

RF TEST REPORT

Report No.:SHATBL2412015W02

Applicant	: Fujian Iselected E-commerce Co., Ltd.
Product Name	: 2.4GHz & Bluetooth Wireless Mouse
Brand Name	: N/A
Model Name	: SPK7607
Test Standard	: FCC CFR Title 47 Part 15 Subpart C Section 15.247
FCC ID	: 2BMNP-SPK7607
Date of Receipt	: 2024.12.6
Date of Test	: 2024.12.6~2024.12.24
Date of Issue	: 2024.12.24

Report Prepared by

Chris Xu

(Chris Xu)

Report Approved by

Guozheny (Ghost Li)

Authorized Signatory :

quality NO

(Terry Yang)

"Shanghai ATBL Technology Co., Ltd." hereby certifies that according to actual testing conditions. The test results or observations are provided in accordance with measured value, without taking risks caused by uncertainty into account. Without explicit stipulation in special agreements, standards, or regulations, ATBL shall not assume any responsibility. The test results or observations are applicable only to tested sample. Client shall be responsible for representativeness of the sample and authenticity of the material. This report will be void without authorized signature or special seal for testing report. Do not copied without authorization. Tel:+86(0)21-51298625 Web:www.atbl-lab.com

TABLE OF CONTENTS

REVISION HISTORY	3
DECLARATION OF REPORT	4
SUMMARY OF TEST RESULT	5
1. GENERAL DESCRIPTION	
1.1. Applicant	6
1.2. Manufacturer	6
1.3. Factory	
1.4. General Information of EUT	
1.5. Equipment Specification	
1.6. Modification of EUT	
1.7. Laboratory Information	
1.8. Applicable Standards	
2. TEST CONFIGURATION OF EUT	9
2.1. Carrier Frequency Channel	
2.2. Test Modes	9
2.3. Block Diagram of Test System	10
2.4. Description of Support Units	
2.5. Test Software and Power Level	10
2.6. EUT Operating Conditions	10
2.7. Equipment List	11
2.8. Measurement Uncertainty	13
3. TEST RESULT	14
3.1. Maximum Peak Conducted Output Power	14
3.2. Duty Cycle	16
3.3. 6dB Bandwidth and 99% Bandwidth	
3.4. Power Spectral Density	
3.5. Conducted Band Edge	20
3.6. Conducted Spurious Emission	21
3.7. Radiated Spurious Emission and Restricted Band	22
3.8. AC Power-Line Conducted Emission	26
3.9. Antenna Requirement	28
4.TEST SETUP PHOTOGRAPHS	
5.EXTERNAL AND INTERNAL PHOTOS OF THE EUT	
6.Appendix A of data	
A1.Conducted Peak Output Power	29
A2.Duty Cycle	
A3.6dB Bandwidth and 99% Bandwidth	
A4.Power Spectral Density	34
A5.Conducted Band Edge and Spurious Emission	
A6.Radiated Spurious Emission and Restricted Band	
A7.AC Power-Line Conducted Emission	

8

4 miles

1-

B

ş

8

L. S. C. L.

35

Con la contra de l

35

4

R. B.

N. C. F.

Kaju

F35

2 F

Kale

K She

AL BAL

EL.

50

Kale

A.F.

1 AN

K P

N

AN AN

A A

AN CHANGE

F-35

L. P.

K3E K3E

K3E K3E

Kate Kate

Kate Kate

1 Ste

12 AN

530

A.S.

K31

Report No.:SHATBL2412015W02

Kate Kate

Kate Kate

Kar Kar

Kate Kate

K31

Kat Kat

KANE KANE

K35

de

7

F

K DE **REVISION HISTORY**

F?

X

2

Rev.	Issue Date	Revisions	Revised by
00	2024.12.24	Initial Release	
F	D'	SSTD	E.
	F B	S & F	3 6
2	F al	N R S N	- B
25	- F a	V D	F 3
F 1	3 5	N T D	F A
F	25	SSTO	1 5
	F all	T B' - F	m i
	1 1 1	T 20	2 . 3
5		1 1 1	

ADE ADE

Kan Kan

173

17 B

F35

AT STAN

K35

EL.

K Shi

35

Ň

Kate Kate

K Shi

4 Providence

A. C. S.

N.

ŕ

DECLARATION OF REPORT

1. The device has been tested by ATBL, and the test results show that the equipment under test (EUT) is in compliance with the requirements of 47 CFR 15.247. And it is applicable only to the tested sample identified in the report.

2. This report shall not be reproduced except in full, without the written approval of ATBL, this document only be altered or revised by ATBL, personal only, and shall be noted in the revision of the document.

3. The general information of EUT in this report is provided by the customer or manufacture, ATBL is only responsible for the test data but not for the information provided by the customer or manufacture.

4. The results in this report is only apply to the sample as tested under conditions. The customer or manufacturer is responsible for ensuring that the additional production units of this model have the same electrical and mechanical components.

5. In this report, ' \Box ' indicates that EUT does not support content after ' \Box ', and ' \Box ' indicates that it supports content after ' \Box '

3

N

KF

F

2

P

F

RE

R

P

Report No.:SHATBL2412015W02

2

-

٦

24

N.

Ř

1

KE

Report Sectio n	Standard Test Item		Judgmen t	Remark	
3.1	47 CFR 15.247(b)(3)	Maximum Peak Conducted Output Power	PASS	2	
3.2	E all	Duty Cycle	Report only	V - 4	
2.2	47 CFR 15.247(a)(2)	6dB Bandwidth	PASS	7	
3.3	5 F 3	99% Bandwidth	Report only	×	
3.4	47 CFR 15.247(e) Power Spectral Density		PASS	P	
3.5	47 CFR 15.247(d)	2 15.247(d) Conducted Band Edge		V	
3.6	47 CFR 15.247(d)	Conducted Spurious Emission	PASS	\	
47 CFR 3.7 15.247(d)/15.209(a)/15.205 (a)		Radiated Spurious Emission and Restricted Band	PASS	»-	
3.8	47 CFR 15.207(a)	AC Power-Line Conducted Emission	N/A	B	
3.9	47 CFR 15.203	Antenna Requirements	PASS		

K

N.

R

2P

SUMMARY OF TEST RESULT

ï

Ç?

F

F

F

P

F

2ºF

R

P

53

1. GENERAL DESCRIPTION

1.1. Applicant

- Name : Fujian Iselected E-commerce Co., Ltd.
- Address : 15th Floor, Building A, Aofeng Plaza, No. 2 Aofeng Road, Taijiang District, Fuzhou City, Fujian Province, China

1.2. Manufacturer

- Name : MMD (Shanghai) Electronic Technology Co., Ltd.
- Address : Room107, Building 17, No. 525 Yuanjiang Road, Minhang District, Shanghai, China

1.3. Factory

- Name : Dongguan Lingjie Electronics Technology Co.,Ltd
- Address : No. 23, Tianyuan Revitalization North Road, Dongguan City, Guangdong Province

1.4. General Information of EUT

General Information				
Equipment Name	2.4GHz & Bluetooth Wireless Mouse			
Brand Name	N/A			
Model Name	SPK7607			
Series Model	N/A			
Model Difference	N/A			
Antenna Type	PCB			
Antenna Gain	2.34dBi			
Sample No:	20241203002			
Battery	Rated Voltage: 1.5V			
Hardware version	VER:2.0			
Software version	BK6.0			
Connecting I/O Port(s)	Refer to the remark below.			

Remark:

The above information of EUT was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.5. Equipment Specification

Equipment Specification						
Frequency Range	2402MHz - 2480MHz	S 5 3 -				
Number of Channels	40					
Carrier Frequency of Each Channel	2402 + n*2 MHz; n = 0 ~ 39					
Maximum Output Power To	ØBluetooth LE(1Mbps):	0.58dBm (1.14mW)				
Antenna	- 5 3	- 5 3				
Type of Modulation	Bluetooth LE:	GFSK				
Antenna Type	PCB	D' F D				
Antenna Gain	2.34dBi	F B F				

1.6. Modification of EUT

No modifications are made to the EUT during all test items.

1.7. Laboratory Information

Company . Name	Shanghai ATBL Technology Co., Ltd.
Address :	Building 8,No.160 Basheng Road, Waigaoqiao Free Trade Zone, Pudong New Area, Shanghai
Telephone :	+86(0)21-51298625

1.8. Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

47 CFR Part 15 Subpart C §15.247

FCC KDB 558074 D01 15.247 Meas Guidance v05r02

ANSI C63.10-2013

Remark:

All test items were verified and recorded according to the standards and without any deviation during the test.

2. TEST CONFIGURATION OF EUT

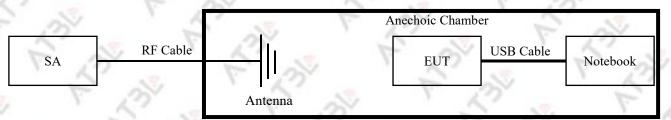
2.1. Carrier Frequency Channel

Frequency Band	Channel	Frequency MHz	Channel	Frequency MHz	Channel	Frequency MHz
	00	2402	14	2430	28	2458
	01	2404	15	2432	29	2460
	02	2406	16	2434	30	2462
	03	2408	17	2436	31	2464
	04	2410	18	2438	32	2466
	05	2412	19	2440	33	2468
2400 -	06	2414	20	2442	34	2470
2483.5 MHz	07	2416	21	2444	35	2472
	08	2418	22	2446	36	2474
	09	2420	23	2448	37	2476
	10	2422	24	2450	38	2478
	5 11 X	2424	25	2452	39	2480
	12	2426	26	2454	- X	5 3
	13	2428	27	2456	2	F

Remark:

Low Channel: CH 00_2402 MHz; Middle Channel: CH 19_2440 MHz; High Channel: CH 39_2480 MHz.

2.2. Test Modes


The table below is showing all test modes to demonstrate in compliance with the standard.

Summary Table of Test Modes					
-	Data Rate / Modulation				
Test Item	ØBluetooth LE(1Mbps)	□Bluetooth LE(2Mbps)			
For Conducted and Radiated	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz			
	Mode 2: CH19_2440 MHz	Mode 5: CH19_2440 MHz			
Test	Mode 3: CH39_2480 MHz	Mode 6: CH39_2480 MHz			
For AC Power-line Conducted Emission	N/A	NY T TO			

2.3. Block Diagram of Test System

2.3.1. For Radiated Spurious Emission

2.3.2. For Conducted Test

2.4. Description of Support Units

NO.	Unit	Brand	Model	Description
1	PC	Redmi	Redmi G	CI I F D
2	USB Line	ZL	24AWG	

2.5. Test Software and Power Level

During the test, the channel and power control software provided by the customer is used to control the operation channel and output power level.

2.6. EUT Operating Conditions

For AC power-line conducted emission, the EUT was connected under the large package sizes transmission.

For radiated spurious emission and conducted test, the engineering test program was provided and make the EUT to continuous transmit/receive.

АТЗЫ

2.7. Equipment List

2.7.1. For AC Power-Line Conducted Emission

Equipment Name	Manufacturer	Model	Serial No.	Equipment No.	Calibration Until
Test Receiver	R&S	ESPI	101679	SHATBL-E012	2025.05.21
LISN	R&S	ENV216	100300	SHATBL-E013	2025.05.21
LISN	R&S	ENV216	100333	SHATBL-E041	2025.05.21
Thermometer	DeLi	N/A	N/A	SHATBL-E016	2025.09.21
Test Software	FALA	EZ-EMC	N/A	SHATBL-E046	N/A

2.7.2. For Radiated Spurious Emission

Equipment Name	Manufacturer	Model	Serial No.	Equipment No.	Calibration Until
Signal analyzer	Agilent	N9020A	MY50200811	SHATBL-E017	2025.05.21
Amplifier	JPT	JPA0118-55-303A	1910001800055000	SHATBL-E006	2025.05.21
Amplifier	JPT	JPA-10M1G32	21010100035001	SHATBL-E005	2025.05.21
Antenna/Turn table Controller	Brilliant	N/A	N/A	SHATBL-E007	N/A
Loop Antenna	Daze	ZN30900C	20077	SHATBL-E042	2025.05.21
Bilog Antenna	SCHWARZBECK	VULB 9168	01174	SHATBL-E008	2025.05.21
Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120D	02334	SHATBL-E009	2025.05.21
Horn Antenna	COM-POWER	AH-1840	10100008	SHATBL-E043	2025.05.21
Thermometer	DeLi	N/A	N/A	SHATBL-E015	2025.09.21
Test Software	FALA	EMC-RI	N/A	SHATBL-E046	N/A

3

Report No.:SHATBL2412015W02

1

2.7.3. For Conducted Test

Equipment Name	Manufacturer	Model	Serial No.	Equipment No.	Calibration Until
Power meter	Anritsu	ML2496A	1935001	SHATBL-W030	2025.09.28
Power sensor	Anritsu	MA2411B	1911006	SHATBL-W031	2025.09.28
Power sensor	DARE	RPR3006W	16I00054SN016	SHATBL-W008	2025.09.28
Power sensor	DARE	RPR3006W	RPR6W-2001005	SHATBL-W032	2025.09.28
Power sensor	Rediteq	RPR3006W	RPR6W-2201002	SHATBL-W033	2024.11.15
Power sensor	Rediteq	RPR3006W	RPR6W-2201003	SHATBL-W034	2024.11.15
Power sensor	Keysight	U2021XA	MY59120004	SHATBL-W035	2025.08.13
Adjustable Attenuator	Agilent	8494B	MY42144015	SHATBL-W009	2025.09.28
Adjustable	Agilent	8496B	MY42143776	SHATBL-W010	2025.09.28
Environmental Test Chamber	KSON	THS-B6C-150	9159K	SHATBL-W019	2025.01.17
Signal analyzer	Keysight	N9020A	MY50510136	SHATBL-W003	2025.09.28
Vector signal generator	Keysight	N5182B	MY57300196	SHATBL-W005	2025.09.28
Vector signal generator	Agilent	N5182A	MY50143555	SHATBL-W037	2025.07.17
Analog signal generator	Keys <mark>ig</mark> ht	N5173B	MY60403026	SHATBL-W038	2025.07.17
Wideband radio communication tester	R&S	CMW500	101331	SHATBL-W007	2025.09.28
Spectrum analyzer	R&S	FSV40-N	101761	SHATBL-W036	2025.08.22
Switch Box	N/A	RFSW3003328	RFSW201019	SHATBL-W029	N/A
Thermometer	DeLi	N/A	N/A	SHATBL-W012	2025.09.21
Test Software	FALA	LZ-RF	N/A	SHATBL-W020	N/A

2.8. Measurement Uncertainty

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	RF output power, conducted	±0.958dB
2	Conducted spurious emissions	±2.988dB
3	All emissions, radiated 30MHz-1GHz	±2.50dB
4	All emissions, radiated 1GHz-18GHz	±3.51dB
5	Occupied bandwidth	±23.20Hz
6	Power spectral density	±0.886dB

AT3

3. TEST RESULT

3.1. Maximum Peak Conducted Output Power

3.1.1. Limit

<u>47 CFR 15.247(b)(3)</u>: For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt.

<u>47 CFR 15.247(b)(4)</u>: If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

<u>47 CFR 15.247(c)(1)(i)</u>: Systems operating in the 2400–2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

3.1.2. Test Procedure

<u>ANSI C63.10-2013 clause 7.8.5</u>: This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test:

1. Use the following spectrum analyzer settings:

- ① Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
- ② RBW > 20 dB bandwidth of the emission being measured.
- ③ VBW ≥ RBW.
- ④ Sweep: Auto.
- 5 Detector function: Peak.
- 6 Trace: Max hold.
- 2. Allow trace to stabilize.
- 3. Use the marker-to-peak function to set the marker to the peak of the emission.

4. The indicated level is the peak output power, after any corrections for external attenuators and cables.

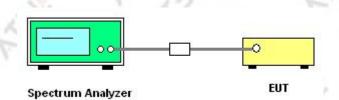
5. A plot of the test results and setup description shall be included in the test report. Remark:

A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.

Nº P

Report No.:SHATBL2412015W02

Ì


P

4

4

4

3.1.3. Test Setup

3.1.4. Test Result of Maximum Peak Conducted Output Power Please refer to the Appendix A1.

F

44

3.2. Duty Cycle

3.2.1. Limit

There is no limit requirement for Duty Cycle.

3.2.2. Test Procedure

<u>ANSI C63.10-2013 clause 11.6</u>: Measurements of duty cycle and transmission duration shall be performed using one of the following techniques:

1. A diode detector and an oscilloscope that together have a sufficiently short response time to permit accurate measurements of the ON and OFF times of the transmitted signal.

2. The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the ON and OFF times of the transmitted signal:

① Set the center frequency of the instrument to the center frequency of the transmission.

- ② Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value.
- ③ Set VBW \geq RBW. Set detector = peak or average.

(4) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring the duty cycle shall not be used if T \leq 16.7 µs.)

3.2.3. Test Setup

Spectrum Analyzer

EUT

3.2.4. Test Result of Duty Cycle Please refer to the Appendix A2.

3.3. 6dB Bandwidth and 99% Bandwidth

3.3.1. Limit

<u>47 CFR 15.247(a)(2)</u>: Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

There is no limit requirement for 99% Bandwidth.

3.3.2. Test Procedure

1. The testing of 6dB Bandwidth follows <u>ANSI C63.10-2013 clause 11.8.1</u>: The steps for the first option are as follows:

① Set RBW = 100 kHz.

- (2) Set the VBW \geq [3 × RBW].
- ③ Detector = peak.
- ④ Trace mode = max hold.
- 5 Sweep = auto couple.

6 Allow the trace to stabilize.

⑦ Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

2. The testing of 99% Bandwidth follows <u>ANSI C63.10-2013 clause 6.9.3</u>: The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:

① The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.

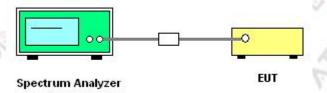
② The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.

③ Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in <u>ANSI C63.10-2013 clause 4.1.5.2</u>.

④ Step a) through step c) might require iteration to adjust within the specified range.

5 Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.

(6) Use the 99% power bandwidth function of the instrument (if available) and report the



measured bandwidth.

⑦ If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.

(8) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

3.3.3. Test Setup

3.3.4. Test Result of 6dB Bandwidth and 99% Bandwidth Please refer to the Appendix A3.

AT3

3.4. Power Spectral Density

3.4.1. Limit

<u>47 CFR 15.247(e)</u>: For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

3.4.2. Test Procedure

<u>ANSI C63.10-2013 clause 11.10.2</u>: The following procedure shall be used if maximum peak conducted output power was used to determine compliance, and it is optional if the maximum conducted (average) output power was used to determine compliance:

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to 3 kHz.
- 4. Set the VBW \geq [3 × RBW].
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.

9. Use the peak marker function to determine the maximum amplitude level within the RBW.

EUT

3.4.3. Test Setup

Spectrum Analyzer

3.4.4. Test Result of Power Spectral Density

Please refer to the Appendix A4.

3.5. Conducted Band Edge

3.5.1. Limit

<u>47 CFR 15.247(d)</u>: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

3.5.2. Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 11.13.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.

3. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Conducted Band Edge measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the 100 kHz bandwidth within the band that contains the highest level of the desired power when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

4. Measure and record the results in the test report.

5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.5.3. Test Setup

EUT

Spectrum Analyzer 3.5.4. Test Result of Conducted Band Edge

Please refer to the Appendix A5.

AT 3 🗠

3.6. Conducted Spurious Emission

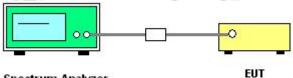
3.6.1. Limit

47 CFR 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

3.6.2. Test Procedure

1. The testing follows ANSI C63.10-2013 clause 7.8.8.

2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.


3. Set to the maximum power setting and enable the EUT transmit continuously.

4. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.

5. Measure and record the results in the test report.

6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.6.3. Test Setup

3.6.4. Test Result of Conducted Spurious Emission

Spectrum Analyzer

Please refer to the Appendix A5.

3.7. Radiated Spurious Emission and Restricted Band

3.7.1. Limit

<u>47 CFR 15.247(d)</u>: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

<u>47 CFR 15.205(a)</u>: Only spurious emissions are permitted in any of the frequency bands listed below:

Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	
0.090-0.110 12.29-12.293		1660-1710	8.025-8.5	
12.51975-12.52025	156.52475-156.52525	1718.8-1722.2	9.0-9.2	
12.57675-12.57725	156.7-156.9	2200-2300	9.3-9.5	
13.36-13.41	162.0125-167.17	2310-2390	10.6-12.7	
16.42-16.423	167.72-173.2	2483.5-2500	13.25-13.4	
16.69475-16.69525	240-285	2690-2900	14.47-14.5	
16.80425-16.80475	322-335.4	3260-3267	15.35-16.2	
25.5-25.67	399.9-410	3332-3339	17.7-21.4	
37.5-38.25	608-614	3345.8-3358	22.01-23.12	
73-74.6	960-1240	3600-4400	23.6-24.0	
8.362-8.366 74.8-75.2		4500-5150	31.2-31.8	
108-121.94	1435-1626.5	5350-5460	36.43-36.5	
123-138	1645.5-1646.5	7250-7750	Above 38.6	
	(MHz) 12.29-12.293 12.51975-12.52025 12.57675-12.57725 13.36-13.41 16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 108-121.94	(MHz)(MHz)12.29-12.293149.9-150.0512.51975-12.52025156.52475-156.5252512.57675-12.57725156.7-156.913.36-13.41162.0125-167.1716.42-16.423167.72-173.216.69475-16.69525240-28516.80425-16.80475322-335.425.5-25.67399.9-41037.5-38.25608-61473-74.6960-124074.8-75.21300-1427108-121.941435-1626.5	(MHz)(MHz)(MHz)12.29-12.293149.9-150.051660-171012.51975-12.52025156.52475-156.525251718.8-1722.212.57675-12.57725156.7-156.92200-230013.36-13.41162.0125-167.172310-239016.42-16.423167.72-173.22483.5-250016.69475-16.69525240-2852690-290016.80425-16.80475322-335.43260-326725.5-25.67399.9-4103332-333937.5-38.25608-6143345.8-335873-74.6960-12403600-440074.8-75.21300-14274500-5150108-121.941435-1626.55350-5460	

<u>47 CFR 15.209(a)</u>: The emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)		
0.009-0.490	2400/F(kHz)	300		
0.490-1.705	24000/F(kHz)	30		
1.705-30.0	30	30		
30-88	100	3		
88-216	150	3		
216-960	200 🌷	3		
Above 960	500	3		

3.7.2. Test Procedure

1. The testing follows ANSI C63.10-2013 clause 11.11 & 11.12.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.

3. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

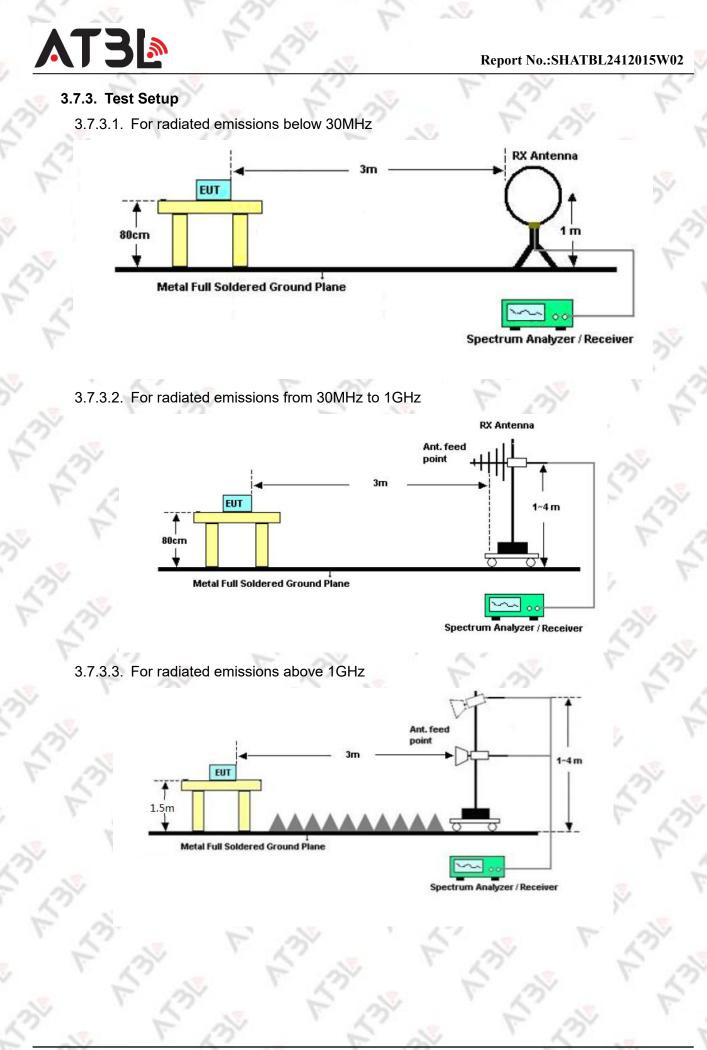
5. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Pre-amp Factor = Level.

6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.

7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than peak limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

8. Use the following spectrum analyzer settings:

① Span shall wide enough to fully capture the emission being measured;


2 When frequency < 1 GHz:

 Set RBW=100 kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;

③ When frequency \geq 1 GHz:

• Set RBW = 1 MHz; VBW = 3 MHz for peak measurement;

• Set RBW = 1 MHz; VBW = 10 Hz, when duty cycle is no less than 98 percent or VBW \geq 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

3.7.4. Test Result of Radiated Spurious Emission and Restricted Band

Note:

For 9 kHz ~ 30 MHz

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

For 1 GHz ~ 18GHz:

1. The all data rate modes had been test, but only worse test data was recorded in the test report.

2.In frequency ranges 18 ~25GHz no any other harmonic emissions detected which are tested to compliance with the limit. No recording in the test report. No any other emissions level which are attenuated less than 20dB below the limit. No recording in the test report.
3.We used the filter to test and the main frequency was filtered out.

Please refer to the Appendix A6

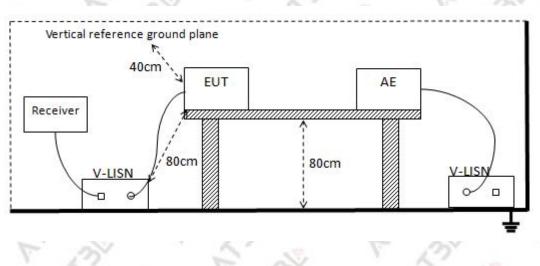
3.8. AC Power-Line Conducted Emission

3.8.1. Limit

<u>47 CFR 15.207(a)</u>: For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table:

Frequency of omission (MHz)	Conducted limit (dBµV)					
Frequency of emission (MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				

*Decreases with the logarithm of the frequency.


3.8.2. Test Procedure

1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.

- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.

8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9 kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.8.3. Test Setup

S. S.

E BE

K.S.

E.S.

E BE

135

C.S.

E.F.

K35

K35

K3V

F35

C.S.

R. B.

Far

2º

E.F.

4

F.S.

1

P

E Sh

E B

F.S.

E B

K31

2

A. P.

12 P

P

475

÷

En P

4 B

L. P.

E B

K35

Fall

N

K 35

ESS -

3

3ª

31

K35

E B

E B

R

4 St

E Star

K3N

2 B

E.S.

E B

F. Shi

135

E35

S.L.

F. 35

F35

R. B

2 Prover

E B

EL.

E B

N.S.

E.F.

S. S.

E.S.

K B

F.S.

N. A.

2 P

K BU

SP

3.8.4. Test Result of AC Power-Line Conducted Emission RE Please refer to the Appendix A7.

P

Fair

R. Bu

The Bar

En P

C. S.

F3N

L. P.

R. B.

17 P

F.SE

P

K35

K B

F35

EL

F3V

EL.

C.C.

K31

R. S.

EL.

K31

23h

En St

S.F.

S.F.

535

F

E.S.

2 B

E.

E B

E.F.

K35

S.L.

E She

E.F.

K B

E.S.

K35

1 B

K35

E B

E.F.

13N

P

1- St

3.9. Antenna Requirement

3.9.1. Standard Requirement

According to <u>47 CFR 15.203</u>, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

3.9.2. EUT Antenna

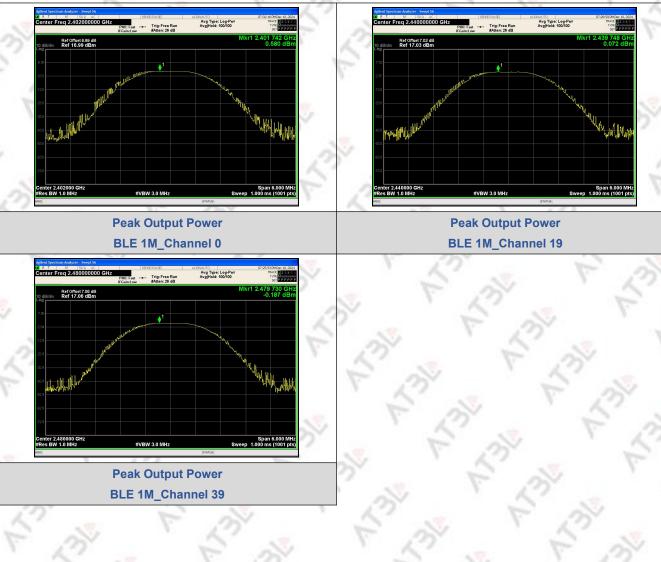
The antenna used for the EUT is PCB antenna, which meets the antenna requirements.

4.TEST SETUP PHOTOGRAPHS

Please refer to the Appendix F.

5.EXTERNAL AND INTERNAL PHOTOS OF THE EUT

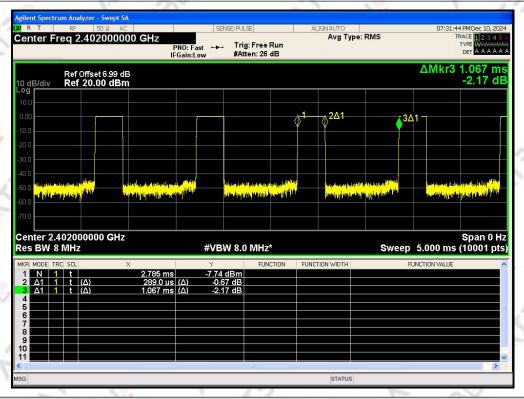
Please refer to the Appendix G.



A1.Conducted Peak Output Power

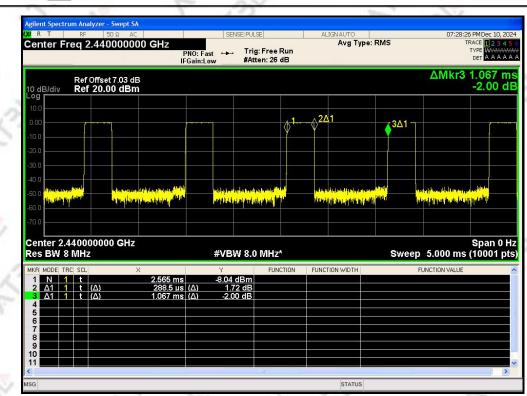
Test Result

Mode Channe		Peak Output Power (dBm)	Peak Output Power (mW)	Limit (dBm)	Result	
~	0	0.580	1.14	≤30	PASS	
BLE 1M	19	0.072	1.02	≤30	PASS	
F 3	39	-0.187	0.96	≤30	PASS	


Report No.:SHATBL2412015W02

A2.Duty Cycle

Test Result


Mode	Channel	On Time (ms)	Period (ms)	Duty Cycle (%)	Duty Cycle (linear)	Duty Cycle Factor (dB)
1	0	0.289	1.067	27.09	0.2709	5.6719
BLE 1M	19	0.289	1.067	27.04	0.2704	5.6799
~	39	0.288	1.067	27.04	0.2704	5.6799

Test Graphs

BLE 1M_Channel 0

ť

ГЗ 🄊

BLE 1M_Channel 19

XI R Cen			50 Ω AC		PNO: Fast		: Free Run	AL	IGNAUTO Avg Type: F	RMS	TI	L PM Dec 10, 202 RACE 1 2 3 4 5 TYPE WHANNA DET A A A A A
10 4	B/div		et 7.06 dB .00 dBm		Gain:Low	#At	en: 26 dB					1.067 m -1.91 dl
Log 10.0												
	——							¢1		<u>3∆</u> .		
	2							-Y	¥			
											<u></u>	
-30.0 -40.0												
			<mark> </mark>				ill House and here		o top o the solution		ola spith	
	a na balanda	and the state of the	л. Ъ	<mark>h ful ministern beidenn</mark>	in ale la	riw y	n rajestra probaj		WILS A PERSON		A DESCRIPTION OF THE PARTY OF T	allar plant and a straight and a
		800000	00 GHz				B 41 1-*			.		Span 0 Hz
	BW 8		×		7	VBW 8.0	FUNCTION	FUNCT	ION WIDTH		CTION VALUE	(10001 pts
1	N 1	t	~	2.817 ms		8.65 dBm	FUNCTION	FUNCT	IUN WIDTH	FUN	CTION VALUE	
3		t (Δ) t (Δ)		288.5 µs 1.067 ms		0.74 dB -1.91 dB						
4												
6 7												
8												
9												
9 10 11							100					>

BLE 1M_Channel 39

A3.6dB Bandwidth and 99% Bandwidth

Test Result for 6dB Bandwidth:

Mode	Channel	Center Frequency (MHz)	6 dB Bandwidth (MHz)	Limit (MHz)	Result	
177	0	2402	0.7029	20	PASS	
BLE 1M	19	2440	0.7120	≥0.5	PASS	
	39	2480	0.7102	V B	PASS	

Test Graphs

BLE 1M_Channel 39

Total

x dB

5.57 dBm

99.00 %

-6.00 dB

Test Result for 99% Bandwidth:

dth 1.0797 MHz -10.559 kHz

710.2 kHz

Mode	Channel	Center Frequency (MHz)	99% BW (MHz)
BLE 1M	0	2402	1.0800
BLE 1M	19	2440	1.0561
BLE 1M	39	2480	1.0486

P

Report No.:SHATBL2412015W02

4

Ì

F

F

4

4

N.F.

Ĥ

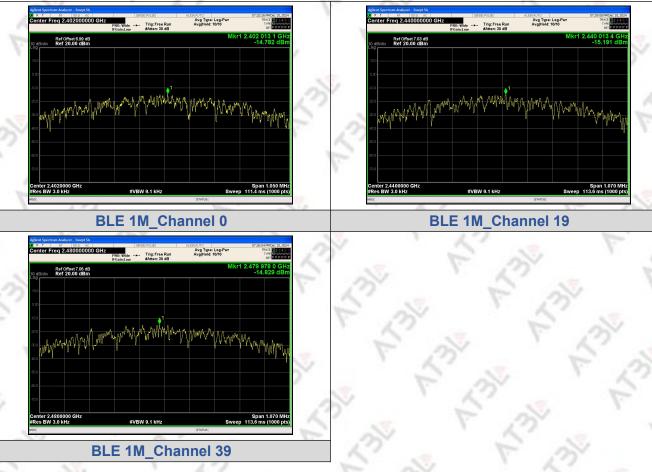
F

N.N.N.

N.

52

43

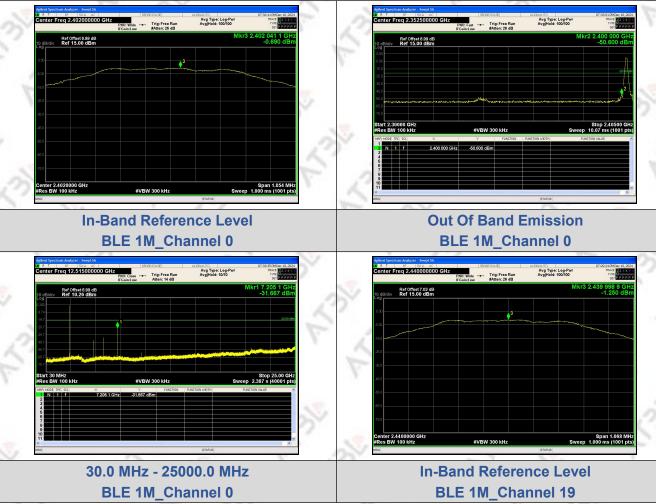

ATBL

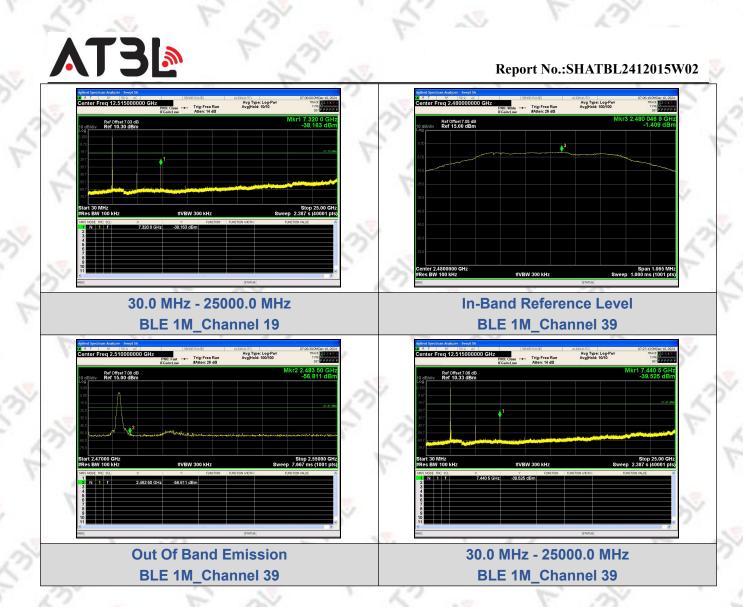
Report No.:SHATBL2412015W02

A4.Power Spectral Density

est Result	E al	1 K	18 F	25
Mode	Channel	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Result
BLE 1M	0	-14.782	≤8	PASS
BLE 1M	19	-15.191	≤8	PASS
BLE 1M	39	-14.829	≤8	PASS

Test Graphs


A5.Conducted Band Edge and Spurious Emission


17.

Test Result

Mode	Channel	OOB Emission Frequency (MHz)	OOB Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result
~	0	2400.00	-50.600	-20.69	-29.910	PASS
		7205.13	-31.667	-20.69	-10.977	PASS
BLE 1M	19	7319.99	-38.163	-21.25	-16.913	PASS
	39	2483.50	-56.811	-21.41	-35.401	PASS
	39	7440.47	-39.525	-21.41	-18.115	PASS

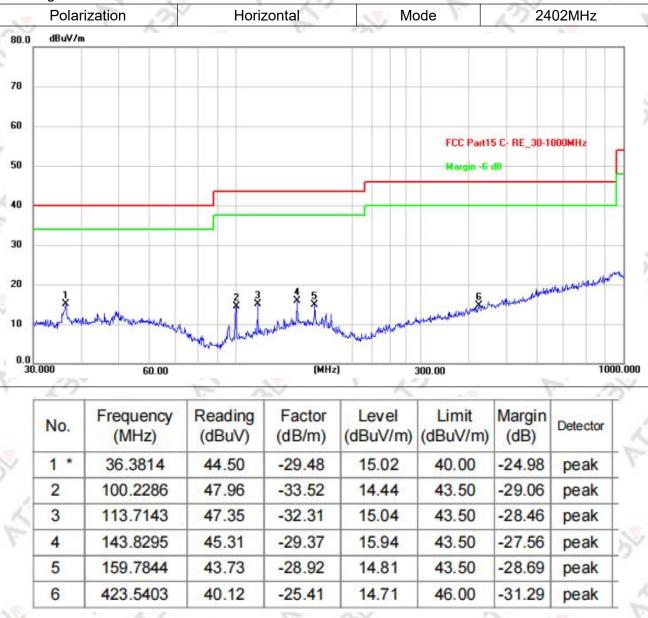
Test Graphs

A6.Radiated Spurious Emission and Restricted Band

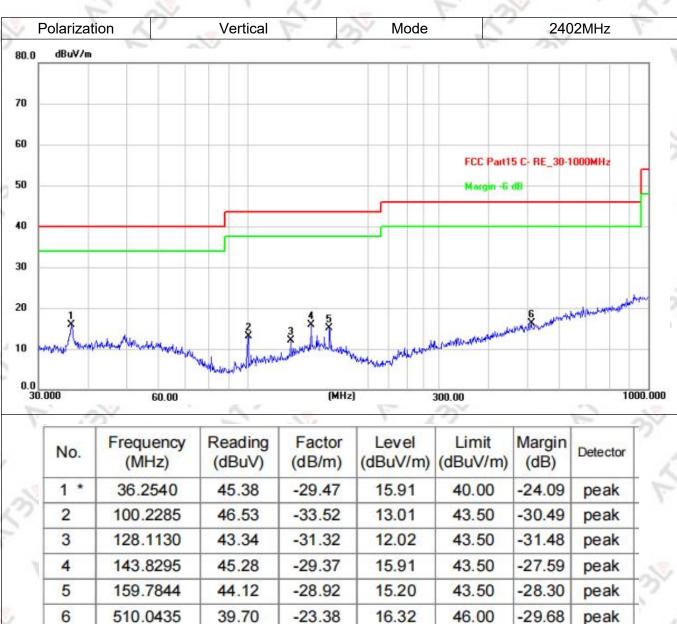
Test Result

Test Result for Radiated Spurious Emission:

For 9 kHz ~ 30 MHz


The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

For 30 MHz ~ 1 GHz:


Note:

1. All modes have been tested, only worst case(2402MHz)mode was recorded in the test report.

- 2.Emission Level (dBuV/m) = Reading Value (dBuV) + Correction Factor (dB/m).
- 3. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 4. The emission levels of other frequencies were less than 20dB margin against the limit.
- 5. Margin value = Emission level-Limit value.

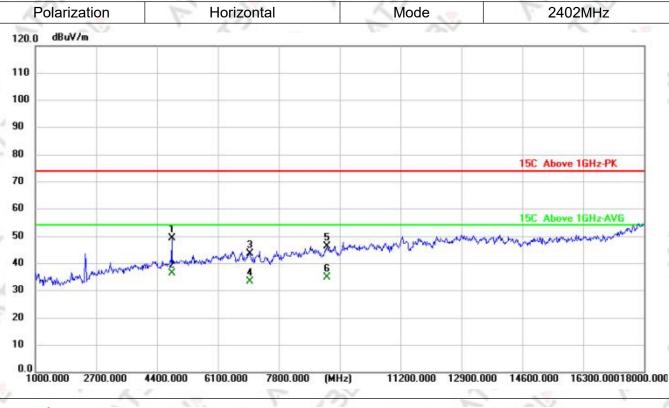
Report No.:SHATBL2412015W02

Report No.:SHATBL2412015W02

Note:

1. The all data rate modes had been test, but only worse test data was recorded in the test report.

2.In frequency ranges 18 ~25GHz no any other harmonic emissions detected which are tested to compliance with the limit. No recording in the test report. No any other emissions level which are attenuated less than 20dB below the limit. No recording in the test report.


3.We used the filter to test and the main frequency was filtered out.

4.Emission Level (dBuV/m) = Reading Value (dBuV) + Correction Factor (dB/m).

5. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).

6. The emission levels of other frequencies were less than 20dB margin against the limit.

7. Margin value = Emission level-Limit value.

Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
4808.000	55.22	-5.88	49.34	74.00	-24.66	peak
4825.000	42.18	-5.81	36.37	54.00	-17.63	AVG
6984.000	43.98	-0.23	43.75	74.00	-30.25	peak
6984.000	33.58	-0.23	33.35	54.00	-20.65	AVG
9143.000	42.48	3.76	46.24	74.00	-27.76	peak
9143.000	31.29	3.76	35.05	54.00	-18.95	AVG
	(MHz) 4808.000 4825.000 6984.000 6984.000 9143.000	(MHz)(dBuV)4808.00055.224825.00042.186984.00043.986984.00033.589143.00042.48	(MHz)(dBuV)(dB/m)4808.00055.22-5.884825.00042.18-5.816984.00043.98-0.236984.00033.58-0.239143.00042.483.76	(MHz)(dBuV)(dB/m)(dBuV/m)4808.00055.22-5.8849.344825.00042.18-5.8136.376984.00043.98-0.2343.756984.00033.58-0.2333.359143.00042.483.7646.24	(MHz)(dBuV)(dB/m)(dBuV/m)(dBuV/m)4808.00055.22-5.8849.3474.004825.00042.18-5.8136.3754.006984.00043.98-0.2343.7574.006984.00033.58-0.2333.3554.009143.00042.483.7646.2474.00	(MHz)(dBuV)(dB/m)(dBuV/m)(dBuV/m)(dB)4808.00055.22-5.8849.3474.00-24.664825.00042.18-5.8136.3754.00-17.636984.00043.98-0.2343.7574.00-30.256984.00033.58-0.2333.3554.00-20.659143.00042.483.7646.2474.00-27.76

Report No.:SHATBL2412015W02

	ation	£	Vertical	N 1	Mode	0	2402	2MHz
) dBuV/	/m		20	· •		1.00	1251	
-	_		_				15C Above 1	IGHz-PK
							15C Above 1	GHz-AVG
	102	¥	Lanna	1 march	immorphy	manderworkshirter	mathere	when when he
. I have	Hunterman	h . Haven	A X		6 ×			
Metrusy of a	w.	×						
		_						
00.000	2700.000 4	400.000	6100.000 71	300.000 (MHz) 11200.00	0 12900.000 14	4600.000 16	5300.0001800
000.000	~	Distance in	~	the state of the state	100	251		5300.0001800
No.	2700.000 4 Freque (MHz	ncy	6100.000 70 Reading (dBuV)	^{воо. ооо} (мна Factor (dB/m)) 11200.00 Level (dBuV/m)	Limit	4600.000 16 Margin (dB)	Detector
	Freque	ncy z)	Reading	Factor	Level	Limit	Margin	
No.	Freque (MHz	ncy z)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
No.	Freque (MHz 4808.0	ency z))00	Reading (dBuV) 51.16	Factor (dB/m) -5.88	Level (dBuV/m) 45.28	Limit (dBuV/m) 74.00	Margin (dB) -28.72	Detector peak
No. 1 2	Freque (MHz 4808.0 4825.0	ency z) 000 000	Reading (dBuV) 51.16 38.06	Factor (dB/m) -5.88 -5.81	Level (dBuV/m) 45.28 32.25	Limit (dBuV/m) 74.00 54.00	Margin (dB) -28.72 -21.75	Detector peak AVG
No. 1 2 3	Freque (MHz 4808.0 4825.0 5386.0	ency z) 000 000 000	Reading (dBuV) 51.16 38.06 53.76	Factor (dB/m) -5.88 -5.81 -4.41	Level (dBuV/m) 45.28 32.25 49.35	Limit (dBuV/m) 74.00 54.00 74.00	Margin (dB) -28.72 -21.75 -24.65	Detector peak AVG peak

P

Report No.:SHATBL2412015W02

2

F

X

4

F

1

	zation		Horizonta	5	Mode	5	244(OMHz
20.0 dBu\	V/m		200	- A-		1	2257	
0								
							15C Above 1	GHz-PK
		1940					15C Above 1	GHz-AVG
		×	3	S. hun per	an an an Malue	mummmmm	Amound	home when the
e Generativ	whenny	monthe	Annon Bring	S S				
Manshala	Marine		×	x				
				-				
	2700.000	4400.000	6100.000 78	300.000 (MHz)	11200.000	12900.000 14	1600.000 16	300.00018000
1000.000	22		61	Transferra and a state of the	124	057		
	Frequ	4400.000 Jency Hz)	6100.000 78 Reading (dBuV)	Factor (dB/m)	11200.000 Level (dBuV/m)	12900.000 14 Limit (dBuV/m)	Margin (dB)	300.00018000 Detector
1000.000	Frequ (MI	uency	Reading	Factor	Level	Limit	Margin	
No.	Frequ (MI 4876	uency Hz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
No.	Frequ (MI 4876 4893	uency Hz) 6.000	Reading (dBuV) 56.72	Factor (dB/m) -5.64	Level (dBuV/m) 51.08	Limit (dBuV/m) 74.00	Margin (dB) -22.92	Detector peak AVG
No.	Frequ (MI 4876 4893 6525	uency Hz) 5.000 3.000	Reading (dBuV) 56.72 42.87	Factor (dB/m) -5.64 -5.57	Level (dBuV/m) 51.08 37.30	Limit (dBuV/m) 74.00 54.00	Margin (dB) -22.92 -16.70	Detector peak
1 2 * 3	Frequ (MI 4876 4893 6525 6525	uency Hz) 5.000 3.000 5.000	Reading (dBuV) 56.72 42.87 45.84	Factor (dB/m) -5.64 -5.57 -1.06	Level (dBuV/m) 51.08 37.30 44.78	Limit (dBuV/m) 74.00 54.00 74.00	Margin (dB) -22.92 -16.70 -29.22	Detector peak AVG peak

Y

Ø

N.

F

F

P

Report No.:SHATBL2412015W02

2

F

X

4

F

1

	Polariza	ation	<u></u>	Vertical	5 2	Mode	0	2440	MHz
0.0	dBuV/m	-					1	735Y	
ŀ									
ł									
ŀ								15C Above 1	GHz-PK
ļ									
ŀ			1 *		100			15C Above 1	GHz-AVG
	,		XX	mannon	mann	marana	and the second	munum	handlow a
1	habit	mannak	3 ×		6 ×				
ſ	P Most P								
							_		
00	0.000 2	700.000 440	0.000	6100.000 78	00.000 (MHz)	11200.000	12900.000 14	600.000 16	300.0001800
Ì		Frequen	^{ov}	Reading	Factor	Level	Limit	Margin	
	No.	(MHz)	-	(dBuV)	(dB/m)	(dBuV/m)	and the second second	(dB)	Detector
-	-					47.11			neek
L	1	4876.00		52.75	-5.64	2010-010	74.00	-26.89	peak
	2	4893.00	00	39.69	-5.57	34.12	54.00	-19.88	AVG
			10	53.61	-4.41	49.20	74.00	-24.80	peak
	3	5386.00	0	00.0.					
	3 4	5386.00 5403.00		39.25	-4.39	34.86	54.00	-19.14	AVG
			00		-4.39 2.78	34.86 45.35	54.00 74.00	-19.14 -28.65	AVG peak

ï

P

Report No.:SHATBL2412015W02

1

2

F

K

4

1.	Polariza	tion	/	Horizonta	5	Mode	e s	248	0MHz
20.0) dBuV/m	Contract of the second		20		-	Tes -	25	
10									
00									
0									
0								15C Above	1GHz-PK
D									
0			1	_			-	15C Above	16Hz-AVG
0			Ť	*	5	and and a second second	munanna		
0		Land market working	monthing	mound	Anno and A	internation of the	*****	10000	1.7.94
0	manum	-the answer	2×	3 X	,	۲			_
0									
0									
0.0									
10	00.000 2	700.000 440	0.000	6100.000 78	00.000 (MHz	11200.0	00 12900.000 1	4600.000 1	6300.0001800
		Frequer		Reading	Factor	Level	Limit	Margin	
	No.	(MHz	· · · ·	(dBuV)	(dB/m)	(dBuV/m	Contraction of the second second	(dB)	Detector
	1	4961.0		58.90	-5.34	53.56	74.00	-20.44	peak
S	2	5063.0	nans .	35.66	-5.06	30.60	54.00	-23.40	AVG
	3	7273.0	1000	32.74	-0.31	32.43	54.00	-21.57	AVG
ſ		1213.0	00	32.14	-0.51	32.43	54.00	-21.57	AVG
	1.1		00	40.70	0.00	10.01	7100	0100	
1	4	7443.0		49.72	-0.38	49.34	74.00	-24.66	peak
8	1.1		00	49.72 42.11	-0.38 4.38 4.72	49.34 46.49 35.62	74.00 74.00 54.00	-24.66 -27.51 -18.38	peak peak AVG

Y

23

F

0

P

P

Report No.:SHATBL2412015W02

2

÷

X

4

Polarizat	tion	.0	Vertical	1	Mode	V	248	30MHz
) dBuV/m	. <u></u>			- N	1257		2.3	
-							_	
-								
-							150 41	ACH DK
							15C Above	TuHZ-PK
							-	1011-110
		\$ 3	5		Les Dé alesse	when an and the same	MANAMANA	16Hz-AVG
1	to some	andlink	month	how we have the second second	www.chaka A		A TAKE AND	
mound	handfunne	1. 4	ummrivil S	encomence and an				
mend	handroom	1.1 2 2	monormal	entre particle from the			ו•••	
mlind	handram		monormal	and a production of the second				
	handenarion		emanaritikulu S	lon hay prove from the				
	700.000 44	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	emanaritikulu S	00.000 (MHz)				16300.000180
	700.000 44	100.000 ency	emanaritikulu S	оо.ооо (мнг) Factor (dB/m)	11200.000 Level			
00.000 2	Frequ	ency Iz)	6100.000 780 Reading	Factor	11200.000 Level	12900.000 1 Limit	4600.000 Margin	6300.000180
00.000 2 No.	Freque (MH	ency Iz)	6100.000 780 Reading (dBuV)	Factor (dB/m)	11200.000 Level (dBuV/m)	12900.000 1 Limit (dBuV/m)	4600.000 Margin (dB)	16300.000180
00.000 2 No.	Freque (MH 4910.	ency Iz) 000	6100.000 780 Reading (dBuV) 35.77	Factor (dB/m) -5.52	11200.000 Level (dBuV/m) 30.25	Limit (dBuV/m) 54.00	4600.000 Margin (dB) -23.75	Detector AVG
00.000 2 No.	Freque (MH 4910. 4961.	ency Iz) 000 000 000	Reading (dBuV) 35.77 55.00	Factor (dB/m) -5.52 -5.34	11200.000 Level (dBuV/m) 30.25 49.66	Limit (dBuV/m) 54.00 74.00	Margin (dB) -23.75 -24.34	Detector AVG peak

Report No.:SHATBL2412015W02

Field Strength of Fundamental

Note:

- 1. Level (dBuV/m) = Reading Value (dBuV) + Correction Factor (dB/m).
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).

Freq. (MHz)	Reading (dBuv)	Factor (dB/m)	Level (dBuv/m)	Limit (dBuV/m)	Margin (dB)	Remark	Polarity
2402	77.64	-15.53	62.11	114.0	-51.89	Peak	Horizontal
2402	69.24	-15.53	53.71	94.0	-40.29	Average	Horizontal
2402	78.21	-15.53	62.68	114.0	-51.32	Peak	Vertical
2402	67.89 🌎	-15.53	52.36	94.0	-41.64	Average	Vertical
2441	79.68	-15.69	63.99	114.0	-50.01	Peak	Horizontal
2441	71.22	-15.69	55.53	94.0	-38.47	Average	Horizontal
2441	76.54	-15.69	60.85	114.0	-53.15	Peak	Vertical
2441	68.55	-15.69	52.86	94.0	-41.14	Average	Vertical
2480	78.85	-15.41	63.44	114.0	-50.56	Peak	Horizontal
2480	71.56	-15.41	56.15	94.0	-37.85	Average	Horizontal
2480	78.22	-15.41	62.81	114.0	-51.19	Peak	Vertical
2480	71.24	-15.41	55.83	94.0	-38.17	Average	Vertical

9

Y

Ý

3

SP

2

2

N. P.

N.F.

R

R

F

5

R

E.

F

Report No.:SHATBL2412015W02

٩.

2

4

X

1

N. P.

Image: No. Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dB) Detection 1 2390.000 60.60 -15.88 44.72 74.00 -29.28 peak	Р	olarizat	ion	2	Ho	orizontal	5 0	Mo	ode	-	2402	MHz
00 15C Above 16Hz-PK 1 2380.000 2389.000 2392.000 1 2390.000 60.60 -15.88 44.72 74.00 -29.28 pead	0.0	dBuV/m			- 22		·			A Case	- 23-5V	
00 15C Above 16Hz-PK 1 2380.000 2389.000 2392.000 1 2390.000 60.60 -15.88 44.72 74.00 -29.28 pead												
No. Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dBuV/m) Detection 1 2390.000 60.60 -15.88 44.72 74.00 -29.28 peak												
No. Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dBuV/m) Detection 1 2390.000 60.60 -15.88 44.72 74.00 -29.28 pear												
Image: No. Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dB) Detection 1 2390.000 60.60 -15.88 44.72 74.00 -29.28 peak	는											
No. Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dBuV/m) Detection 1 2390.000 60.60 -15.88 44.72 74.00 -29.28 peak	9									-	15C Above 1	GHz-PK
Image: No. Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dB) Detector 1 2390.000 60.60 -15.88 44.72 74.00 -29.28 peak	١Ē									/		
No. Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dB) Detection 1 2390.000 60.60 -15.88 44.72 74.00 -29.28 peak	-										m.	
2380.000 2383.000 2386.000 2389.000 2392.000 (MHz) 2398.000 2401.000 2404.000 2407.000 2407.000 No. Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dB) Detector 1 2390.000 60.60 -15.88 44.72 74.00 -29.28 pear			-				um	Mar	- Maria	5	15C Above 1	With Stranger
2380.000 2383.000 2386.000 2389.000 2392.000 (MHz) 2398.000 2401.000 2404.000 2407.000 2407.000 No. Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dB) Detector 1 2390.000 60.60 -15.88 44.72 74.00 -29.28 pear			in suspeller	wellow	monor	and the second	Ladyton					1446
No. Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dBuV/m) Detector (dB) 1 2390.000 60.60 -15.88 44.72 74.00 -29.28 pear		handbarray	and the second			2						
No. Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dBuV/m) Detector (dB) 1 2390.000 60.60 -15.88 44.72 74.00 -29.28 pear						8						
No. Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dBuV/m) Detector (dB) 1 2390.000 60.60 -15.88 44.72 74.00 -29.28 pear	1											
No. Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dBuV/m) Detector 1 2390.000 60.60 -15.88 44.72 74.00 -29.28 pear	•											
No.Frequency (MHz)Reading (dBuV)Factor (dB/m)Level (dBuV/m)Limit (dBuV/m)Margin (dBuV/m)12390.00060.60-15.8844.7274.00-29.28pear		0.000 23	383.000 23	386.000) 2389	.000 23	92.000 (MHz) 2398	.000	2401.000 2	404.000 24	07.000 2410
No. (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) Detection 1 2390.000 60.60 -15.88 44.72 74.00 -29.28 pear	17		24	_	-	~		10	1	251	_	-
	N	lo.		-		• 1	2012 2012 2016	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1	and the second second	-	Detector
0 * 0000 000 40 55 45 00 07 07 54 00 00 00	1	1	2390.0	00	60	.60	-15.88	44.7	2	74.00	-29.28	peak
2 * 2390.000 43.55 -15.88 27.67 54.00 -26.33 AV	2	2 *	2390.0	00	43	.55	-15.88	27.6	7	54.00	-26.33	AVG
DE E AL LE DE DE	1	0			100	0	/		1	20	1-	25

P

K

Page 46 of 50

N.F.

X

N

52

F

N. K.

N. N.

Ž

SE

R

N.

33

2º

ネマ

2ºF

N.F.

22

R

R

9

Z

Report No.:SHATBL2412015W02

٩.

3

4

X

1

Ê

	ation		Vertical	5 2	Mode	- A-	2402	2MHz
) dBuV/	m		202	·	· · · ·	P. an	1304	
								_
						\cap	15C Above 1	1GHz-PK
					-		106 Aligve 1	IGHz-AVG
			1		mul		the	- and -
المربية والمراجع	no se establis de la		when he would be a start of	William Address and a strain of the strain o	6 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 2			and and water and the
ny Markan Kun	munululunation	mantan	unin marina and	William Addamatic and a				
yddiallyndiaeth	personal produces	wantak	www.hwww.induguter. R	he William Andreas and an				
nyahin kana kana kana kana kana kana kana ka	manufalman	noder the set	Lulyulin Millium 14-1 Z	n Hind Videon mentan				
photoshan	manyalmataan	nder de au	Lulun han hit huad data u R	Million Addenostice of the				
yddahadaatu			\$					
444444 380.000	2383.000 238	6.000	\$	392.000 (MHz)) 2398.000		404.000 24	407.000 241
phalyphan 380.000	2383.000 238	6.000	\$ 2389.000 2	392.000 (MHz) 2398.000	251		407.000 241
94444444444444444444444444444444444444	2383.000 238 Frequen	6.000 Cy	\$ 2389.000 2 Reading	392.000 (MHz Factor) 2398.000 Level	Limit	Margin	407.000 241
	2383.000 238	6.000 Cy	\$ 2389.000 2	392.000 (MHz) 2398.000	Limit	Margin	407.000 2411
	2383.000 238 Frequen	6.000 Cy	\$ 2389.000 2 Reading	392.000 (MHz Factor) 2398.000 Level	Limit	Margin	407.000 2411

Y

52

P

Nº.

K

K

F

R

N.

F

E.F.

ЛТЗ

7

25

R

シア

RE

N.F.

2

S.F.

F

3

F

R

9

Report No.:SHATBL2412015W02

٩.

2

2

X

*

44

	Polariza		Horizonta	N 212	Mode	-	2400)MHz
).O	dBu∀/π	1						
ľ								
			\cap				15C Above	1GHz-PK
			f	Å				
ŀ				WI			15C Above	1GHz-AVG
ŀ	and an and a start of the	and the second		\$ mr	New Marken marker	A variation the		-
						All and a second se	- man have been a	manualitation
4	70.000 2	2473.000 2476.000	2479.000 24	482.000 (MHz)	2488.000	2491.000 2	494.000 2	497.000 2500
ľ	-	Frequency	Reading	Factor	Level	Limit	Margin	
	No.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector
	1					1.2		naak
F		2483.500	80.91	-15.30	65.61	74.00	-8.39	peak
	n *	2483.500	65.64	-15.30	50.34	54.00	-3.66	AVG
	2 *							

Y

S?

P

K

N.Y.

X

R

F

N.V.V.

Report No.:SHATBL2412015W02

	Polariza	ation	1	-	Vertical	1	201	/lode	1	1	2480	OMHz
20.1	0 dBuV/m	n	_	~~~							25	
0		_										
00			_									
Ū.												_
		_		_	\sim						15C Above	1GHz-PK
				- /	\frown			-				
				/	<u>\</u>	hand					15C Above	1GHz-AVG
						and the second					-	
	LAN	manuting of the t	warning			3	menyuman					
	and with	ungeninger fall	went			ž	men yester where a	-	whentienterrow	14. Jackson State	Minuhalanda	Manimultunan
	Jerrya matter	ang mentering of the l	Ward and a start of the start o			ž	and a start of the	and the second	where the server w	ikularino	entrukenten de	16Hz-AVG
	Joseph martin					2 Trav	and the second	And A Construction	utoituenten yn	ikisharino	editradekilkinerak.	allhardhivlaann
	Jerrya milita					2 The	men yester where	and the second	uloi tuaten a	ingharing	eneralekskiserade.	-Marinahaan
.0			2476.000	247	9.000 2	2482.000 (MI		88.000	2491.00			497.000 2500
0			2476.000 ency	Re	9.000 2 eading BuV)		1z) 24	88.000 /el		o 2ª it		
.0	470.000 2	2473.000 Freque	2476.000 ency z)	Re (d	ading	482.000 (MI Factor	lz) 24 Lev (dBu)	/el √/m)	2491.00	0 24 it /m)	494.000 2 Margin	497.000 2500

REMARKS:

- 1.Emission Level (dBuV/m) = Reading Value (dBuV) + Correction Factor (dB/m).
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The emission levels of other frequencies were less than 20dB margin against the limit.
- 4. Margin value = Emission level-Limit value.

A7.AC Power-Line Conducted Emission

Test Result

The product is battery powered and it is not working when charging, this item is not applicable.

******END OF THE REPORT*****