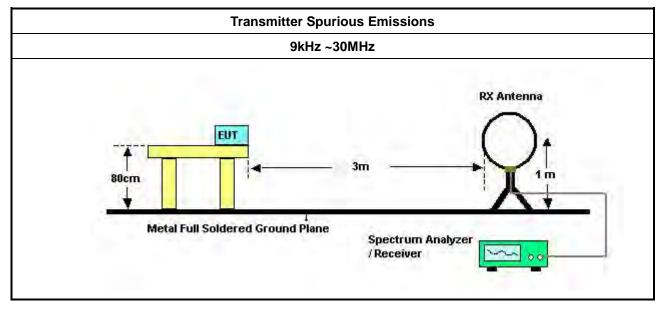
P: is the power measured at the output of the test antenna, in dBm

 $\pmb{\lambda}$: is the wavelength of the emission under investigation [300/fMHz], in m

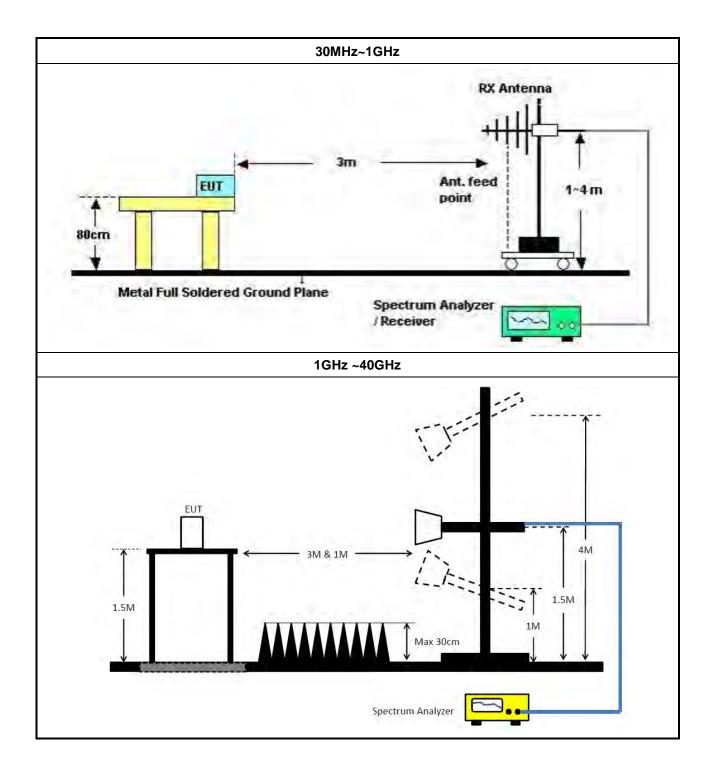
G: is the gain of the test antenna, in dBi.

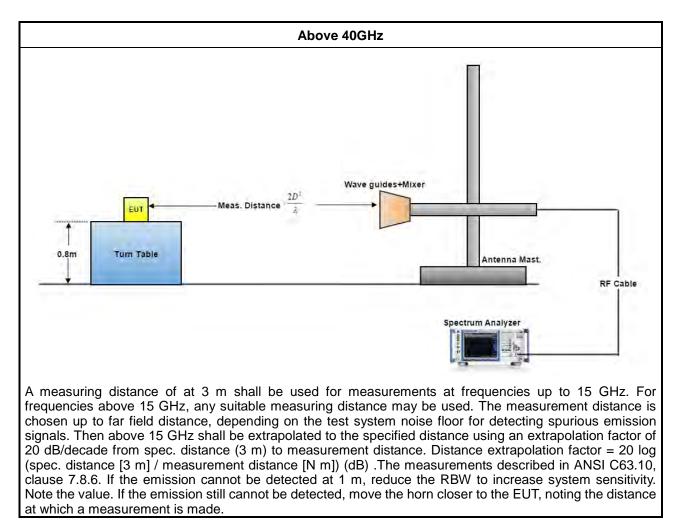
Note: Due to the large dimensions of the 22 dB reflector, the far field measurement distance is in excess of 100 m. For in-band tests, the reflector was removed to expose the smaller 20.1 dBi patch, allowing measurements to be made in the far field at 3 m. The 20.4 dB reflector gain was added to the measured results.

3.4 Transmitter Spurious Emissions


3.4.1 Limit of Transmitter Spurious Emissions

Frequency Range	Limit				
Radiated emissions below 40 GHz	Reference to section 15.209				
Radiated emissions above 40 GHz – 200GHz	90 pW/cm² @ 3 m (Equivalent EIRP 102 μW, -9.91dBm)				
NOTE 1: For the applicable limit, see 15.255(d).					
NOTE 2: Spurious emissions shall not exceed the	ne level of the fundamental emission.				


3.4.2 Test Procedures


Method of measurement: Refer as ANSI C63.10-2020, clause 9.11

3.4.3 Test Setup

3.4.4 Measurement Results Calculation

The measured Level is calculated using:

For below 40GHz

Corrected Reading: Antenna factor (AF) + Cable loss (CL) + Read level (Raw) - Preamp factor (PA)(if applicable) =

Level.

For above 40GHz

EIRP = Meas. Level - RX Antenna Gain + 20*log(4*Pi(3.14159)*D/(300/(Frequency*1000)))

3.4.5 Test Result of Transmitter Spurious Emissions

Test Conditions see ANSI C63.10, clause 5.11 & clause 9

Test Setupsee ANSI C63.10, clause 9.11, 9.12

NOTE: If equipment having different channel plan and nominal channel bandwidth modes (see test report clause 1.1.1), the measurements are uninfluenced by different channel plan and nominal channel bandwidth modes, may not need to be repeated for all modes.

3.4.5.1 Test Result of Transmitter Spurious Emissions (Below 30MHz)

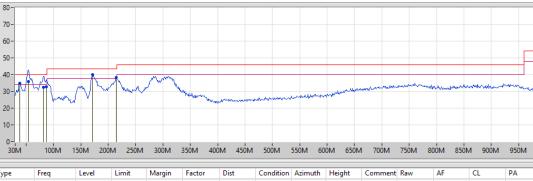
There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to KDB414788 Radiated Test Site, and the result came out very similar.

All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

The radiated emissions were investigated from 9 kHz or the lowest frequency generated within the device, up to the 10 harmonic or 40 GHz, whichever is appropriate.

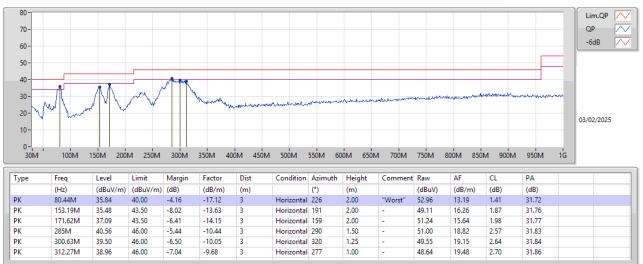
Lim.OP

03/02/2025


1G

QP -6dB

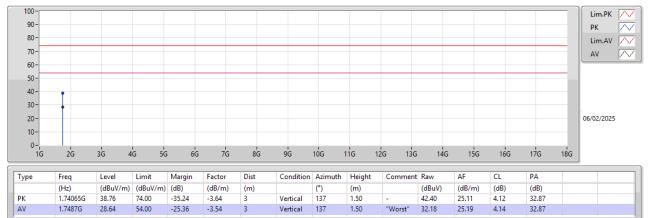
3.4.5.2 Test Result of Transmitter Spurious Emissions


Test Range	30 MHz – 1000 MHz
Vertical	
Mode 2	

Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comment	Raw	AF	CL	PA	
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB/m)	(m)		(°)	(m)		(dBuV)	(dB/m)	(dB)	(dB)	
РК	38.73M	34.92	40.00	-5.08	-10.70	3	Vertical	277	1.00	-	45.62	19.78	1.05	31.53	
QP	54.25M	35.92	40.00	-4.08	-17.37	3	Vertical	339	1.50	-	53.29	13.10	1.19	31.66	
QP	81.41M	32.27	40.00	-7.73	-17.05	3	Vertical	153	1.25	-	49.32	13.25	1.42	31.72	
QP	87.23M	32.76	40.00	-7.24	-15.85	3	Vertical	255	1.00	-	48.61	14.43	1.45	31.73	
РК	171.62M	40.06	43.50	-3.44	-14.15	3	Vertical	17	1.00	"Worst"	54.21	15.64	1.98	31.77	
РК	214.3M	38.38	43.50	-5.12	-14.70	3	Vertical	154	1.00	-	53.08	14.87	2.21	31.78	

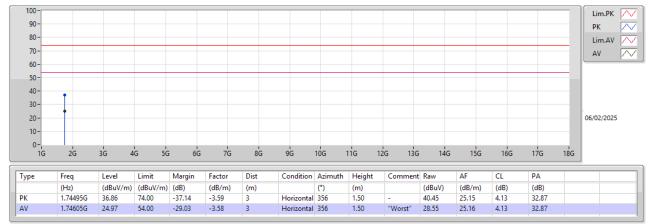
Horizontal

Mode 2



Test Range 1 GHz – 18 GHz

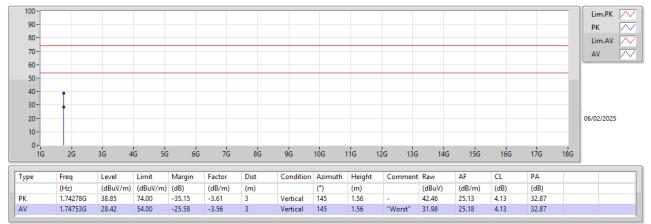
For 61.1GHz:


Vertical

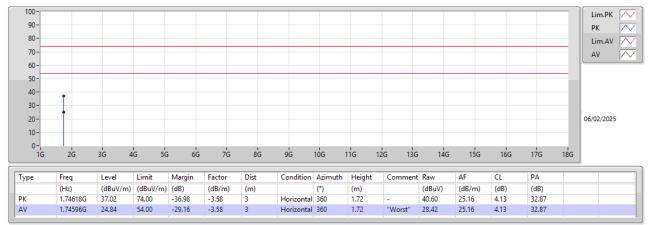
Radiated Emissions above 1GHz_61100MHz

Horizontal

Radiated Emissions above 1GHz_61100MHz



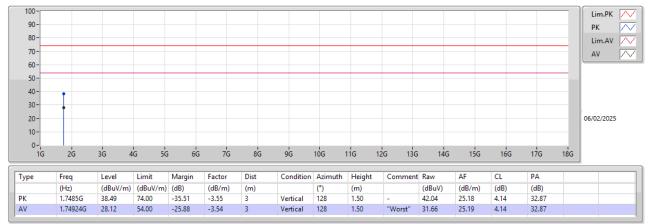
For 61.2GHz:


Vertical

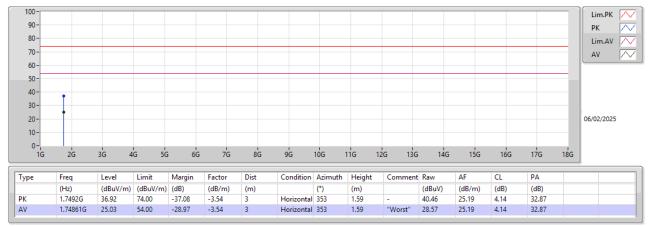
Radiated Emissions above 1GHz_61200MHz

Horizontal

Radiated Emissions above 1GHz_61200MHz



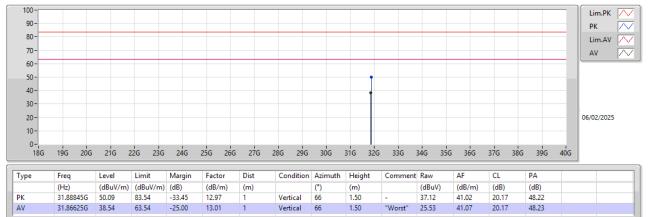
For 61.4GHz:


Vertical

Radiated Emissions above 1GHz_61400MHz

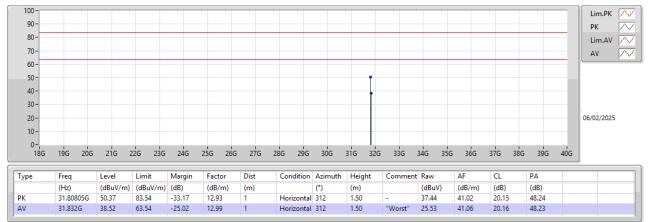
Horizontal

Radiated Emissions above 1GHz_61400MHz



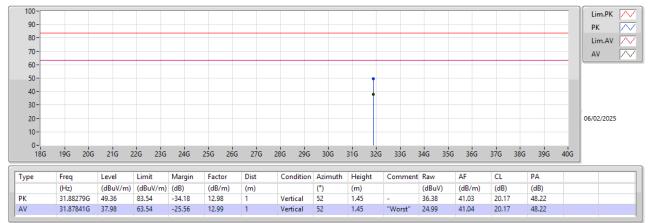
Test Range18 GHz – 40 GHz

For 61.1GHz:

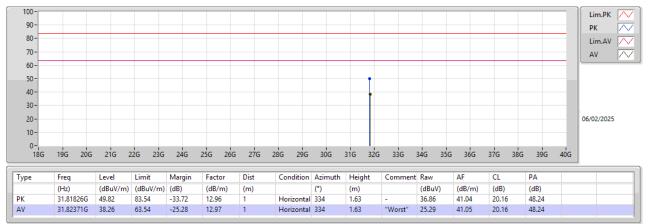

Vertical

Radiated Emissions above 1GHz_61100MHz

Horizontal

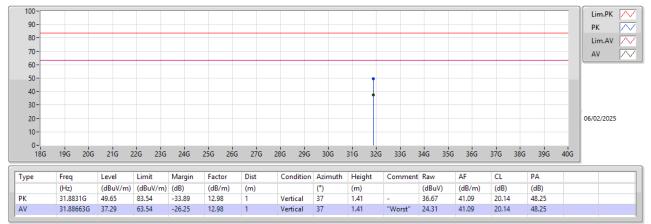

Radiated Emissions above 1GHz_61100MHz

For 61.2GHz:

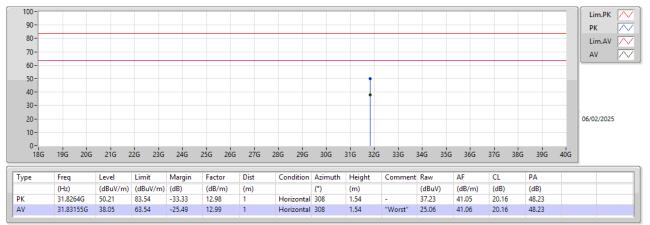

Vertical

Radiated Emissions above 1GHz_61200MHz

Horizontal


Radiated Emissions above 1GHz_61200MHz

For 61.4GHz:


Vertical

Radiated Emissions above 1GHz_61400MHz

Horizontal

Radiated Emissions above 1GHz_61400MHz

Test Freewanse Du Antonno Osin Measurement Read Worse D	
Test Range40GHz – 200GHz	

Test Frequency (GHz)	Rx Antenna Gain (dBi)	Distance (m)	Frequency (GHz)	Read Level (dBm)
61.1	23.6	1.00	51.01	-73.20
EIRP (dBm)	Specification Distance (m)	Power Density (pW/cm^2)	Limit (pW/cm^2)	Test Result
-30.21	3.0	0.8433	90	PASS

Test Frequency (GHz)	Rx Antenna Gain (dBi)	MeasurementRead WorseDistanceFrequency(m)(GHz)		Read Level (dBm)
61.2	23.6	1.00	51.10	-74.42
EIRP (dBm)	Specification Distance (m)	Power Density (pW/cm^2)	Limit (pW/cm^2)	Test Result
-31.41	3.0	0.6390	90	PASS

Test Frequency (GHz)	Rx Antenna Gain (dBi)	Measurement Distance (m)	Read Worse Frequency (GHz)	Read Level (dBm)
61.4	23.6	1.00	51.26	-75.09
EIRP (dBm)	Specification Distance (m)	Power Density (pW/cm^2)	Limit (pW/cm^2)	Test Result
-32.05	3.0	0.5512	90	PASS

Note:

EIRP = Prx - Grx + Free Space Path Loss = Prx - Grx + $20Log(4\pi d/ \lambda)^2$

Which

Prx = Read Level.

Grx = Rx Antenna Gain.

A distance factor is offset and the formula is 20LOG(D1/D2)

Which

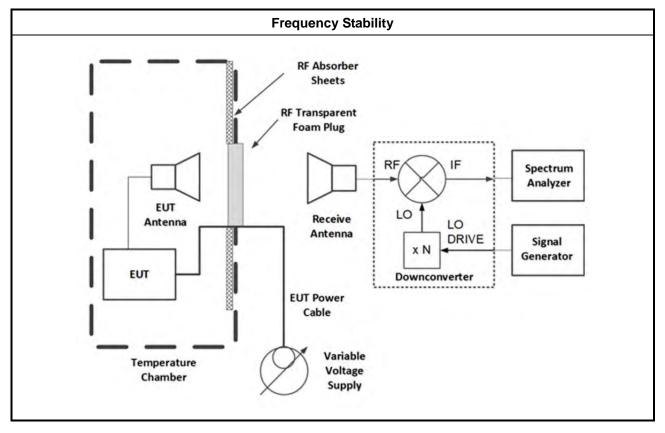
D1 = Specification Distance

D2 = Measurement Distance

3.5 Frequency Stability

3.5.1 Limit of Frequency Stability

Frequency Stability	Limit					
Refer as 15.255(f) and	within the frequency hands					
ANSI C63.10-2020, clause 9.5	within the frequency bands					
Note: These measurements shall also be performed at normal and extreme test conditions.						


3.5.2 Measuring Instruments

Refer a measuring instruments list in this test report.

3.5.3 Test Procedures

Method of measurement: Refer as ANSI C63.10-2020, clauses 9.5.

3.5.4 Test Setup

3.5.5 Test Result of Frequency Stability

Test Conditions see ANSI C63.10, clause 5.11 & clause 9

Test Setup see ANSI C63.10, clause 9.5

NOTE: If equipment having different channel plan and nominal channel bandwidth modes (see test report clause 1.1.1), the measurements are uninfluenced by different channel plan and nominal channel bandwidth modes, may not need to be repeated for all modes.

3.5.5.1 Frequency Stability with Respect to Ambient Temperature

For 61.2 GHz:

Frequency Stability with Respect to Ambient Temperature						
Test Results						
Test Temperature (°C)	Measured Frequency (MHz)	Delta Frequency (kHz)	Limit (±kHz)			
0	61197.161	310	within band			
10	61197.133	282	within band			
20	61196.851	Reference	within band			
30	61196.489	-362	within band			
40	61196.421	-430	within band			
45	61195.913	-938	within band			

3.5.5.2 Frequency Stability When Varying Supply Voltage

For 61.2 GHz:

Frequency Stability When Varying Supply Voltage							
	Test Results						
Test Voltage: (Vdc)	Delta Frequency (kHz)	Limit (±kHz)					
4.25	61196.236	-279	within band				
5	61196.515	Reference	within band				
5.75	61196.386	-129	within band				

3.6 Operation Restriction and Group Installation

3.6.1 Limit of Operation Restriction and Group Installation

Item	Limit		
	Operation is not permitted for the following products:		
Operation Destriction	 Equipment used on aircraft or satellites. (Refer as 15.255 (a)) 		
Operation Restriction	• Field disturbance sensors, including vehicle radar systems, unless the field		
	disturbance sensors are employed for fixed operation. (Refer as 15.255 (a))		
	Operation is not permitted for the following products:		
Group Installation	External phase-locking (Refer as 15.255 (h))		

3.6.2 Result of Operation Restriction

Manufacturer declares that EUT will not been used on aircraft or satellites. Then user manual will include a statement to caution EUT is not permitted for used on aircraft or satellites.

3.6.3 Result of Group Installation

The frequency, amplitude and phase of the transmit signal are set within the EUT. There are no external phase-locking inputs or any other means of combining two or more units together to realize a beam-forming array.

4 Test Equipment and Calibration Data

Instrument	Brand	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date	Remark
LISN	Schwarzbeck	NSLK 8127	8127650	9kHz ~ 30MHz	Apr. 15, 2024	Apr. 14, 2025	Conduction (CO02-CB)
LISN	Schwarzbeck	NSLK 8127	8127647	9kHz ~ 30MHz	Apr. 24, 2024	Apr. 23, 2025	Conduction (CO02-CB)
EMI Receiver	Agilent	N9038A	MY52260140	9kHz ~ 8.4GHz	May 15, 2024	May 14, 2025	Conduction (CO02-CB)
COND Cable	Woken	Cable	02	0.15MHz ~ 30MHz	Oct. 16, 2024	Oct. 15, 2025	Conduction (CO02-CB)
Pulse Limiter	Schwarzbeck	VTSD 9561F-N	00378	9kHz ~ 30MHz	Oct. 16, 2024	Oct. 15, 2025	Conduction (CO02-CB)
Test Software	SPORTON	SENSE-EMI	V5.11	150kHz-30MHz	N.C.R.	N.C.R.	Conduction (CO02-CB)
Loop Antenna	Teseq	HLA 6121	65417	9kHz - 30MHz	Oct. 16, 2024	Oct. 15, 2025	Radiation (03CH05-CB)
3m Semi Anechoic Chamber NSA	ТDК	SAC-3M	03CH05-CB	30MHz ~ 1GHz	Aug. 01, 2024	Jul. 31, 2025	Radiation (03CH05-CB)
Bilog Antenna with 6dB Attenuator	TESEQ & EMCI	CBL 6112D & N-6-06	35236 & AT-N0610	30MHz ~ 2GHz	Mar. 23, 2024	Mar. 22, 2025	Radiation (03CH05-CB)
Amplifier	EMCI	EMC330N	980331	20MHz ~ 3GHz	May 02, 2024	May 01, 2025	Radiation (03CH05-CB)
Spectrum Analyzer	R&S	FSP40	100304	9kHz ~ 40GHz	Apr. 17, 2024	Apr. 16, 2025	Radiation (03CH05-CB)
EMI Test Receiver	R&S	ESR7	102172	9kHz ~ 7GHz	Oct. 21, 2024	Oct. 20, 2025	Radiation (03CH05-CB)
RF Cable-low	Woken	RG402	Low Cable-04+23	30MHz~1GHz	Oct. 01, 2024	Sep. 30, 2025	Radiation (03CH05-CB)
Test Software	SPORTON	SENSE-EMI	V5.11.8	30MHz-40GHz	N.C.R.	N.C.R.	Radiation (03CH05-CB)
3m Semi Anechoic Chamber VSWR	TDK	SAC-3M	03CH06-CB	1GHz ~18GHz 3m	Oct. 08, 2024	Oct. 07, 2025	Radiation (03CH06-CB)
Horn Antenna	SCHWARZBE CK	BBHA9120D	BBHA 9120D-1292	1GHz~18GHz	Jul. 29, 2024	Jul. 28, 2025	Radiation (03CH06-CB)
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Sep. 23, 2024	Sep. 22, 2025	Radiation (03CH06-CB)
Pre-Amplifier	EMCI	EMC12630S E	980383	1GHz ~ 18GHz	Jul. 31, 2024	Jul. 30, 2025	Radiation (03CH06-CB)
Pre-Amplifier	SGH	SGH184	20221107-3	18GHz ~ 40GHz	Nov. 25, 2024	Nov. 24, 2025	Radiation (03CH06-CB)
Signal analyzer	R&S	FSV3044	101667	9kHz~44GHz	Aug. 20, 2024	Aug. 19, 2025	Radiation (03CH06-CB)

Page Number : 43 of 45

Issued Date : Apr. 14, 2025

Report Version : 04

Instrument	Brand	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date	Remark
RF Cable-high	Woken	RG402	High Cable-05+68	1GHz~18GHz	Oct. 01, 2024	Sep. 30, 2025	Radiation (03CH06-CB)
High Cable	Woken	WCA0929M	40G#5+6	1GHz ~ 40GHz	Oct. 01, 2024	Sep. 30, 2025	Radiation (03CH06-CB)
*Harmonic Mixer	R&S	FS-Z60	100114	40GHz~60GHz	Nov. 22, 2024	Nov. 21, 2026	Radiation (03CH06-CB)
*Harmonic Mixer	R&S	FS-Z75	100966	50GHz~75GHz	Nov. 22, 2024	Nov. 21, 2026	Radiation (03CH06-CB)
*Harmonic Mixer	R&S	FS-Z90	102135	60GHz~90GHz	Sep. 13, 2024	Sep. 12, 2026	Radiation (03CH06-CB)
*Harmonic Mixer	R&S	FS-Z140	101160	90GHz~140GHz	Feb. 22, 2023	Feb. 21, 2025	Radiation (03CH06-CB)
*Harmonic Mixer	R&S	FS-Z220	101065	140GHz~220GHz	Feb. 22, 2023	Feb. 21, 2025	Radiation (03CH06-CB)
Standard Horn Antenna	Custom Microwave	M19RH	U91113-A	40 ~ 60 GHz	N.C.R.	N.C.R.	Radiation (03CH06-CB)
Standard Horn Antenna	Custom Microwave	M15RH	V91113-A	50 ~ 75 GHz	N.C.R.	N.C.R.	Radiation (03CH06-CB)
Standard Horn Antenna	Custom Microwave	M12RH	E91113-A	60 ~ 90 GHz	N.C.R.	N.C.R.	Radiation (03CH06-CB)
Standard Horn Antenna	Custom Microwave	M08RH	F91113-A	90 ~ 140 GHz	N.C.R.	N.C.R.	Radiation (03CH06-CB)
Standard Horn Antenna	Custom Microwave	M05RH	G91113-A	140 ~ 220 GHz	N.C.R.	N.C.R.	Radiation (03CH06-CB)
Test Software	SPORTON	SENSE-EMI	V5.11.8	30MHz-40GHz	N.C.R.	N.C.R.	Radiation (03CH06-CB)
Spectrum analyzer	R&S	FSV40	100979	9kHz~40GHz	May 27, 2024	May 26, 2025	Radiation (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-06	1 GHz – 18 GHz	Oct. 01, 2024	Sep. 30, 2025	Radiation (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-07	1 GHz – 18 GHz	Oct. 01, 2024	Sep. 30, 2025	Radiation (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-08	1 GHz – 18 GHz	Oct. 01, 2024	Sep. 30, 2025	Radiation (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-09	1 GHz – 18 GHz	Oct. 01, 2024	Sep. 30, 2025	Radiation (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-10	1 GHz – 18 GHz	Oct. 01, 2024	Sep. 30, 2025	Radiation (TH01-CB)
Cable 9k-18G	Woken	RG402	Cable-95	9 kHz –18 GHz	Oct. 01, 2024	Sep. 30, 2025	Radiation (TH01-CB)
Temp. and Humidity Chamber	Ten Billion	TTH-D3SP	TBN-931011	-30~100 degree	May 20, 2024	May 19, 2025	Radiation (TH01-CB)

Note: Calibration Interval of instruments listed above is one year.

"*" Calibration Interval of instruments listed above is two years.

N.C.R. means Non-Calibration required.

5 Measurement Uncertainty

Test Items	Uncertainty	Remark
Conducted Emission (150kHz ~ 30MHz)	3.8 dB	Confidence levels of 95%
Radiated Emission (9kHz ~ 30MHz)	4.1 dB	Confidence levels of 95%
Radiated Emission (30MHz ~ 1,000MHz)	4.2 dB	Confidence levels of 95%
Radiated Emission (1GHz ~ 18GHz)	4.2 dB	Confidence levels of 95%
Radiated Emission (18GHz ~ 40GHz)	4.0 dB	Confidence levels of 95%
Radiated Emission (40GHz ~ 60GHz)	3.0 dB	Confidence levels of 95%
Radiated Emission (60GHz ~ 90GHz)	3.2 dB	Confidence levels of 95%
Radiated Emission (90GHz ~ 200GHz)	2.5 dB	Confidence levels of 95%
Temperature	1.2°C	Confidence levels of 95%