

TEST REPORT

Report Number	:	TZ0113241101FRF19
Product Name	:	Two Way Radio
Model/Type reference	:	D588 U1, D588 U4, D580 U1, D580 U4
FCC ID	:	2ABUB-D588-U1
Prepared for	:	Shenzhen Samhoo Sci&Tech Co.,Itd.
		A617, 6th Floor, Building A, Oshida Building, No. 4, Meizhi Road, Meiting Community, Meilin Street, Futian District, Shenzhen, Guangdong, China

Prepared By	: Shenzhen Tongzhou Testing Co.,Ltd.
	1st Floor, Building 1, Haomai High-tech Park, Huating Road 387, Dalang Street, Longhua, Shenzhen, China
Standards	: FCC CFR Title 47 Part 90, ANSI/TIA-603-E: 2016
Date of Test	: December 02, 2024 ~ December 10, 2024
Date of Issue	: December 10, 2024
Prepared by Reviewed by Approved by	Lena Wen Lena Wen (File administrators) Lena Wen Max Zhang Max Zhang (Technical Manager) Max Zhang Andy Zhang Andy Zhang (General Manager) Andy Zhang

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Tongzhou Testing Co.,Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Tongzhou Testing Co.,Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context. The test report apply only to the specific sample(s) tested under stated test conditions. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

** Report Revise Record **

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	December 10, 2024	Valid	Initial release

The tests were performed according to following standards:

FCC Part 2: FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES AND REG-ULATIONS

FCC Part 90: PRIVATE LAND MOBILE RADIO SERVICES.

<u>ANSI/TIA-603-E-2016</u>: Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

ANSI C63.26-2015: IEEE/ANSI Standard for Compliance Testing of Transmitters Used in Licensed Radio Services

2.1. Client Information

Applicant	: Shenzhen Samhoo Sci&Tech Co.,Itd.
Address	A617, 6th Floor, Building A, Oshida Building, No. 4, Meizhi Road,Meiting Community, Meilin Street, Futian District, Shenzhen,Guangdong, China
Manufacturer	: Shenzhen Samhoo Sci&Tech Co.,Itd.
Address	A617, 6th Floor, Building A, Oshida Building, No. 4, Meizhi Road,Meiting Community, Meilin Street, Futian District, Shenzhen,Guangdong, China

2.2. Description of Device (EUT)

Product Name	: Two Way Radio
Trade Mark	: N/A
Model Number	: D588 U1, D588 U4, D580 U1, D580 U4
Model Declaration	: All are the same except the model name and appearance colour.
Test Model	: D588 U1
Power Supply	: DC 7.4V by battery
Hardware version	: SH-D588-V01
Software version	: V1.0

2.3. Wireless Function Tested in this Report

PMR	
Operation Frequency	: 406.1 MHz – 470 MHz
Modulation Type	: FM, 4FSK
Channel Separation	: 12.5kHz
Emission Designator	11K0F3E, 7K60F1D
Maximum Output Power	: 5W/1W
Antenna Type	: Detachable Antenna

Note 1: Antenna position refer to EUT Photos.

Note 2: the above information was supplied by the applicant.

2.4. EUT operation mode

Modulation	Channel separation	Frequency (MHz)	Operation Description
	12.5 KHz	406.125	Op1
FM	12.5 KHz	453.0125	Op2
	12.5 KHz	nnel separation Frequency (MHz) 12.5 KHz 406.125 12.5 KHz 453.0125 12.5 KHz 469.975 12.5 KHz 406.125 12.5 KHz 469.975 12.5 KHz 406.125 12.5 KHz 406.125 12.5 KHz 469.975 12.5 KHz 469.975	Op3
	12.5 KHz	406.125	Op4
4FSK	Channel separation Frequency (MHz 12.5 KHz 406.125 12.5 KHz 453.0125 12.5 KHz 469.975 12.5 KHz 406.125 12.5 KHz 406.125 12.5 KHz 406.125 12.5 KHz 406.125 12.5 KHz 469.975 12.5 KHz 469.975	453.0125	Op5
	12.5 KHz	a separation Frequency (MHz) 2.5 KHz 406.125 2.5 KHz 453.0125 2.5 KHz 469.975 2.5 KHz 406.125 2.5 KHz 406.125 2.5 KHz 406.125 2.5 KHz 406.125 2.5 KHz 469.975 2.5 KHz 469.975	Op6

2.5. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for**FCC ID: 2ABUB-D588-U1** filing to comply with FCC Part 2, FCC Part 90 of the FCC CFR 47 Rules.

3.1. Address of the test laboratory

Shenzhen Tongzhou Testing Co.,Ltd

1st Floor, Building 1, Haomai High-tech Park, Huating Road 387, Dalang Street, Longhua, Shenzhen, China

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 (2014) and CISPR Publication 22.

3.2. Test Facility

FCC

Designation Number: CN1275 Test Firm Registration Number: 167722 Shenzhen Tongzhou Testing Co.,Ltd has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA

Certificate Number: 5463.01 Shenzhen Tongzhou Testing Co.,Ltd has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

IC

ISED#: 22033 CAB identifier: CN0099 Shenzhen Tongzhou Testing Co.,Ltd has been listed by Innovation, Science and Economic Development Canada to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
Humidity:	30-60 %
Atmospheric pressure:	950-1050mbar

3.4. Test Description

Test Specification clause	Test case	Pass	Fail	NA	NP	Remark	
§90.205 §2.1046(a)	RF Power Output					Pass	
§90.205 §2.1046(a)	RF Power Output(Conducted Method)					Pass	
§90.242(b)(8) §90.210 §2.1047	Modulation Characteristic					Pass	
§90.209 §2.1049	99% Occupied Bandwidth	\boxtimes				Pass	
§90.210 §2.1049	Emission Mask					Pass	
§90.213 §2.1055	Frequency Stability					Pass	
§2.1051 §2.1053 §90.210	TX spurious emissions					Pass	
§90.214	Transient frequency behavior	\boxtimes				Pass	
NA = Not Applicable; NP = Not Performed;							

3.5. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC

Measurements" and is documented in the Shenzhen Tongzhou Testing Co.,Ltd quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Tongzhou Testing Co., Ltd laboratory is reported:

Test Item		Frequency Range	Uncertainty	Note
		9KHz~30MHz	±3.08dB	(1)
Radiation Uncertainty	:	30MHz~1000MHz	±4.42dB	(1)
		1GHz~40GHz	±4.06dB	(1)
Conduction Uncertainty	:	150kHz~30MHz	±2.23dB	(1)

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6. Equipments Used during the Test

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
1	EMI Test Receiver	R&S	ESCI-7	100849/003	2024/1/4	2025/1/3
2	Signal Generator (SG B)	Keysight	N5182A	MY4620709	2024/1/4	2025/1/3
3	Signal Generator(SG C)	R&S	SML03	102924/0013	2024/1/4	2025/1/3
4	Climate Chamber	KRUOMR	KRM-1000	KRM16072901	2024/1/4	2025/1/3
5	RF COMMUNICATION TEST SET(SG A)	HP	8921A	3430A01131	2024/1/4	2025/1/3
6	Wideband Antenna	schwarzbeck	VULB 9163	958	2022/11/13	2025/11/12
7	Wideband Antenna	Sunol	JB3	A020115	2022/11/13	2025/11/12
8	Amplifier	schwarzbeck	BBV 9743	209	2024/1/4	2025/1/3
9	Amplifier	Tonscend	TSAMP- 0518SE		2024/1/4	2025/1/3
10	Horn Antenna	schwarzbeck	BBHA 9120D	01989	2022/11/13	2025/11/12
11	Horn Antenna	schwarzbeck	9120D-1141	1574	2022/11/13	2025/11/12
12	50Ω RF Load	MKRF	RFA001	RFA001	2024/1/4	2025/1/3
13	Attenuator	JS	RFA004	RFA004	2024/1/4	2025/1/3
14	Controller	MF	MF7802	N/A	N/A	N/A
15	Spectrum Analyzer	R&S	FSV40	101321	2024/1/4	2025/1/3
16	Test Software	Tonscend	JS36-RSE	V5.0.0.0	N/A	N/A

4. TEST CONDITIONS AND RESULTS

4.1. RF Power Output(Conducted Method)

TEST CONFIGURATION

TEST PROCEDURE

- 1) Connect the equipmet as illuastrated.
- 2) Set EUT working in continuous mode in low,middle,high frequency,read and record the peak power value.

TEST RESULTS

Modulation	Channel	Test Frequency Reading((dBm)	
Modulation	Separation	(MHz)	High Power Level	Low Power Level	
		406.125	37.329	31.146	
FM	12.5KHz	453.0125	37.550	31.925	
		469.975	37.598	30.332	
		406.125	36.932	31.034	
4FSK	12.5KHz	453.0125	37.146	31.280	
		469.975	37.305	31.289	
Rated Power			5W(36.99dBm)	1W(30dBm)	
	Result Power		Pass	Pass	

The rated 5W for High Power and 1W for Low power.

4.2. Modulation Characteristics

TEST CONFIGURATION

Figure 1: Modulation Limit&Audio Frequency Response

Figure 2: Audio Low Pass Filter Response

TEST PROCEDURE

Modulation limitations

- 1 Connect the equipment as illustrated.
- 2 Adjust the transmitter per the manufacturer's procedure for full rated system deviation.
- 3 Set the test receiver to measure peak positive deviation. Set the audio bandwidth for ≤ 0.25 Hz to $\geq 15,000$ Hz. Turn the de-emphasis function off.
- 4 Apply a 1000 Hz modulating signal to the transmitter from the audio frequency generator, and adjust the level to obtain 60% of full rated system deviation, this level is as a reference (0dB) and vary the input level from -20 to +20dB.
- 5 Measure both the instantaneous and steady-state deviation at and after the time of increasing the audio input level
- 6 Repeat step 4-5 with input frequency changing to 300Hz, 500Hz, 1000Hz, 1500Hz, 2000Hz, 2500Hz and 3000Hz in sequence.

Audio Frequency Response

- 1 Configure the EUT as shown in figure 1.
- 2 Adjust the audio input for 20% of rated system deviation at 1kHz using this level as a reference.
- 3 Vary the Audio frequency from 300Hz to 3 KHz. and record the frequency deviation.
- 4 Audio FrequencyResponse =20log 10 (Deviation of test frequency/Deviation of 1 KHz reference).

Audio Low Pass Filter Frequency Response

- 1 Configure the EUT as shown in figure 2.
- 2 Connect the audio frequency generator as close as possible the input of the post litniter low pass filter within the transmitter under test.
- 3 Connect the audio spectrum analyzer to the output of the post limiter low pass filter within the transmitter under test.
- 4 Apply a 1000 Hz tone from the audio frequency generator and adjust the level per manufacturer's specifications.
- 5 Record the dB level of the 1000 Hz spectral line on the audio spectrum analyzer as LEVREF.
- 6 Set the audio frequency generator to the desired test frequency between 3000 Hz and the upper low pass filter limit.
- 7 Record audio spectrum analyzer levels, at the test frequency in step 6).
- 8 Record the dB level on the audio spectrum analyzer as LEVRREQ.
- 9 Calculate the audio frequency response at the test frequency as:
- 10 low pass filter response = LEVFREQ -LEVREF
- 11 Repeat steps 6) through 10) for all the desired test frequencies.

LIMIT

Modulation limitations

According to TIA/EIA 603 E, For FM transmitters, the sum of the highest modulating frequency in Hertz and the amount of the frequency deviation or swing in Hertz may not exceed 2800 Hz and the maximum deviation may not exceed 2.5 kHz.

Audio Frequency Response

According to TIA/EIA 603 E,

The audio frequency response from 300 Hz to 3000 Hz shall not vary more than+ 1 dB or -3 dB from a true 6 dB per octave pre-emphasis characteristic as referenced to the 1000 Hz level. The exception is from 500 Hz to 3000 Hz, where an additional 6 dB per octave rol loff is allowed.

The following exceptions are also permissible:

a) An additional 6 dB per octave attenuation is allowed from 2500 Hz to 3000 Hz in equipment operating in the 25 MHz to 869 MHz range.

b) An additional 6 dB per octave rolloff is allowed from 2300 Hz to 2700 Hz, and an additional 12 dB per octave is allowed from 2700 Hz to 3000 Hz, in equipment operating in the 896 MHz to 940 MHz range, and all narrowband (12.5 kHz and 15 kHz channelization) equipment.

Audio Low Pass Filter Frequency Response

According to TIA/EIA 603 E,

Audio band	Minimum Attenuation Rel. to 1KHz Attenuation
3-20KHz	100* log10 (f/3) decibels
20-30KHz	82.5dB

TEST RESULTS

Modulation Characteristics

453.0125MHz @ 12.5 KHz Channel Separation-5W									
Modulation		Pe	eak Frequ	iency Devi	ation (KH	z)			
Input(dBC)	300Hz	500Hz	1KHz	1.5KHz	2KHz	2.5KHz	3KHz	Limit(KHz)	Result
-20	0.07	0.09	0.17	0.28	0.35	0.43	0.1	2.5	Pass
-15	0.11	0.16	0.31	0.39	0.59	0.75	0.18	2.5	Pass
-10	0.26	0.29	0.52	0.76	1.05	1.19	0.24	2.5	Pass
-5	0.41	0.54	0.86	1.33	1.6	1.7	0.59	2.5	Pass
0	0.32	0.63	1.52	1.82	1.83	1.87	0.64	2.5	Pass
5	0.52	1.21	1.98	1.9	1.88	1.9	1.2	2.5	Pass
10	0.95	1.69	2.06	1.87	1.85	1.96	1.65	2.5	Pass
15	1.61	1.76	2.03	1.93	1.93	2.01	1.73	2.5	Pass
20	1.88	1.64	2.01	1.98	1.89	1.98	1.79	2.5	Pass

453.0125MHz @ 12.5 KHz Channel Separation-1W									
Modulation		Pe	eak Frequ	uency Devi	ation (K⊦	lz)			
Input(dBC)	300Hz	500Hz	1KHz	1.5KHz	2KHz	2.5KHz	3KHz	Limit(KHz)	Result
-20	0.1	0.13	0.2	0.22	0.32	0.41	0.08	2.5	Pass
-15	0.12	0.15	0.29	0.39	0.55	0.74	0.18	2.5	Pass
-10	0.25	0.29	0.56	0.77	1.07	1.19	0.25	2.5	Pass
-5	0.43	0.54	0.86	1.34	1.62	1.7	0.55	2.5	Pass
0	0.32	0.68	1.5	1.84	1.84	1.86	0.62	2.5	Pass
5	0.51	1.16	1.98	1.9	1.84	1.89	1.21	2.5	Pass
10	0.99	1.64	2.06	1.91	1.83	1.97	1.65	2.5	Pass
15	1.57	1.78	2.06	1.89	1.94	2.02	1.75	2.5	Pass
20	1.88	1.65	1.98	1.98	1.88	1.93	1.77	2.5	Pass

Note: All the test frequencies was tested, but only the worst data be recorded in this part.

Audio Frequency Response

453.0125MHz @ 12.5 KHz Channel Separation-5W							
Frequency(Hz)	Lower Limit(dB)	Audio Frequency Response(dB)	Higher Limit(dB)				
300	-17.84	-11.04	-9.42				
400	-12.86	-8.81	-6.93				
500	-9.00	-6.76	-5.00				
600	-7.42	-4.75	-3.42				
700	-6.09	-3.40	-2.09				
800	-4.93	-2.01	-0.93				
900	-3.91	-1.13	0.09				
1000	-3	-0.01	1.00				
1100	-2.17	0.92	1.83				
1200	-1.42	1.45	2.58				
1300	-0.73	2.17	3.27				
1400	-0.09	2.86	3.91				
1500	0.51	3.63	4.51				
1600	1.07	4.18	5.07				
1700	1.59	4.81	5.59				
1800	2.09	5.25	6.09				
1900	2.56	5.35	6.56				
2000	3.00	5.85	7.00				
2100	3.42	6.06	7.42				
2200	3.83	6.27	7.83				
2300	4.21	6.79	8.21				
2400	4.21	7.21	8.58				
2500	4.21	7.26	8.93				
2600	4.21	7.02	9.27				
2700	4.21	5.51	9.60				
2800	3.58	5.12	9.91				
2900	2.97	4.73	10.22				
3000	2.39	4.53	10.51				

453.0125MHz @ 12.5 KHz Channel Separation-1W							
Frequency(Hz)	Lower Limit(dB)	Audio Frequency Response(dB)	Higher Limit(dB)				
300	-17.84	-11.03	-9.42				
400	-12.86	-8.82	-6.93				
500	-9.00	-6.73	-5.00				
600	-7.42	-4.73	-3.42				
700	-6.09	-3.37	-2.09				
800	-4.93	-2.04	-0.93				
900	-3.91	-1.15	0.09				
1000	-3	-0.01	1.00				
1100	-2.17	0.93	1.83				
1200	-1.42	1.44	2.58				
1300	-0.73	2.19	3.27				
1400	-0.09	2.84	3.91				
1500	0.51	3.66	4.51				
1600	1.07	4.20	5.07				
1700	1.59	4.84	5.59				
1800	2.09	5.28	6.09				
1900	2.56	5.32	6.56				
2000	3.00	5.86	7.00				
2100	3.42	6.05	7.42				
2200	3.83	6.24	7.83				
2300	4.21	6.76	8.21				
2400	4.21	7.24	8.58				
2500	4.21	7.27	8.93				
2600	4.21	7.02	9.27				
2700	4.21	5.48	9.60				
2800	3.58	5.14	9.91				
2900	2.97	4.72	10.22				
3000	2.39	4 55	10.51				

Note: All the test frequencies was tested, but only the worst data be recorded in this part.

Audio Low Pass Filter Frequency Response

453.0125MHz @ 12.5 KHz Channel Separation-5W						
Audio Frequency (KHz)	dB relative to 1 KHz	Limits				
1	0	0				
3	-1.2	0				
4	-35.1	-12.5				
5	-65.4	-22.2				
6	-75.4	-30.1				
8	-88.7	-42.6				
10	-88.7	-52.3				
15	-88.7	-69.9				
20	-88.7	-82.4				
30	-88.7	-82.5				
40	-88.7	-82.5				
50	-88.7	-82.5				
60	-88.7	-82.5				
70	-88.7	-82.5				
80	-88.7	-82.5				
90	-88.7	-82.5				
100	-88.7	-82.5				

453.0125MHz @ 12.5 KHz Channel Separation-1W						
Audio Frequency (KHz)	dB relative to 1 KHz	Limits				
1	0	0				
3	-1.4	0				
4	-35.2	-12.5				
5	-65.3	-22.2				
6	-74.8	-30.1				
8	-88.7	-42.6				
10	-88.7	-52.3				
15	-88.7	-69.9				
20	-88.7	-82.4				
30	-88.7	-82.5				
40	-88.7	-82.5				
50	-88.7	-82.5				
60	-88.7	-82.5				
70	-88.7	-82.5				
80	-88.7	-82.5				
90	-88.7	-82.5				
100	-88.7	-82.5				

Note: All the test frequencies was tested, but only the worst data be recorded in this part.

4.3. Occupied Bandwidth and Emission Mask

TEST CONFIGURATION

TEST PROCEDURE

- 1 The EUT was modulated by 2.5 KHz Sine wave audio signal; the level of the audio signal employed is 16 dB greater than that necessary to produce 50% of rated system deviation.
- 2 Set EUT work at continuous transmitting.
- 3 Set SPA Centre Frequency = fundamental frequency, RBW=300Hz, VBW= 1 KHz, span = 100 KHz.
- 4 Set SPA Max hold. Mark peak, Set 99% Occupied Bandwidth and 26dB Occupied Bandwidth.

<u>LIMIT</u>

Standard Channel Spacing/Bandwidth

Frequency band (MHz)	Channel spacing (kHz)	Authorized bandwidth (kHz)
Below 25 ²		
25-50	20	20
72-76	20	20
150-174	¹ 7.5	^{1 3} 20/11.25/6
216-220 ⁵	6.25	20/11.25/6
220-222	5	5 4
406-512 ²	¹ 6.25	¹³⁶ 20/11.25/6
806-809/851-854	12.5	20
809-824/854-869	25	6 ₂₀
896-901/935-940	12.5	13.6
902-928 ⁴		
929-930	25	20
1427-1432 ⁵	12.5	5 12.5
³ 2450-2483.5 ²		
Above 2500 ²		

¹For stations authorized on or after August 18, 1995.

²Bandwidths for radiolocation stations in the 420-450 MHz band and for stations operating in bands subject to this footnote will be reviewed and authorized on a case-by-case basis.

³Operations using equipment designed to operate with a 25 kHz channel bandwidth will be authorized a 20 kHz bandwidth. Operations using equipment designed to operate with a 12.5 kHz channel bandwidth will be authorized a 11.25 kHz bandwidth. Operations using equipment designed to operate with a 6.25 kHz channel bandwidth will be authorized a 6 kHz bandwidth. All stations must operate on channels with a bandwidth of 12.5 kHz or less beginning January 1, 2013, unless the operations meet the efficiency standard of §90.203(j)(3).

⁴The maximum authorized bandwidth shall be 12 MHz for non-multilateration LMS operations in the band 909.75-921.75 MHz and 2 MHz in the band 902.00-904.00 MHz. The maximum authorized bandwidth for multilateration LMS operations shall be 5.75 MHz in the 904.00-909.75 MHz band; 2 MHz in the 919.75-921.75 MHz band; 5.75 MHz in the 921.75-927.25 MHz band and its associated 927.25-927.50 MHz narrowband forward link; and 8.00 MHz if the 919.75-921.75 MHz and 921.75-927.25 MHz bands and their associated 927.25-927.50 MHz and 927.50-927.75 MHz narrowband forward links are aggregated.

⁵See §90.259.

⁶Operations using equipment designed to operate with a 25 kHz channel bandwidth may be authorized up to a 22 kHz bandwidth if the equipment meets the Adjacent Channel Power limits of §90.221.

(6)(i) Beginning January 1, 2011, no new applications for the 150-174 MHz and/or 421-512 MHz bands will be acceptable for filing if the applicant utilizes channels with an authorized bandwidth exceeding 11.25 kHz, unless specified elsewhere or the operations meet the efficiency standards of §90.203(j)(3).

(ii) Beginning January 1, 2011, no modification applications for stations in the 150-174 MHz and/or 421-512 MHz bands that increase the station's authorized interference contour, will be acceptable for filing if the applicant utilizes channels with an authorized bandwidth exceeding 11.25 kHz, unless specified elsewhere or the operations meet the efficiency standards of §90.203(j)(3). See §90.187(b)(2)(iii) and (iv) for interference contour designations and calculations. Applications submitted pursuant to this paragraph must comply with frequency coordination requirements of §90.175.

(7) Economic Area (EA)-based licensees in frequencies 817-824/862-869 MHz (813.5-824/858.5-869 MHz in the counties listed in §90.614(c)) may exceed the standard channel spacing and authorized bandwidth listed in paragraph (b)(5) of this section in any National Public Safety Planning Advisory Committee Region when all 800 MHz public safety licensees in the Region have completed band reconfiguration consistent with this part. In any National Public Safety Planning Advisory Committee Region where the 800 MHz band reconfiguration is incomplete, EA-based licensees in frequencies 817-821/862-866 MHz (813.5-821/858.5-866 MHz in the counties listed in §90.614(c)) may exceed the standard channel spacing and authorized bandwidth listed in paragraph (b)(5) of this section. Upon all 800 MHz public safety licensees in a National Public Safety Planning Advisory Committee Region completing band reconfiguration, EA-based 800 MHz SMR licensees in the 821-824/866-869 MHz band may exceed the channel spacing and authorized bandwidth in paragraph (b)(5) of this section. Licensees authorized to exceed the standard channel spacing and authorized bandwidth under this paragraph must provide at least 30 days written notice prior to initiating such service in the bands listed herein to every 800 MHz public safety licensee with a base station in an affected National Public Safety Planning Advisory Committee Region, and every 800 MHz public safety licensee with a base station within 113 kilometers (70 miles) of an affected National Public Safety Planning Advisory Committee Region. Such notice shall include the estimated date upon which the EA-based 800 MHz SMR licensee intends to begin operations that exceed the channel spacing and authorized bandwidth in paragraph (b)(5) of this section.

Applicable Emission Masks

	Mask for equipment	Mask for equipment
	with audio low	without audio low
Frequency band (MHz)	pass filter	pass filter
Below 25 ¹	A or B	A or C
25-50	В	С
72-76	В	С
150-174 ²	B, D, or E	C, D or E
150 paging only	В	С
220-222	F	F
421-512 ^{2 5}	B, D, or E	C, D, or E
450 paging only	В	G
806-809/851-854 ⁶	В	н
809-824/854-869 ^{3 5}	В	G
896-901/935-940	1	J
902-928	К	К
929-930	В	G
4940-4990 MHz	L or M	L or M
5850-5925 ⁴		
All other bands	В	С

¹Equipment using single sideband J3E emission must meet the requirements of Emission Mask A. Equipment using other emissions must meet the requirements of Emission Mask B or C, as applicable.

²Equipment designed to operate with a 25 kHz channel bandwidth must meet the requirements of Emission Mask B or C, as applicable. Equipment designed to operate with a 12.5 kHz channel bandwidth must meet the requirements of Emission Mask D, and equipment designed to operate with a 6.25 kHz channel bandwidth must meet the requirements of Emission Mask E.

³Equipment used in this licensed to EA or non-EA systems shall comply with the emission mask provisions of §90.691 of this chapter.

⁴DSRCS Roadside Units equipment in the 5850-5925 MHz band is governed under subpart M of this part.

⁵Equipment may alternatively meet the Adjacent Channel Power limits of §90.221

TEST RESULTS

Туре	Frequency(MHz)	Channel Spacing(KHz)	Power Mode (W)	Occuipied Channel Bandwidth(KHz)	26dB Bandwidth(KHz)	Limit(KHz)	Conclusion
Analog	406.125	12.5	5	9.810	10.110	11.25	Pass
Analog	453.0125	12.5	5	9.840	10.110	11.25	Pass
Analog	469.975	12.5	5	9.840	10.110	11.25	Pass
Analog	406.125	12.5	1	9.900	10.140	11.25	Pass
Analog	453.0125	12.5	1	9.900	10.140	11.25	Pass
Analog	469.975	12.5	1	9.900	10.110	11.25	Pass

Туре	Frequency(MHz)	Channel Spacing(KHz)	Power Mode (W)	Occuipied Channel Bandwidth(KHz)	26dB Bandwidth(KHz)	Limit(KHz)	Conclusion
Digtal	406.125	12.5	5	6.900	9.270	11.25	Pass
Digtal	453.0125	12.5	5	6.960	9.420	11.25	Pass
Digtal	469.975	12.5	5	7.080	9.480	11.25	Pass
Digtal	406.125	12.5	1	7.170	9.420	11.25	Pass
Digtal	453.0125	12.5	1	7.440	9.330	11.25	Pass
Digtal	469.975	12.5	1	7.410	9.510	11.25	Pass

Туре	Frequency(MHz)	Nominal Power(W)	Channel Spacing(KHz)	Emission Mask Type	Conclusion
Analog	406.125	5	12.5	D	Pass
Analog	453.0125	5	12.5	D	Pass
Analog	469.975	5	12.5	D	Pass
Analog	406.125	1	12.5	D	Pass
Analog	453.0125	1	12.5	D	Pass
Analog	469.975	1	12.5	D	Pass

Туре	Frequency(MHz)	Nominal Power(W)	Channel Spacing(KHz)	Emission Mask Type	Conclusion
Digtal	406.125	5	12.5	D	Pass
Digtal	453.0125	5	12.5	D	Pass
Digtal	469.975	5	12.5	D	Pass
Digtal	406.125	1	12.5	D	Pass
Digtal	453.0125	1	12.5	D	Pass
Digtal	469.975	1	12.5	D	Pass

Note:

1. All measured including cable loss and atten.

2. Please refer to following test plots;

4.4. Field Strength Spurious Emissions

TEST APPLICABLE

According to FCC §2.1053 and §90.210, the power of each unwanted emission shall be less than Transmitted Power as specified below for transmitters designed to operate with each channel separation. Emission Mask D -for 12.5 kHz Channel Separation:

- On any frequency removed from the center of the authorized bandwidth fo to 5.625 kHz removed from fo: Zero dB.
- (2) On any frequency removed from the center of the authorized bandwidth by a displacement Frequency (fd in kHz) fo of more than 5.625 kHz but no more than 12.5 kHz: At least 7.27(fd-2.88 kHz) dB
- (3) On any frequency removed from the center of the authorized bandwidth by a displacement Frequency (fd in kHz)fo of more than 12.5 kHz: At least 50+10 log(P) dB or 70 dB, whichever is lesser attenuation.

TEST CONFIGURATION

- EUT was placed on a 1.50 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.50 m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in six channels were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyser or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyser or receiver.
- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=1MHz,VBW=3MHz for above 1GHz and RBW=100KHz,VBW=300KHz for 30MHz to 1GHz, And the maximum value of the receiver should be recorded as (Pr).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest isconnected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (Pcl), the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test. The measurement results are obtained as described below:

Power(EIRP)=PMea- PAg - PcI+ Ga

It can omit power amplifier if signal generator level meets requirement;

This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.

6. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

Subrange (GHz)	RBW	VBW	Sweep time (s)
0.00009~0.15	1KHz	3KHz	30
0.00015~0.03	10KHz	30KHz	10
0.03~1	100KHz	300KHz	10
1~5	1 MHz	3 MHz	5

TEST LIMIT

According to §90.210 d) (3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 12.5 kHz: At least 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation.

TEST RESULTS

Note : only the high power mode result in test report.

Note:

- 1. In general, the worst case attenuation requirement shown above was applied.
- 2. The measurement frequency range from 9KHz to 5 GHz.
- 3. EIRP for measure frequency above 1 GHz and ERP for below 1 GHz.
- 4. *** means that the emission level is too low to be measured or at least 20 dB down than the limit.

Τe	est Frequency	y: 406.125MH	Ηz	Channel Separation:12.5KHz				
Frequency (MHz)	Р _{Меа} (dBm)	Path Loss	Antenna Gain	Correction (dB)	Values (dBm)	Limit (dBm)	Polarization	
812.25	-48.27	0.61	7.31	2.15	-43.72	-20	Н	
1,218.38	-45.36	0.88	7.73	0.00	-38.51	-20	Н	
1,624.50	-50.28	1.2	8.16	0.00	-43.32	-20	Н	
•••	•••	•••	•••	•••	•••	•••	Н	
812.25	-41.24	0.61	7.31	2.15	-36.69	-20	V	
1,218.38	-41.28	0.88	7.73	0.00	-34.43	-20	V	
1,624.50	-52.14	1.2	8.16	0.00	-45.18	-20	V	
•••	•••	•••	•••	•••	•••	•••	V	

Те	st Frequency	: 453.0125M	Hz	Channel Separation:12.5KHz				
Frequency (MHz)	Р _{меа} (dBm)	Path Loss	Antenna Gain	Correction (dB)	Values (dBm)	Limit (dBm)	Polarization	
906.025	-46.24	0.65	7.4	2.15	-41.64	-20	Н	
1,359.04	-44.38	0.98	7.87	0.00	-37.49	-20	Н	
1,812.05	-54.28	1.34	8.35	0.00	-47.27	-20	Н	
•••	•••	•••			•••	•••	Н	
906.025	-42.74	0.65	7.4	2.15	-38.14	-20	V	
1,359.04	-40.29	0.98	7.87	0.00	-33.4	-20	V	
1,812.05	-52.18	1.34	8.35	0.00	-45.17	-20	V	
•••	•••	•••	•••	•••	•••	•••	V	

Τε	est Frequency	y: 469.975MH	Ηz	Channel Separation:12.5KHz				
Frequency (MHz)	Р _{меа} (dBm)	Path Loss	Antenna Gain	Correction (dB)	Values (dBm)	Limit (dBm)	Polarization	
939.95	-48.64	0.72	7.52	2.15	-43.99	-20	Н	
1,409.93	-44.58	1.12	8.06	0.00	-37.64	-20	Н	
1,879.90	-41.54	1.55	8.6	0.00	-34.49	-20	Н	
•••	•••	•••	•••	•••	•••	•••	Н	
939.95	-43.28	0.72	7.52	2.15	-38.63	-20	V	
1,409.93	-42.27	1.12	8.06	0.00	-35.33	-20	V	
1,879.90	-42.69	1.55	8.6	0.00	-35.64	-20	V	
	•••						V	

Note: All the test modes was tested, but only the worst mode(Analog in 5W) be recorded in this part.

4.5. Conducted spurious emission result(at antenna terminal):

TEST CONFIGURATION

TEST PROCEDURE

- 3) Connect the equipmet as illuastrated.
- 4) Set EUT working in continuous mode in low,middle,high frequency,read and record the peak power value.

TEST LIMIT

According to §90.210 d) (3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 12.5 kHz: At least 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation.

TEST RESULTS

Analog_406.125MHz_5W_12.5KHz@30 MHz - 1000 MHz@Pass

					Report No	.: TZ0113
	Analog_	_406.125MHz_5	W_12.5KHz	@30 MHz –	1000 MHz@Pa	SS
	Spectrum 🔆					Ţ.
Fundamental	Ref Level 40.00 dBr Att 30 d SGL-Count 10/10	m Offset 20.00 dB B SWT 1 s TDF	 RBW 100 kHz VBW 300 kHz 	Mode Auto Swee	ер	
	0 1Av Max					
				M1[1]	8	-27.01 dBm 12.2320 MHz
	30 dBm					
	20 dBm					
	10 dBm					
	0 dBm					
	-10 dBm					
	20-dBmD1 -20.000) dBm			M1	
	-30 dBm					
	-40 dBm					
		المراجع بين المراجع بين المراجع المراجع محمد المراجع ال	المراجع المراجع من المراجع الم مراجع المراجع ا	ya Badalashi da da afa tara tarihin ang Malandara. Mang Ang a		
	Start 30.0 MHz		20000 pt	s	s	top 1.0 GHz
	Marker					
	Type Ref Trc M1 1	X-value 812.232 MHz	Y-value -27.01 dBm	Function	Function Resu	lt
				Ready		02.12.2024 14:21:32

Spectrun	n 🛧						
Ref Leve Att SGL Count	l 40.00 dBm 30 dB ∶10/10	n Offset 20.0 • • SWT TDF	0 dB ⊜ RBW 1 MH 1 s ⊜ VBW 3 MH	iz iz Mode Auto S	weep		
🔵 1 Av Max							
00 d0				M1[1]		-30.6 5.40088	5 dBm 0 GHz
30 UBIII							
20 dBm							
10 dBm							
0 dBm							
-10 dBm—							
20-dBm	+D1 -20.000	dBm					
-30 dBm—						M1	
-40 dBm—							_
-50 dBm—							
Start 1.0.0			2000	0 ptc		Stop 6 0	
Markor	302		2000			atop 0.0	GHZ
Type Re	f Trc	X-value 5.40088 GI	Y-value Hz -30.65 dB	Function	Func	tion Result	
				Ready		02.12.20 14:21)24 :45

Spectrun	n 🛧					.
Ref Leve Att SGL Count	∣ 40.00 dBm 30 dB 10/10	n Offset 20.00 S = SWT TDF	dB ⊜ RBW 1 MH 1 s ⊜ VBW 3 MH	łz łz Mode Auto Sv	weep	
💿 1 Av Max						
				M1[1]		-30.73 dBm
30 dBm						5.369880 GHZ
20 dBm						
10 dBm						
0 dBm						
-10 dBm—						
-20 dBm	+D1 -20.000	dBm				
-30 dBm—						M1
-40 dBm—						
-50 dBm						
start 1.0 C	iHz		2000			Stop 6.0 GHz
Marker Type Re M1	f Trc	X-value 5.36988 GHz	Y-value	Function	Function R	tesult
				Ready		02.12.2024 14:22:52

Analog_469.975MHz_5W_12.5KHz@1000 MHz - 6000 MHz@Pass

Spectrun	n 🛧								.
Ref Leve Att SGL Count	↓ 40.00 dBm 30 dB 10/10	n Offset 20.0 S e SWT TDF	00 dB 😑 RBW 1 s 🗢 VBW	1 MHz 7 3 MHz	Mode ,	Auto Swee	p		
🔵 1 Av Max									
					M	1[1]			30.49 dBm
30 dBm								5.4	27130 GHz
20 dBm									
10 dBm									
0 dBm——									
10 dBm									
-10 ubiii									
-20 dBm	D1 -20.000	dBm							
								M1	
-30 dBm									
					مغربين والمحا				
-40 dBm									
-50 aBm									
Start 1.0 G	Hz			20000 pts	s			Sto	p 6.0 GHz
Marker					_				
Type Re M1		X-value 5.42713.0	Hz =30	alue	Funct	lon	Func	tion Result	
		5,42713 6						EN /0	2.12.2024
					R	eady		17/1	14:27:25

Analog_406.125MHz_1W_12.5KHz@30 MHz - 1000 MHz@Pass

				Report No.: TZ01132					
	Analog_406.125	5MHz_1W_12.5K	(Hz@30 MHz – 1	000 MHz@Pass					
	Spectrum 👫			V					
Fundamental	Ref Level 40.00 dBm Offset Att 30 dB SWT SGL-Count 10/10 TDF	1 20.00 dB = RBW 100 1 s = VBW 300	kHz kHz Mode Auto Swee						
	• IAV-Max								
	20 d9m		M1[1]	-37.47 dBm 406.9180 MHz					
	20 dBm								
	10 dBm								
	0 dBm								
	-10 dBm								
	- -20 dBm D1 -20.000 dBm								
	-30 dBm	M1							
	-40 dBm								
	na na ang sa sa katalan sa katala sa katala sa sa katala sa katala sa katala sa katala sa katala sa katala sa Mang katala sa katala	المراجع المراجع ومن من يعمل المراجع ال مراجع المراجع المراجع ومن يعرف المراجع	likin yang senang ini yang baran sakin yang bina kana sakin yang baran sakin kana sakin yang baran sakin yang Ang dan pang barang sakin yang sakin yang barang sakin yang barang sakin yang barang sakin yang barang sakin ya	i den son på specifika i ser er et de litter for eller til er en en skale for en skale for en skale for en ska Er en som en er er efter skale atter atter atter eller atter de skale skale skale for efter skale de ser er er e					
	Start 30.0 MHz	2000	00 pts	Stop 1.0 GHz					
			Ready	02.12.2024 14:36:12					

Spectrun	n 🔭								.		
Ref Leve Att SGL Count	I 40.00 dBm 30 dB 10/10	Offset SWT TDF	20.00 dB 😑 1 s 😑	RBW 1 MH VBW 3 MH	iz Iz Mode	Auto Sweep					
⊙1Av Max	1Av Max										
					м	1[1]		5.4	30.32 dBm 08630 GHz		
30 dBm											
20 dBm——											
10 dBm											
0 dBm											
-10 dBm—											
-20 dBm	D1 -20.000	dBm									
-30 dBm					1. 11 d. d			M1	the second second		
-40 dBm—	فأسود والمعادم والمعاد										
-50 dBm											
Start 1.0 (GHz			2000) pts			Sto	p 6.0 GHz		
					R	eady		ixi	2.12.2024 14:36:25		

Analog_453.0125MHz_1W_12.5KHz@1000 MHz - 6000 MHz@Pass

Spectrun	n 🛧								.
Ref Leve Att SGL Count	I 40.00 dBm 30 dB 10∕10	Offset	20.00 dB 😑 1 s 😑	RBW 1 MH VBW 3 MH	iz Iz Mode	Auto Sweej	p		
🔵 1Av Max									
					м	1[1]		- 5.3	30.73 dBm 46630 GHz
30 dBm									
20 dBm——									
10 dBm									
0 dBm									
-10 dBm—									
-20 dBm	D1 -20.000	dBm							
-30 dBm—								M1	
-40 dBm—									
-50 dBm									
Start 1.0 (GHZ			2000	0 pts			Sto	p 6.0 GHz
Marker Type Re M1	f Trc 1	X-value 5.346	53 GHz	Y-value -30.73 dB	Func	tion	Fund	tion Result	
					R	leady			2.12.2024 14:38:03

Analog_469.975MHz_1W_12.5KHz@1000 MHz - 6000 MHz@Pass

Spectrun	n 🛧								
Ref Leve Att SGL Count	↓ 40.00 dBm 30 dB 10/10	Offset	20.00 dB (1 s (● RBW 1 MH ● VBW 3 MH	z z Mode /	Auto Swee	р		
◯1Av Max									
					M:	L[1]		-	30.41 dBm
30 dBm								5.3	43630 GHZ
20 dBm									
10 40									
10 aBm									
0 dBm									
-10 dBm—									
-20 dBm	D1 -20.000	dBm							
-30 dBm								M1	
-50 abiii					and a state of the		-		
-40 dBm		الكرية فتعتكم وتك							
-50 dBm									
Start 1.0 G	Hz			20000) pts			Sto	p 6.0 GHz
Marker									
Type Re	f Trc	X-value	2 CH2	Y-value	Funct	ion	Fund	tion Result	
		5.3430		-30.41 UB				687 (2)	2 12 2024
					R	eady		020	14:38:58

	Spectrun	n 🔆								Ţ
Fundamental	Ref Leve Att SGL-Count	40.00 dBm 30 dB 10/10	Offset SWT TDF	20.00 dB d 1 s d	RBW 100	kHz kHz Mod	e Auto Sw	reep		
	01AV Max									
						IM	11[1]		81	-26.90 dBm 2.2320 MHz
	30 dBm									
	20 dBm									
	10 dBm									
	0 dBm									
	o abiii									
	-10 dBm—									
	-20 dBm	D1 -20 000								
	-20 abiii	DI -20.000						1	11	
	-30 dBm									
	40.40		1							
	-40 0Bm-	n l han tahun karat	والمراجع والمراجع والم	المراجعة المراجعة	فاللارية بعادا ومرجوا	a human da human a supe	والمتح والمعادمة والمعاد	ويعتد المسروات والتنا وأقريت		ten) sources the plate
	1461.0 (a) Billion	Contine - Institute - and the -		transfer to set off		ويحادد الطائعة ومحالده الدهاريات	a di kana kata mata	<mark>n den anderen en e</mark>	الشحيط الشامك أنشر	a formali nicela score minacale
	Start 30.0	MHz			2000	0 pts			St	op 1.0 GHz
	Marker									
	Type Re M1	t Trc	X-value 812.23	32 MHz	Y-value -26.90_dB	Func	tion	Fund	ction Resul	t
							Ready		(X)	05.12.2024 17:02:29

Spectrun	n 🔥					.
Ref Leve Att SGL Count	∣ 40.00 dBm 30 dB 10/10	● Offset 20.00 0 ● SWT 1 TDF	dB ⊜ RBW 1 MH s ⊜ VBW 3 MH	lz Iz Mode Auto S	weep	
🔾 1Av Max						
				M1[1]		-30.65 dBm
30 dBm						5.444130 GHz
20 dBm						
10 dBm						
U dBm						
-10 dBm						
10 0.011						
-20 dBm	D1 -20.000	dBm				
						M1
-30 dBm						
-40'dBm						
-50 dBm						
-30 abiii						
Start 1.0 C	iHZ		2000	u pts		Stop 6.0 GHz
Marker	f Trc	X-valuo	Y-value	Eunction	Eunction	Result
M1	1	5.44413 GHz	-30.65 dB	m	-r unction	(O) UIL
				Ready		05.12.2024 17:02:42

Digtal_453.0125MHz_5W_12.5KHz@30 MHz - 1000 MHz@Pass

Digtal_453.0125MHz_5W_12.5KHz@1000 MHz - 6000 MHz@Pass

Spectrun	n 🛧					
Ref Leve Att SGL Count	∉ 40.00 dBm 30 dB : 10/10	n Offset 20.00 d S = SWT 1 TDF	B 😑 RBW 1 MHz s 😑 VBW 3 MHz	Mode Auto Sw	veep	
🔾 1Av Max						
				M1[1]		-30.83 dBm
30 dBm						5.412630 GHz
20 dBm						
10 dBm						
0 dBm——						
10 d9m-						
-10 UBIII						
-20 dBm	D1 -20.000	dBm				
						M1
-30 dBm—						
When you are a feature of the		and the second sec				
-40 dBm—						
-50 dBm						
Start 1.0 (GHz		20000	pts		Stop 6.0 GHz
Marker						
Type Re M1	Trc 1	X-value 5 41263 CHz	-30.83 dBm	Function	Function R	esuit
		5.41203 GHZ	50.65 UBIII			05 12 2024
				Ready	4/4	17:03:54

							кер	011 10	1201132
	Digtal_	469.975MH	lz_5W_12	.5KHz	2@30 N	MHz – 1	000 MH	z@Pass	
Fundamental	m + el 40.00 dBm 30 de	n Offset 20. S 🗢 SWT	00 dB 🗢 RBW 1 s 🗢 VBW	/ 100 kH: / 300 kH:	z z Mode	Auto Swee	.b		Ţ
SGL Coun	t 18/10	TDF							
					M1	[1]		-2 939.9	5.79 dBm 9330 MHz
20 dBm									
10 dBm									
0 dBm									
-10 dBm—									
	-D1 -20.000	dBm							M1
-30 dBm—									
-40 dBm-	ويتراول وروي وروي والمراجع	والقام ومأسر بناء للماضر مطالبين وا	مىغانا سى المارى	Line been	a star ha still star a still star	والمراطع مربقا والقل	and an analos day		للبرية ويرود المر
¹⁴ 50/0101/11 ⁴⁴⁶⁶	مىيە ئەتلە قلۇلغا يەترىكە يىر يەترىكە.	ululla and a second second second	an a	. An	ir atlina a shuf u	a na an	andra Marine Miles and Bartini Constitution of the second second second second second second second second seco	e den la de la	
Start 30.0) MHz			20000 p	ots			Stop	1.0 GHz
Marker									
Type R M1	et Trc	X-value 939.933 N	1Hz -29	alue .79 dBm	Functi	on	Func	tion Result	
					Re	ady		05. 1	12.2024 7:04:49

Spectrun	n 🛧								
Ref Leve Att SGL Count	∣ 40.00 dBm 30 dB 10/10	n Offset 20 s = SWT TDF	1.00 dB 😑 1 s 😑	RBW 1 MH VBW 3 MH	z z Mode /	Auto Swee	ep		
🔾 1Av Max									
					M	1[1]		-	30.47 dBm
30 dBm								5.3	98130 GHz
20 dBm——									
10 dBm									
0 dBm									
-10 dBm—									
00 d0	D 1 00 000								
-20 dbm	D1 -20.000	asm						641	
-30 dBm—									
40.000									
-40 0811									
-50 dBm									
Start 1.0 C	GHz			20000) pts			Sto	p 6.0 GHz
Marker									
M1	1 Irc	X-value 5.39813	GHz	Y-value -30.47 dBr	m Funct	lion	Func	tion Result	
					R	eady		120	5.12.2024 17:05:03

								Re		1201132
		Digtal_4	06.125N	1Hz_1 V	V_12.5K⊢	lz@30	MHz –	1000 MH	z@Pas	S
	Spectrum	1 * E								
Fundamental	Ref Level Att SGL-Count	40.00 dBm 30 dB 10/10	Offset SWT TDF	20.00 dB d 1 s t	• RBW 100	kHz kHz Mod	e Auto Swi	эер		
	• IAV Max					M	1[1]		81	-39.09 dBm 12.2810 MHz
	20 dBm									
	10 dBm									
	0 dBm									
	-20 dBm	D1 -20.000	dBm							
	-30 dBm								M1	
	-40 aBm	(ny sets (second sets (sets (second dependences of second second	en sak bi dada ilar dada ilar Mala kayan kara tahun yak			a ana 1 <mark>1</mark> 11 dalamba bata Manifol yang salah batang sala		an a		
	Start 30.0	MHz			2000	0 pts			S	top 1.0 GHz
	Type Ret	f Trc 1	X-value 812.28	1 MHz	Y-value -39.09 dB	Fund m	tion	Fun	ction Resu	lt
							Ready			02.12.2024 14:39:54

Spectrun	n 🛧							
Ref Leve Att SGL Count	∣ 40.00 dBm 30 dB 10/10	0 Offset 20.0 • • SWT TDF	00 dB 👄 RBW 1 1 s 🗢 VBW 3	MHz MHz Mode	Auto Swee	p		
🔵 1 Av Max								
				M	11[1]		-	30.46 dBm
30 dBm							5.3	87380 GHz
20 dBm								
10 dBm								
0 dBm								
-10 dBm								
20-dBm	D1 -20.000	dBm						
-30 dBm—								
-40 dBm—								
-50 dBm								
Start 1.0 C	GHz		20	1000 pts			Sto	p 6.0 GHz
Marker Type Re M1	f Trc	X-value 5.38738 G	Y-valu Hz -30.46	e Func i dBm	tion	Func	tion Result	
					Ready		(XI) ⁰	2.12.2024 14:40:07

Spectrur	n 🛧					.
Ref Leve Att SGL Count	∣ 40.00 dBm 30 dB : 10/10	n Offset 20.00 dl 3 = SWT 1 TDF	B 😑 RBW 1 MHz s 😑 VBW 3 MHz	Mode Auto Sv	veep	
🔵 1Av Max						
				M1[1]		-30.65 dBm
30 dBm						5.407630 GHz
20 dBm						
10 dBm—						
0 dBm						
10 dBm-						
-10 UBIII						
-20 dBm	D1 -20.000	dBm				
						M1
-30 dBm					and a second	
Anno an						
-40 dBm						
-50 aBm—						
Start 1.0 (GHz		20000	pts		Stop 6.0 GHz
Marker						
Type Re M1	Trc 1	X-value 5.40763 GHz	-30.65.dBm	Function	Function	Result
		3. 10703 GHz	30.03 0011			02.12.2024
				Ready	1,21	14:41:21

Fundamental	Spectrum	*									
	Ref Level	40.00 dBm	Offset	20.00 dB	⊜ RB₩	100 kH:	z				
	Att	30 dB	● SWT	1 s	● YBW	300 kH:	z Mode	Auto Swee	эр		
	SGL Count	10/10									
							M	I[1]			-33.21 dBm
	30 dBm									989	9.9810 MHZ
	20 dBm										
	10 dBm										
	0 dBm										
	-10 dBm										
	20 dBm	D1 -20.000									
	-30 dBm										MI
	-40 dBm										
	ulpeficience data	ويحاطيه والمتعالية مراوري	ومحاربته والأحمر المحاص	ومقاربه والملغة الرأمي		n a hadilar	li Legenterter	data di Albaha (1946)	an a	a de la plana de la se	the contraction of the
	l-suicism	an a	iladi kanda san asa dan) on a dial <u>in a c</u> aracteria	ar the main all children in the	and the suit fallers	in the stand within the state, state	a hii Linu i Kin a shiki ki ki			
	Start 30.0	MHz				20000 1	ots			Sto	pp 1.0 GHz
	Marker										
	Type Ref	Trc 1	X-value 939.98	e B1 MHz	Y-val -33.	lue 21 dBm	Funct	ion	Fund	tion Result	t
							R	eady (1341	02.12.2024 14:42:21

Spectrum 🔆	.
Ref Level 40.00 dBm Offset 20.00 dB RBW 1 MHz Att 30 dB SWT 1 s VBW 3 MHz Mode Auto Sweep SGL Count 10/10 TDF TDF TDF TDF TDF TDF	
• 1Av Max	
M1[1]	-30.56 dBm
30 dBm	5.413880 GHz
20 dBm	
10 dBm	
0 dBm	
-10 dBm	
-20 dbm D1 -20.000 dBm	
20 d0m	M1
-50 dBm-	
	Stop 6 0 CUr
20000 μts	atop 0.0 GHz
Type Ref Trc X-value Y-value Eunction Eunction R	esult
M1 1 5.41388 GHz -30.56 dBm	osun
Ready (11111) (14	02.12.2024

4.6. Frequency Stability

TEST CONFIGURATION

TEST PROCEDURE

The EUT was set in the climate chamber and connected to an external DC power supply. The RF output was directly connected to frequency meter. The coupling loss of the additional cables was recorded and taken in account for all the measurements. After temperature stabilization (approx. 20 min for each stage), the frequency for the lower, the middle and the highest frequency range was recorded. For Frequency stability Vs. Voltage the EUT was connected to a DC power supply and the voltage was adjusted in the required ranges. The result was recorded.

TEST APPLICABLE

- 1 According to FCC Part 2 Section 2.1055 (a)(1), the frequency stability shall be measured with variation of ambient temperature from -30°C to +60°C centigrade.
- 2 According to FCC Part 2 Section 2.1055 (a) (2), for battery powered equipment, the frequency stability shall be measured with reducing primary supply voltage to the battery operating end point, which is specified by the manufacture.
- 3 Vary primary supply voltage from 85 to 115 percent of the nominal value; if manufacturer declares extreme voltage within 85 to 115 percent of the nominal value, measured at extreme voltage declared by manufacturer.

<u>LIMIT</u>

According to §95.621, Each GMRS transmitter for mobile station, small base station and control station operation must be maintained within a frequency tolerance of 0.0005%. Each GMRS transmitter for base station (except small base), mobile relay station or fixed station operation must be maintained within a frequency tolerance of 0.00025%.

According to §95.625, Each FRS unit must be maintained within a frequency tolerance of 0.00025%.

Page 51 of 55

Test conditions			Frequency error (pp	m)
Voltage Condition	Temp(℃)	406.125 MHz	453.0125MHz	469.975MHz
	-30	1.47	1.33	1.24
	-20	1.48	1.28	1.27
	-10	1.07	1.54	1.36
	0	1.38	1.19	1.28
NV	10	1.27	1.63	1.36
	20	1.45	1.25	1.08
	30	1.33	1.33	1.52
	40	1.22	1.25	1.42
	50	1.24	1.25	1.33
LV	20	1.28	1.24	1.34
HV	20	1.45	1.64	1.29
Limit(ppm)		2.50	2.50	2.50
Result		PASS	PASS	PASS

NV: Normal Voltage 7.40V LV: Low Voltage 6.29V HV: High Voltage 8.51V

4.7. Transient Frequency Behavior

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the EUT and test equipment as shown on the following block diagram.
- 2. Set the Spectrum Analyzer to measure FM deviation, and tune the RF frequency to the transmitter assigned frequency.
- 3. Set the signal generator to the assigned transmitter frequency and modulate it with a 1 kHz tone at ±12.5 kHz deviation and set its output level to -100dBm.
- 4. Turn on the transmitter.
- 5. Supply sufficient attenuation via the RF attenuator to provide an input level to the Spectrum Analyzer that is 40 dB below the maximum allowed input power when the transmitter is operating at its rated power level. Note this power level on the Spectrum Analyzer as P0.
- 6. Turn off the transmitter.
- 7. Adjust the RF level of the signal generator to provide RF power equal to P0. This signal generator RF level shall be maintained throughout the rest of the measurement.
- 8. Remove the attenuation 1, so the input power to the Spectrum Analyzer is increased by 30 dB when the transmitter is turned on.
- 9. Adjust the vertical amplitude control of the spectrum analyzer to display the 1000 Hz at ±4 divisions
- 10. vertically centered on the display. Set trigger mode of the Spectrum Analyzer to "Video", and tune the "trigger level" on suitable level. Then set the "tiger offset" to -10ms for turn on and -15ms for turn off.
- 11. Turn on the transmitter and the transient wave will be captured on the screen of Spectrum Analyzer. Observe the stored display. The instant when the 1 kHz test signal is completely suppressed is considered to be ton. The trace should be maintained within the allowed divisions during the period t1 and t2.
- 12. Then turn off the transmitter, and another transient wave will be captured on the screen of Spectrum Analyzer. The trace should be maintained within the allowed divisions during the period t₃.

Time intervals	Maximum frequency difference	Requirement
		421 to 512 MHz
t1	±25.0KHz	5.0 ms
t2	±12.5KHz	20.0 ms
t3	±25.0KHz	5.0 ms

.....End of Report.....