

Inspire Medical Systems

Model 2740 Physician Programmer

FCC 15.207:2018 FCC 15.209:2018 Inductive radio

Report # INSP0007

NVLAP LAB CODE: 200881-0

CERTIFICATE OF TEST

Last Date of Test: October 3, 2018 Inspire Medical Systems Model: 2740 Physician Programmer

Radio Equipment Testing

Standards

- tall tall tall	
Specification	Method
FCC 15.207:2018	ANSI C63.10:2013
FCC 15.209:2018	ANSI C03.10.2013

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions	Yes	Pass	
6.4	Field Strength of Fundamental	Yes	Pass	
6.4, 6.5	Spurious Radiated Emissions	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Matt Nuernberg, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

Report No. INSP0007 2/20

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
00	None		

Report No. INSP0007

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with ISED.

European Union

European Commission - Within Element, we have a EU Notified Body validated for the EMCD and RED Directives.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC - Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

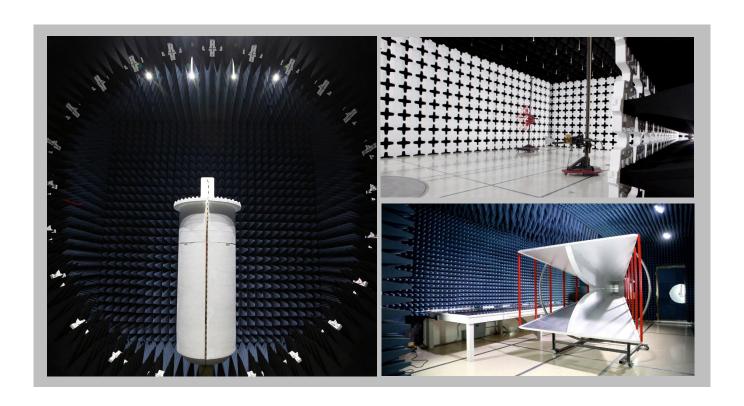
For details on the Scopes of our Accreditations, please visit: https://www.nwemc.com/emc-testing-accreditations

Report No. INSP0007 4/20

FACILITIES

US0158

US0175


US0191

US0157

California Labs OC01-17 41 Tesla Irvine, CA 92618 (949) 861-8918	Minnesota Labs MN01-10 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136	New York Labs NY01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 554-8214	Oregon Labs EV01-12 6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124 (503) 844-4066	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011 (425)984-6600	
		NV	LAP			
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0	
	Innov	ation, Science and Eco	nomic Development Can	ada		
2834B-1, 2834B-3	2834E-1, 2834E-3	N/A	2834D-1, 2834D-2	2834G-1	2834F-1	
		BS	МІ			
SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R	
VCCI						
A-0029	A-0109	N/A	A-0108	A-0201	A-0110	
	Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA					

US0017

N/A

Report No. INSP0007 5/20

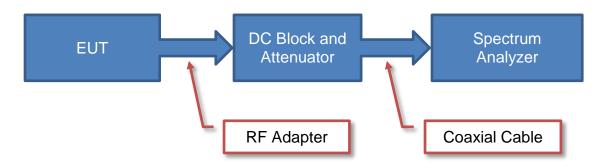
MEASUREMENT UNCERTAINTY

Measurement Uncertainty

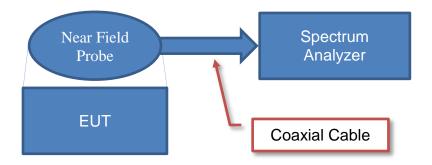
When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

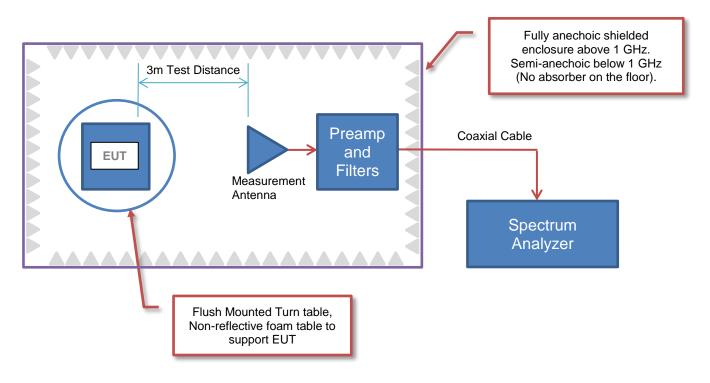
A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.


<u>Test</u>	+ MU	- MU
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	0.3 dB	-0.3 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB

Report No. INSP0007 6/20


Test Setup Block Diagrams


Antenna Port Conducted Measurements

Near Field Test Fixture Measurements

Spurious Radiated Emissions

Report No. INSP0007 7/20

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Inspire Medical Systems
Address:	9700 63rd Ave N, Suite 200
City, State, Zip:	Maple Grove, MN 55369
Test Requested By:	Jordan McIver
Model:	Model 2740 Physician Programmer
First Date of Test:	October 3, 2018
Last Date of Test:	October 3, 2018
Receipt Date of Samples:	October 3, 2018
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

Programmer system containing a 175 kHz telemetry head connected to a pre-approved Bluetooth module. The system also includes a pre-approved tablet.

Testing Objective:

To demonstrate compliance of the inductive portion of the device to FCC Part 15.209 specifications.

Report No. INSP0007 8/20

CONFIGURATIONS

Configuration INSP0007-1

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Physician Programmer	Inspire Medical Systems	2740	9996

Peripherals in test setup boundary							
Description Manufacturer Model/Part Number Serial Number							
IPG	Inspire Medical Systems	3028	AIR300161C				
AC Adapter (Telemetry Cable)	Cincon Electronics Co., LTD.	TR30M090	30090-0001853				
AC Adapter (Tablet)	Sinpro	HPU32A-105	10957869 1648				

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
AC Power (Telemetry Cable)	No	2.0 m	No	AC Mains	AC Adapter (Telemetry Cable)
DC Power	No	1.6 m	Yes	AC Adapter	Physician
(Telemetry Cable)	NO	1.0 111	162	(Telemetry Cable)	Programmer
Telemetry Cable	No	0.2 m	No	DC Power Cable	Physician
Teleffielry Cable	NO	0.2 111	NO	(Telemetry Cable)	Programmer
Tolomotry Coblo	No	1 m	No	Physician	Physician
Telemetry Cable	INO	1 1111	NO	Programmer	Programmer
AC Power (Tablet)	No	1.8 m	No	AC Mains	AC Adapter (Tablet)
DC Dower (Toblet)	No	1.2 m	No	A C A -l t (T - l - l - t)	Physician
DC Power (Tablet)	INO	1.2 111	INO	AC Adapter (Tablet)	Programmer

Report No. INSP0007 9/20

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	2018-10- 03	Field Strength of Fundamental	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
2	2018-10- 03	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
3	2018-10- 03	Powerline Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

Report No. INSP0007 10/20

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Per the standard, an insulating material was also added to ground plane between the EUT's power and remote I/O cables. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 50ohm measuring port is terminated by a 50ohm EMI meter or a 50ohm resistive load. All 50ohm measuring ports of the LISN are terminated by 50ohm. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Receiver	Rohde & Schwarz	ESR7	ARI	6/26/2018	6/26/2019
Cable - Conducted Cable Assembly	Northwest EMC	MNC, HGN, TYK	MNCA	3/14/2018	3/14/2019
LISN	Solar Electronics	9252-50-R-24-BNC	LIY	3/15/2018	3/15/2019
LISN	Solar Electronics	9252-50-R-24-BNC	LIQ	10/11/2017	10/11/2018

MEASUREMENT UNCERTAINTY

Description		
Expanded k=2	2.4 dB	-2.4 dB

CONFIGURATIONS INVESTIGATED

INSP0007-1

MODES INVESTIGATED

Tx Inductive test telemetry mode at 175 kHz with model 3028 Inspire IPG.

Report No. INSP0007 11/20

EUT:	Model 2740 Physician Programmer	Work Order:	INSP0007
Serial Number:	9996	Date:	10/03/2018
Customer:	Inspire Medical Systems	Temperature:	23.1°C
Attendees:	Jordan McIver	Relative Humidity:	48.1%
Customer Project:	None	Bar. Pressure:	1002 mb
Tested By:	Kyle McMullan	Job Site:	MN03
Power:	110VAC/60Hz	Configuration:	INSP0007-1

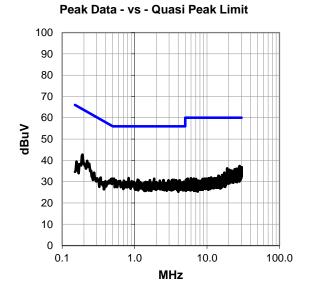
TEST SPECIFICATIONS

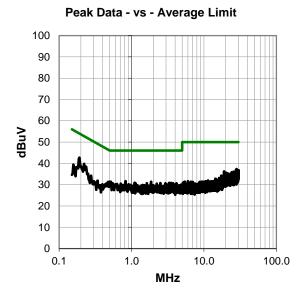
Specification:	Method:
FCC 15.207:2018	ANSI C63.10:2013

TEST PARAMETERS

_						
Run #:	3	Line:	Neutral	Add. Ext. Attenuation (dB):	0

COMMENTS


None


EUT OPERATING MODES

Tx Inductive test telemetry mode at 175 kHz with model 3028 Inspire IPG.

DEVIATIONS FROM TEST STANDARD

None

Report No. INSP0007 12/20

RESULTS - Run #3

Peak Data - vs - Quasi Peak Limit

Peak Data - vs - Quasi Peak Limit							
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)		
0.191	22.1	20.6	42.7	64.0	-21.3		
28.273	13.6	23.7	37.3	60.0	-22.7		
0.221	19.2	20.6	39.8	62.8	-23.0		
27.795	13.2	23.7	36.9	60.0	-23.1		
29.642	12.9	23.9	36.8	60.0	-23.2		
29.989	12.9	23.9	36.8	60.0	-23.2		
29.694	12.7	23.9	36.6	60.0	-23.4		
29.489	12.6	23.9	36.5	60.0	-23.5		
29.929	12.4	23.9	36.3	60.0	-23.7		
19.017	13.8	22.4	36.2	60.0	-23.8		
25.747	12.7	23.3	36.0	60.0	-24.0		
28.519	12.2	23.8	36.0	60.0	-24.0		
28.802	12.2	23.8	36.0	60.0	-24.0		
24.598	12.7	23.2	35.9	60.0	-24.1		
25.598	12.6	23.3	35.9	60.0	-24.1		
29.034	12.1	23.8	35.9	60.0	-24.1		
29.526	12.0	23.9	35.9	60.0	-24.1		
24.266	12.7	23.1	35.8	60.0	-24.2		
28.377	12.1	23.7	35.8	60.0	-24.2		
28.627	12.0	23.8	35.8	60.0	-24.2		
26.803	12.2	23.5	35.7	60.0	-24.3		
26.956	12.2	23.5	35.7	60.0	-24.3		
28.235	12.0	23.7	35.7	60.0	-24.3		
0.825	11.2	20.5	31.7	56.0	-24.3		
28.008	11.9	23.7	35.6	60.0	-24.4		
29.358	11.8	23.8	35.6	60.0	-24.4		

Peak Data - vs - Average Limit							
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)		
0.191	22.1	20.6	42.7	54.0	-11.3		
28.273	13.6	23.7	37.3	50.0	-12.7		
0.221	19.2	20.6	39.8	52.8	-13.0		
27.795	13.2	23.7	36.9	50.0	-13.1		
29.642	12.9	23.9	36.8	50.0	-13.2		
29.989	12.9	23.9	36.8	50.0	-13.2		
29.694	12.7	23.9	36.6	50.0	-13.4		
29.489	12.6	23.9	36.5	50.0	-13.5		
29.929	12.4	23.9	36.3	50.0	-13.7		
19.017	13.8	22.4	36.2	50.0	-13.8		
25.747	12.7	23.3	36.0	50.0	-14.0		
28.519	12.2	23.8	36.0	50.0	-14.0		
28.802	12.2	23.8	36.0	50.0	-14.0		
24.598	12.7	23.2	35.9	50.0	-14.1		
25.598	12.6	23.3	35.9	50.0	-14.1		
29.034	12.1	23.8	35.9	50.0	-14.1		
29.526	12.0	23.9	35.9	50.0	-14.1		
24.266	12.7	23.1	35.8	50.0	-14.2		
28.377	12.1	23.7	35.8	50.0	-14.2		
28.627	12.0	23.8	35.8	50.0	-14.2		
26.803	12.2	23.5	35.7	50.0	-14.3		
26.956	12.2	23.5	35.7	50.0	-14.3		
28.235	12.0	23.7	35.7	50.0	-14.3		
0.825	11.2	20.5	31.7	46.0	-14.3		
28.008	11.9	23.7	35.6	50.0	-14.4		
29.358	11.8	23.8	35.6	50.0	-14.4		

CONCLUSION

Pass

Tested By

Report No. INSP0007 13/20

EUT:	Model 2740 Physician Programmer	Work Order:	INSP0007
Serial Number:	9996	Date:	10/03/2018
Customer:	Inspire Medical Systems	Temperature:	23.1°C
Attendees:	Jordan McIver	Relative Humidity:	48.1%
Customer Project:	None	Bar. Pressure:	1002 mb
Tested By:	Kyle McMullan	Job Site:	MN03
Power:	110VAC/60Hz	Configuration:	INSP0007-1

TEST SPECIFICATIONS

Specification:	Method:
FCC 15.207:2018	ANSI C63.10:2013

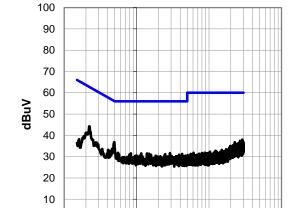
TEST PARAMETERS

_						
Run #:	4	Line:	High Line	Add. Ext. Attenuation (dB):	0

COMMENTS

None

EUT OPERATING MODES

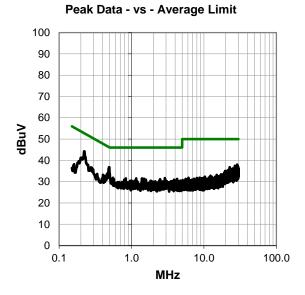

0

0.1

Tx Inductive test telemetry mode at 175 kHz with model 3028 Inspire IPG.

DEVIATIONS FROM TEST STANDARD

None


1.0

MHz

10.0

100.0

Peak Data - vs - Quasi Peak Limit

Report No. INSP0007 14/20

RESULTS - Run #4

Peak Data - vs - Quasi Peak Limit						
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)	
0.221	23.6	20.6	44.2	62.8	-18.6	
0.490	16.4	20.4	36.8	56.2	-19.4	
28.784	14.2	23.8	38.0	60.0	-22.0	
28.888	13.7	23.8	37.5	60.0	-22.5	
26.810	13.9	23.5	37.4	60.0	-22.6	
28.392	13.6	23.7	37.3	60.0	-22.7	
29.396	13.5	23.8	37.3	60.0	-22.7	
28.355	13.4	23.7	37.1	60.0	-22.9	
29.295	13.2	23.8	37.0	60.0	-23.0	
27.788	13.1	23.7	36.8	60.0	-23.2	
22.647	13.9	22.8	36.7	60.0	-23.3	
28.515	12.9	23.8	36.7	60.0	-23.3	
28.616	12.9	23.8	36.7	60.0	-23.3	
29.239	12.9	23.8	36.7	60.0	-23.3	
29.828	12.7	23.9	36.6	60.0	-23.4	
29.187	12.6	23.8	36.4	60.0	-23.6	
29.791	12.5	23.9	36.4	60.0	-23.6	
27.135	12.7	23.6	36.3	60.0	-23.7	
29.489	12.4	23.9	36.3	60.0	-23.7	
23.191	13.3	22.9	36.2	60.0	-23.8	
25.198	12.9	23.3	36.2	60.0	-23.8	
27.273	12.4	23.6	36.0	60.0	-24.0	
27.844	12.3	23.7	36.0	60.0	-24.0	
25.751	12.6	23.3	35.9	60.0	-24.1	
26.560	12.5	23.4	35.9	60.0	-24.1	
29.649	12.0	23.9	35.9	60.0	-24.1	

Peak Data - vs - Average Limit							
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)		
0.221	23.6	20.6	44.2	52.8	-8.6		
0.490	16.4	20.4	36.8	46.2	-9.4		
28.784	14.2	23.8	38.0	50.0	-12.0		
28.888	13.7	23.8	37.5	50.0	-12.5		
26.810	13.9	23.5	37.4	50.0	-12.6		
28.392	13.6	23.7	37.3	50.0	-12.7		
29.396	13.5	23.8	37.3	50.0	-12.7		
28.355	13.4	23.7	37.1	50.0	-12.9		
29.295	13.2	23.8	37.0	50.0	-13.0		
27.788	13.1	23.7	36.8	50.0	-13.2		
22.647	13.9	22.8	36.7	50.0	-13.3		
28.515	12.9	23.8	36.7	50.0	-13.3		
28.616	12.9	23.8	36.7	50.0	-13.3		
29.239	12.9	23.8	36.7	50.0	-13.3		
29.828	12.7	23.9	36.6	50.0	-13.4		
29.187	12.6	23.8	36.4	50.0	-13.6		
29.791	12.5	23.9	36.4	50.0	-13.6		
27.135	12.7	23.6	36.3	50.0	-13.7		
29.489	12.4	23.9	36.3	50.0	-13.7		
23.191	13.3	22.9	36.2	50.0	-13.8		
25.198	12.9	23.3	36.2	50.0	-13.8		
27.273	12.4	23.6	36.0	50.0	-14.0		
27.844	12.3	23.7	36.0	50.0	-14.0		
25.751	12.6	23.3	35.9	50.0	-14.1		
26.560	12.5	23.4	35.9	50.0	-14.1		
29.649	12.0	23.9	35.9	50.0	-14.1		

CONCLUSION

Pass

Tested By

Report No. INSP0007 15/20

FIELD STRENGTH OF FUNDAMENTAL

PSA-ESCI 2018.07.27

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Tx Inductive test telemetry mode at 175 kHz with model 3028 Inspire IPG

POWER SETTINGS INVESTIGATED

110VAC/60Hz

CONFIGURATIONS INVESTIGATED

INSP0007 - 1

FREQUENCY RANGE INVESTIGATED

	Start Frequency 160 kHz	Stop Frequency	190 kHz
--	-------------------------	----------------	---------

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFN	27-Apr-2018	12 mo
Cable	ESM Cable Corp.	Bilog Cables	MNH	9-Nov-2017	12 mo
Antenna - Loop	ETS Lindgren	6502	AOB	16-May-2017	24 mo

MEASUREMENT BANDWIDTHS

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was continuously transmitting while set to the channel specified.

The fundamental carrier of the EUT was maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A calibrated active loop antenna was used for this test in order to provide sufficient measurement sensitivity. The center of the loop antenna was maintained at 1m above the ground plane during the testing.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

PK = Peak Detector

AV = Average Detector

As outlined in 15.209(e), 15.31(f)(2), and RSS-GEN, 6.4, measurements may be performed at a distance closer than what is specified with the limit. The limit at the specified distance is shown on the data sheet. Measurements are made at a closer distance and the data is adjusted using a distance correction factor of 40dB/decade for comparison to the limit.

Report No. INSP0007 16/20

FIELD STRENGTH OF FUNDAMENTAL

W	Vork Order: Project:		20007 one	Ter	Date:		t-2018 6 °C	74.	anda	EmiR5 2018.09.26	Mile	PSA-ESCI 2018.07.27	<u>,</u>	
	Job Site:	MN			Humidity:		% RH		1					
Seri	al Number:		96		etric Pres.:	1004	mbar		Tested by:	Kyle McMu	ıllan		_	
Con	figuration:	Model 274	u Physician	Programn	ner								=	
	Customer:		dical System	me									-	
	Attendees:			110									_	
	UT Power:												=	
Onera	ting Mode:	Tx Inductiv	e test telen	netry mode	at 175 kHz	with mode	el 3028 Inspir	e IPG.					="	
•	_												_	
	Deviations:	None												
		None											-	
(Comments:	INOTIC												
Test Spe	cifications						Test Metho	od					-	
FCC 15.2							ANSI C63.1						=	
Run #	# 3	Test Dis	stance (m)	3	Antenna	Height(s)		1(m)		Results	P	ass	=	
													=	
80							+++++							
60				\longrightarrow										
					$\downarrow\downarrow\downarrow$									
40						\perp								
40							, 							
20						_								
Ę														
dBuV/m														
쁑					.									
-20														
20					.	•								
40														
-40														
-60														
-80														
0.	001		0.010		0.100		1.000		10.	.000		100.000		
						MHz				■ PK	◆ AV	QP		
							Polarity/							
Erog	Amplitude	Factor	Antenna	Azimuth	Tost Distance	External	Transducer	Detector	Distance	Adjusted	Snoo Limit	Compared to		
Freq (MHz)	(dBuV)	Factor (dB)	Height (meters)	Azimuth (degrees)	Test Distance (meters)	Attenuation (dB)	Туре	Detector	Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Spec. (dB)		
					2.0		Por to CUT	DIC					Comments	
0.176 0.176	81.5 80.5	11.6 11.6	1.0 1.0	270.0 90.0	3.0 3.0	0.0 0.0	Par to EUT Par to EUT	PK PK	-80.0 -80.0	13.1 12.1	42.7 42.7	-29.6 -30.6	EUT On Side EUT Vert	
0.176	78.1	11.6	1.0	360.0	3.0	0.0	Perp to GND	PK	-80.0	9.7	42.7	-33.0	EUT On Side	
0.176 0.176	77.2 56.9	11.6 11.6	1.0 1.0	0.0 270.0	3.0 3.0	0.0 0.0	Perp to GND Par to EUT	PK AV	-80.0 -80.0	8.8 -11.5	42.7 22.7	-33.9 -34.2	EUT Vert EUT On Side	AV - CISPR Average
0.176	55.9	11.6	1.0	90.0	3.0	0.0	Par to EUT	AV	-80.0	-11.5	22.7	-34.2	EUT Vert	AV - CISPR Average
0.176	75.2	11.6	1.0	315.0	3.0	0.0	Par to EUT	PK	-80.0	6.8	42.7	-35.9	EUT Horz	_
0.176 0.176	53.8 73.8	11.6 11.6	1.0 1.0	360.0 90.1	3.0 3.0	0.0 0.0	Perp to GND Par to GND	AV PK	-80.0 -80.0	-14.6 5.4	22.7 42.7	-37.3 -37.3	EUT On Side EUT Vert	AV - CISPR Average
0.176	73.8 73.6	11.6	1.0	90.1 270.0	3.0	0.0	Par to GND	PK PK	-80.0 -80.0	5.4 5.2	42.7 42.7	-37.3 -37.5	EUT Horz	
0.176	73.2	11.6	1.0	270.0	3.0	0.0	Par to GND	PK	-80.0	4.8	42.7	-37.9	EUT On Side	
0.175	53.0	11.6	1.0	0.0	3.0	0.0	Perp to GND	AV	-80.0	-15.4	22.7	-38.1	EUT Vert EUT Horz	AV - CISPR Average AV - CISPR Average
0.175 0.176	50.9 70.3	11.6 11.6	1.0 1.0	315.0 360.0	3.0 3.0	0.0 0.0	Par to EUT Perp to GND	AV PK	-80.0 -80.0	-17.5 1.9	22.8 42.7	-40.3 -40.8	EUT Horz	AV - CIOFK AVEIAGE
0.176	49.9	11.6	1.0	90.1	3.0	0.0	Par to GND	AV	-80.0	-18.5	22.7	-41.2	EUT Vert	AV - CISPR Average
0.177 0.176	49.3 49.3	11.6 11.6	1.0 1.0	270.0 270.0	3.0 3.0	0.0 0.0	Par to GND Par to GND	AV AV	-80.0 -80.0	-19.1 -19.1	22.7 22.7	-41.8 -41.8	EUT Horz EUT On Side	AV - CISPR Average AV - CISPR Average
0.176	42.5	11.6	1.0	360.0	3.0	0.0	Perp to GND	AV	-80.0	-25.9	22.7	-48.6	EUT Horz	AV - CISPR Average

Report No. INSP0007 17/20

SPURIOUS RADIATED EMISSIONS

PSA-ESCI 2018.07.27

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Tx Inductive test telemetry mode at 175 kHz with model 3028 Inspire IPG.

POWER SETTINGS INVESTIGATED

110VAC/60Hz

CONFIGURATIONS INVESTIGATED

INSP0007 - 1

FREQUENCY RANGE INVESTIGATED

|--|

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Amplifier - Pre-Amplifier	Miteq	AM-1616-1000	AVO	9-Nov-2017	12 mo
Antenna - Biconilog	Teseq	CBL 6141B	AYD	25-Jan-2018	24 mo
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFN	27-Apr-2018	12 mo
Cable	ESM Cable Corp.	Bilog Cables	MNH	9-Nov-2017	12 mo
Antenna - Loop	ETS Lindgren	6502	AOB	16-May-2017	24 mo

MEASUREMENT BANDWIDTHS

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A calibrated active loop antenna was used for this test in order to provide sufficient measurement sensitivity. The center of the loop antenna was maintained at 1m above the ground plane during the testing.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

PK = Peak Detector

AV = RMS Detector

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

Measurements at the edges of the allowable band may be presented in an alternative method as provided for in the ANSI C63.10 Marker-Delta method. This method involves performing an in-band fundamental measurement followed by a screen capture of the fundamental and out-of-band emission using reduced measurement instrumentation bandwidths. The amplitude delta measured on this screen capture is applied to the fundamental emission value to show the out-of-band emission level as applied to the limit.

As outlined in 15.209(e), 15.31(f)(2), and RSS-GEN, 6.4, measurements may be performed at a distance closer than what is specified with the limit. The limit at the specified distance is shown on the data sheet. Measurements are made at a closer distance and the data is adjusted using a distance correction factor of 40dB/decade for comparison to the limit.

Report No. INSP0007 18/20

SPURIOUS RADIATED EMISSIONS

		_							EmiR5 2018.09.26		PSA-ESCI 2018.07.
W	ork Order:	INSP0007		Date:		-2018	-71		120	1	
	Project:	None	Ter	nperature:		6 °C	1/2	yla	ma	mel	m
	Job Site:	MN05		Humidity:	48.5	% RH					
Seria	al Number:	9996	Barome	etric Pres.:	1004	mbar	-	Tested by:	Kyle McMu	ıllan	
		Model 2740 Physic									
Conf	figuration:										
		Inspire Medical Sys	tems								
		Jordan McIver	terris								
		110VAC/60Hz		-1.475 LLL-		1.0000 1	IDO				
Operat	ting Mode:	Tx Inductive test te	emetry mode	at 175 KHZ	with mode	1 3028 Insp	re IPG.				
D	Deviations:	None									
		None									
С	comments:										
Test Spec	ifications					Test Meth	od				
FCC 15.20		l				ANSI C63.					
00 10.20							. 5.2010				
D "		Total Distance (A 1	Halada (/ ^		4/>		Donati		
Run #	6	Test Distance (r	n) 3	Antenna	Height(s)	<u> </u>	1(m)		Results	P	ass
80											
60			\longrightarrow								
				4111							
40			\rightarrow								+++
				$\sqcup \sqcup \sqcup$		4					
20											
E						-					
≶											
dBuV/m o		 	++++		+++					++++	
쁑											
-									1 1	1 1 1 1	
-20	1 1										
-40					•						
-40					•						
-40					•						
					•						
-40 -60					•						
					•						
-60					•						
-60 -80	001	0.010		0.100	•	1,000		10	000		100,000
-60 -80	001	0.010		0.100	•	1.000		10.	000		100.000
-60 -80	001	0.010		0.100	MHz	1.000		10.			
-60 -80	001	0.010		0.100	•			10.	0000 PK	◆ AV	100.000 • QP
-60 -80	001			0.100	MHz	Polarity/					• QP
-60 -80 0.0		Antenna	Azimuth		MHz External	Polarity/ Transducer		Distance	■ PK	◆ AV	• QP
-60 -80 0.0	OO1 Amplitude (dBuV)	Antenna Factor Height	Azimuth (degrees)	0.100	MHz External Attenuation	Polarity/	Detector	Distance Adjustment			• QP Compared to Spec.
-60 -80 0.0	Amplitude (dBuV)	Factor Height (dB) (meters)	(degrees)	Test Distance (meters)	MHz External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	◆ AV Spec. Limit (dBuV/m)	Compared to Spec. (dB)
-60 -80 0.0	Amplitude	Antenna Factor Height		Test Distance	MHz External Attenuation	Polarity/ Transducer		Distance Adjustment	■ PK Adjusted	◆ AV Spec. Limit	• QP Compared to Spec.

Report No. INSP0007 19/20

SPURIOUS RADIATED EMISSIONS

											EmiR5 2018.09.26		PSA-ESCI 2018.07.2	27
	Wo	ork Order:		P0007		Date:		t-2018	7		Tres	16 0		
		Project:		one	Ter	nperature:		16°C Vryle Malhella						
		Job Site:		V05	D	Humidity:		% RH						
-	Seriai	Number:		996 Dhyaisian		etric Pres.:	1004	mbar		Tested by:	Kyle McMu	illan		_
_	Confi	iguration:		0 Physician	Programm	ner								_
				dical Syster	me									_
_			Jordan Mo		113									_
				10VAC/60Hz										
_			Tx Inductive test telemetry mode at 175 kHz with model 3028 Inspire IPG.											_
O	perati	ing Mode:	TA maductive test telefiletry fridae at 175 kmz with model 3026 mspile iPG.											
	De	eviations:	None											
														_
	0-		None											
	Co	omments:												
		fications						Test Metl						_
FCC	15.209	9:2018						ANSI C63	3.10:2013					
R	un#	7	Test Dis	stance (m)	3	Antenna	Height(s)		1(m)		Results	Pa	ass	_
		·		()			g(- <i>)</i>		. ()					_
	80													
	60													
	40													
												_		
	20								-					
_	20													
- ₹														
dBuV/m	0							 	•					
쁑									ぺ					
	-20													
	-40													
	-40													
	-60													
	00													
	-80 -	O1		0.010		0.100		1.00	0	10	000		100.000	
	0.001 0.010 0.100 MHz					1.00	·	10.	000		100.000			
							IVIΠZ				■ PK	◆ AV	QP	
								Polarity/						
							External	Transducer		Distance			Compared to)
Fre	-	Amplitude (dBuV)	Factor (dB)	Antenna Height	Azimuth (degrees)	Test Distance	Attenuation	Туре	Detector	Adjustment	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Spec. (dB)	
(Mł	nz)	(dbdv)	(UB)	(meters)	(degrees)	(meters)	(dB)			(dB)	(ubuv/iii)	(ubuv/iii)	(ub)	Comments
0.8		37.3	11.9	1.0	279.0	3.0	0.0	Par to EUT		-40.0	9.2	28.7	-19.5	EUT On Side
0.5		38.9	11.8	1.0	242.0	3.0	0.0	Par to EUT		-40.0	10.7	33.2	-22.5	EUT On Side
1.2 1.5		31.1 22.9	12.1 12.1	1.0 1.0	306.0 271.0	3.0 3.0	0.0 0.0	Par to EUT Par to EUT		-40.0 -40.0	3.2 -5.0	25.8 23.7	-22.6 -28.7	EUT On Side EUT On Side
0.7		22.9	11.8	1.0	296.0	3.0	0.0	Par to EUT		-40.0 -40.0	0.9	30.7	-20.7 -29.8	EUT On Side
1.0		24.5	12.1	1.0	242.0	3.0	0.0	Par to EUT		-40.0	-3.4	27.2	-30.6	EUT On Side
1.4	05	21.5	12.1	1.0	59.1	3.0	0.0	Par to EUT	QP	-40.0	-6.4	24.7	-31.1	EUT On Side
1.7	56	19.5	12.1	1.0	253.0	3.0	0.0	Par to EUT	QP	-40.0	-8.4	29.5	-37.9	EUT On Side

Report No. INSP0007 20/20