

TEST REPORT

Applicant:	Shenzhen Ruike Innovation Technology Co., Ltd
Address of Applicant: Manufacturer:	Unit 1701, Rufeng Building, 573 Bulong Rd Bantian Maantang community, Longgang district, Shenzhen 518100, China Shenzhen Ruike Innovation Technology Co., Ltd
Address of Manufacturer: Equipment Under Test (I	Unit 1701, Rufeng Building, 573 Bulong Rd Bantian Maantang community, Longgang district, Shenzhen 518100, China EUT)
Product Name:	FOLDING DRONE
Model No.:	See section 5.1
FCC ID:	2AXQL-RUKODRONE
Applicable standards:	FCC CFR Title 47 Part 15 Subpart E Section 15.407
Date of sample receipt:	March 07, 2022
Date of Test:	March 08, 2022-April 07, 2022
Date of report issue:	April 07, 2022
Test Result :	PASS *

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Luo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver. Page 1 of 28

2 Version

Version No.	Date	Description
00	April 07, 2022	Original

Prepared By:

Cher

Date:

April 07, 2022

Project Engineer

Check By:

opinson lunt Date:

April 07, 2022

Reviewer

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Page 2 of 28

GTS

Report No.: GTS202203000065F02

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
1			
3	CON	ITENTS	3
4	TES	T SUMMARY	4
	4.1	MEASUREMENT UNCERTAINTY	4
5	GEN	IERAL INFORMATION	5
	5.1	GENERAL DESCRIPTION OF EUT	5
	5.2	Test Mode	7
	5.3	TEST FACILITY	
	5.4	TEST LOCATION	
	5.5	DESCRIPTION OF SUPPORT UNITS	
	5.6	DEVIATION FROM STANDARDS	
	5.7	Additional Instructions	
6	TES	T INSTRUMENTS LIST	8
7	TES	T RESULTS AND MEASUREMENT DATA	10
	7.1	ANTENNA REQUIREMENT:	
	7.2	EMISSION BANDWIDTH	
	7.3	PEAK TRANSMIT POWER	12
	7.4	Power Spectral Density	
	7.5	BAND EDGE	14
	7.6	RADIATED EMISSION	17
	7.7	FREQUENCY STABILITY	27
8	TES	Т ЅЕТИР РНОТО	
9	EUT	CONSTRUCTIONAL DETAILS	
078	21 - 23 m		in the second second second

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	FCC part 15.203	PASS
AC Power Line Conducted Emission	FCC part 15.207	N/A
99% Bandwidth	Report only	PASS
Emission Bandwidth	FCC part 15.407(a)	PASS
Peak Transmit Power	FCC part 15.407(a)(1)	PASS
Power Spectral Density	FCC part 15.407(a) (1)	PASS
Undesirable Emission	FCC part 15.407(b), 15.205/15.209	PASS
Radiated Emission	FCC part 15.205/15.209	PASS
Frequency Stability	FCC part 15.407(g)	PASS

Remark:

Pass: The EUT complies with the essential requirements in the standard. N/A: The EUT stops work while charging

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	9kHz-30MHz	3.1dB	(1)
Radiated Emission	30MHz-200MHz	3.8039dB	(1)
Radiated Emission	200MHz-1GHz	3.9679dB	(1)
Radiated Emission	1GHz-18GHz	4.29dB	(1)
Radiated Emission	18GHz-40GHz	3.30dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)

Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.

5 General Information

5.1 General Description of EUT

Product Name:	FOLDING DRO	DNE		
Model No.:	F11GIM2, R-f11gim2, F11GIM2-4DC, 45-LDCQ-J3NT, F11GIM2 3B, UK- F11GIM2, DE-F11GIM2, F11GIM, f11pro-gim, drone11gim, U11, U11S, U11 Drone, Drone11S, Udi 11, U11PRO, U11PRO 3B, u11pro 1b, UK- U11PRO, DE-U11PRO, U11 4K PRO, U11GIM, U11GIM2, U11GIM3, UK- U11GIM, DE-U11GIM, UK-U11GIM2, DE-U11GIM2, M11, M11PRO, M11 4K PRO, M11S, M11GIM, M11GIM2, M11GIM3, UK-M11GIM, DE- M11GIM, UK-M11GIM2, DE-M11GIM2, F11, f11, drone11, F11PRO, f11pro, drone11pro, F11 4K PRO, C11PRO, B11, B11PRO, B11 4K PRO, B11S, B11GIM, B11GIM2, B11GIM3, UK-B11GIM, DE-B11GIM, UK- B11GIM2, DE-B11GIM2, F15, F15 PRO, F15GIM, F15GIM2, F15GIM3, F15GIM2-3B, F15GIM2-4B, UK-F15GIM2, DE-F15GIM2, UK-F15-GIM, DE-F15GIM, F11MINI, F11MINI2, F11MINI3, F11MINI4, F11MINI5, F11MINI-3B, F11MINI-4B, UK-F11MINI, DE-F11MINI, UK-F11MINI2, DE- F11MIN2			
Test Model No.:	F11GIM2			
Remark:All above models a	are identical in th	e same PCB layout, interior	structure and el	ectrical circuits.
The differences are appear	ance color and r	nodel name for commercial	purpose.	
S/N:	20220301			
Test sample(s) ID:	GTS20220300	0065-1		
Sample(s) Status:	Engineer samp	ble		
Operation Frequency:	Band	Mode	Frequency Range(MHz)	Number of channels
	U-NII Band	IEEE 802.11a	5180-5240	4
		IEEE 802.11n/ac 20MHz	5180-5240	4
		IEEE 802.11n/ac 40MHz	5190-5230	2
	OFDM	IEEE 802.11ac 80MHz	5210	1
Modulation technology:	OFDM		and	and an an an an an an
Antenna Type:	ANT 1&2: Integ	gral Antenna	a the an in the area	
Antenna gain:	ANT 1&2: 3dB		an an an an an an an	n n n n n n n n n n
Power supply:	DC 3.7V, 1500	mAh, 5.55Wh for Recharge	able Li-ion batte	ry
	The battery is a	charged via USB DC5V		

Channel list	for 802.11a/r	n/ac(HT20)	and an		and a state of the	and a star	on an in the contract
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
36	5180MHz	40	5200MHz	44	5220MHz	48	5240MHz

Channel list for 802.11n(HT40)/ac(HT40)					
Channel	Frequency	Channel	Frequency		
38	5190MHz	46	5230MHz		

Channel list for 802.11ac(HT80)	
Channel	Frequency
42	5210MHz

5.2 Test mode

	Transmitting mode Keep the EUT in transmitting with modulation						
	We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:						
a starting	Pre-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.						
	Mode	Data rate	Mode	Data rate			
	802.11a/n/ac(HT20)	6/6.5 Mbps	802.11ac(HT80)	29.3 Mbps			
1 24 20 2	802.11n/ac(HT40)	13.5 Mbps					

5.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC — Registration No.: 381383

Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

• IC — Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing .

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.4 Test Location

All tests	were	performed at:	
-----------	------	---------------	--

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480

Fax: 0755-27798960

5.5 Description of Support Units

Manufacturer	Description	Model	Serial Number/FCC ID
Apple	USB Charger	A1399	N/A
Lenovo	Notebook PC	E40-80	N/A

5.6 Deviation from Standards

None.

5.7 Additional Instructions

Test Software	Special test software provided by manufacturer	28
Power level setup	Default	2

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6 Test Instruments list

Rad	iated Emission:	the second s	an a	the second second	a man man man	a man a star a
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2020	July. 01 2025
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 24 2021	June. 23 2022
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 24 2021	June. 23 2022
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 24 2021	June. 23 2022
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 24 2021	June. 23 2022
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
8	Coaxial Cable	GTS	N/A	GTS213	June. 24 2021	June. 23 2022
9	Coaxial Cable	GTS	N/A	GTS211	June. 24 2021	June. 23 2022
10	Coaxial cable	GTS	N/A	GTS210	June. 24 2021	June. 23 2022
11	Coaxial Cable	GTS	N/A	GTS212	June. 24 2021	June. 23 2022
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 24 2021	June. 23 2022
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 24 2021	June. 23 2022
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 24 2021	June. 23 2022
15	Band filter	Amindeon	82346	GTS219	June. 24 2021	June. 23 2022
16	Power Meter	Anritsu	ML2495A	GTS540	June. 24 2021	June. 23 2022
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 24 2021	June. 23 2022
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 24 2021	June. 23 2022
19	Splitter	Agilent	11636B	GTS237	June. 24 2021	June. 23 2022
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 24 2021	June. 23 2022
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 17 2021	Oct. 16 2022
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 17 2021	Oct. 16 2022
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 17 2021	Oct. 16 2022
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 24 2021	June. 23 2022

RF C	onducted Test:						
Item	Item Test Equipment Manufacturer		Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 24 2021	June. 23 2022	
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 24 2021	June. 23 2022	
3	Spectrum Analyzer Agilent		E4440A GTS53		June. 24 2021	June. 23 2022	
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 24 2021	June. 23 2022	
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 24 2021	June. 23 2022	
6			RPR3006W	GTS569	June. 24 2021	June. 23 2022	
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 24 2021	June. 23 2022	
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 24 2021	June. 23 2022	

Gene	ral used equipment:	a share a share				
ltem	Test Equipment	Manufacturer	Model No.		Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 24 2021	June. 23 2022
2	Barometer	ChangChun	DYM3	GTS255	June. 24 2021	June. 23 2022

7 Test results and Measurement Data

7.1 Antenna requirement:

Standard requirement:	Standard requirement: FCC Part15 C Section 15.203								
15.203 requirement:									
	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an								
	coupling to the intentional radiator, the manufacturer may design the unit so e replaced by the user, but the use of a standard antenna jack or electrical								
E.U.T Antenna:									
The antenna is integral antenna, reference to the appendix II for details									

7.2 Emission Bandwidth

Test Requirement :	FCC Part15 E Section 15.407
Test Method :	ANSI C63.10:2013 & KDB 789033 D02 v02r01
Limit:	N/A
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table
a	Ground Reference Plane
70	
Test procedure:	According to KDB 789033 D02 General U-NII Test Procedures New Rules v02r01.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement Data: The detailed test data see Appendix for WIFI 5G.

7.3 Peak Transmit Power

Test Requirement	FCC Part15 E Section 15.407						
Test Method :	ANSI C63.10:2013 & KDB 789033 D02 v02r01						
FCC Limit:	Frequency band (MHz)						
	5150-5250 ≤1W(30dBm) for master device						
	≤250IVIW(23.98dBm) for client device						
	5250-5350 ≤250Mw(23.98dBm) for client device or						
	5250-5550 11dBm+10logB* 5470,5725 ≤250Mw(23.98dBm) for client device or						
	5470-5725 11dBm+10logB*						
	Remark: *Where B is the 26Db emission bandwidth in MHz.						
	The maximum conducted output power must be measured over any interval of continuous transmission using instrumentation calibrated in						
	terms of an rms-equivalent voltage.						
Test setup:	Power Meter						
	E.U.T						
	Non-Conducted Table						
	Ground Reference Plane						
Test procedure:	Measurement using an RF average power meter						
	(i) Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied						
	a) The EUT is configured to transmit continuously or to transmit with a constant duty cycle.						
	 b) At all times when the EUT is transmitting, it must be transmitting at its maximum power control level. 						
	c) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.						
	(ii) If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output signal as described in section B).						
	(iii) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.						
	(iv) Adjust the measurement in dBm by adding 10 log(1/x) where x is the duty cycle (e.g., 10log(1/0.25) if the duty cycle is 25 percent).						
Test Instruments:	Refer to section 6.0 for details						
Test Instruments: Test mode:	Refer to section 6.0 for details Refer to section 5.2 for details						

Measurement Data: The detailed test data see Appendix for WIFI 5G.

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test Requirement: FCC Part15 E Section 15.407 ANSI C63.10:2013 & KDB 789033 D02 v02r01 Test Method : Frequency band FCC Limit: Limit (MHz) ≤17dBm in 1MHz for master device 5150-5250 ≤11dBm in 1MHz for client device 5250-5350 ≤11dBm in 1MHz for client device 5470-5725 ≤11dBm in 1MHz for client device Remark: The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test. Test setup: Spectrum Analyzer E.U.T Non-Conducted Table **Ground Reference Plane** Create an average power spectrum for the EUT operating mode Test procedure: 1) being tested by following the instructions in section E)2) for measuring maximum conducted output power using a spectrum analyzer or EMI receiver: select the appropriate test method (SA-1, SA-2, SA-3, or alternatives to each) and apply it up to, but not including, the step labeled, "Compute power...' 2) Use the peak search function on the instrument to find the peak of the spectrum. 3) Make the following adjustments to the peak value of the spectrum, if applicable: a) If Method SA-2 or SA-2 Alternative was used, add 10 log(1/x), where x is the duty cycle, to the peak of the spectrum. b) If Method SA-3 Alternative was used and the linear mode was used in step E)2)g)(viii), add 1 dB to the final result to compensate for the difference between linear averaging and power averaging. 4) The result is the PSD. Test Instruments: Refer to section 6.0 for details

Refer to section 5.2 for details

7.4 Power Spectral Density

Measurement Data: The detailed test data see Appendix for WIFI 5G.

Test mode:

Test results:

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Pass

7.5 Band Edge

a star in the second		and an an an an an	and an and an	Sharp Man Star	and the second s					
Test Requirement:	FCC Part15 E Se	FCC Part15 E Section 15.407 and 5.205								
Test Method:	ANSI C63.10:201	ANSI C63.10:2013								
Test site:	Measurement Dis	Measurement Distance: 3m (Semi-Anechoic Chamber)								
Receiver setup:	an an an an an an an an	The set of an an an	an an an an an an	N THE STATE						
· · · · · · · · · · · · · · · · · · ·	Frequency	Detector	RBW	VBW	Remark					
n 9.	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value					
	Above 1GHz	Peak	1MHz	3MHz	Peak Value					
	Above TOTIZ	AV	1MHz	3MHz	Average Value					
Limit:		an an an an an an an	a a a a a	and an and an an an						
9	Frequen		_imit (dBuV	Contraction of the second s	Remark					
	30MHz-88	18 19 19	40.0		Quasi-peak Value					
8	88MHz-216		43.		Quasi-peak Value					
	216MHz-96		46.0	Are and a second	Quasi-peak Value					
n	960MHz-1	GHz	54.0	10 10 TA	Quasi-peak Value					
*	Above 10	Hz	54.0		Average Value					
2000 A			68.2	2	Peak Value					
	Lindooirable omia	alan limitar								
	Undesirable emis		n the E 1E	5 25 CH-	hand: all amissions					
*		776			band: all emissions eed an EIRP of -27					
	dBm/MHz.	e 0.10-0.00 C								
2 4		ers operating i	n the 5 25	-5.35 GHz	band: all emissions					
					eed an EIRP of -27					
2					35 GHz band that					
20					and must meet all					
					n the 5.15-5.25 GHz					
				• 10N OF	eet an out-of-band					
	emission EIR	P limit of -27 of	dBm/MHz ir	the 5.15-5	.25 GHz band.					
	(3) For transmitte	rs operating in	n the 5.47-	5.725 GHz	band: all emissions					
9		e 5.47-5.725 G	Hz band sl	hall not exc	eed an EIRP of −27					
5e	dBm/MHz.	an an an an an an	m m m m	20000	and an an an an an an					
Test Procedure:					1.5 m above the					
					d 360 degrees to					
n	b. The EUT was	e position of th								
×					ble-height antenna					
9 <mark>2</mark> ,	tower.			p or a varia	bie neight antenna					
	Sec. Sec. Sec.	height is varie	d from one	meter to for	ur meters above the					
					ld strength. Both					
×	horizontal and	d vertical polar	izations of	the antenna	a are set to make					
	the measurer		and and an an	and the second	and an an an an an an an an an					
2	d. For each sus									
					rom 1 meter to 4					
		ne rotable table		u nom u de	grees to 360					
2		nd the maximu liver system wa		ak Detect F	Function and					
74		ndwidth with M			unotion and					
5 C					a 10dB lower than					
<u>8</u> ;		the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not								

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

	Report No.: GTS202203000065F02						
	have 10dB margin would be re-tested one by one using peak, quasi- peak or average method as specified and then reported in a data sheet.						
Test setup:	For radiated emissions above 1GHz						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						

Remarks:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.
- 4. all were test, only the ANT 1 test result recorded in the report.
- 5. According to KDB 789033 D02 v02r01 section G) 1) (d), for For measurements above 1000 MHz @ 3m distance, the limit of field strength is computed as follows:

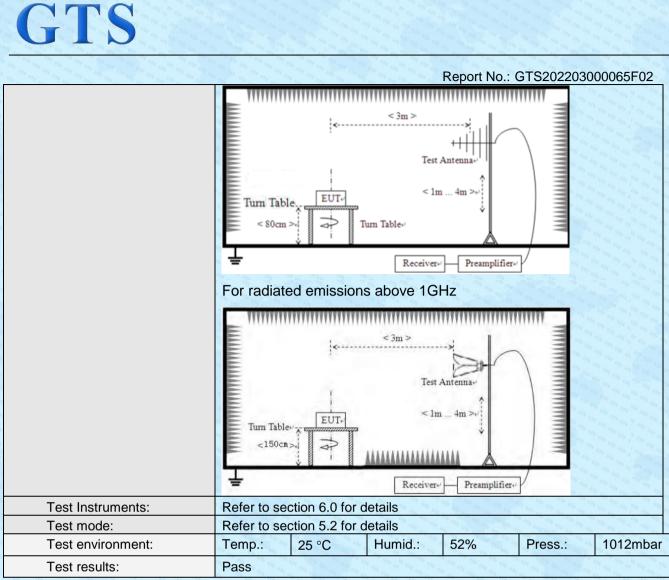
E[dBuV/m] = EIRP[dBm] + 95.2; For example, if EIRP = -27dBm

E[dBuV/m] = -27 + 95.2 = 68.2dBuV/m.

Measurement Data:

	802.11ac(HT20)					Test Frequency: 5180MHz				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
5150	39.98	31.56	4.95	37.58	38.91	68.2	-29.29	Vertical		
5150	44.2	31.56	4.95	37.58	43.13	68.2	-25.07	Horizontal		
5150	31.23	31.56	4.95	37.58	30.16	54	-23.84	Vertical		
5150	34.22	31.56	4.95	37.58	33.15	54	-20.85	Horizontal		

802.11ac(HT40)					Test Frequency: 5190MHz				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
5150	44.49	31.56	4.95	37.58	43.42	68.2	-24.78	Vertical	
5150	39.56	31.56	4.95	37.58	38.49	68.2	-29.71	Horizontal	
5150	32.5	31.56	4.95	37.58	31.43	54	-22.57	Vertical	
5150	33.03	31.56	4.95	37.58	31.96	54	-22.04	Horizontal	


÷.,	201	MAN SA GR	1 m m m	20. 24	Star March 20						
i.	802.11ac(HT80)					Test Frequency: 5210MHz					
1 8 2	Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
	5150	44.21	31.56	4.95	37.58	43.14	68.2	-25.06	Vertical		
1	5150	42.88	31.56	4.95	37.58	41.81	68.2	-26.39	Horizontal		
8	5150	31.43	31.56	4.95	37.58	30.36	54	-23.64	Vertical		
2	5150	30.65	31.56	4.95	37.58	29.58	54	-24.42	Horizontal		

7.6 Radiated Emission

Test Requirement :	ECC Part15 C	Section 15.209 an	d 15 205	101 00 00 00 00 00 00 00 00 00 00 00 00	and the second s				
Test Requirement : Test Method :	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		u 15.205	and the second s	and the second s				
	ANSI C63.10: 2013 9kHz to 40GHz								
Test Frequency Range:	1				and the second sec				
Test site:		Distance: 3m (Sen			Malue				
Receiver setup:	Frequency 9kHz-150KH	z Quasi-peak	RBW 200Hz	VBW 1kHz	Value Quasi-peak Value				
2	150kHz-30MH		9kHz	30kHz	Quasi-peak Value				
	30MHz-1GH		120KHz	300KHz	Quasi-peak Value				
- 6	The stand on Stand	Poak 1MHz		3MHz	Peak Value				
9	Above 1GHz	AV	1MHz	3MHz	Average Value				
FCC Limit:	Frequency (MHz) Field strength (microvolts/meter) Measurement distance (me 0.009-0.490 2400/F(kHz)								
0 0	216-960 Above 960	200** 500			3				
Test Procedure:	 measurements employing an average detector. Substitution method was performed to determine the actual ERP emission levels of the EUT. The following test procedure as below: 1>.Below 1GHz test procedure: 1. The EUT was placed on the top of a rotating table (0.8m for below 1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to 								
	 make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotable table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. 								

	2>.Above 1GHz test procedure:
	1. On the test site as test setup graph above, the EUT shall be placed at the 0.8m support on the turntable and in the position closest to normal use as declared by the provider.
	2. The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter. The output of the test antenna shall be connected to the measuring receiver.
	3. The transmitter shall be switched on, if possible, without modulation and the measuring receiver shall be tuned to the frequency of the transmitter under test.
	 4. The test antenna shall be raised and lowered from 1m to 4m until a maximum signal level is detected by the measuring receiver. Then the turntable should be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver. 5. Repeat step 4 for test frequency with the test antenna polarized
	horizontally.
	 Remove the transmitter and replace it with a substitution antenna Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a nonradiating cable. With the antennas at both ends vertically polarized, and with the signal generator tuned to a particular test frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output. Repeat step 7 with both antennas horizontally polarized for each test frequency. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by the following formula:
	where:
	Pg is the generator output power into the substitution antenna.
Test setup:	For radiated emissions from 9kHz to 30MHz
	< 3m > Test Antenna Tum Table < 80cm >
	Receiver*
	For radiated emissions from 30MHz to1GHz

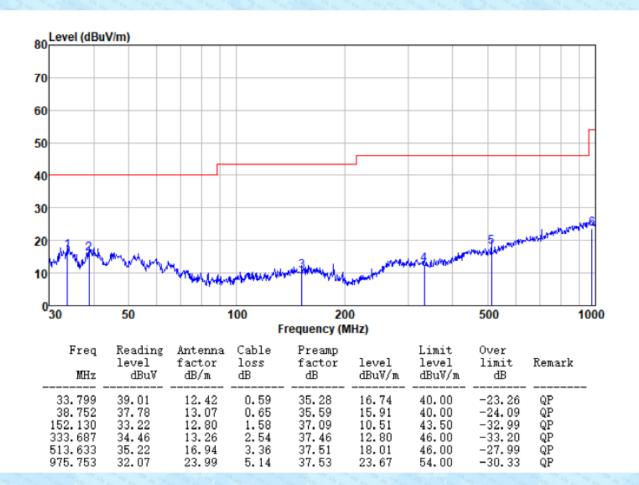
Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Remarks:

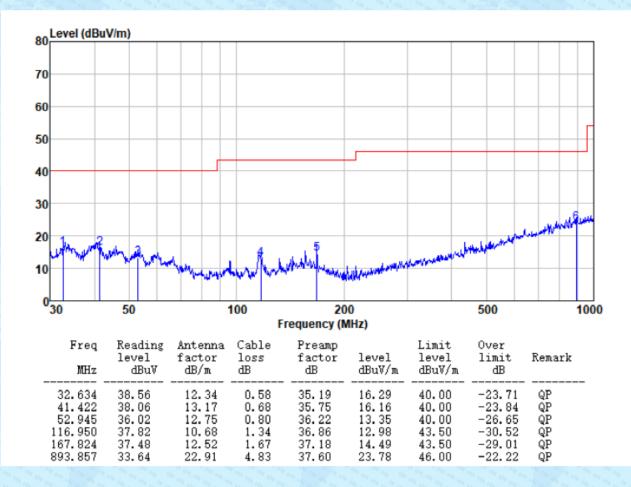
1. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement Data:

9 kHz ~ 30 MHz


The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

30MHz~ 1GHz


Pre-scan all test modes, found worst case at 802.11ac(HT20) 5200MHz, and so only show the test result of 802.11ac(HT20) 5200MHz,

Horizontal:

GTS

Vertical:

GTS

Report No.: GTS202203000065F02

Above 1GHz:

	802.11a					Test Frequency: 5180MHz				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10360	33.85	38.96	8.27	35.64	45.44	68.2	-22.76	Vertical		
15540	34.21	38.4	10.57	35.35	47.83	68.2	-20.37	Vertical		
10360	31.26	38.96	8.27	35.64	42.85	68.2	-25.35	Horizontal		
15540	31.95	38.4	10.57	35.35	45.57	68.2	-22.63	Horizontal		
10360	27.25	38.96	8.27	35.64	38.84	54	-15.16	Vertical		
15540	26.87	38.4	10.57	35.35	40.49	54	-13.51	Vertical		
10360	25.44	38.96	8.27	35.64	37.03	54	-16.97	Horizontal		
15540	23.77	38.4	10.57	35.35	37.39	54	-16.61	Horizontal		

	802.11a					Test Frequency: 5200MHz				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10400	35.72	39.01	8.29	35.67	47.35	68.2	-20.85	Vertical		
15600	31.1	38.3	10.62	35.36	44.66	68.2	-23.54	Vertical		
10400	32.98	39.01	8.29	35.67	44.61	68.2	-23.59	Horizontal		
15600	32.38	38.3	10.62	35.36	45.94	68.2	-22.26	Horizontal		
10400	26.04	39.01	8.29	35.67	37.67	54	-16.33	Vertical		
15600	27.55	38.3	10.62	35.36	41.11	54	-12.89	Vertical		
10400	27.21	39.01	8.29	35.67	38.84	54	-15.16	Horizontal		
15600	23.88	38.3	10.62	35.36	37.44	54	-16.56	Horizontal		

	80	02.11a			Test Frequency: 5240MHz				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10480	36.61	39.15	8.32	35.78	48.3	68.2	-19.9	Vertical	
15720	33.04	38	10.72	35.37	46.39	68.2	-21.81	Vertical	
10480	33.79	39.15	8.32	35.78	45.48	68.2	-22.72	Horizontal	
15720	33.15	38	10.72	35.37	46.5	68.2	-21.7	Horizontal	
10480	25.71	39.15	8.32	35.78	37.4	54	-16.6	Vertical	
15720	28.22	38	10.72	35.37	41.57	54	-12.43	Vertical	
10480	23.73	39.15	8.32	35.78	35.42	54	-18.58	Horizontal	
15720	25.8	38	10.72	35.37	39.15	54	-14.85	Horizontal	

	802.1	I1n(HT20)			Test Frequency: 5180MHz					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10360	33.16	38.96	8.27	35.64	44.75	68.2	-23.45	Vertical		
15540	31.19	38.4	10.57	35.35	44.81	68.2	-23.39	Vertical		
10360	33.57	38.96	8.27	35.64	45.16	68.2	-23.04	Horizontal		
15540	31.36	38.4	10.57	35.35	44.98	68.2	-23.22	Horizontal		
10360	28.46	38.96	8.27	35.64	40.05	54	-13.95	Vertical		
15540	27.65	38.4	10.57	35.35	41.27	54	-12.73	Vertical		
10360	25.01	38.96	8.27	35.64	36.6	54	-17.4	Horizontal		
15540	22.61	38.4	10.57	35.35	36.23	54	-17.77	Horizontal		

	802.11n(HT20)					Test Frequency: 5200MHz					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10400	35.45	39.01	8.29	35.67	47.08	68.2	-21.12	Vertical			
15600	31.7	38.3	10.62	35.36	45.26	68.2	-22.94	Vertical			
10400	31.53	39.01	8.29	35.67	43.16	68.2	-25.04	Horizontal			
15600	32.85	38.3	10.62	35.36	46.41	68.2	-21.79	Horizontal			
10400	29.57	39.01	8.29	35.67	41.2	54	-12.8	Vertical			
15600	24.33	38.3	10.62	35.36	37.89	54	-16.11	Vertical			
10400	24.22	39.01	8.29	35.67	35.85	54	-18.15	Horizontal			
15600	24.55	38.3	10.62	35.36	38.11	54	-15.89	Horizontal			

	802.1	1n(HT20)			Test Frequency: 5240MHz				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10480	36.78	39.15	8.32	35.78	48.47	68.2	-19.73	Vertical	
15720	31.82	38	10.72	35.37	45.17	68.2	-23.03	Vertical	
10480	35.64	39.15	8.32	35.78	47.33	68.2	-20.87	Horizontal	
15720	29.71	38	10.72	35.37	43.06	68.2	-25.14	Horizontal	
10480	28.84	39.15	8.32	35.78	40.53	54	-13.47	Vertical	
15720	27.74	38	10.72	35.37	41.09	54	-12.91	Vertical	
10480	25.6	39.15	8.32	35.78	37.29	54	-16.71	Horizontal	
15720	23.33	38	10.72	35.37	36.68	54	-17.32	Horizontal	

à 🗖	a she are a			and the second second	and the second second	11 13 10 10 10 10 10 10 10 10 10 10 10 10 10			6 96 98 98 98 98 98 98 98 98 98 98 98 98 98		
ŝ		802.1	1n(HT40)			Test Frequency: 5190MHz					
	Frequency	Read	Antenna	Cable	Preamp	Level	Limit Line	Over	an an an in an an		
	(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	(dBuV/m)	Limit	polarization		
	(101112)	(dBuV)	(dB/m)	(dB)	(dB)	(ubuv/iii)	(ubu v/m)	(dB)			
0	10380	33.42	39.01	8.28	35.67	45.04	68.2	-23.16	Vertical		
-	15570	32.85	38.3	10.6	35.36	46.39	68.2	-21.81	Vertical		
82	10380	31.49	39.01	8.28	35.67	43.11	68.2	-25.09	Horizontal		
37. 67	15570	33.05	38.3	10.6	35.36	46.59	68.2	-21.61	Horizontal		
28 0	10380	29.14	39.01	8.28	35.67	40.76	54	-13.24	Vertical		
	15570	25.89	38.3	10.6	35.36	39.43	54	-14.57	Vertical		
	10380	23.33	39.01	8.28	35.67	34.95	54	-19.05	Horizontal		
	15570	24.3	38.3	10.6	35.36	37.84	54	-16.16	Horizontal		

	802.11n(HT40)					Test Frequency: 5230MHz				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10460	33.2	39.11	8.31	35.75	44.87	68.2	-23.33	Vertical		
15690	33.43	38.1	10.7	35.37	46.86	68.2	-21.34	Vertical		
10460	35.06	39.11	8.31	35.75	46.73	68.2	-21.47	Horizontal		
15690	31.31	38.1	10.7	35.37	44.74	68.2	-23.46	Horizontal		
10460	29.13	39.11	8.31	35.75	40.8	54	-13.2	Vertical		
15690	28.33	38.1	10.7	35.37	41.76	54	-12.24	Vertical		
10460	27.84	39.11	8.31	35.75	39.51	54	-14.49	Horizontal		
15690	24.5	38.1	10.7	35.37	37.93	54	-16.07	Horizontal		

She and the second second second		and the second se	Con 15 -	10 m						
	802.1	1ac(HT20)			Test Frequency: 5180MHz					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10360	35.24	38.96	8.27	35.64	46.83	68.2	-21.37	Vertical		
15540	34.71	38.4	10.57	35.35	48.33	68.2	-19.87	Vertical		
10360	34.97	38.96	8.27	35.64	46.56	68.2	-21.64	Horizontal		
15540	31.26	38.4	10.57	35.35	44.88	68.2	-23.32	Horizontal		
10360	27.27	38.96	8.27	35.64	38.86	54	-15.14	Vertical		
15540	26.61	38.4	10.57	35.35	40.23	54	-13.77	Vertical		
10360	25.36	38.96	8.27	35.64	36.95	54	-17.05	Horizontal		
15540	24.07	38.4	10.57	35.35	37.69	54	-16.31	Horizontal		

7	802.11ac(HT20)					Test Frequency: 5200MHz					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10400	32.02	39.01	8.29	35.67	43.65	68.2	-24.55	Vertical			
15600	34.67	38.3	10.62	35.36	48.23	68.2	-19.97	Vertical			
10400	34.21	39.01	8.29	35.67	45.84	68.2	-22.36	Horizontal			
15600	29.92	38.3	10.62	35.36	43.48	68.2	-24.72	Horizontal			
10400	27.09	39.01	8.29	35.67	38.72	54	-15.28	Vertical			
15600	28.12	38.3	10.62	35.36	41.68	54	-12.32	Vertical			
10400	24.18	39.01	8.29	35.67	35.81	54	-18.19	Horizontal			
15600	25.95	38.3	10.62	35.36	39.51	54	-14.49	Horizontal			

802.11ac(HT20)					Test Frequency: 5240MHz				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10480	33.53	39.15	8.32	35.78	45.22	68.2	-22.98	Vertical	
15720	34.62	38	10.72	35.37	47.97	68.2	-20.23	Vertical	
10480	31.31	39.15	8.32	35.78	43	68.2	-25.2	Horizontal	
15720	33.87	38	10.72	35.37	47.22	68.2	-20.98	Horizontal	
10480	25.51	39.15	8.32	35.78	37.2	54	-16.8	Vertical	
15720	26.77	38	10.72	35.37	40.12	54	-13.88	Vertical	
10480	23.88	39.15	8.32	35.78	35.57	54	-18.43	Horizontal	
15720	24.19	38	10.72	35.37	37.54	54	-16.46	Horizontal	

18 50 218 2	The second second	and an an an	18 Jan 30	S - 20 - 3 62 1	The Star Star	The state of the	as the st	6 91 978 47 9	
802.11ac(HT40)					Test Frequency: 5190MHz				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10380	32.8	39.01	8.28	35.67	44.42	68.2	-23.78	Vertical	
15570	33.35	38.3	10.6	35.36	46.89	68.2	-21.31	Vertical	
10380	35.94	39.01	8.28	35.67	47.56	68.2	-20.64	Horizontal	
15570	29.94	38.3	10.6	35.36	43.48	68.2	-24.72	Horizontal	
10380	25.02	39.01	8.28	35.67	36.64	54	-17.36	Vertical	
15570	28.18	38.3	10.6	35.36	41.72	54	-12.28	Vertical	
10380	25.27	39.01	8.28	35.67	36.89	54	-17.11	Horizontal	
15570	26.74	38.3	10.6	35.36	40.28	54	-13.72	Horizontal	

802.11ac(HT40)					Test Frequency: 5230MHz				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10460	36.79	39.11	8.31	35.75	48.46	68.2	-19.74	Vertical	
15690	34.28	38.1	10.7	35.37	47.71	68.2	-20.49	Vertical	
10460	34.72	39.11	8.31	35.75	46.39	68.2	-21.81	Horizontal	
15690	33.24	38.1	10.7	35.37	46.67	68.2	-21.53	Horizontal	
10460	29.68	39.11	8.31	35.75	41.35	54	-12.65	Vertical	
15690	25.38	38.1	10.7	35.37	38.81	54	-15.19	Vertical	
10460	25.39	39.11	8.31	35.75	37.06	54	-16.94	Horizontal	
15690	26.91	38.1	10.7	35.37	40.34	54	-13.66	Horizontal	

	802.1	1ac(HT80)			Test Frequency: 5210MHz				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10420	34.06	39.06	8.29	35.71	45.7	68.2	-22.5	Vertical	
15630	33.18	38.2	10.65	35.36	46.67	68.2	-21.53	Vertical	
10420	35.83	39.06	8.29	35.71	47.47	68.2	-20.73	Horizontal	
15630	30.37	38.2	10.65	35.36	43.86	68.2	-24.34	Horizontal	
10420	28.41	39.06	8.29	35.71	40.05	54	-13.95	Vertical	
15630	25.13	38.2	10.65	35.36	38.62	54	-15.38	Vertical	
10420	26.95	39.06	8.29	35.71	38.59	54	-15.41	Horizontal	
15630	22.99	38.2	10.65	35.36	36.48	54	-17.52	Horizontal	

Notes:

1. Level = Read Level + Antenna Factor+ Cable loss- Preamp Factor.

2. The test trace is same as the ambient noise (the test frequency range: 18GHz~40GHz), therefore no data appear in the report.

3. all were test, only the ANT 1 test result recorded in the report.

7.7 Frequency stability

Test Requirement:	FCC Part15 C Section 15.407(g)					
Test Method:	ANSI C63.10:2013, FCC Part 2.1055,					
Limit:	Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified					
Test Procedure:	The EUT was setup to ANSI C63.4, 2003; tested to 2.1055 for compliance to FCC Part 15.407(g) requirements.					
Test setup:	Spectrum analyzer	Temperature Chamber				
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					

Measurement Data: The detailed test data see Appendix for WIFI 5G.

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

---END----