FCC §1.1310, § 2.1091 - Maximum Permissible Exposure (MPE)

Applicable Standard

According to subpart 1.1310, 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

No.: RXZ211001001RF01

Limits for General Population/Uncontrolled Exposure										
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm2)	Averaging Time (minutes)						
0.3-1.34	614	1.63	*(100)	30						
1.34-30	824/f	2.19/f	*(180/f²)	30						
30-300	27.5	0.073	0.2	30						
300-1500	/	f/1500	30	30						
1500-100,000	/	1.0	30	30						

f = frequency in MHz; * = Plane-wave equivalent power density

Calculated Formulary:

Predication of MPE limit at a given distance

 $S = PG/4\pi R^2 = \text{power density (in appropriate units, e.g. } mW/cm^2);$

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Calculated Data:

Mode	Frequency Range (MHz)	Antenna Gain		Tune-up Output Power		Evaluation Distance	Power Density	MPE Limit
		(dBi)	(numeric)	(dBm)	(mW)	(cm)	(mW/cm2)	(mW/cm2)
LTE Band 2	1850-1910	1.9	1.549	23.5	223.872	20	0.069	1
LTE Band 4	1710-1755	1.9	1.549	24	251.189	20	0.077	1
LTE Band 5	824-849	1.2	1.318	25	316.228	20	0.082	0.55
LTE Band 12	699-716	1.2	1.318	24.5	281.838	20	0.073	0.47

Result: The device meets MPE at distance **20cm.**