

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Shenzhen, Guangdong, China 518057

Telephone:	+86 (0) 755 2601 2053
Fax:	+86 (0) 755 2671 0594
Email:	ee.shenzhen@sgs.com

Report No.: SZEM180200126801 Page: 1 of 59

TEST REPORT

Application No.:	SZEM1802001268CR
Applicant:	Shenzhen DO Intelligent Technology Co., Ltd.
Address of Applicant:	11th Floor, 3# Building, Guole Tech Park, Lirong Road, Dalang, Longhua District, Shenzhen, China
Manufacturer:	Shenzhen DO Intelligent Technology Co., Ltd.
Address of Manufacturer:	11th Floor, 3# Building, Guole Tech Park, Lirong Road, Dalang, Longhua District, Shenzhen, China
Factory:	Shenzhen DO Intelligent Technology Co., Ltd.
Address of Factory:	11th Floor, 3# Building, Guole Tech Park, Lirong Road, Dalang, Longhua District, Shenzhen, China
Equipment Under Test (EUT):
EUT Name:	Smart Bracelet
Model No.:	ID128HM
FCC ID:	2AHFTID128HM
Standard(s) :	47 CFR Part 15, Subpart C 15.247
Date of Receipt:	2018-02-07
Date of Test:	2018-02-08 to 2018-02-23
Date of Issue:	2018-02-27
Test Result:	Pass*

* In the configuration tested, the EUT complied with the standards specified above.

EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

Report No.: SZEM180200126801 Page: 2 of 59

	Revision Record					
VersionChapterDateModifierRemark						
01		2018-02-27		Original		

Authorized for issue by:		
	Peter. Gong	
	Peter Geng /Project Engineer	-
	Evic Fu	
	Eric Fu /Reviewer	-

Report No.: SZEM180200126801 Page: 3 of 59

2 Test Summary

Radio Spectrum Technical Requirement					
Item Standard Method Requirement				Result	
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	Pass	

Radio Spectrum Matter Part					
Item	Standard	Method	Requirement	Result	
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.2	47 CFR Part 15, Subpart C 15.207	Pass	
Minimum 6dB	47 CFR Part 15,	ANSI C63.10 (2013)	47 CFR Part 15, Subpart	Pass	
Bandwidth	Subpart C 15.247	Section 11.8.1	C 15.247a(2)		
Conducted Peak	47 CFR Part 15,	ANSI C63.10 (2013)	47 CFR Part 15, Subpart	Pass	
Output Power	Subpart C 15.247	Section 7.8.5	C 15.247(b)(3)		
Power Spectrum	47 CFR Part 15,	ANSI C63.10 (2013)	47 CFR Part 15, Subpart	Pass	
Density	Subpart C 15.247	Section 11.10.2	C 15.247(e)		
Conducted Band	47 CFR Part 15,	ANSI C63.10 (2013)	47 CFR Part 15, Subpart	Pass	
Edges Measurement	Subpart C 15.247	Section 7.8.6	C 15.247(d)		
Conducted Spurious	47 CFR Part 15,	ANSI C63.10 (2013)	47 CFR Part 15, Subpart	Pass	
Emissions	Subpart C 15.247	Section 7.8.8	C 15.247(d)		
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.205 & 15.209	Pass	
Radiated Spurious	47 CFR Part 15,	ANSI C63.10 (2013)	47 CFR Part 15, Subpart	Pass	
Emissions	Subpart C 15.247	Section 6.4,6.5,6.6	C 15.205 & 15.209		

Report No.: SZEM180200126801 Page: 4 of 59

3 Contents

		Pa	ge
1	covi	ER PAGE	1
_			_
2	TEST	SUMMARY	3
3	CON	TENTS	4
4		ERAL INFORMATION	
		DETAILS OF E.U.T	
		DESCRIPTION OF SUPPORT UNITS	
		Measurement Uncertainty	
		TEST FACILITY	
		DEVIATION FROM STANDARDS	
5	EQUI	PMENT LIST	8
6		O SPECTRUM TECHNICAL REQUIREMENT	10
0			
	6.1.1 6.1.2	Test Requirement: Conclusion	
	02		-
7		O SPECTRUM MATTER TEST RESULTS	
	7.1	CONDUCTED EMISSIONS AT AC POWER LINE (150KHz-30MHz)	.11
	7.1.1	E.U.T. Operation	.12
	7.1.2		
	7.1.3		
	7.2.1	E.U.T. Operation	
	7.2.2 7.2.3		
		Conducted Peak Output Power	
	7.3.1	E.U.T. Operation	
	7.3.2		
	7.3.3		
	7.4	Power Spectrum Density	
	7.4.1	E.U.T. Operation	.18
	7.4.2	Test Setup Diagram	.18
	7.4.3		
		CONDUCTED BAND EDGES MEASUREMENT	
	7.5.1	I Contraction of the second seco	
	7.5.2		
	7.5.3		
		CONDUCTED SPURIOUS EMISSIONS	
	7.6.1		
	7.6.2 7.6.3	1 0	
		RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	
	7.7.1		
	7.7.2		

Report No.: SZEM180200126801 Page: 5 of 59

	7.7.3	Measurement Procedure and Data	25
	7.8	RADIATED SPURIOUS EMISSIONS	
	7.8.1	E.U.T. Operation	
	7.8.2	Test Setup Diagram	
	7.8.3	Measurement Procedure and Data	32
8	PHO	TOGRAPHS	42
	8.1	CONDUCTED EMISSIONS AT AC POWER LINE (150KHz-30MHz) TEST SETUP	42
	8.2	RADIATED SPURIOUS EMISSIONS TEST SETUP	
9	APP	ENDIX	44
	9.1	Appendix 15.247	44-59

Report No.: SZEM180200126801 Page: 6 of 59

4 General Information

4.1 Details of E.U.T.

Power supply:	DC 3.7V rechargeable battery which charged from USB port
Bluetooth version:	V4.0 BLE
Antenna Gain	-2.14 dBi
Antenna Type	FPC antenna
Channel Spacing	2MHz
Modulation Type	GFSK
Number of Channels	40
Operation Frequency	2402MHz to 2480MHz

4.2 Description of Support Units

Description	Manufacturer	Model No.	Serial No.
Adapter	Apple	A1357 W010A051	REF. No.SEA0500

4.3 Measurement Uncertainty

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.25 x 10 ⁻⁸
2	Duty cycle	0.37%
3	Occupied Bandwidth	3%
4	RF conducted power	0.75dB
5	RF power density	2.84dB
6	Conducted Spurious emissions 0.75dB	
7	DE Dedicted newer	4.5dB (below 1GHz)
7	RF Radiated power	4.8dB (above 1GHz)
0	Dedicted Courieus emission test	4.5dB (Below 1GHz)
8	Radiated Spurious emission test	4.8dB (Above 1GHz)
9	Temperature test	1 ℃
10	Humidity test	3%
11	Supply voltages	1.5%
12	Time	3%

Report No.: SZEM180200126801 Page: 7 of 59

4.4 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC

Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

• VCCI

The 3m Fully-anechoic chamber for above 1GHz, 10m Semi-anechoic chamber for below 1GHz, Shielded Room for Mains Port Conducted Interference Measurement and Telecommunication Port Conducted Interference Measurement of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-20026, R-14188, C-12383 and T-11153 respectively.

FCC – Designation Number: CN1178

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized as an accredited testing laboratory.

Designation Number: CN1178. Test Firm Registration Number: 406779.

Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

4.6 Deviation from Standards

None

4.7 Abnormalities from Standard Conditions

None

Report No.: SZEM180200126801 Page: 8 of 59

5 Equipment List

Conducted Emissions at AC Power Line (150kHz-30MHz)						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
Shielding Room	ZhongYu Electron	GB-88	SEM001-06	2017-05-10	2018-05-09	
Measurement Software	AUDIX	e3 V5.4.1221d	N/A	N/A	N/A	
Coaxial Cable	SGS	N/A	SEM024-01	2017-07-13	2018-07-12	
LISN	Rohde & Schwarz	ENV216	SEM007-01	2017-09-27	2018-09-26	
LISN	ETS-LINDGREN	3816/2	SEM007-02	2017-04-14	2018-04-13	
EMI Test Receiver	Rohde & Schwarz	ESCI	SEM004-02	2017-04-14	2018-04-13	

Conducted test items					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2017-09-27	2018-09-26
Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2017-09-27	2018-09-26
Measurement Software	JS Tonscend	JS1120-2 BT/WIFI V2.	N/A	N/A	N/A
Coaxial Cable	SGS	N/A	SEM031-02	2017-07-13	2018-07-12
Attenuator	Weinschel Associates	WA41	SEM021-09	N/A	N/A
Signal Generator	KEYSIGHT	N5173B	SEM006-05	2017-09-27	2018-09-26
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2017-09-27	2018-09-26

Radiated Spurious Emissions							
Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm-dd)	Cal. Due date (yyyy-mm-dd)		
3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEM001-01	2017-08-05	2020-08-04		
MXE EMI Receiver (20Hz-8.4GHz)	Agilent Technologies	N9038A	SEM004-05	2017-09-27	2018-09-26		
BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEM003-01	2017-06-27	2020-06-26		
Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEM005-01	2017-04-14	2018-04-13		
Measurement Software	AUDIX	e3 V8.2014-6-27	N/A	N/A	N/A		
Coaxial Cable	SGS	N/A	SEM025-01	2017-07-13	2018-07-12		

Report No.: SZEM180200126801 Page: 9 of 59

Radiated Spurious Emissions							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2017-05-02	2020-05-01		
Measurement Software	AUDIX	e3 V8.2014-6- 27	N/A	N/A	N/A		
Coaxial Cable	SGS	N/A	SEM026-01	2017-07-13	2018-07-12		
Spectrum Analyzer	Rohde & Schwarz	FSU43	SEM004-08	2017-04-14	2018-04-13		
BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-01	2017-06-27	2020-06-26		
Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2015-06-14	2018-06-13		
Horn Antenna (15GHz-40GHz)	Schwarzbeck	BBHA 9170	SEM003-15	2017-10-17	2020-10-16		
Pre-amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2017-09-27	2018-09-26		
Low Noise Amplifier (100MHz-18GHz)	Black Diamond Series	BDLNA-0118- 352810	SEM005-05	2017-09-27	2018-09-27		
Pre-amplifier(18-26GHz)	Rohde & Schwarz	CH14-H052	SEM005-17	2017-12-04	2018-12-03		
Pre-amplifier (26GHz-40GHz)	Compliance Directions Systems Inc.	PAP-2640-50	SEM005-08	2017-04-14	2018-04-13		
DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2017-09-27	2018-09-26		
Active Loop Antenna	ETS-Lindgren	6502	SEM003-08	2017-08-22	2020-08-21		
Band filter	N/A	N/A	SEM023-01	N/A	N/A		

General used equipmen	t				
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Humidity/ Temperature Indicator	Shanghai Meteorological Industry Factory	ZJ1-2B	SEM002-03	2017-09-29	2018-09-28
Humidity/ Temperature Indicator	Shanghai Meteorological Industry Factory	ZJ1-2B	SEM002-04	2017-09-29	2018-09-28
Humidity/ Temperature Indicator	Mingle	N/A	SEM002-08	2017-09-29	2018-09-28
Barometer	Changchun Meteorological Industry Factory	DYM3	SEM002-01	2017-04-18	2018-04-17

Report No.: SZEM180200126801 Page: 10 of 59

6 Radio Spectrum Technical Requirement

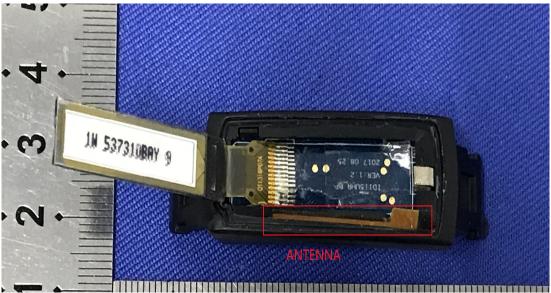
6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203 & 15.247(c)

6.1.2 Conclusion

Standard Requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is -2.14dBi.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-

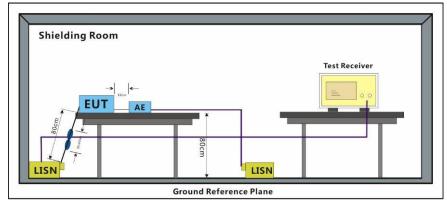
Report No.: SZEM180200126801 Page: 11 of 59

7 Radio Spectrum Matter Test Results

7.1 Conducted Emissions at AC Power Line (150kHz-30MHz)

Test Requirement	47 CFR Part 15, Subpart C 15.207
Test Method:	ANSI C63.10 (2013) Section 6.2
Limit:	

Execution of omission (MHz)	Conducted limit(dBµV)				
Frequency of emission(MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			
*Decreases with the logarithm of the frequency.					


Report No.: SZEM180200126801 Page: 12 of 59

7.1.1 E.U.T. Operation

Operating Environment:

Temperature:22 °CHumidity:37.5 % RHAtmospheric Pressure:1015mbarTest modeb:Charge + TX mode_Keep the EUT in charging and continuously transmitting
mode with GFSK modulation.mode with GFSK modulation.

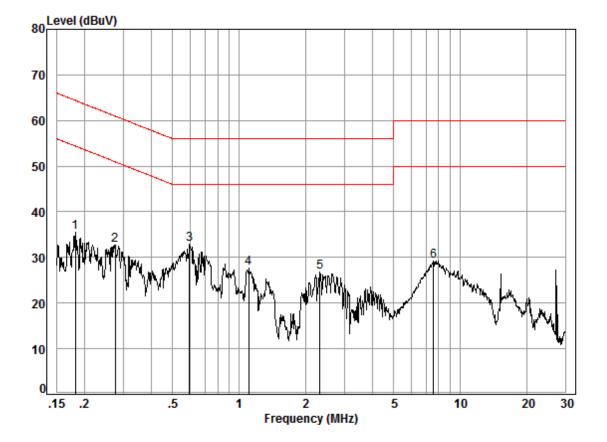
7.1.2 Test Setup Diagram

7.1.3 Measurement Procedure and Data

1) The mains terminal disturbance voltage test was conducted in a shielded room.

2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50 μ H + 50hm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.

3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,


4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.

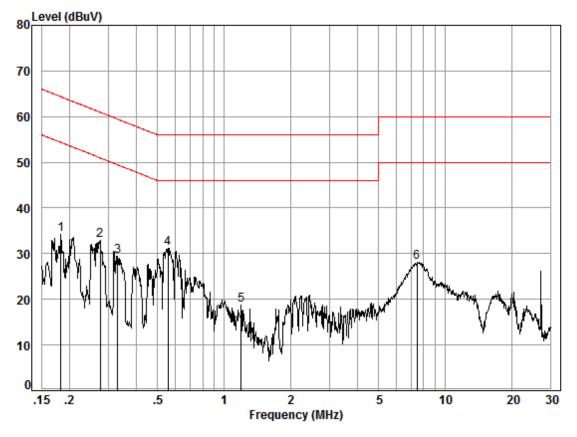
5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Remark: LISN=Read Level+ Cable Loss+ LISN Factor

Report No.: SZEM180200126801 Page: 13 of 59

Mode:b; Line:Live Line

Site	:	Sh	ieldin	g Room		
Cond	ition:	Li	ne			
Job I	No. :	01	268CR			
Test	mode:	b				
			Cable	LISN	Read	
	Fr	eq	Loss	Factor	Level	Leve
	N	ΙHz	dB	dB	dBuV	dBu


	Freq	Loss	Factor					Remark	
	MHz	dB	dB	dBuV	dBuV	dBuV	dB		
1	0.18	0.02	9.51	26.01	35.54	54.42	-18.88	Peak	
2	0.28	0.01	9.51	23.24	32.76	50.94	-18.18	Peak	
3	0.60	0.02	9.53	23.41	32.96	46.00	-13.04	Peak	
4	1.11	0.02	9.51	18.10	27.63	46.00	-18.37	Peak	
5	2.32	0.02	9.52	17.21	26.75	46.00	-19.25	Peak	
6	7.57	0.01	9.60	19.53	29.14	50.00	-20.86	Peak	

A

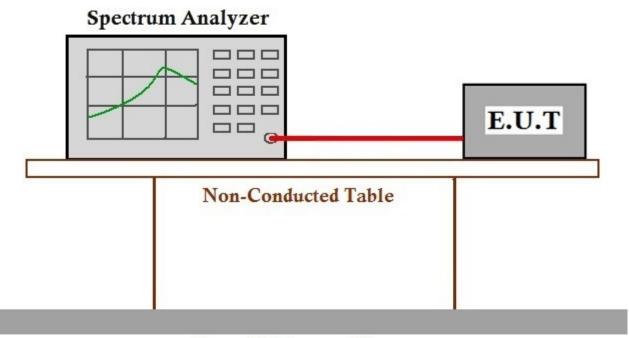
Report No.: SZEM180200126801 Page: 14 of 59

Mode:b; Line:Neutral Line

Job N	tion: New No. : 01		g Room					
Test	mode: b	Cable	LISN	Read		Limit	0ver	
	Freq	Loss	Factor	Level	Level	Line	Limit	Remark
-	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.18	0.02	9,58	24.62	34.22	54.37	-20.15	Peak
2	0.28	0.01	9.58	23.24	32.83	50.94	-18.11	Peak
3	0.33	0.01	9.58	19.94	29.53	49.44	-19.91	Peak
4	0.56	0.01	9.61	21.60	31.22	46.00	-14.78	Peak
5	1.20	0.02	9.64	9.13	18.79	46.00	-27.21	Peak
6	7.45	0.01	9.73	18.46	28.20	50.00	-21.80	Peak

Report No.: SZEM180200126801 Page: 15 of 59

7.2 Minimum 6dB Bandwidth


Test Requirement	47 CFR Part 15, Subpart C 15.247a(2)
Test Method:	ANSI C63.10 (2013) Section 11.8.1
Limit:	≥500 kHz

7.2.1 E.U.T. Operation

Operating Environment:

Temperature:21.6 °CHumidity:47.5 % RHAtmospheric Pressure:1015mbarTest modea:TX mode_Keep the EUT in continuously transmitting mode with GFSK
modulationmodulation

7.2.2 Test Setup Diagram

Ground Reference Plane

7.2.3 Measurement Procedure and Data

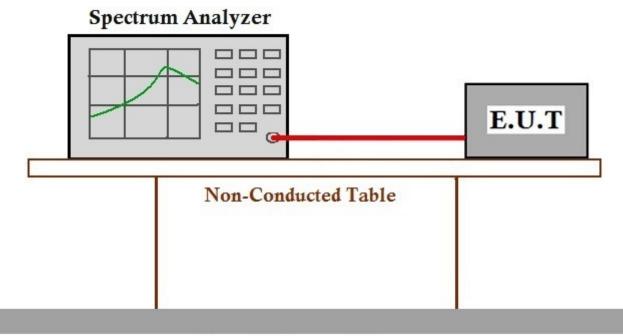
The detailed test data see: Appendix 15.247

Report No.: SZEM180200126801 Page: 16 of 59

7.3 Conducted Peak Output Power

Test Requirement	47 CFR Part 15, Subpart C 15.247(b)(3)
Test Method:	ANSI C63.10 (2013) Section 7.8.5
Limit:	

Frequency range(MHz)	Output power of the intentional radiator(watt)		
	1 for ≥50 hopping channels		
902-928	0.25 for 25≤ hopping channels <50		
	1 for digital modulation		
	1 for ≥75 non-overlapping hopping channels		
2400-2483.5	0.125 for all other frequency hopping systems		
	1 for digital modulation		
5725-5850 1 for frequency hopping systems and digital modulat			


Report No.: SZEM180200126801 Page: 17 of 59

7.3.1 E.U.T. Operation

Operating Environment:

Temperature:	21.6 °C	Humidity:	47.5 % RH	Atmospheric Pressure:	1015	mbar
Test mode	a:TX mode_Ke modulation	ep the EUT	in continuously tra	ansmitting mode with GF	SK	

7.3.2 Test Setup Diagram

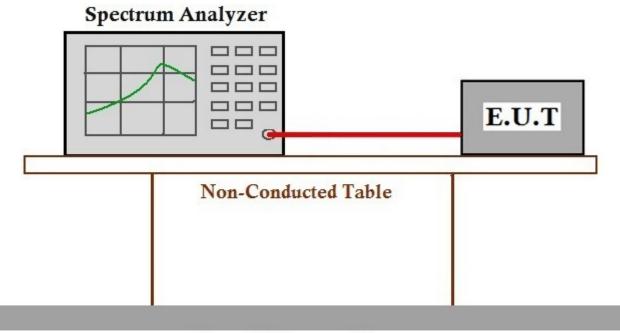
Ground Reference Plane

7.3.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.247

Report No.: SZEM180200126801 Page: 18 of 59

7.4 Power Spectrum Density


Test Requirement	47 CFR Part 15, Subpart C 15.247(e)
Test Method:	ANSI C63.10 (2013) Section 11.10.2
Limit:	${\leq}8\text{dBm}$ in any 3 kHz band during any time interval of continuous transmission

7.4.1 E.U.T. Operation

Operating Environment:

Temperature:21.6 °CHumidity:47.5 % RHAtmospheric Pressure:1015mbarTest modea:TX mode_Keep the EUT in continuously transmitting mode with GFSK
modulationmodemodemode

7.4.2 Test Setup Diagram

Ground Reference Plane

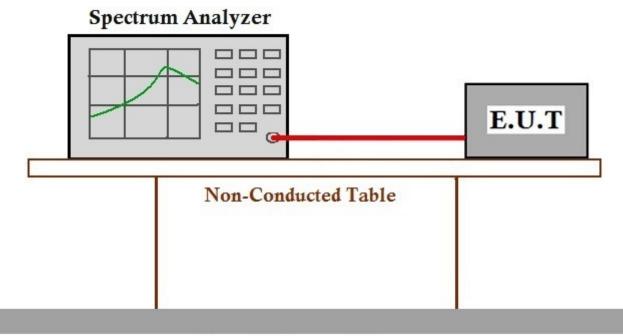
7.4.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.247

Report No.: SZEM180200126801 Page: 19 of 59

7.5 Conducted Band Edges Measurement

Test Requirement	47 CFR Part 15, Subpart C 15.247(d)
Test Method:	ANSI C63.10 (2013) Section 7.8.6
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a) (see §15.205(c)


Report No.: SZEM180200126801 Page: 20 of 59

7.5.1 E.U.T. Operation

Operating Environment:

Temperature:	21.6 °C	Humidity:	47.5 % RH	Atmospheric Pressure:	1015	mbar
Test mode	a:TX mode_Ke modulation	ep the EUT	in continuously tr	ansmitting mode with GF	SK	

7.5.2 Test Setup Diagram

Ground Reference Plane

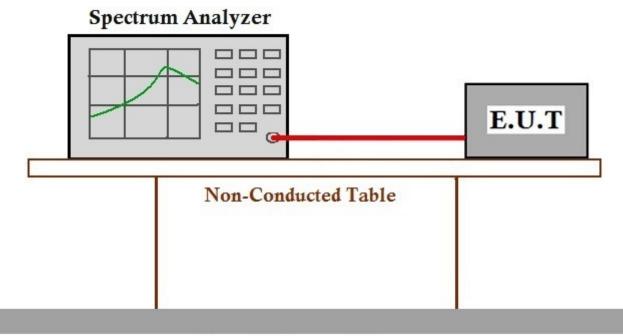
7.5.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.247

Report No.: SZEM180200126801 Page: 21 of 59

7.6 Conducted Spurious Emissions

Test Requirement	47 CFR Part 15, Subpart C 15.247(d)
Test Method:	ANSI C63.10 (2013) Section 7.8.8
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a) (see §15.205(c)


Report No.: SZEM180200126801 Page: 22 of 59

7.6.1 E.U.T. Operation

Operating Environment:

Temperature:	21.6 °C	Humidity:	47.5 % RH	Atmospheric Pressure:	1015	mbar
Test mode	a:TX mode_Ke modulation	ep the EUT	in continuously tr	ansmitting mode with GF	SK	

7.6.2 Test Setup Diagram

Ground Reference Plane

7.6.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.247

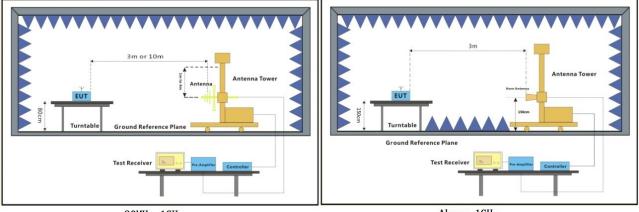
Report No.: SZEM180200126801 Page: 23 of 59

7.7 Radiated Emissions which fall in the restricted bands

Test Requirement47 CFR Part 15, Subpart C 15.205 & 15.209Test Method:ANSI C63.10 (2013) Section 6.10.5Measurement Distance:3mLimit:Image: Compare the section of the secti

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.


Report No.: SZEM180200126801 Page: 24 of 59

7.7.1 E.U.T. Operation

Operating Enviror	nment:			
Temperature:	21.9 °C	Humidity:	51.3 % RH	Atmospheric Pressure: 1015 mbar
Pretest these modes to find the worst case:	modulation	mode_Keep	the EUT in char	ransmitting mode with GFSK ging and continuously transmitting

The worst case b:Charge + TX mode_Keep the EUT in charging and continuously transmitting for final test: mode with GFSK modulation.

7.7.2 Test Setup Diagram

30MHz-1GHz

Above 1GHz

Report No.: SZEM180200126801 Page: 25 of 59

7.7.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

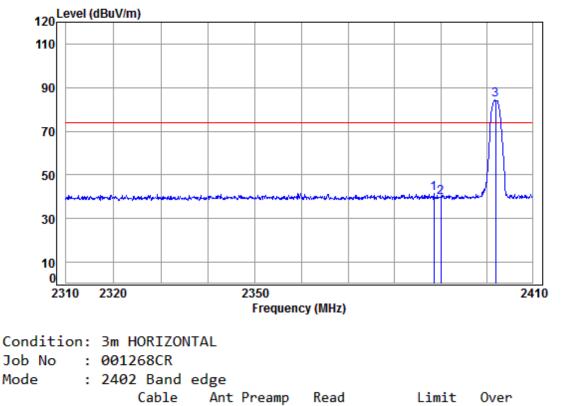
f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

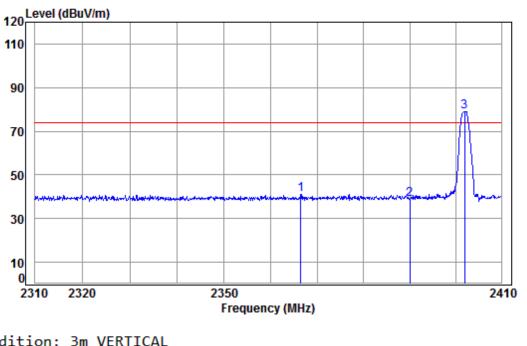
j. Repeat above procedures until all frequencies measured was complete.


Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Report No.: SZEM180200126801 Page: 26 of 59

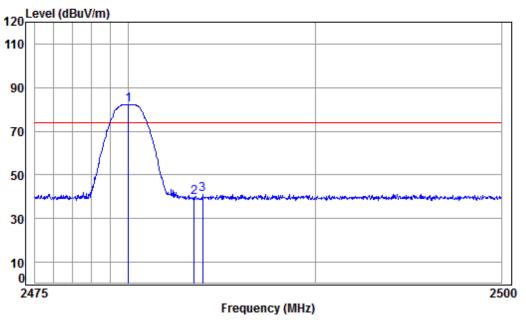
Mode:b; Polarization:Horizontal; Modulation:GFSK; Channel:Low



	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	2388.546	5.47	29.07	41.87	48.75	41.42	74.00	-32.58	peak
2	2390.000	5.47	29.08	41.87	47.13	39.81	74.00	-34.19	peak
3 pp	2402.000	5.49	29.11	41.88	91.48	84.20	74.00	10.20	Peak

Report No.: SZEM180200126801 Page: 27 of 59

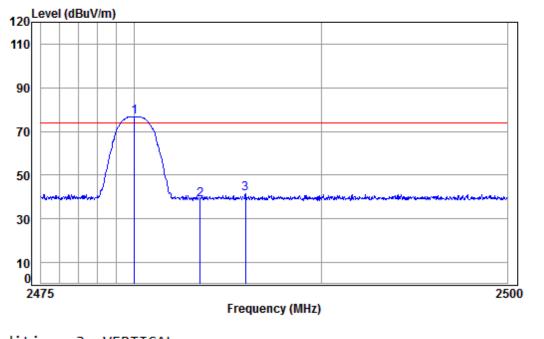
Mode:b; Polarization:Vertical; Modulation:GFSK; Channel:Low


Cond	lition:	Зm	VER	ICAL
-				

Job No	o : 001	268CR							
Mode	: 240	2 Band	edge						
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	2366.480	5.44	29.01	41.86	48.52	41.11	74.00	-32.89	peak
2	2390.000	5.47	29.08	41.87	46.22	38.90	74.00	-35.10	peak
3 рр	2402.000	5.49	29.11	41.88	86.09	78.81	74.00	4.81	Peak

Report No.: SZEM180200126801 Page: 28 of 59

Mode:b; Polarization:Horizontal; Modulation:GFSK; Channel:High



Job No	ion: 3m > : 001 : 248	268CR							
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 pp	2480.000	5.59	29.34	41.91	89.09	82.11	74.00	8.11	Peak
2	2483.500	5.60	29.35	41.91	46.49	39.53	74.00	-34.47	peak
3	2483.971	5.60	29.35	41.91	48.20	41.24	74.00	-32.76	peak

Report No.: SZEM180200126801 Page: 29 of 59

Mode:b; Polarization:Vertical; Modulation:GFSK; Channel:High

Condition:	3m VERTICAL
------------	-------------

Job No	o : 001	: 001268CR								
Mode	: 2480 Band edge									
		Cable	Ant	Preamp	Read		Limit	0ver		
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
-										
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1 pp	2480.000	5.59	29.34	41.91	83.70	76.72	74.00	2.72	Peak	
2	2483.500	5.60	29.35	41.91	45.89	38.93	74.00	-35.07	peak	
3	2485.944	5.60	29.36	41.91	48.69	41.74	74.00	-32.26	peak	

Report No.: SZEM180200126801 Page: 30 of 59

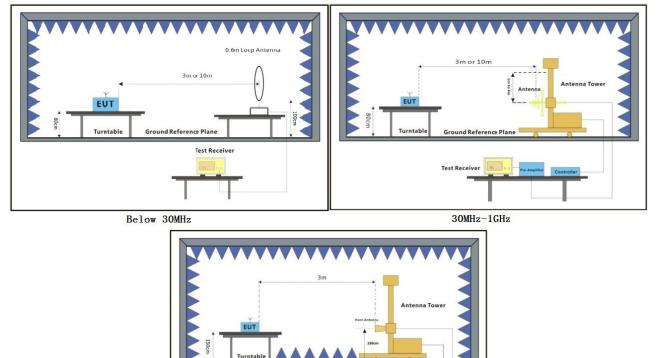
7.8 Radiated Spurious Emissions

Test Requirement	47 CFR Part 15, Subpart C 15.205 & 15.209
Test Method:	ANSI C63.10 (2013) Section 6.4,6.5,6.6
Measurement Distance:	3m
Limit:	

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

Report No.: SZEM180200126801 Page: 31 of 59


7.8.1 E.U.T. Operation

Operating Environment:

Temperature:	18 °C	Humidity:	55.4 % RH	Atmospheric Pressure:	1015 mbar					
Pretest these modes to find	a:TX mode_Keep the EUT in continuously transmitting mode with GFSK modulation									
the worst case:	b:Charge + TX mode_Keep the EUT in charging and continuously transmitting mode with GFSK modulation.									

The worst caseb:Charge + TX mode_Keep the EUT in charging and continuously transmitting
mode with GFSK modulation.

7.8.2 Test Setup Diagram

Above 1GHz

Test Receiver

Ground Reference Plan

Report No.: SZEM180200126801 Page: 32 of 59

7.8.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

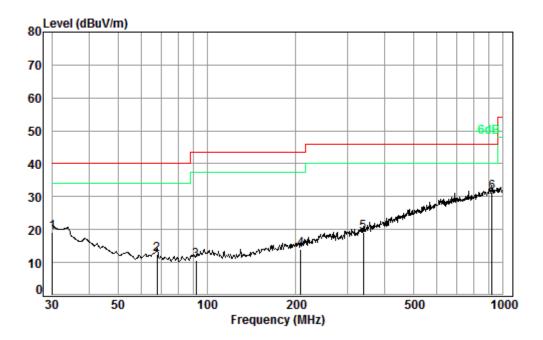
Remark:

1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

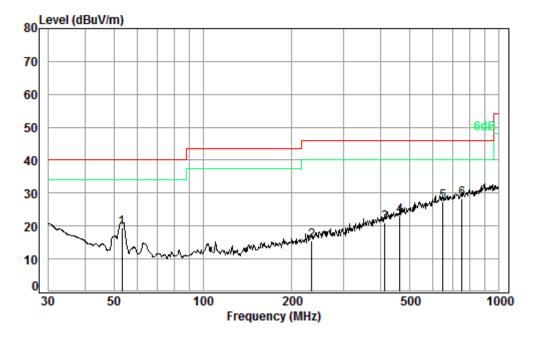
3) Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.


4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Report No.: SZEM180200126801 Page: 33 of 59

Radiated emission below 1GHz

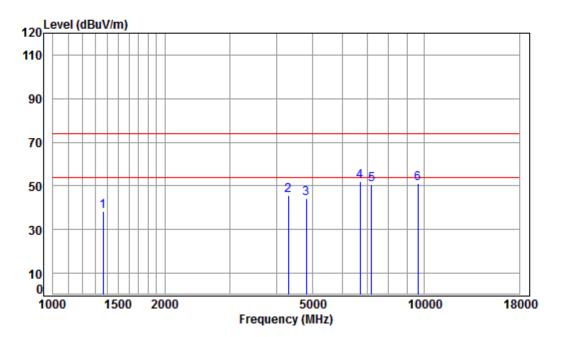
Mode:b ; Horizontal


Condition: 3m HORIZONTAL Job No. : 01268CR Test mode: b

		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	30.11	0.60	22.44	27.67	23.89	19.26	40.00	-20.74	
2	67.91	0.80	12.88	27.53	26.17	12.32	40.00	-27.68	
3	92.14	1.12	13.30	27.51	23.64	10.55	43.50	-32.95	
4	207.85	1.45	16.78	27.53	23.33	14.03	43.50	-29.47	
5	338.40	2.02	20.77	27.62	23.91	19.08	46.00	-26.92	
6 pp	919.29	3.62	29.90	27.02	24.90	31.40	46.00	-14.60	

Report No.: SZEM180200126801 Page: 34 of 59

Mode:b ;Vertical

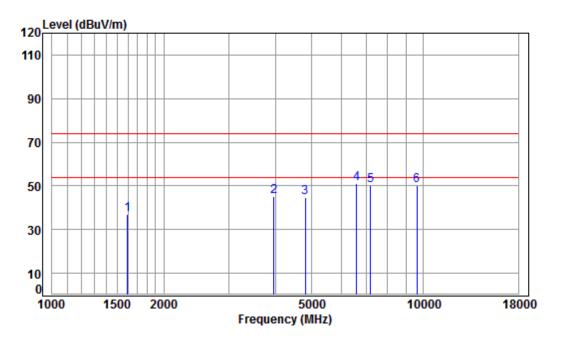

Condition: 3m VERTICAL Job No. : 01268CR Test mode: b

	mouel b								
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	53.32	0.80	13.85	27.59	32.38	19.44	40.00	-20.56	
2	233.35	1.59	18.28	27.53	23.26	15.60	46.00	-30.40	
3	411.82	2.25	22.69	27.75	23.85	21.04	46.00	-24.96	
4	462.35	2.46	23.83	27.83	24.58	23.04	46.00	-22.96	
5	647.39	2.80	27.24	27.63	24.99	27.40	46.00	-18.60	
6 pp	750.11	3.06	28.21	27.48	24.49	28.28	46.00	-17.72	

Report No.: SZEM180200126801 Page: 35 of 59

Mode:b; Polarization:Horizontal; Modulation:GFSK; Channel:Low

Condition:	3m HORIZONTAL		
Job No :	01268CR		
Mode :	2402 TX RSE		

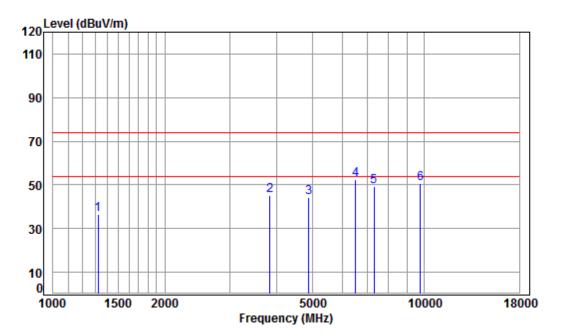

Note	:	BLE
------	---	-----

Freq			Preamp Factor					Remark
MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
 1366.374 4304.400 4804.000 6717.762 7206.000	7.34 7.89 10.91	33.60 34.16 35.72	42.38 42.47 41.05	46.94 44.62 46.28	45.50 44.20 51.86	74.00 74.00 74.00	-28.50 -29.80 -22.14	peak peak peak
7206.000 9608.000								•

Report No.: SZEM180200126801 Page: 36 of 59

Mode:b; Polarization:Vertical; Modulation:GFSK; Channel:Low

Condition:	3m VERTICAL
Job No :	01268CR
Mode :	2402 TX RSE

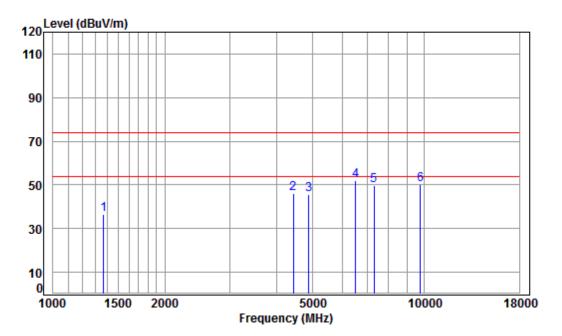

۰.	louc	•	2402
Ν	lote	:	BLE

	Freq			Preamp Factor					
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1597.181	5.35	26.24	41.47	46.86	36.98	74.00	-37.02	peak
2	3958.309	6.94	33.49	42.32	47.21	45.32	74.00	-28.68	peak
3	4804.000	7.89	34.16	42.47	45.25	44.83	74.00	-29.17	peak
4 pp	6602.265	11.24	35.39	41.14	45.76	51.25	74.00	-22.75	peak
5	7206.000	10.08	36.42	40.71	44.48	50.27	74.00	-23.73	peak
6	9608.000	10.75	37.52	37.74	39.46	49.99	74.00	-24.01	peak

Report No.: SZEM180200126801 Page: 37 of 59

Mode:b; Polarization:Horizontal; Modulation:GFSK; Channel:middle

Condition:	3m HORIZONTAL
Job No :	01268CR
Mode :	2440 TX RSE

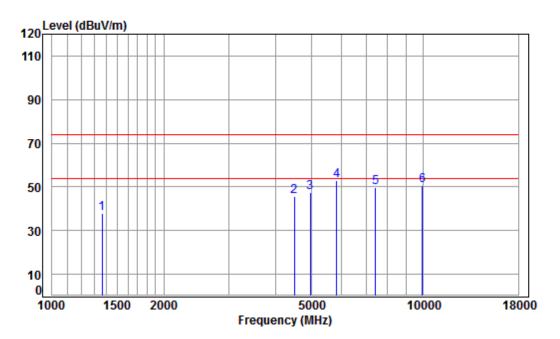

Note	:	BLE
------	---	-----

				Preamp					
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1323.614	4.88	25.06	41.28	48.01	36.67	74.00	-37.33	peak
2	3834.438	6.82	33.16	42.29	47.64	45.33	74.00	-28.67	peak
3	4880.000	7.97	34.29	42.48	44.56	44.34	74.00	-29.66	peak
4 p	p 6526.373	11.46	35.18	41.20	47.20	52.64	74.00	-21.36	peak
5	7320.000	10.05	36.37	40.63	43.53	49.32	74.00	-24.68	peak
6	9760.000	10.82	37.55	37.53	39.74	50.58	74.00	-23.42	peak

Report No.: SZEM180200126801 Page: 38 of 59

Mode:b; Polarization:Vertical; Modulation:GFSK; Channel:middle

Condition:	3m VERTICAL
Job No :	01268CR
Mode :	2440 TX RSE

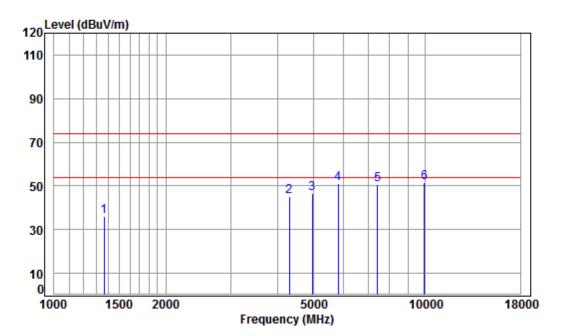

nouc		
Note	:	BLE

	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1370.328	5.05	25.26	41.32	47.51	36.50	74.00	-37.50	peak
2	4430.628	7.48	33.60	42.41	47.51	46.18	74.00	-27.82	peak
3	4880.000	7.97	34.29	42.48	45.65	45.43	74.00	-28.57	peak
4 pp	6526.373	11.46	35.18	41.20	46.58	52.02	74.00	-21.98	peak
5	7320.000	10.05	36.37	40.63	44.00	49.79	74.00	-24.21	peak
6	9760.000	10.82	37.55	37.53	39.29	50.13	74.00	-23.87	peak

Report No.: SZEM180200126801 Page: 39 of 59

Mode:b; Polarization:Horizontal; Modulation:GFSK; Channel:High

Condition:	3m HORIZONTAL
Job No :	01268CR
Mode :	2480 TX RSE


Note	:	BLE
------	---	-----

	Freq			Preamp Factor					Remark
-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
5	1366.374 4495.125 4960.000 5830.640 7440.000 9920.000	7.55 8.05 10.00 10.02	33.60 34.43 34.60 36.32	42.49 41.75 40.56	46.79 47.46 50.03 44.00	45.52 47.45 52.88 49.78	74.00 74.00 74.00 74.00	-28.48 -26.55 -21.12 -24.22	peak peak peak peak

Report No.: SZEM180200126801 Page: 40 of 59

Mode:b; Polarization:Vertical; Modulation:GFSK; Channel:High

Condition:	3m VERTICAL
Job No :	01268CR
Mode :	2480 TX RSE

Mode	:	2480	ТΧ
Note	:	BLE	

			Cable	Ant	Preamp	Read		Limit	0ver	
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	_									
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1	1366.374	5.04	25.25	41.31	46.97	35.95	74.00	-38.05	peak
2	4	4304.400	7.34	33.60	42.38	46.82	45.38	74.00	-28.62	peak
3	4	4960.000	8.05	34.43	42.49	46.53	46.52	74.00	-27.48	peak
4	5	5813.812	9.95	34.59	41.76	48.46	51.24	74.00	-22.76	peak
5	7	7440.000	10.02	36.32	40.56	44.74	50.52	74.00	-23.48	peak
6	pp 9	9920.000	10.90	37.58	37.31	40.17	51.34	74.00	-22.66	peak

Report No.: SZEM180200126801 Page: 41 of 59

Remark:

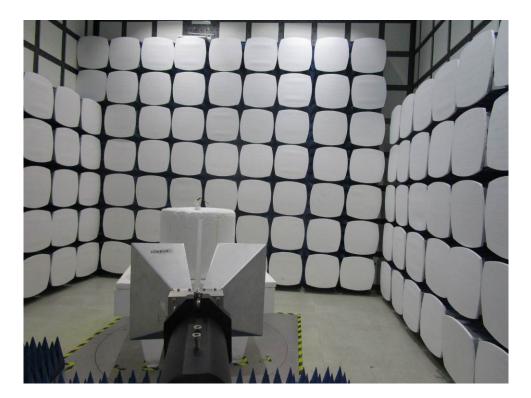
1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

- 2) Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only above measurement data were shown in the report.

Report No.: SZEM180200126801 Page: 42 of 59

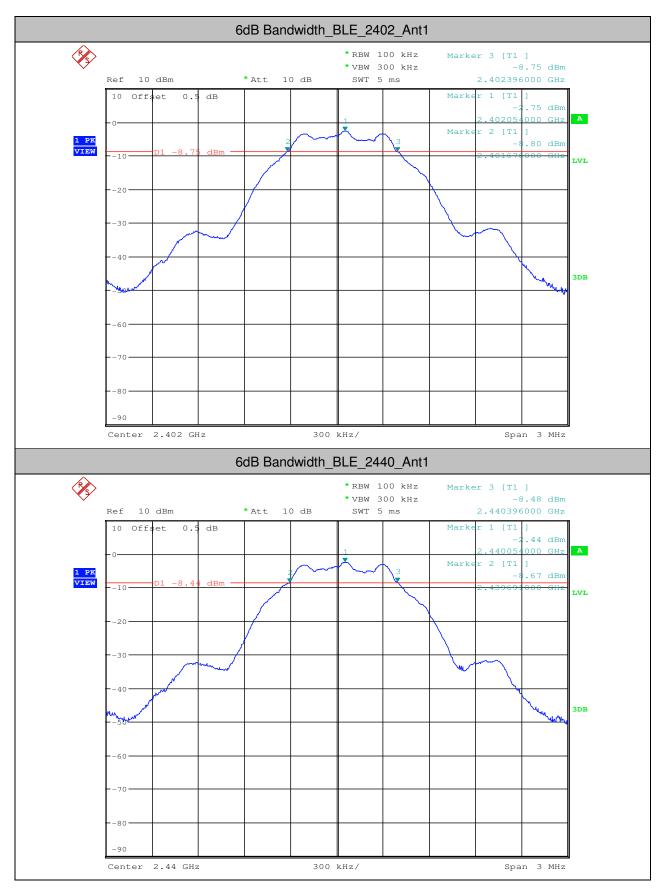
8 Photographs


8.1 Conducted Emissions at AC Power Line (150kHz-30MHz) Test Setup

Report No.: SZEM180200126801 Page: 43 of 59

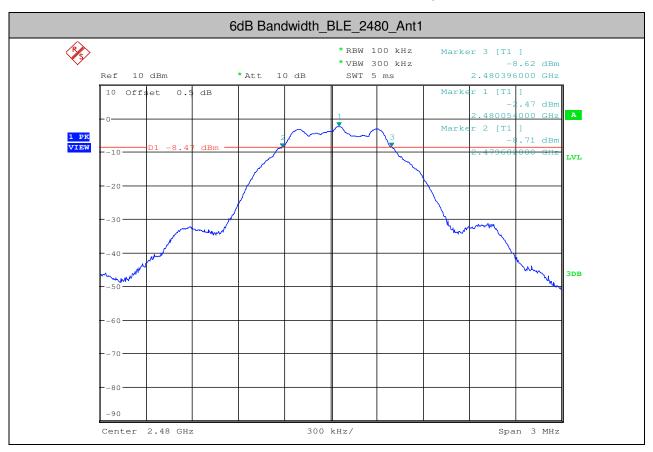
Report No.: SZEM180200126801 Page: 44 of 59

9 Appendix


9.1 Appendix 15.247

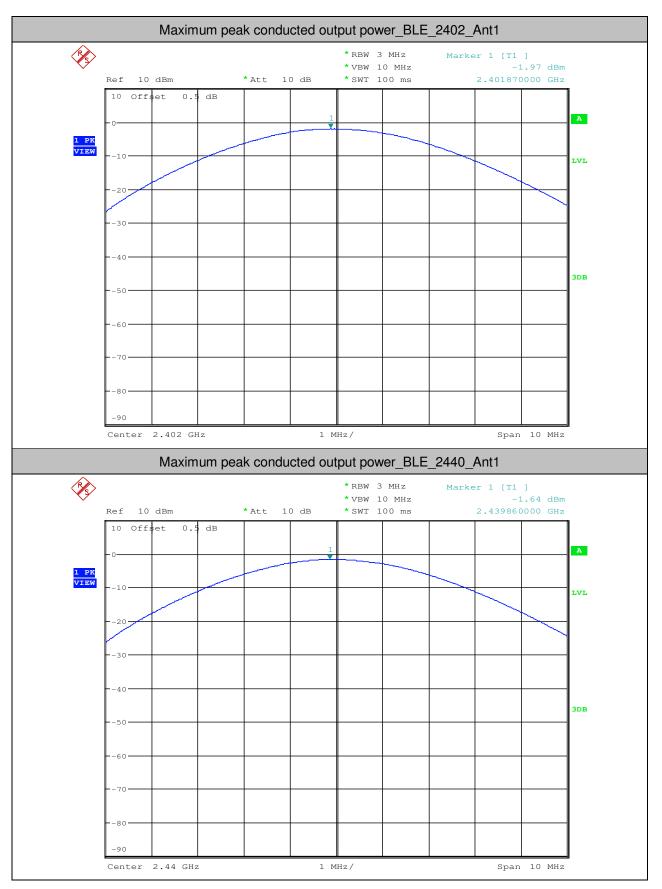
1.6dB Bandwidth

Test Mode	Test Channel	Ant	EBW[MHz]	Limit[MHz]	Verdict
BLE	2402	Ant1	0.720	>=0.5	PASS
BLE	2440	Ant1	0.705	>=0.5	PASS
BLE	2480	Ant1	0.714	>=0.5	PASS



Report No.: SZEM180200126801 Page: 45 of 59

Report No.: SZEM180200126801 Page: 46 of 59

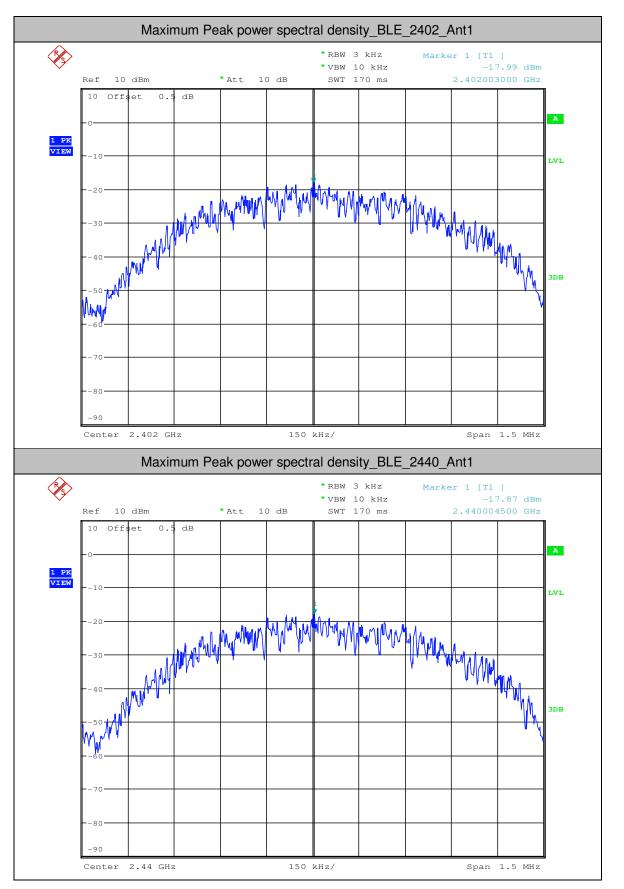

Report No.: SZEM180200126801 Page: 47 of 59

2. Maximum peak conducted output power

Test Mode	Test Channel	Ant	Power[dBm]	Limit[dBm]	Verdict
BLE	2402	Ant1	-1.97	<30	PASS
BLE	2440	Ant1	-1.64	<30	PASS
BLE	2480	Ant1	-1.7	<30	PASS

Report No.: SZEM180200126801 Page: 48 of 59

Report No.: SZEM180200126801 Page: 49 of 59

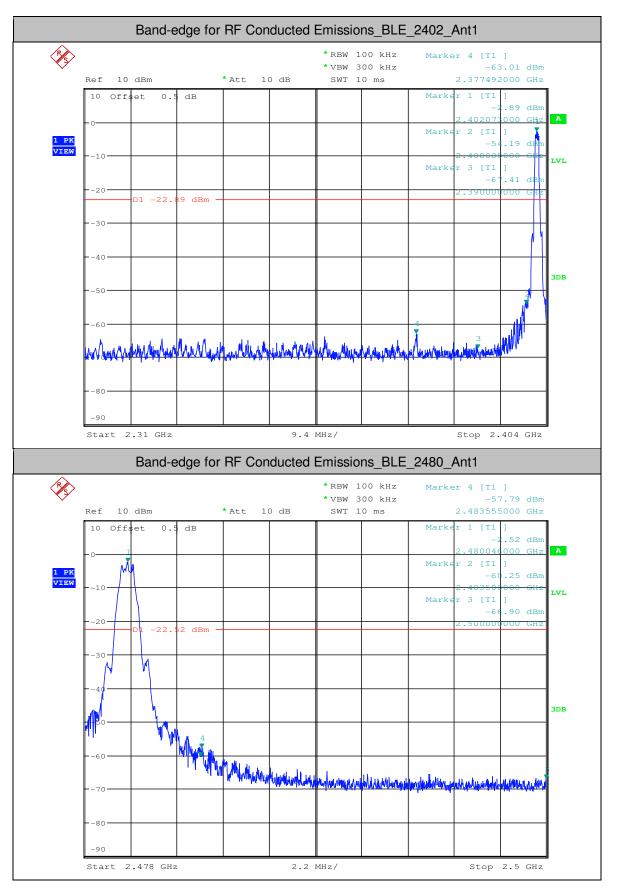

Report No.: SZEM180200126801 Page: 50 of 59

Test Mode	Test Channel	Ant	PSD[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
BLE	2402	Ant1	-17.99	<8.00	PASS
BLE	2440	Ant1	-17.87	<8.00	PASS
BLE	2480	Ant1	-17.86	<8.00	PASS

3. Maximum Peak power spectral density

Report No.: SZEM180200126801 Page: 51 of 59

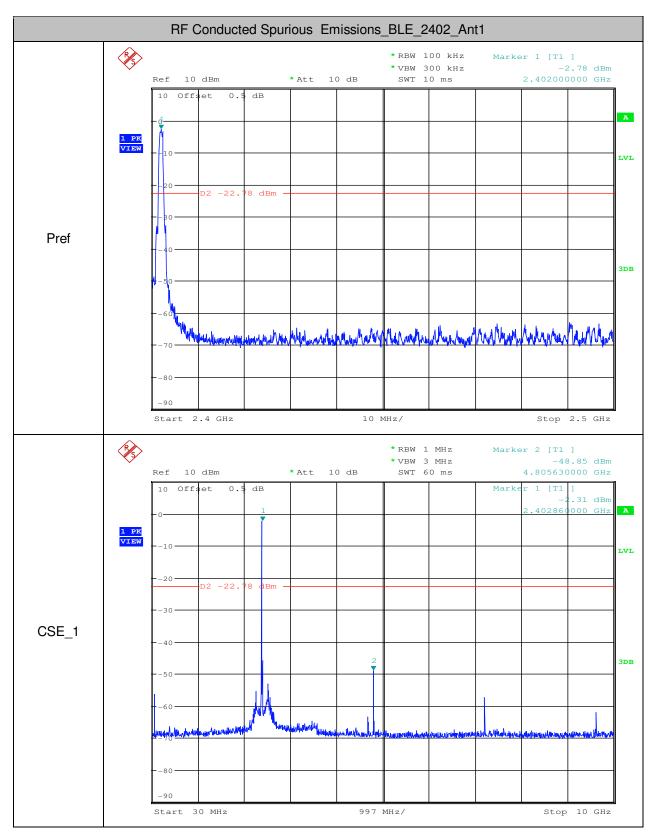
Report No.: SZEM180200126801 Page: 52 of 59



4.Band-edge for RF Conducted Emissions

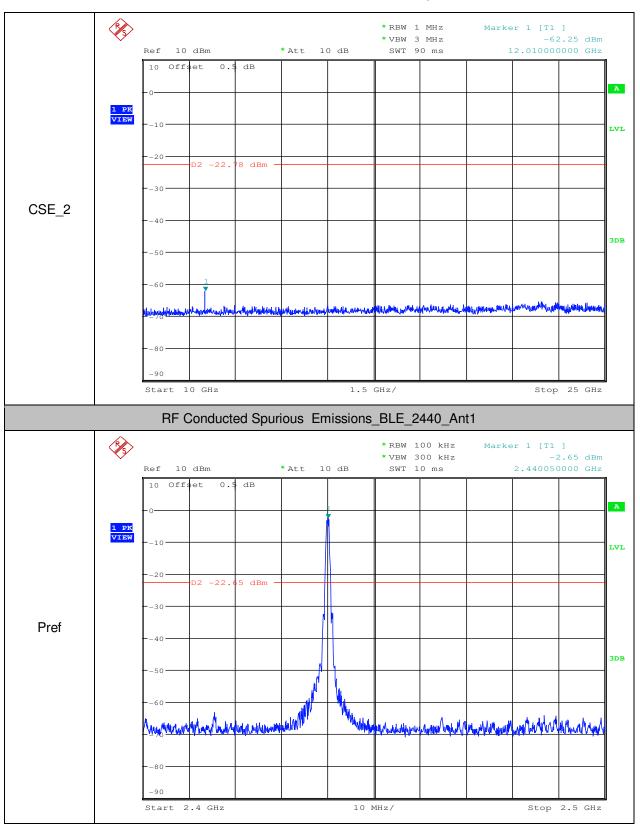
Test Mode	Test Channel	Ant	Carrier Power[dBm]	Max. Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	2402	Ant1	-2.890	-63.014	<-22.89	PASS
BLE	2480	Ant1	-2.520	-57.792	<-22.52	PASS

Report No.: SZEM180200126801 Page: 53 of 59

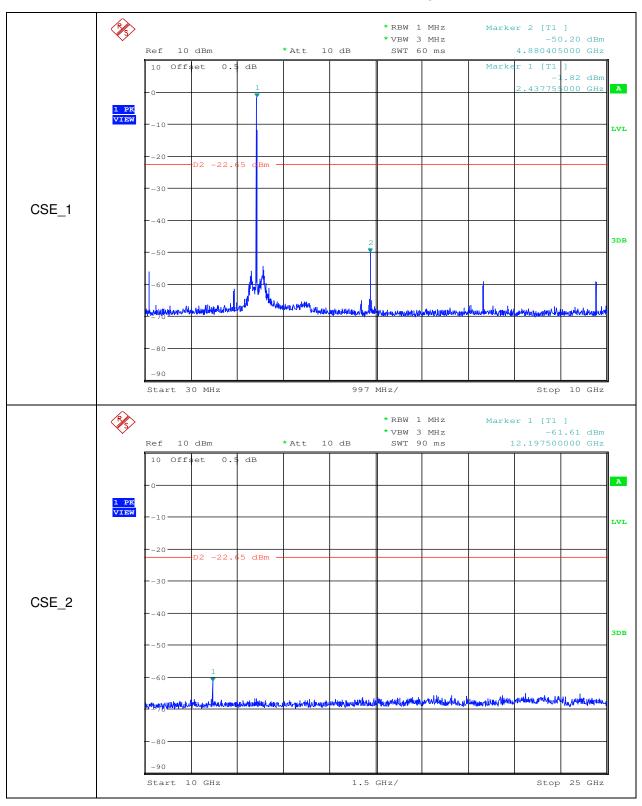

Report No.: SZEM180200126801 Page: 54 of 59

Test Mode	Test Channel	StartFre [MHz]	StopFre [MHz]	RBW [kHz]	VBW [kHz]	Pref[dBm]	Max. Level [dBm]	Limit [dBm]	Verdict
BLE	2402	30	10000	1000	3000	-2.78	-48.850	<- 22.78	PASS
BLE	2402	10000	25000	1000	3000	-2.78	-62.250	<- 22.78	PASS
BLE	2440	30	10000	1000	3000	-2.65	-50.200	<- 22.65	PASS
BLE	2440	10000	25000	1000	3000	-2.65	-61.610	<- 22.65	PASS
BLE	2480	30	10000	1000	3000	-2.54	-51.100	<- 22.54	PASS
BLE	2480	10000	25000	1000	3000	-2.54	-62.950	<- 22.54	PASS

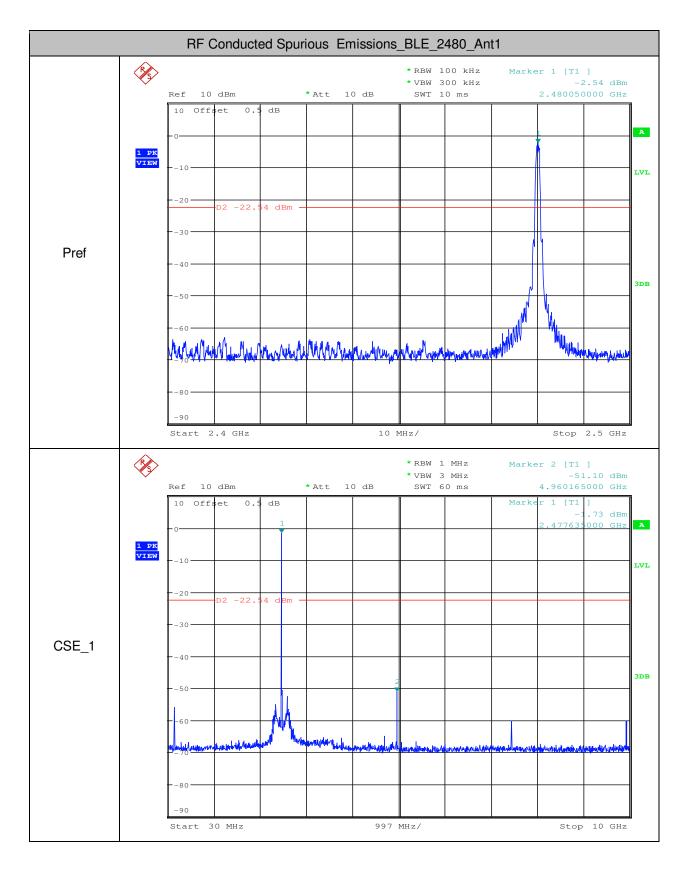
5.RF Conducted Spurious Emissions



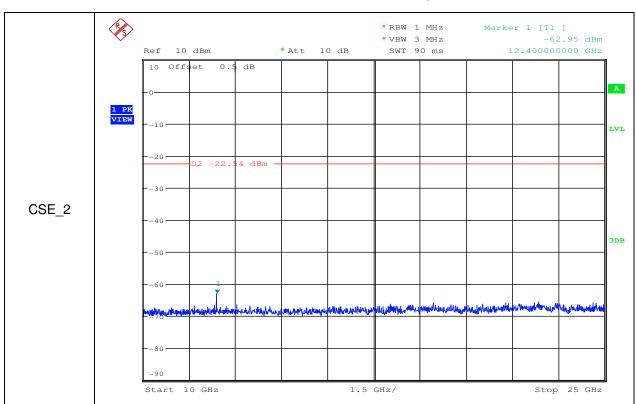
Report No.: SZEM180200126801 Page: 55 of 59



Report No.: SZEM180200126801 Page: 56 of 59



Report No.: SZEM180200126801 Page: 57 of 59



Report No.: SZEM180200126801 Page: 58 of 59

Report No.: SZEM180200126801 Page: 59 of 59

- End of the Report -