Model: FSU810 FCC ID: 06Y-FSU810 FCC: Part 24 Report #: 2004227

APPENDIX A: RF EXPOSURE COMPLIANCE

FCC Rules and Regulations Part 1.1307, 1.1310, 2.1091, 2.1093:

1. General Information:

FCCID: O6Y-FSU810

Environment: General Population/Uncontrolled Exposure

Device category: Mobile per Part 2.1091 Modulation Type/Mode: PHS (TDMA-TDD)

2. Operating Configurations and Test Conditions:

2.1 Antenna Type(s):

Antenna	Туре	Gain (dBi)	Numeric Gain
Whip	Omni	2.5	1.78
Rod	Omni	4.5	2.82
65° Directional	Patch	10	10

Frequency Range	Frequency Tolerance (ppm)	Emission Designator
1880.15-1909.85	0.61	262KDXW

10 dBi Antenna

Output Power (Worst Case)	Time averaging as an inherent property (100 % Duty Cycle) (W)	Time averaging as an inherent property (11.2 % Duty Cycle, -9.5 dB) (W)	
EIRP	0.066 (18.2 dBm)	0.007 (8.7 dBm)	
Conducted	0.085 (19.3 dBm)	0.010 (9.8 dBm)	

3. MPE Calculation:

The maximum distance from the antenna at which MPE is met or exceeded, is calculated from the equation relating field strength E in V/m, transmit power P in Watts, transmit antenna numeric gain G, and separation distance in meters:

The Electric field generated for a 1mW/cm² exposure (S) is calculated as follows:

$$S = \frac{E^2}{Z}$$

where: S = Power density E = Electric field Z = Impedance.

$$E(V/m) = \sqrt{S \times Z}$$
 1 mW/cm² = 10 W/m²

Client: UTStarcom
Model: FSU810
FCC ID: O6Y-FSU810
FCC: Part 24
Report #: 2004227

The impedance of free space is 337 ohms, where E and H fields are perpendicular.

Thus:

$$E(V/m) = \sqrt{10 \times 377} = 61.4 \text{ V/m}$$

MPE Calculation:

The maximum distance, from the antenna at which MPE is met or exceeded, is calculated from the equation relating field strength E in V/m, transmit power P in Watts, transmit antenna numeric gain G, and separation distance in meters above and solving for d below:

$$E(V/m) = \frac{\sqrt{30 \times P \times G}}{d} \quad \text{and} \quad d = \frac{\sqrt{30 \times P \times G}}{E(V/m)} \quad \text{Power density:} \quad P_d \left(mW/cm^2 \right) = \frac{E^2}{3770}$$

The limit for general population/uncontrolled exposure environment above 1500 MHz is 1 mW/cm^2 .

SEPARATION DISTANCE:

Separation	Antenna Gain (dBi)	D (0)
Distance ^A	10	Duty Cycle (%)
Power ^B (Watt)	(cm)	(70)
0.010	2.8	11.2
0.085	8	100.0

Calculations:

11.2% duty cycle =
$$0.028m = \frac{\sqrt{30 \times 0.010 \times 10}}{61.4}$$

100% duty cycle =
$$0.08m = \frac{\sqrt{30 \times 0.085 \times 10}}{61.4}$$

$$S = \frac{P \times G}{4 \times \pi \times d^2}$$

Where:

S = Power density

P = Transmitter conducted power in watts

G = Numeric gain

D = Distance to radiation center

Fundamental Operating Frequency: 1880.15-1909.85 MHz

Measured conducted power: 0.085W (19.3 dBm)

Antenna Gain = 10 dBi; Numeric Gain = 10

Rhein Tech Laboratories, Inc. 360 Herndon Parkway Suite 1400 Herndon, VA 20170 http://www.rheintech.com Client: UTStarcom
Model: FSU810
FCC ID: O6Y-FSU810
FCC: Part 24
Report #: 2004227

At 100% Duty Cycle

 $S = 80 \times 10/4 \times \pi \times 20^2 = 0.159 \text{ mW/cm}^2 \text{ at } 20 \text{ cm}$

At 11.2 % Duty Cycle

S= $10 \times 10/4 \times \pi \times 20^2 = 0.02 \text{ mW/cm}^2$ at 20 cm

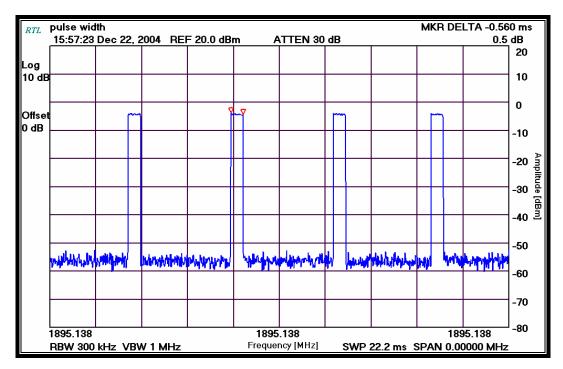
Antenna Gain = 10 dBi Conducted Power (mW) = 85			
Separation Distance			
Power Density Limit	Calculated Power density at 20 cm distance		
1 mW/cm ²	0.159 mW/ cm ²		

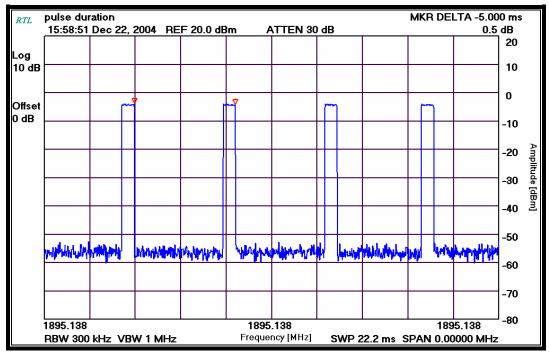
Notes:

Distances are calculated for the largest (worst-case) separation distance as applicable.

CONCLUSION:

The device complies with the MPE requirements by providing a safe separation distance between the antenna, including any radiating structure, and any persons.


Proposed RF exposure safety information to include in User's Manual:


CAUTION: Antenna Installation Requirement

The antenna(s) used for this transmitter must be installed to provide a separation distance of at least 20 cm from all persons and must not be co-located or operating in conjunction with any other antenna or transmitter.

Client: UTStarcom
Model: FSU810
FCC ID: O6Y-FSU810
FCC: Part 24
Report #: 2004227

Duty Cycle Calculation: $0.56 \text{ ms} / 5 \text{ ms} = 0.112 \text{ and } 10 \log (11.2\%) = -9.5 \text{ dB}$

