APPLICANT : Yulong Computer Telecommunication Scientific (Shenzhen) Co., Ltd. **EQUIPMENT** : mobile phone **BRAND NAME** : Vodafone MODEL NAME : 889N **FCC ID** : R38YL889N **STANDARD** : FCC 47 CFR Part 2 (2.1093) **ANSI/IEEE C95.1-1992** IEEE 1528-2003 We, SPORTON INTERNATIONAL (XI'AN) INC., would like to declare that the tested sample has been evaluated in accordance with the procedures and shown the compliance with the applicable technical standards. The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL (XI'AN) INC., the test report shall not be reproduced except in full. Reviewed by: Eric Huang / Deputy Manager Este huans Approved by: Jones Tsai / Manager **Report No. : FA412407** # SPORTON INTERNATIONAL (XI'AN) INC. 1F, Building A3, No. 39 Chuangye Rd., Xi'an Hi-tech Zone, Shanxi Province, P.R.C. TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date: May 30, 2014 Form version. : 140422 FCC ID: R38YL889N Page 1 of 44 # **Table of Contents** Report No.: FA412407 | 1. Statement of Compliance | | |---|----| | 2. Administration Data | 5 | | 3. Guidance Standard | | | 4. Equipment Under Test (EUT) | 6 | | 4.1 General Information | 6 | | 4.2 Maximum Tune-up Limit | 7 | | 4.3 General LTE SAR Test and Reporting Considerations | 9 | | 5. RF Exposure Limits | | | 5.1 Uncontrolled Environment | | | 5.2 Controlled Environment | 10 | | 6. Specific Absorption Rate (SAR) | 11 | | 6.1 Introduction | | | 6.2 SAR Definition | 11 | | 7. System Description and Setup | 12 | | 8. Measurement Procedures | | | 8.1 Spatial Peak SAR Evaluation | | | 8.2 Power Reference Measurement | | | 8.3 Area Scan | | | 8.4 Zoom Scan | 15 | | 8.5 Volume Scan Procedures | 15 | | 8.6 Power Drift Monitoring | | | 9. Test Equipment List | | | 10. System Verification | | | 10.1 Tissue Verification | | | 10.2 System Performance Check Results | 18 | | 11. RF Exposure Positions | 19 | | 11.1 Ear and handset reference point | 19 | | 11.2 Definition of the cheek position | | | 11.3 Definition of the tilt position | 21 | | 11.4 Body Worn Accessory | | | 11.5 Wireless Router | 22 | | 12. Conducted RF Output Power (Unit: dBm) | 23 | | 13. Bluetooth Exclusions Applied | 28 | | 14. Antenna Location | | | 15. SAR Test Results | 31 | | 15.1 Head SAR | | | 15.2 Hotspot SAR | 33 | | 15.3 Body Worn Accessory SAR | 35 | | 15.4 Repeated SAR Measurement | 37 | | 16. Simultaneous Transmission Analysis | 38 | | 16.1 Head Exposure Conditions | 39 | | 16.2 Hotspot Exposure Conditions | | | 16.3 Body-Worn Accessory Exposure Conditions | 41 | | 17. Uncertainty Assessment | 42 | | 18. References | 44 | | Appendix A. Plots of System Performance Check | | | Appendix B. Plots of High SAR Measurement | | | Appendix C. DASY Calibration Certificate | | | Appendix D. Test Setup Photos | | TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 FCC ID: R38YL889N # **Revision History** Report No.: FA412407 | REPORT NO. | VERSION | DESCRIPTION | ISSUED DATE | | |------------|---------|-------------------------|--------------|--| | FA412407 | Rev. 01 | Initial issue of report | May 30, 2014 | TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date: May 30, 2014 Form version. : 140422 FCC ID: R38YL889N Page 3 of 44 # 1. Statement of Compliance The maximum results of Specific Absorption Rate (SAR) found during testing for Yulong Computer Telecommunication Scientific (Shenzhen) Co., Ltd., mobile phone, 889N, are as follows. Report No. : FA412407 | | | | Highest SAR Summary | | | | | | |--------------------|-------------------|-------------------|-----------------------|--|--|--|--|--| | Equipment
Class | Frequency
Band | Operating
Mode | Head
1g SAR (W/kg) | Body-worn
1g SAR (W/kg)
(Separation 1cm) | Wireless Router
1g SAR (W/kg)
(Separation 1cm) | Simultaneous
Transmission SAR
(W/kg) | | | | PCE | GSM1900 | Voice/Data | 0.38 | 1.13 | 1.43 | 1.43 | | | | PCE | LTE Band 7 | Data | 0.43 | 1.32 | 1.32 | 1.43 | | | | DTS | WLAN 2.4GHz Band | Data | 0.02 | 0.05 | 0.05 | 1.43 | | | | DSS | Bluetooth | Data | | | | 1.43 | | | | | Date of Testing: | | | 04/14/2014 | ~ 04/19/2014 | | | | This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2003. TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date: May 30, 2014 FCC ID: R38YL889N Form version. : 140422 Page 4 of 44 # 2. Administration Data | Testing Laboratory | | | | | | | |--------------------|--|----------|--|--|--|--| | Test Site | Test Site SPORTON INTERNATIONAL (XI'AN) INC. | | | | | | | Test Site Location | 1F, Building A3, No. 39 Chuangye Rd., Xi'an Hi-tech Zone, Shanxi Province, TEL: +86-029-8860-8767 FAX: +86-029-8860-8791 | P. R. C. | | | | | Report No. : FA412407 | Applicant | | | | | | | |--|--|--|--|--|--|--| | Company Name Yulong Computer Telecommunication Scientific (Shenzhen) Co., Ltd. | | | | | | | | Address | Coolpad Information Harbor, 2nd Mengxi Road, Northern Part of Science&Technology Park, Nanshan district, Shenzhen, P.R.China | | | | | | | Manufacturer | | | | | | |--|--|--|--|--|--| | Company Name Yulong Computer Telecommunication Scientific (Shenzhen) Co., Ltd. | | | | | | | | Coolpad Information Harbor, 2nd Mengxi Road, Northern Part of Science&Technology Park, Nanshan district, Shenzhen, P.R.China | | | | | # 3. Guidance Standard The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards: - FCC 47 CFR Part 2 (2.1093) - ANSI/IEEE C95.1-1992 - IEEE 1528-2003 - FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r03 - FCC KDB 865664 D02 SAR Reporting v01r01 - FCC KDB 447498 D01 General RF Exposure Guidance v05r02 - FCC KDB 648474 D04 SAR Evaluation Considerations for Wireless Handsets v01r02 - FCC KDB 248227 D01 SAR meas for 802 11abg v01r02 - FCC KDB 941225 D03 SAR Test Reduction GSM GPRS EDGE v01 - FCC KDB 941225 D04 SAR for GSM E GPRS Dual Xfer Mode v01 - FCC KDB 941225 D05 SAR for LTE Devices v02r03 - FCC KDB 941225 D06 Hotspot Mode SAR v01r01 # 4. Equipment Under Test (EUT) #### 4.1 General Information | Product Feature & Specification | | | | | | | |--|---|--|--|--|--|--| | Equipment Name | mobile phone | | | | | | | Brand Name | Vodafone | | | | | | | Model Name | 889N | | | | | | | FCC ID | R38YL889N | | | | | | | IMEI Code | 008600250424883 | | | | | | | Wireless Technology and
Frequency Range | GSM1900: 1850.2 MHz ~ 1909.8 MHz
LTE Band 7: 2502.5 MHz ~ 2567.5 MHz
WLAN 2.4GHz Band: 2412 MHz ~ 2462 MHz
Bluetooth: 2402 MHz ~ 2480 MHz
NFC : 13.56 MHz | | | | | | | Mode | GSM/GPRS/EGPRS LTE: QPSK, 16QAM 802.11b/g/n HT20 Bluetooth v3.0+EDR, Bluetooth v4.0 LE NFC:ASK | | | | | | | HW Version | T3 | | | | | | | SW Version | 4.4.257.00.T3.140506.KVT49L.VF.DE | | | | | | | GSM / (E)GPRS Dual
Transfer mode | Class A – EUT can support Packet Switched and Circuit Switched Network simultaneously. | | | | | | | EUT Stage | Production Unit | | | | | | **Report No. : FA412407** #### Remark: - 1. 802.11n-HT40 is not supported in 2.4GHz WLAN. - This device 2.4GHz WLAN supports Hotspot operation. - This device supported VoIP in GPRS/EGPRS, LTE (e.g. 3rd party VoIP). - This device supports DTM operation. Per KDB 941225 D04 v01 requirement, the required test configuration for this device is as below: - This EUT is class A device - This EUT supports (E)GPRS multi-slot class 12 (max. uplink : 4, max. downlink : 4, total timeslots : 5) - This EUT supports DTM multi-slot class 11 (max. uplink : 3 for 1 CS & 2 PS, max. downlink : 4, total timeslots : 5) - The measured maximum conducted power can be referred to section 12 of this report - For DTM multi-slot class 11 link mode, the device was linked with system emulator (Agilent E5515C) and transmit maximum power on maximum number of Tx slots (one CS timeslot and two PS timeslots per frame). TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date: May 30, 2014 Form version. : 140422 FCC ID: R38YL889N Page 6 of 44 # 4.2 Maximum Tune-up Limit | | Mada | Burst average power(dBm) | |--------|-------------------------|--------------------------| | | Mode | GSM 1900 | | GSN | // (GMSK, 1 Tx slot) | 30 | | GPR | S (GMSK, 1 Tx slot) | 30 | | GPR: | S (GMSK, 2 Tx slots) | 28 | | GPR: | S (GMSK, 3 Tx slots) | 28 | | GPR: | S (GMSK, 4 Tx slots) | 25 | | EDG | SE (8PSK, 1 Tx slot) | 27 | | EDG | E (8PSK, 2 Tx slots) | 23 | | EDG | E (8PSK, 3 Tx slots) | 23 | | EDG | E (8PSK, 4 Tx slots) | 20 | | DTM 5 | GSM (GMSK, 1 Tx slot) | 28 | | DINIS | GPRS (GMSK, 1 Tx slot) | 28 | | DTM 9 | GSM (GMSK, 1 Tx slot) | 28 | | DIMB | GPRS (GMSK, 1 Tx slot) | 28 | | DTM11 | GSM (GMSK, 1
Tx slot) | 28 | | DIMIT | GPRS (GMSK, 2 Tx slots) | 27 | | DTM 5 | GSM (GMSK, 1 Tx slot) | 28 | | פואום | EDGE (8PSK, 1 Tx slot) | 23 | | DTM 9 | GSM (GMSK, 1 Tx slot) | 28 | | פואום | EDGE (8PSK, 1 Tx slot) | 23 | | DTM 11 | GSM (GMSK, 1 Tx slot) | 28 | | DIWITI | EDGE (8PSK, 2 Tx slots) | 23 | Report No.: FA412407 | | LTE Band 7 | | | | | | | | | |---------------------|------------|---------|-----|--------------|--|--|--|--|--| | Average Power (dBm) | | | | | | | | | | | Modulation | BW (MHz) | RB size | MPR | Target Power | | | | | | | QPSK | 20 | ≤ 18 | 0 | 23 | | | | | | | QPSK | 20 | > 18 | 1 | 22 | | | | | | | 16QAM | 20 | ≤ 18 | 1 | 22 | | | | | | | 16QAM | 20 | > 18 | 2 | 21 | | | | | | | QPSK | 15 | ≤ 16 | 0 | 23 | | | | | | | QPSK | 15 | > 16 | 1 | 22 | | | | | | | 16QAM | 15 | ≤ 16 | 1 | 22 | | | | | | | 16QAM | 15 | > 16 | 2 | 21 | | | | | | | QPSK | 10 | ≤ 12 | 0 | 23 | | | | | | | QPSK | 10 | > 12 | 1 | 22 | | | | | | | 16QAM | 10 | ≤ 12 | 1 | 22 | | | | | | | 16QAM | 10 | > 12 | 2 | 21 | | | | | | | QPSK | 5 | ≤ 8 | 0 | 23 | | | | | | | QPSK | 5 | > 8 | 1 | 22 | | | | | | | 16QAM | 5 | ≤ 8 | 1 | 22 | | | | | | | 16QAM | 5 | > 8 | 2 | 21 | | | | | | Report No.: FA412407 | | Mode | Maximum Average Power (dBm) | |--------------------|-------------------|-----------------------------| | 802.11b | | 12 | | 2.4GHz | 802.11g | 11 | | | 802.11n-HT20 | 10.5 | | Bluetooth v3.0+EDR | | -0.5 | | | Bluetooth v4.0+LE | -0.5 | TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date: May 30, 2014 Form version. : 140422 FCC ID: R38YL889N Page 8 of 44 # 4.3 General LTE SAR Test and Reporting Considerations | Summarized necessary items addressed in KDB 941225 D05 v02r03 | | | | | | | | | | | |--|--|------------------------------------|-------------|------------|-----------------|-----------|-------------|-----------|----------|---| | FCC ID | R38YL88 | 38YL889N | | | | | | | | | | Equipment Name | mobile pl | hone | | | | | | | | | | Operating Frequency Range of each LTE transmission band | LTE Band | TE Band 7: 2502.5 MHz ~ 2567.5 MHz | | | | | | | | | | Channel Bandwidth | 5MHz, 10 | 0MHz, 15 | MHz, 20M | lHz | | | | | | | | uplink modulations used | QPSK ar | nd 16QAN | Л | | | | | | | | | LTE transmitter and antenna implementation (standalone or sharing hardware components / antennas) | A primary antenna is used for LTE and other wireless interfaces (GSM/GPRS/EDGE) for transmitting and receiving. LTE and other wireless interfaces (GSM/GPRS/EDGE) share the same antenna, and cannot transmit simultaneously. A 2nd antenna is used for LTE receiving only, standalone. | | | | | | | | | | | LTE Voice / Data requirements | Data only | у | | | | | | | | | | | | 3GPP TS Table | 6.2.3-1: Ma | | Protect Council | • | PR) for Pov | | MPR (dB) | 1 | | LTE MPR permanently built-in by design | | | 1.4
MHz | 3.0
MHz | 5
MHz | 10
MHz | 15
MHz | 20
MHz | | | | | | PSK | >5 | >4 | >8 | > 12 | > 16 | > 18 | ≤ 1 | | | | | 6 QAM | ≤ 5 | ≤ 4 | ≤8 | ≤ 12 | ≤ 16 | ≤ 18 | ≤ 1 | | | | 16 | 6 QAM | >5 | >4 | >8 | > 12 | > 16 | > 18 | ≤ 2 | | | LTE A-MPR | In the base station simulator configuration, Network Setting value is set to NS_01 to disable A-MPR during SAR testing and the LTE SAR tests was transmitting on all TTI frames (Maximum TTI) | | | | | | | | | | | Spectrum plots for RB configuration | A properly configured base station simulator was used for the SAR and power | | | | | | | | | | **Report No. : FA412407** | | Transmission (H, M, L) channel numbers and frequencies in each LTE band | | | | | | | | | | | |---|---|-------------|-------|-------------|-------|-------------|-------|-------------|--|--|--| | | LTE Band 7 | | | | | | | | | | | | | Bandwidth 5 MHz Bandwidth 10 MHz Bandwidth 15 MHz Bandwidth 20 MHz | | | | | | | | | | | | | Ch. # | Freq. (MHz) | | | | | L | 20775 2502.5 20800 2505 | | 20825 | 2507.5 | 20850 | 2510 | | | | | | | М | 21100 | 2535 | 21100 | 2535 | 21100 | 2535 | 21100 | 2535 | | | | | Н | 21425 | 2567.5 | 21400 | 2565 | 21375 | 2562.5 | 21350 | 2560 | | | | SPORTON INTERNATIONAL (XI'AN) INC. # 5. RF Exposure Limits #### 5.1 Uncontrolled Environment Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity. Report No.: FA412407 #### 5.2 Controlled Environment Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means. #### Limits for Occupational/Controlled Exposure (W/kg) | Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles | |------------|--------------|--------------------------------| | 0.4 | 8.0 | 20.0 | #### Limits for General Population/Uncontrolled Exposure (W/kg) | Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles | |------------|--------------|--------------------------------| | 0.08 | 1.6 | 4.0 | 1. Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube. TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date: May 30, 2014 FCC ID : R38YL889N Page 10 of 44 Form version. : 140422 # 6. Specific Absorption Rate (SAR) #### 6.1 Introduction SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled. Report No.: FA412407 ### 6.2 SAR Definition The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (p). The equation description is as below: $$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$ SAR is expressed in units of Watts per kilogram (W/kg) $$SAR = \frac{\sigma |E|^2}{\rho}$$ Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength. TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date: May 30, 2014 Form version.: 140422 FCC ID: R38YL889N Page 11 of 44 # 7. System Description and Setup The DASY system used for performing compliance tests consists of the following items: **Report No. : FA412407** - A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE). - An isotropic Field probe optimized and calibrated for the targeted measurement. - A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing. AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. - The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server. - The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. - The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning. - A computer running WinXP or Win7 and the DASY5 software. - Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps. - The phantom, the device holder and other accessories according to the targeted measurement. TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date: May 30, 2014 Page 12 of 44 Form version.: 140422 FCC ID: R38YL889N ### 8. Measurement Procedures The
measurement procedures are as follows: #### <Conducted power measurement> (a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band. Report No.: FA412407 - (b) Read the WWAN RF power level from the base station simulator. - (c) For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band - (d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power #### <SAR measurement> - (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel. - (b) Place the EUT in the positions as Appendix D demonstrates. - (c) Set scan area, grid size and other setting on the DASY software. - (d) Measure SAR results for the highest power channel on each testing position. - (e) Find out the largest SAR result on these testing positions of each band - (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps: - (a) Power reference measurement - (b) Area scan - (c) Zoom scan - (d) Power drift measurement #### 8.1 Spatial Peak SAR Evaluation The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value. The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan. The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages: - (a) Extraction of the measured data (grid and values) from the Zoom Scan - (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters) - (c) Generation of a high-resolution mesh within the measured volume - (d) Interpolation of all measured values form the measurement grid to the high-resolution grid - (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface - (f) Calculation of the averaged SAR within masses of 1g and 10g ### 8.2 Power Reference Measurement The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties. Report No.: FA412407 #### 8.3 Area Scan The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly. Area scan parameters extracted from FCC KDB 865664 D01v01r03 SAR measurement 100 MHz to 6 GHz. | | ≤3 GHz | > 3 GHz | | | | |--|--|--|--|--|--| | Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface | 5 ± 1 mm | $\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$ | | | | | Maximum probe angle from probe axis to phantom surface normal at the measurement location | 30° ± 1° | 20° ± 1° | | | | | | \leq 2 GHz: \leq 15 mm
2 – 3 GHz: \leq 12 mm | $3 - 4 \text{ GHz:} \le 12 \text{ mm}$
$4 - 6 \text{ GHz:} \le 10 \text{ mm}$ | | | | | Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area} | When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device. | | | | | **SPORTON INTERNATIONAL (XI'AN) INC.**TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 #### 8.4 Zoom Scan Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label. Report No.: FA412407 Zoom scan parameters extracted from FCC KDB 865664 D01v01r03 SAR measurement 100 MHz to 6 GHz. | | | | ≤ 3 GHz | > 3 GHz | | |--|--|---|--|---|--| | Maximum zoom scan s | spatial reso | lution: Δx _{Zoom} , Δy _{Zoom} | \leq 2 GHz: \leq 8 mm
2 – 3 GHz: \leq 5 mm [*] | $3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$
$4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$ | | | | uniform | grid: Δz _{Zoom} (n) | ≤ 5 mm | $3 - 4 \text{ GHz}: \le 4 \text{ mm}$
$4 - 5 \text{ GHz}: \le 3 \text{ mm}$
$5 - 6 \text{ GHz}: \le 2 \text{ mm}$ | | | Maximum zoom scan
spatial resolution,
normal to phantom
surface | $\begin{array}{c} \Delta Z_{Zoom}(1) \text{: between} \\ 1^{\text{st}} \text{ two points closest} \\ \text{to phantom surface} \\ \\ \Delta Z_{Zoom}(n \geq 1) \text{:} \\ \text{between subsequent} \\ \text{points} \end{array}$ | 1st two points closest | ≤ 4 mm | 3 – 4 GHz: ≤ 3 mm
4 – 5 GHz: ≤ 2.5 mm
5 – 6 GHz: ≤ 2 mm | | | | | $\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$ | | | | | Minimum zoom scan
volume | m zoom scan x, y, z | | ≥ 30 mm | 3 – 4 GHz: ≥ 28 mm
4 – 5 GHz: ≥ 25 mm
5 – 6 GHz: ≥ 22 mm | | Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details. #### 8.5 Volume Scan Procedures The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR. #### 8.6 Power Drift Monitoring All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested. SPORTON INTERNATIONAL (XI'AN) INC. FCC ID : R38YL889N Page 15 of 44 Form version : 140422 ^{*} When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. # 9. Test Equipment List | Manufacturer | Name of Facilities | Tarra /Mandal | Carriel Number | Calib | ration | |---------------|---------------------------------|---------------|----------------|---------------|---------------| | Manufacturer | Name of Equipment | Type/Model | Serial Number
| Last Cal. | Due Date | | SPEAG | 1900MHz System Validation Kit | D1900V2 | 5d170 | Mar. 27, 2013 | Mar. 25, 2015 | | SPEAG | 2450MHz System Validation Kit | D2450V2 | 908 | Mar. 26, 2013 | Mar. 24, 2015 | | SPEAG | 2600MHz System Validation Kit | D2600V2 | 1061 | Mar. 26, 2013 | Mar. 24, 2015 | | SPEAG | Data Acquisition Electronics | DAE4 | 1353 | Jan. 30, 2014 | Jan. 29, 2015 | | SPEAG | Dosimetric E-Field Probe | EX3DV4 | 3898 | Mar. 10, 2014 | Mar. 09, 2015 | | SPEAG | Phone Positioner | N/A | N/A | NCR | NCR | | Agilent | Wireless Communication Test Set | E5515C | MY52102600 | Dec. 30, 2013 | Dec. 29, 2014 | | Anritus | Radio communication analyzer | MT8820C | 6201074235 | Nov. 05, 2013 | Nov. 04, 2014 | | Agilent | ENA Series Network Analyzer | E5071C | MY46111157 | Dec. 30, 2013 | Dec. 29, 2014 | | Agilent | Dielectric Probe Kit | 85070E | MY44300751 | NCR | NCR | | Anritsu | Power Meter | ML2495A | 1005002 | Feb. 27, 2014 | Feb. 26, 2015 | | Anritsu | Power Sensor | MA2411B | 917070 | Feb. 27, 2014 | Feb. 26, 2015 | | R&S | Spectrum Analyzer | FSP7 | 101045 | Dec. 30, 2013 | Dec. 29, 2014 | | SPEAG | SAM Twin Phantom | QD 000 P40 CD | TP-1753 | NCR | NCR | | SPEAG | SAM Twin Phantom | QD 000 P40 CD | TP-1754 | NCR | NCR | | Agilent | Dual Directional Coupler | 778D | 50422 | *C | BT | | Woken | Attenuator | WK0602-XX | N/A | *C | BT | | PE | Attenuator | PE7005-10 | N/A | *C | BT | | PE | Attenuator | PE7005- 3 | N/A | *CBT | | | AR | Power Amplifier | 5S1G4M2 | 0328767 | *C | ВТ | | Mini-Circuits | Power Amplifier | ZVE-3W | 162601250 | *C | ВТ | | Mini-Circuits | Power Amplifier | ZHL-42W+ | 13440021344 | *C | ВТ | Report No.: FA412407 #### **General Note:** - 1. The calibration certificate of DASY can be referred to appendix C of this report. - 2. Referring to KDB 865664 D01v01r03, the dipole calibration interval can be extended to 3 years with justification. The dipoles are also not physically damaged, or repaired during the interval. - 3. The justification data of dipole D1900V2, SN: 5d170, D2450V2, SN: 908, D2600V2, SN: 1061, can be found in appendix C. The return loss is < -20dB, within 20% of prior calibration, the impedance is within 5 ohm of prior calibration. - 4. *CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing an amplifier, coupler and attenuator were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurement. # 10. System Verification ## 10.1 Tissue Verification The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target Report No.: FA412407 tissue parameters required for routine SAR evaluation. | Frequency
(MHz) | Water
(%) | Sugar
(%) | Cellulose
(%) | Salt
(%) | Preventol
(%) | DGBE
(%) | Conductivity
(σ) | Permittivity
(εr) | | | |--------------------|--------------|--------------|------------------|-------------|------------------|-------------|---------------------|----------------------|--|--| | For Head | | | | | | | | | | | | 1800, 1900, 2000 | 55.2 | 0 | 0 | 0.3 | 0 | 44.5 | 1.40 | 40.0 | | | | 2450 | 55.0 | 0 | 0 | 0 | 0 | 45.0 | 1.80 | 39.2 | | | | 2600 | 54.8 | 0 | 0 | 0.1 | 0 | 45.1 | 1.96 | 39.0 | | | | | | | | For Body | | | | | | | | 1800, 1900, 2000 | 70.2 | 0 | 0 | 0.4 | 0 | 29.4 | 1.52 | 53.3 | | | | 2450 | 68.6 | 0 | 0 | 0 | 0 | 31.4 | 1.95 | 52.7 | | | | 2600 | 68.1 | 0 | 0 | 0.1 | 0 | 31.8 | 2.16 | 52.5 | | | #### <Tissue Dielectric Parameter Check Results> | Frequency
(MHz) | Tissue
Type | Liquid
Temp.
(°C) | Conductivity
(σ) | Permittivity (ε _r) | Conductivity
Target (σ) | Permittivity
Target (ε _r) | Delta (σ)
(%) | Delta (ε _r)
(%) | Limit (%) | Date | |--------------------|----------------|-------------------------|---------------------|--------------------------------|----------------------------|--|------------------|--------------------------------|-----------|------------| | 1900 | Head | 22.5 | 1.456 | 40.840 | 1.40 | 40.00 | 4.00 | 2.10 | ±5 | 2014.04.14 | | 2450 | Head | 22.2 | 1.810 | 37.626 | 1.80 | 39.20 | 0.56 | -4.02 | ±5 | 2014.04.18 | | 2600 | Head | 22.5 | 1.981 | 38.254 | 1.96 | 39.00 | 1.07 | -1.91 | ±5 | 2014.04.19 | | 1900 | Body | 22.5 | 1.542 | 55.338 | 1.52 | 53.30 | 1.45 | 3.82 | ±5 | 2014.04.14 | | 2450 | Body | 22.6 | 1.949 | 53.894 | 1.95 | 52.70 | -0.05 | 2.27 | ±5 | 2014.04.18 | | 2600 | Body | 22.3 | 2.201 | 52.823 | 2.16 | 52.50 | 1.90 | 0.62 | ±5 | 2014.04.17 | FCC ID : R38YL889N Page 17 of 44 Form version. : 140422 # 10.2 System Performance Check Results Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report. | Date | Frequency
(MHz) | Tissue
Type | Input
Power
(mW) | Dipole
S/N | Probe
S/N | DAE
S/N | Measured
SAR
(W/kg) | Targeted
SAR
(W/kg) | Normalized
SAR
(W/kg) | Deviation
(%) | |------------|--------------------|----------------|------------------------|---------------|--------------|------------|---------------------------|---------------------------|-----------------------------|------------------| | 2014.04.14 | 1900 | Head | 250 | 5d170 | 3898 | 1353 | 10.40 | 40.20 | 41.6 | 3.48 | | 2014.04.18 | 2450 | Head | 250 | 908 | 3898 | 1353 | 13.70 | 54.00 | 54.8 | 1.48 | | 2014.04.19 | 2600 | Head | 250 | 1061 | 3898 | 1353 | 15.10 | 58.60 | 60.4 | 3.07 | | 2014.04.14 | 1900 | Body | 250 | 5d170 | 3898 | 1353 | 9.43 | 41.20 | 37.72 | -8.45 | | 2014.04.18 | 2450 | Body | 250 | 908 | 3898 | 1353 | 12.90 | 50.40 | 51.6 | 2.38 | | 2014.04.17 | 2600 | Body | 250 | 1061 | 3898 | 1353 | 14.70 | 55.60 | 58.8 | 5.76 | Fig 8.3.1 System Performance Check Setup Fig 8.3.2 Setup Photo Report No.: FA412407 TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date: May 30, 2014 FCC ID : R38YL889N Page 18 of 44 Form version. : 140422 # 11. RF Exposure Positions #### 11.1 Ear and handset reference point Figure 9.1.1 shows the front, back, and side views of the SAM phantom. The center-of-mouth reference point is labeled "M," the left ear reference point (ERP) is marked "LE," and the right ERP is marked "RE." Each ERP is 15 mm along the B-M (back-mouth) line behind the entrance-to-ear-canal (EEC) point, as shown in Figure 9.1.2 The Reference Plane is defined as passing through the two ear reference points and point M. The line N-F (neck-front), also called the reference pivoting line, is normal to the Reference Plane and perpendicular to both a line passing through RE and LE and the B-M line (see Figure 9.1.3). Both N-F and B-M lines should be marked on the exterior of the phantom shell to facilitate handset positioning. Posterior to the N-F line the ear shape is a flat surface with 6 mm thickness at each ERP, and forward of the N-F line the ear is truncated, as illustrated in Figure 9.1.2. The ear truncation is introduced to preclude the ear lobe from interfering with handset tilt, which could lead to unstable positioning at the cheek. Fig 9.1.1 Front, back, and side views of SAM twin phantom **Report No. : FA412407** Fig 9.1.3 Side view of the phantom showing relevant markings and seven cross-sectional plane locations TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date: May 30, 2014 Form version.: 140422 FCC ID: R38YL889N Page 19 of 44 #### 11.2 Definition of the cheek position - Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece (flip cover), open the cover. If the handset can transmit with the cover closed, both configurations must be tested. - 2. Define two imaginary lines on the handset—the vertical centerline and the horizontal line. The vertical centerline passes through two points on the front side of the handset—the midpoint of the width wt of the handset at the level of the acoustic output (point A in Figure 9.2.1 and Figure 9.2.2), and the midpoint of the width wb of the bottom of the handset (point B). The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output (see Figure 9.2.1). The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset (see Figure 9.2.2), especially for clamshell handsets, handsets with flip covers, and other irregularly-shaped handsets. - Position the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 9.2.3), such that the plane defined by the vertical centerline and the horizontal line of the handset is approximately parallel to the sagittal plane of the phantom. - Translate the handset towards the phantom along the line passing through RE and LE until handset point A touches the pinna at the ERP. - While maintaining the handset in this plane, rotate it around the LE-RE line until the vertical centerline is in the plane normal to the plane containing B-M and N-F lines, i.e., the Reference Plane. - Rotate the handset around the vertical centerline until the handset (horizontal line)
is parallel to the N-F line. - While maintaining the vertical centerline in the Reference Plane, keeping point A on the line passing through RE and LE, and maintaining the handset contact with the pinna, rotate the handset about the N-F line until any point on the handset is in contact with a phantom point below the pinna on the cheek. See Figure 9.2.3. The actual rotation angles should be documented in the test report. Fig 9.2.1 Handset vertical and horizontal reference lines—"fixed case Fig 9.2.2 Handset vertical and horizontal reference lines—"clam-shell case" Report No.: FA412407 Fig 9.2.3 cheek or touch position. The reference points for the right ear (RE), left ear (LE), and mouth (M), which establish the Reference Plane for handset positioning, are indicated. SPORTON INTERNATIONAL (XI'AN) INC. TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date: May 30, 2014 Form version. : 140422 Page 20 of 44 # 11.3 Definition of the tilt position - 1. Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece (flip cover), open the cover. If the handset can transmit with the cover closed, both configurations must be tested. - 2. While maintaining the orientation of the handset, move the handset away from the pinna along the line passing through RE and LE far enough to allow a rotation of the handset away from the cheek by 15°. - 3. Rotate the handset around the horizontal line by 15°. - 4. While maintaining the orientation of the handset, move the handset towards the phantom on the line passing through RE and LE until any part of the handset touches the ear. The tilt position is obtained when the contact point is on the pinna. See Figure 9.3.1. If contact occurs at any location other than the pinna, e.g., the antenna at the back of the phantom head, the angle of the handset should be reduced. In this case, the tilt position is obtained if any point on the handset is in contact with the pinna and a second point Report No.: FA412407 Fig 9.3.1 Tilt position. The reference points for the right ear (RE), left ear (LE), and mouth (M), which define the Reference Plane for handset positioning, are indicated. TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date: May 30, 2014 FCC ID : R38YL889N Page 21 of 44 Form version. : 140422 ### 11.4 Body Worn Accessory Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 9.4). Per KDB 648474 D04v01r02, body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB 447498 D01v05r02 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for body-worn accessory, measured without a headset connected to the handset is < 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a handset attached to the handset. Accessories for body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are test with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-chip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested. Report No.: FA412407 Fig 9.4 Body Worn Position #### 11.5 Wireless Router Some battery-operated handsets have the capability to transmit and receive user through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC HDB Publication 941225 D06v01r01 where SAR test considerations for handsets (L x W \ge 9 cm x 5 cm) are based on a composite test separation distance of 10mm from the front, back and edges of the device containing transmitting antennas within 2.5cm of their edges, determined form general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests. When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v05r02 publication procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time. Page 22 of 44 FCC ID: R38YL889N TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date: May 30, 2014 Form version. : 140422 # 12. Conducted RF Output Power (Unit: dBm) #### <GSM Conducted Power> For DTM multi-slot class mode, the device was linked with base station simulator (Agilent E5515C) and transmit maximum power on maximum number of TX slots, i.e. one CS timeslot, and additional PS timeslots (1 for DTM class 5 and 9, 2 for DTM class 11) in one TDMA frame. **Report No. : FA412407** 2. Agilent E5515C was used to setup the device operated under DTM mode for power measurement and SAR testing. For conducted power, the power of the burst for voice and the power of the bursts for data was reported separately in the table above, and the frame-average power is derived below to determine SAR testing. DTM frame average power (dBm) = $10*log [\sum (power of each slot, in mW)/8]$ - Per KDB 447498 D01v05r02, the maximum output power channel is used for SAR testing and for further SAR test 3. reduction. - 4. According to October 2013TCB Workshop, the number of time slots to test for SAR should correspond to the highest source-based time-averaged maximum output power configuration, For time slots with equivalent maximum average output power specifications, including tolerance when the measured maximum output power levels are within 0.25 dB of each other, test the configuration with the most number of time slots. For GSM/GPRS/DTM, including tolerance, the GPRS 3Tx was chose to test SAR. - According to October 2013TCB Workshop, For GSM / EGPRS, the number of time slots to test for SAR should 5. correspond to the highest source-based time-averaged maximum output power configuration. Considering the possibility of e.g. 3rd party VoIP operation for head and body-worn SAR testing, the EUT was set in GPRS (3Tx slots) for GSM1900 band due to its highest frame-average power. - For hotspot mode SAR testing, GPRS should be evaluated; therefore the EUT was set in GPRS 3 Tx slots for 6. GSM1900 band due to its highest frame-average power. | | Band GSM1900 | Burst Ave | erage Pow | er (dBm) | Tune-up | Frame-A | /erage Pov | ver (dBm) | Tune-up | |-------------|--------------------------------|--------------------|-----------|----------|---------|--------------------|------------|-----------|----------------| | | TX Channel | 512 | 661 | 810 | Limit | 512 | 661 | 810 | Limit
(dBm) | | | 1850.2 | 1880 | 1909.8 | (dBm) | 1850.2 | 1880 | 1909.8 | (ubiii) | | | | GSM (GMSK, 1 Tx slot) | <mark>29.92</mark> | 29.83 | 29.78 | 30 | 20.92 | 20.83 | 20.78 | 21 | | GP | RS (GMSK, 1 Tx slot) – CS1 | 29.86 | 29.68 | 29.60 | 30 | 20.86 | 20.68 | 20.60 | 21 | | GPF | RS (GMSK, 2 Tx slots) – CS1 | 27.46 | 27.41 | 27.37 | 28 | 21.46 | 21.41 | 21.37 | 22 | | GPF | RS (GMSK, 3 Tx slots) – CS1 | 27.36 | 27.34 | 27.28 | 28 | <mark>23.10</mark> | 23.08 | 23.02 | 23.74 | | GPF | RS (GMSK, 4 Tx slots) – CS1 | 24.30 | 24.24 | 24.28 | 25 | 21.30 | 21.24 | 21.28 | 22 | | EDO | GE (8PSK, 1 Tx slot) – MCS5 | 26.60 | 26.60 | 26.61 | 27 | 17.60 | 17.60 | 17.61 | 18 | | EDG | SE (8PSK, 2 Tx slots) – MCS5 | 22.55 | 22.50 | 22.61 | 23 | 16.55 | 16.50 | 16.61 | 17 | | EDG | SE (8PSK, 3 Tx slots) – MCS5 | 22.48 | 22.45 | 22.54 | 23 | 18.22 | 18.19 | 18.28 | 18.74 | | EDG | SE (8PSK, 4 Tx slots) – MCS5 | 19.67 | 19.84 | 19.74 | 20 | 16.67 | 16.84 | 16.74 | 17 | | DTM 5 | GSM (GMSK, 1 Tx slot) | 27.00 | 27.07 | 27.12 | 28 | 20.95 | 21.01 | 21.06 | 21.98 | | (2Tx slots) | GPRS (GMSK, 1 Tx slot) – CS1 | 26.94 | 27.00 | 27.05 | 28 | 20.95 | 21.01 | | | | DTM 9 | GSM (GMSK, 1 Tx slot) | 26.99 | 27.06 | 27.12 | 28 | 20.94 | 21.01 | 21.07 | 21.98 | | (2Tx slots) | GPRS (GMSK, 1 Tx slot) – CS1 | 26.94 | 27.00 | 27.06 | 28 | 20.94 | 21.01 | 21.07 | 21.90 | | DTM 11 | GSM (GMSK, 1 Tx slot) | 26.91 | 26.96 | 27.10 | 28 | 22.57 | 22.63 | 22.76 | 23.10 | | (3Tx slots) | GPRS (GMSK, 2 Tx slots) - CS1 | 26.79 | 26.85 | 26.98 | 27 | 22.51 | 22.03 | 22.70 | 25.10 | | DTM 5 | GSM (GMSK, 1 Tx slot) | 27.08 | 27.16 | 27.20 | 28 | 19.29 | 19.35 | 19.42 | 20.16 | | (2Tx slots) | EDGE (8PSK, 1 Tx slot) – MCS5 | 22.27 | 22.26 | 22.44 | 23 | 19.29 | 19.55 | 19.42 | 20.10 | | DTM 9 | GSM (GMSK, 1 Tx slot) | 27.08 | 27.15 | 27.23 | 28 | 19.26 | 19.32 | 19.42 | 20.16 | | (2Tx slots) |
EDGE (8PSK, 1 Tx slot) – MCS5 | 22.16 | 22.17 | 22.35 | 23 | 19.20 | 19.32 | 19.42 | 20.16 | | DTM 11 | GSM (GMSK, 1 Tx slot) | 26.90 | 26.95 | 27.00 | 28 | 20.04 | 20.07 | 20.18 | 21.10 | | (3Tx slots) | EDGE (8PSK, 2 Tx slots) – MCS5 | 22.00 | 22.02 | 22.20 | 23 | 20.04 | 20.07 | 20.10 | 21.10 | Remark: The frame-averaged power is linearly scaled the maximum burst averaged power over 8 time slots. The calculated method are shown as below: Frame-averaged power = Maximum burst averaged power (1 Tx Slot) - 9 dB Frame-averaged power = Maximum burst averaged power (2 Tx Slots) - 6 dB Frame-averaged power = Maximum burst averaged power (3 Tx Slots) - 4.26 dB Frame-averaged power = Maximum burst averaged power (4 Tx Slots) - 3 dB SPORTON INTERNATIONAL (XI'AN) INC. TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date: May 30, 2014 Form version. : 140422 FCC ID: R38YL889N Page 23 of 44 #### <LTE Conducted Power> #### **General Note:** Anritsu MT8820C base station simulator was used to setup the connection with EUT; the frequency band, channel bandwidth, RB allocation configuration, modulation type are set in the base station simulator to configure EUT transmitting at maximum power and at different configurations which are requested to be reported to FCC, for conducted power measurement and SAR testing. **Report No. : FA412407** - 2. Per KDB 941225 D05v02r03, when a properly configured base station simulator is used for the SAR and power measurements, spectrum plots for each RB allocation and offset configuration is not required. - 3. Per KDB 941225 D05v02r03, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel. - 4. Per KDB 941225 D05v02r03, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure. - 5. Per KDB 941225 D05v02r03, for QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested. - Per KDB 941225 D05v02r03, 16QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05v02r03, 16QAM SAR testing is not required. - 7. Per KDB 941225 D05v02r03, smaller bandwidth output power for each RB allocation configuration is > not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05v02r03, smaller bandwidth SAR testing is not required. SPORTON INTERNATIONAL (XI'AN) INC. #### <LTE Band 7> | BW | | RB | RB | Power | Power | Power | | | |-------|------------------|----------|--------|----------------------|----------------------|----------------------|---------------|------| | [MHz] | Modulation | Size | Offset | Low | Middle | High | Tune up Limit | MPR | | • • | Cha | nnol | | Ch. / Freq.
20850 | Ch. / Freq.
21100 | Ch. / Freq.
21350 | (dBm) | (dB) | | | | | | | 2535 | 2560 | - ` ′ | | | 20 | Frequenc
QPSK | | | 2510
22.75 | 2535 | 22.60 | | | | | | 1 | 0 | | | | | 0 | | 20 | QPSK | 1 | 49 | 22.77 | 22.80 | 22.83 | 23 | 0 | | 20 | QPSK | 1 | 99 | 22.71 | 22.79 | 22.73 | | | | 20 | QPSK | 50 | 0 | 21.84 | 21.70 | 21.74 | | | | 20 | QPSK | 50 | 24 | 21.77 | 21.68 | 21.69 | 22 | 0-1 | | 20 | QPSK | 50 | 49 | 21.73 | 21.65 | 21.72 | _ | | | 20 | QPSK | 100 | 0 | 21.68 | 21.68 | 21.69 | | | | 20 | 16QAM | 1 | 0 | 21.76 | 21.15 | 21.60 | | 0.4 | | 20 | 16QAM | 1 | 49 | 21.95 | 21.86 | 21.84 | 22 | 0-1 | | 20 | 16QAM | 1 | 99 | 21.46 | 21.69 | 21.36 | | | | 20 | 16QAM | 50 | 0 | 20.57 | 20.52 | 20.53 | _ | | | 20 | 16QAM | 50 | 24 | 20.71 | 20.59 | 20.65 | 21 | 0-2 | | 20 | 16QAM | 50 | 49 | 20.60 | 20.57 | 20.63 | _ | | | 20 | 16QAM | 100 | 0 | 20.45 | 20.54 | 20.64 | | | | | Cha | | | 20825 | 21100 | 21375 | Tune up Limit | MPR | | | Frequenc | | | 2507.5 | 2535 | 2562.5 | (dBm) | (dB) | | 15 | QPSK | 1 | 0 | 22.65 | 22.69 | 22.51 | _ | 0 | | 15 | QPSK | 1 | 37 | 22.68 | 22.71 | 22.80 | 23 | | | 15 | QPSK | 1 | 74 | 22.56 | 22.59 | 22.69 | | | | 15 | QPSK | 36 | 0 | 21.72 | 21.65 | 21.72 | | 0-1 | | 15 | QPSK | 36 | 18 | 21.68 | 21.63 | 21.72 | 22 | | | 15 | QPSK | 36 | 37 | 21.71 | 21.66 | 21.66 | | | | 15 | QPSK | 75 | 0 | 21.66 | 21.68 | 21.68 | | | | 15 | 16QAM | 1 | 0 | 21.73 | 21.52 | 21.63 | | | | 15 | 16QAM | 1 | 37 | 21.81 | 21.57 | 21.71 | 22 | 0-1 | | 15 | 16QAM | 1 | 74 | 21.47 | 21.52 | 21.67 | | | | 15 | 16QAM | 36 | 0 | 20.44 | 20.47 | 20.56 | | | | 15 | 16QAM | 36 | 18 | 20.48 | 20.52 | 20.51 | 21 | 0-2 | | 15 | 16QAM | 36 | 37 | 20.60 | 20.58 | 20.54 | | ٠- | | 15 | 16QAM | 75 | 0 | 20.48 | 20.54 | 20.57 | | | | | Cha | nnel | | 20800 | 21100 | 21400 | Tune up Limit | MPR | | | Frequenc | cy (MHz) | | 2505 | 2535 | 2565 | (dBm) | (dB) | | 10 | QPSK | 1 | 0 | 22.66 | 22.60 | 22.63 | | | | 10 | QPSK | 1 | 24 | 22.69 | 22.69 | 22.70 | 23 | 0 | | 10 | QPSK | 1 | 49 | 22.68 | 22.67 | 22.59 | | | | 10 | QPSK | 25 | 0 | 21.65 | 21.62 | 21.63 | | | | 10 | QPSK | 25 | 12 | 21.55 | 21.56 | 21.66 | 22 | 0-1 | | 10 | QPSK | 25 | 24 | 21.75 | 21.57 | 21.61 | | J . | | 10 | QPSK | 50 | 0 | 21.73 | 21.58 | 21.60 | | | | 10 | 16QAM | 1 | 0 | 21.57 | 21.46 | 21.53 | | | | 10 | 16QAM | 1 | 24 | 21.74 | 21.66 | 21.59 | 22 | 0-1 | | 10 | 16QAM | 1 | 49 | 21.63 | 21.58 | 21.26 | | | | 10 | 16QAM | 25 | 0 | 20.44 | 20.55 | 20.49 | | | | 10 | 16QAM | 25 | 12 | 20.35 | 20.47 | 20.55 | 21 | 0-2 | | 10 | 16QAM | 25 | 24 | 20.60 | 20.57 | 20.48 | | 0-2 | | 10 | 16QAM | 50 | 0 | 20.62 | 20.49 | 20.52 | | | Report No.: FA412407 TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date: May 30, 2014 Form version. : 140422 FCC ID: R38YL889N | SPORTON LA | FCC S | AR Test | Report | | | | Report No. : | FA412407 | |------------|-----------------|---------|--------|-------|--------|-------|---------------|----------| | | Cha | nnel | | 20775 | 21100 | 21425 | Tune up Limit | MPR | | | Frequency (MHz) | | 2502.5 | 2535 | 2567.5 | (dBm) | (dB) | | | 5 | QPSK | 1 | 0 | 22.47 | 22.40 | 22.35 | | 0 | | 5 | QPSK | 1 | 12 | 22.57 | 22.58 | 22.54 | 23 | | | 5 | QPSK | 1 | 24 | 22.43 | 22.48 | 22.26 | | | | 5 | QPSK | 12 | 0 | 21.53 | 21.35 | 21.30 | | 0-1 | | 5 | QPSK | 12 | 6 | 21.45 | 21.32 | 21.27 | 22 | | | 5 | QPSK | 12 | 11 | 21.49 | 21.40 | 21.25 | 22 | | | 5 | QPSK | 25 | 0 | 21.42 | 21.39 | 21.25 | | | | 5 | 16QAM | 1 | 0 | 21.30 | 21.04 | 21.14 | | | | 5 | 16QAM | 1 | 12 | 21.49 | 21.41 | 21.43 | 22 | 0-1 | | 5 | 16QAM | 1 | 24 | 21.30 | 21.38 | 21.37 | | | | 5 | 16QAM | 12 | 0 | 20.31 | 20.20 | 20.22 | | | | 5 | 16QAM | 12 | 6 | 20.28 | 20.26 | 20.21 | 21 | 0.2 | | 5 | 16QAM | 12 | 11 | 20.20 | 20.25 | 20.20 | 21 | 0-2 | | 5 | 16QAM | 25 | 0 | 20.27 | 20.28 | 20.24 | | | TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date: May 30, 2014 Form version. : 140422 FCC ID: R38YL889N Page 26 of 44 #### <WLAN Conducted Power> #### **General Note:** For 2.4GHz WLAN SAR testing, highest average RF output power channel for the lowest data rate for 802.11b were selected for SAR evaluation. 802.11g/n HT20 were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of 802.11b mode. Report No.: FA412407 | | 802.11b Average Power (dBm) | | | | | | | | | | | |---------|-----------------------------|--------------------|--------|----------|---------|--|--|--|--|--|--| | Channel | Frequency | Data Rate (bps) | | | | | | | | | | | Charmer | (MHz) | 1M bps | 2M bps | 5.5M bps | 11M bps | | | | | | | | CH 01 | 2412 | 10.26 | 10.22 | 10.25 | 10.24 | | | | | | | | CH 06 | 2437 | 10.98 | 10.94 | 10.97 | 10.96 | | | | | | | | CH 11 | 2462 | <mark>11.04</mark> | 11 | 11.03 | 11.02 | | | | | | | | | 802.11g Average Power (dBm) | | | | | | | | | | | | | |-----------------------------------|-----------------------------|--|---|------|------|------|------|------|-----|--|--|--|--| | Channel Frequency Data Rate (bps) | | | | | | | | | | | | | | | Chamilei | (MHz) | 6M bps | 6M bps 9M bps 12M bps 18M bps 24M bps 36M bps 48M bps 54M bps | | | | | | | | | | | | CH 01 | 2412 | 9.65 | 9.58 | 9.64 | 9.61 | 9.64 | 9.62 | 9.57 | 9.6 | | | | | | CH 06 | 2437 | 10.22 10.15 10.21 10.18 10.21 10.19 10.14 10.1 | | | | | | | | | | | | | CH 11 | 2462 | 10.31 10.24 10.3 10.27 10.3 10.28 10.23 10.26 | | | | | | | | | | | | | | WLAN 2.4GHz Band 802.11n-HT20 Average Power (dBm) | | | | | | | | | | | | | |-----------------------------|---|---------------------------------------|------|------|------|------|------|------|------|--|--|--|--| | Channel Frequency MCS Index | | | | | | | | | | | | | | | Chainei | (MHz) | MCS0 MCS1 MCS2 MCS3 MCS4 MCS5 MCS6 MC | | | | | | | | | | | | | CH 01 | 2412 | 8.67 | 8.65 | 8.64 | 8.63 | 8.61 | 8.66 | 8.64 | 8.62 | | | | | | CH 06 | 2437 | 9.35 | 9.33 | 9.32 | 9.31 | 9.29 | 9.34 | 9.32 | 9.3 | | | | | | CH 11 | 2462 | 9.4 | 9.38 | 9.37 | 9.36 | 9.34 | 9.39 | 9.37 | 9.35 | | | | | FCC ID : R38YL889N Page 27 of 44 Form version. : 140422 # 13. Bluetooth Exclusions Applied | Mada Dand | Average power(dBm) | | | | | | | | |------------------|--------------------|-------------------|--|--|--|--|--|--| | Mode Band | Bluetooth v3.0+EDR | Bluetooth v4.0+LE | | | | | | | | 2.4GHz Bluetooth | -0.5 | -0.5 | | | | | | | **Report No.
: FA412407** #### Note: 1. Per KDB 447498 D01v05r02, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* ≤ 50 mm are determined by: [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR - · f(GHz) is the RF channel transmit frequency in GHz - Power and distance are rounded to the nearest mW and mm before calculation - The result is rounded to one decimal place for comparison | Bluetooth Max Power (dBm) | Separation Distance (mm) | Frequency (GHz) | exclusion thresholds | |---------------------------|--------------------------|-----------------|----------------------| | -0.5 | 0 | 2.48 | 0.31 | #### Note: Per KDB 447498 D01v05r02, when the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. The test exclusion threshold is 0.31 which is <= 3, SAR testing is not required. SPORTON INTERNATIONAL (XI'AN) INC. **Report No. : FA412407** # 14. Antenna Location TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date: May 30, 2014 Form version.: 140422 FCC ID: R38YL889N Page 29 of 44 | Distance of the Antenna to the EUT surface/edge | | | | | | | | | | | | |---|--------|--------|-------|--------|--------|--------|--|--|--|--|--| | Antennas Back Front Top Side Bottom Side Right Side Left Side | | | | | | | | | | | | | WWAN | ≤ 25mm | ≤ 25mm | 118mm | ≤ 25mm | ≤ 25mm | ≤ 25mm | | | | | | | Bluetooth & WLAN | ≤ 25mm | ≤ 25mm | 38mm | 70mm | 63mm | ≤ 25mm | | | | | | Report No. : FA412407 | Positions for SAR tests; Hotspot mode | | | | | | | | | | | | |---|-----|-----|----|-----|-----|-----|--|--|--|--|--| | Antennas Back Front Top Side Bottom Side Right Side Left Side | | | | | | | | | | | | | WWAN | Yes | Yes | No | Yes | Yes | Yes | | | | | | | Bluetooth & WLAN Yes Yes No No No Yes | | | | | | | | | | | | **Note:** Referring to KDB 941225 D06 v01r01, when the overall device length and width are ≥ 9cm*5cm, the test distance is 10 mm. SAR must be measured for all sides and surfaces with a transmitting antenna located within 25mm from that surface or edge. TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date: May 30, 2014 Form version. : 140422 FCC ID: R38YL889N Page 30 of 44 # 15. SAR Test Results #### **General Note:** - 1. Per KDB 447498 D01v05r02, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance. - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units. **Report No. : FA412407** - b. For SAR testing of WLAN signal with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)" - c. For WWAN: Reported SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor For WLAN: Reported SAR(W/kg)= Measured SAR(W/kg)* Duty Cycle scaling factor * Tune-up scaling factor, 802.11b, 1Mbps Duty Cycle: 97.63% - 2. Per KDB 447498 D01v05r02, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the *reported* 1-g or 10-g SAR for the mid-band or highest output power channel is: - · ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz - · ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz - · ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz - 3. According to October 2013TCB Workshop, For GSM / EGPRS, the number of time slots to test for SAR should correspond to the highest source-based time-averaged maximum output power configuration, Considering the possibility of e.g. 3rd party VoIP operation for head and body-worn SAR testing, the EUT was set in GPRS (3Tx slots) for GSM1900 band due to its highest frame-average power. - 4. For hotspot mode SAR testing, GPRS should be evaluated; therefore the EUT was set in GPRS 3 Tx slots for GSM1900 band due to its highest frame-average power. - 5. This device 2.4GHz WLAN supports hotspot operation. - 6. Pre KDB648474 D04v01r02, when the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset. Additional WLAN SAR with headset testing was performed for simultaneous transmission analysis. - 7. Per KDB 941225 D05v02r03, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel. - 8. Per KDB 941225 D05v02r03, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure. - 9. Per KDB 941225 D05v02r03, for QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested. - 10. Per KDB 941225 D05v02r03, 16QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05v02r03, 16QAM SAR testing is not required. - 11. Per KDB 941225 D05v02r03, smaller bandwidth output power for each RB allocation configuration is > not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05v02r03, smaller bandwidth SAR testing is not required. # 15.1 Head SAR #### <GSM SAR> | Plot
No. | Band | Mode | Test
Position | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|---------|-----------------------|------------------|-----|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------| | | GSM1900 | GPRS(GMSK 3 Tx slots) | Right Cheek | 512 | 1850.2 | 27.36 | 28 | 1.159 | 0.02 | 0.181 | 0.210 | | | GSM1900 | GPRS(GMSK 3 Tx slots) | Right Tilted | 512 | 1850.2 | 27.36 | 28 | 1.159 | -0.08 | 0.083 | 0.096 | | 01 | GSM1900 | GPRS(GMSK 3 Tx slots) | Left Cheek | 512 | 1850.2 | 27.36 | 28 | 1.159 | 0.06 | 0.328 | 0.380 | | | GSM1900 | GPRS(GMSK 3 Tx slots) | Left Tilted | 512 | 1850.2 | 27.36 | 28 | 1.159 | 0.15 | 0.055 | 0.064 | **Report No. : FA412407** ## <LTE SAR> | Plot
No. | Band | BW
(MHz) | Modulation | RB
Size | RB
offest | Test
Position | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|------------|-------------|------------|------------|--------------|------------------|-------|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------| | 02 | LTE Band 7 | 20M | QPSK | 1 | 49 | Right Cheek | 21350 | 2560 | 22.83 | 23 | 1.040 | 0.07 | 0.409 | 0.42 <mark>5</mark> | | | LTE Band 7 | 20M | QPSK | 1 | 49 | Right Tilted | 21350 | 2560 | 22.83 | 23 | 1.040 | 0.11 | 0.115 | 0.120 | | | LTE Band 7 | 20M | QPSK | 1 | 49 | Left Cheek | 21350 | 2560 | 22.83 | 23 | 1.040 | 0.06 | 0.207 | 0.215 | | | LTE Band 7 | 20M | QPSK | 1 | 49 | Left Tilted | 21350 | 2560 | 22.83 | 23 | 1.040 | 0.06 | 0.094 | 0.098 | | | LTE Band 7 | 20M | QPSK | 50 | 0 | Right Cheek | 20850 | 2510 | 21.84 | 22 | 1.038 | 0.06 | 0.342 | 0.355 | | | LTE Band 7 | 20M | QPSK | 50 | 0 | Right Tilted | 20850 | 2510 | 21.84 | 22 | 1.038 | 0.07 | 0.09 | 0.093 | | | LTE Band 7 | 20M | QPSK | 50 | 0 | Left Cheek | 20850 | 2510 | 21.84 | 22 | 1.038 | 0.01 | 0.191 | 0.198 | | | LTE Band 7 | 20M | QPSK | 50 | 0 | Left Tilted | 20850 | 2510 | 21.84 | 22 | 1.038 | 0.14 | 0.083 | 0.086 | ## <DTS WLAN SAR> | Plot
No. | Band | Mode | Test
Position | Ch. | Freq.
(MHz) | Data
Rate
(bps) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Duty
Cycle
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|-----------|---------|------------------|-----|----------------|-----------------------|---------------------------|---------------------------|------------------------------|------------------------------------|------------------------|------------------------------|------------------------------| | 03 | WLAN 2.4G | 802.11b | Right Cheek | 11 | 2462 | 1M | 11.04 | 12 | 1.247 | 1.024 | 0.04 | 0.019 | <mark>0.024</mark> | | | WLAN 2.4G | 802.11b | Right Tilted | 11 | 2462 | 1M | 11.04 | 12 | 1.247 | 1.024 | 0.04 | 0.00413 | 0.005 | | | WLAN 2.4G | 802.11b | Left Cheek | 11 | 2462 | 1M | 11.04 | 12 | 1.247 | 1.024 | 0.07 | 0.00701 | 0.009 | | | WLAN 2.4G | 802.11b | Left Tilted | 11 | 2462 | 1M | 11.04 | 12 | 1.247 | 1.024 | 0.05 | 0.00186 | 0.002 | ## 15.2 Hotspot SAR | Distance of the Antenna to the EUT surface/edge | | | | | | | | | | | |
---|--------|--------|-------|--------|--------|--------|--|--|--|--|--| | Antennas Back Front Top Side Bottom Side Right Side Left Side | | | | | | | | | | | | | WWAN | ≤ 25mm | ≤ 25mm | 118mm | ≤ 25mm | ≤ 25mm | ≤ 25mm | | | | | | | Bluetooth & WLAN ≤ 25mm ≤ 25mm 38mm 70mm 63mm ≤ 25mm | | | | | | | | | | | | Report No.: FA412407 | Positions for SAR tests; Hotspot mode | | | | | | | | | | | | | |---|-----|-----|----|-----|-----|-----|--|--|--|--|--|--| | Antennas Back Front Top Side Bottom Side Right Side Left Side | | | | | | | | | | | | | | WWAN | Yes | Yes | No | Yes | Yes | Yes | | | | | | | | Bluetooth & WLAN Yes Yes No No No Yes | | | | | | | | | | | | | **Note:** Referring to KDB 941225 D06 v01r01, when the overall device length and width are ≥ 9cm*5cm, the test distance is 10 mm. SAR must be measured for all sides and surfaces with a transmitting antenna located within 25mm from that surface or edge. #### <GSM SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(cm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|---------|-----------------------|------------------|-------------|-----|----------------|---------------------------|---------------------------|------------------------------|-------|------------------------------|------------------------------| | | GSM1900 | GPRS(GMSK 3 Tx slots) | Front | 1 | 512 | 1850.2 | 27.36 | 28 | 1.159 | -0.14 | 0.595 | 0.689 | | | GSM1900 | GPRS(GMSK 3 Tx slots) | Back | 1 | 512 | 1850.2 | 27.36 | 28 | 1.159 | -0.01 | 0.815 | 0.944 | | | GSM1900 | GPRS(GMSK 3 Tx slots) | Left side | 1 | 512 | 1850.2 | 27.36 | 28 | 1.159 | 0.09 | 0.107 | 0.124 | | | GSM1900 | GPRS(GMSK 3 Tx slots) | Right side | 1 | 512 | 1850.2 | 27.36 | 28 | 1.159 | 0.08 | 0.077 | 0.089 | | | GSM1900 | GPRS(GMSK 3 Tx slots) | Bottom side | 1 | 512 | 1850.2 | 27.36 | 28 | 1.159 | -0.03 | 1.12 | 1.298 | | | GSM1900 | GPRS(GMSK 3 Tx slots) | Back | 1 | 661 | 1880 | 27.34 | 28 | 1.164 | -0.11 | 0.929 | 1.081 | | | GSM1900 | GPRS(GMSK 3 Tx slots) | Back | 1 | 810 | 1909.8 | 27.28 | 28 | 1.180 | 0.01 | 0.955 | 1.127 | | | GSM1900 | GPRS(GMSK 3 Tx slots) | Bottom side | 1 | 661 | 1880 | 27.34 | 28 | 1.164 | -0.02 | 1.19 | 1.385 | | 04 | GSM1900 | GPRS(GMSK 3 Tx slots) | Bottom side | 1 | 810 | 1909.8 | 27.28 | 28 | 1.180 | -0.06 | 1.21 | 1.428 | TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date: May 30, 2014 Form version. : 140422 FCC ID: R38YL889N Page 33 of 44 #### <LTE SAR> | Plot
No. | Band | BW
(MHz
) | Modulati
on | RB
Size | RB
offse
t | Test
Position | Gap
(cm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-
Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|------------|-----------------|----------------|------------|------------------|------------------|-------------|-------|----------------|---------------------------|-------------------------------|------------------------------|------------------------|------------------------------|------------------------------| | | LTE Band 7 | 20M | QPSK | 1 | 49 | Front | 1 | 21350 | 2560 | 22.83 | 23 | 1.040 | -0.01 | 0.473 | 0.492 | | | LTE Band 7 | 20M | QPSK | 1 | 49 | Back | 1 | 21350 | 2560 | 22.83 | 23 | 1.040 | 0.05 | 1.05 | 1.092 | | | LTE Band 7 | 20M | QPSK | 1 | 49 | Left side | 1 | 21350 | 2560 | 22.83 | 23 | 1.040 | 0.03 | 0.085 | 0.088 | | | LTE Band 7 | 20M | QPSK | 1 | 49 | Right side | 1 | 21350 | 2560 | 22.83 | 23 | 1.040 | 0.07 | 0.26 | 0.270 | | | LTE Band 7 | 20M | QPSK | 1 | 49 | Bottom side | 1 | 21350 | 2560 | 22.83 | 23 | 1.040 | -0.11 | 1.11 | 1.154 | | 05 | LTE Band 7 | 20M | QPSK | 1 | 49 | Back | 1 | 20850 | 2510 | 22.77 | 23 | 1.054 | 0.02 | 1.25 | <mark>1.318</mark> | | | LTE Band 7 | 20M | QPSK | 1 | 49 | Back | 1 | 21100 | 2535 | 22.80 | 23 | 1.047 | -0.03 | 1.21 | 1.267 | | | LTE Band 7 | 20M | QPSK | 1 | 49 | Bottom side | 1 | 20850 | 2510 | 22.77 | 23 | 1.054 | -0.01 | 1.13 | 1.191 | | | LTE Band 7 | 20M | QPSK | 1 | 49 | Bottom side | 1 | 21100 | 2535 | 22.80 | 23 | 1.047 | 0.04 | 1.14 | 1.194 | | | LTE Band 7 | 20M | QPSK | 50 | 0 | Front | 1 | 20850 | 2510 | 21.84 | 22 | 1.038 | 0.1 | 0.441 | 0.458 | | | LTE Band 7 | 20M | QPSK | 50 | 0 | Back | 1 | 20850 | 2510 | 21.84 | 22 | 1.038 | 0.1 | 0.949 | 0.985 | | | LTE Band 7 | 20M | QPSK | 50 | 0 | Left side | 1 | 20850 | 2510 | 21.84 | 22 | 1.038 | 0.02 | 0.082 | 0.085 | | | LTE Band 7 | 20M | QPSK | 50 | 0 | Right side | 1 | 20850 | 2510 | 21.84 | 22 | 1.038 | 0.1 | 0.218 | 0.226 | | | LTE Band 7 | 20M | QPSK | 50 | 0 | Bottom side | 1 | 20850 | 2510 | 21.84 | 22 | 1.038 | 0.04 | 0.929 | 0.964 | | | LTE Band 7 | 20M | QPSK | 50 | 0 | Back | 1 | 21100 | 2535 | 21.7 | 22 | 1.072 | 0.11 | 0.922 | 0.988 | | | LTE Band 7 | 20M | QPSK | 50 | 0 | Back | 1 | 21350 | 2560 | 21.74 | 22 | 1.062 | -0.04 | 0.955 | 1.014 | | | LTE Band 7 | 20M | QPSK | 50 | 0 | Bottom side | 1 | 21100 | 2535 | 21.7 | 22 | 1.072 | 0.16 | 0.886 | 0.949 | | | LTE Band 7 | 20M | QPSK | 50 | 0 | Bottom side | 1 | 21350 | 2560 | 21.74 | 22 | 1.062 | -0.09 | 0.813 | 0.863 | | | LTE Band 7 | 20M | QPSK | 100 | 0 | Front | 1 | 21350 | 2560 | 21.69 | 22 | 1.074 | -0.06 | 0.349 | 0.375 | | | LTE Band 7 | 20M | QPSK | 100 | 0 | Back | 1 | 21350 | 2560 | 21.69 | 22 | 1.074 | -0.04 | 0.889 | 0.955 | | | LTE Band 7 | 20M | QPSK | 100 | 0 | Left side | 1 | 21350 | 2560 | 21.69 | 22 | 1.074 | 0.06 | 0.065 | 0.070 | | | LTE Band 7 | 20M | QPSK | 100 | 0 | Right side | 1 | 21350 | 2560 | 21.69 | 22 | 1.074 | 0.03 | 0.2 | 0.215 | | | LTE Band 7 | 20M | QPSK | 100 | 0 | Bottom side | 1 | 21350 | 2560 | 21.69 | 22 | 1.074 | 0.13 | 0.817 | 0.877 | Report No.: FA412407 #### <DTS WLAN SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(cm) | Ch. | Freq.
(MHz) | Data
Rate
(bps) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Duty
Cycle
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|----------------|---------|------------------|-------------|-----|----------------|-----------------------|---------------------------|---------------------------|------------------------------|------------------------------------|------------------------|------------------------------|------------------------------| | | WLAN
2.4GHz | 802.11b | Front | 1 | 11 | 2462 | 1M | 11.04 | 12 | 1.247 | 1.024 | 0.02 | 0.000934 | 0.001 | | 06 | WLAN
2.4GHz | 802.11b | Back | 1 | 11 | 2462 | 1M | 11.04 | 12 | 1.247 | 1.024 | 0.05 | 0.038 | 0.049 | | | WLAN
2.4GHz | 802.11b | Left side | 1 | 11 | 2462 | 1M | 11.04 | 12 | 1.247 | 1.024 | 0.02 | 0.026 | 0.033 | TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date: May 30, 2014 Form version. : 140422 FCC ID: R38YL889N Page 34 of 44 # 15.3 Body Worn Accessory SAR ## <GSM SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(cm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|---------|-----------------------|------------------|-------------|-----|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------| | | GSM1900 | GPRS(GMSK 3 Tx slots) | Front | 1 | 512 | 1850.2 | 27.36 | 28 | 1.159 | -0.14 | 0.595 | 0.689 | | | GSM1900 | GPRS(GMSK 3 Tx slots) | Back | 1 | 512 | 1850.2 | 27.36 | 28 | 1.159 | -0.01 | 0.815 | 0.944 | | | GSM1900 | GPRS(GMSK 3 Tx slots) | Back | 1 | 661 | 1880 | 27.34 | 28 | 1.164 | -0.11 | 0.929 | 1.081 | | 07 | GSM1900 | GPRS(GMSK 3 Tx slots) | Back | 1 | 810 | 1909.8 | 27.28 | 28 | 1.180 | 0.01 | 0.955 | 1.127 | Report No.: FA412407 ## <LTE SAR> | Plot
No. | Band | BW
(MHz
) | Modulati
on | RB
Size | RB
offset | Test
Position | Gap
(cm) | Ch. | Freq.
(MHz) | | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|------------|-----------------|----------------|------------|--------------|----------------------|-------------|-------|----------------|-------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------| | | LTE Band 7 | 20M | QPSK | 1 | 49 | Front | 1 | 21350 | 2560 | 22.83 | 23 | 1.040 | -0.01 | 0.473 | 0.492 | | | LTE Band 7 | 20M | QPSK | 1 | 49 | Back | 1 | 21350 | 2560 | 22.83 | 23 | 1.040 | 0.05 | 1.05 | 1.092 | | 05 | LTE Band 7 | 20M | QPSK | 1 | 49 | Back | 1 | 20850 | 2510 | 22.77 | 23 | 1.054 | 0.02 | 1.25 | 1.318 | | | LTE Band 7 | 20M | QPSK | 1 | 49 | Back | 1 | 21100 | 2535 | 22.80 | 23 | 1.047 | -0.03 | 1.21 | 1.267 | | | LTE Band 7 | 20M | QPSK | 1 | 49 | Back with
Headset | 1 | 20850 | 2510 | 22.77 | 23 | 1.054 | 0.03 | 1.15 | 1.213 | | | LTE Band 7 | 20M | QPSK | 1 | 49 | Back with
Headset | 1 | 21100 | 2535 | 22.80 | 23 | 1.047 | 0.05 | 1.13 | 1.183 | | | LTE Band 7 | 20M | QPSK | 1 | 49 | Back with
Headset | 1 | 21350 | 2560 | 22.83 | 23 | 1.040 | 0.1 | 1.07 | 1.113 | | | LTE Band 7 | 20M | QPSK | 50 | 0 | Front | 1 | 20850 | 2510 | 21.84 | 22 | 1.038 | 0.1 | 0.441 | 0.458 | | | LTE Band 7 | 20M | QPSK | 50 | 0 | Back | 1 | 20850 | 2510 | 21.84 | 22 | 1.038 | 0.1 | 0.949 | 0.985 | | | LTE Band 7 | 20M | QPSK | 50 | 0 | Back | 1 | 21100 | 2535 | 21.7 | 22 | 1.072 | 0.11 | 0.922 | 0.988 | | | LTE Band 7 | 20M | QPSK | 50 | 0 | Back | 1 | 21350 | 2560
| 21.74 | 22 | 1.062 | -0.04 | 0.955 | 1.014 | | | LTE Band 7 | 20M | QPSK | 100 | 0 | Front | 1 | 21350 | 2560 | 21.69 | 22 | 1.074 | -0.06 | 0.349 | 0.375 | | | LTE Band 7 | 20M | QPSK | 100 | 0 | Back | 1 | 21350 | 2560 | 21.69 | 22 | 1.074 | -0.04 | 0.889 | 0.955 | Report No.: FA412407 ## <DTS WLAN SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(cm) | Ch. | Freq.
(MHz) | D-4- | B | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Duty
Cycle
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|----------------|---------|-------------------|-------------|-----|----------------|------|-------|---------------------------|------------------------------|------------------------------------|------------------------|------------------------------|------------------------------| | | WLAN
2.4GHz | 802.11b | Front | 1 | 11 | 2462 | 1M | 11.04 | 12 | 1.247 | 1.024 | 0.02 | 0.000934 | 0.001 | | 06 | WLAN
2.4GHz | 802.11b | Back | 1 | 11 | 2462 | 1M | 11.04 | 12 | 1.247 | 1.024 | 0.05 | 0.038 | 0.049 | | | WLAN
2.4GHz | 802.11b | Back with Headset | 1 | 11 | 2462 | 1M | 11.04 | 12 | 1.247 | 1.024 | 0.03 | 0.036 | 0.046 | TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date: May 30, 2014 Form version. : 140422 FCC ID: R38YL889N Page 36 of 44 # 15.4 Repeated SAR Measurement | No | . Band | BW
(MHz
) | Mode | RB
Size | RB
offset | Test
Position | Gap
(cm) | (:n | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | | Measured
1g SAR
(W/kg) | | Reporte
d
1g SAR
(W/kg) | |----|------------|-----------------|--------------------------|------------|--------------|------------------|-------------|-------|----------------|---------------------------|---------------------------|------------------------------|-------|------------------------------|-------|----------------------------------| | 1s | GSM1900 | - | GPRS(GMSK
3 Tx slots) | - | - | Bottom side | 1 | 810 | 1909.8 | 27.28 | 28 | 1.180 | -0.06 | 1.21 | 1 | 1.428 | | 2n | GSM1900 | - | GPRS(GMSK
3 Tx slots) | - | 1 | Bottom side | 1 | 810 | 1909.8 | 27.28 | 28 | 1.180 | -0.07 | 1.2 | 1.008 | 1.416 | | 1s | LTE Band 7 | 20M | QPSK | 1 | 49 | Back | 1 | 20850 | 2510 | 22.77 | 23 | 1.054 | 0.02 | 1.25 | 1 | 1.318 | | 2n | LTE Band 7 | 20M | QPSK | 1 | 49 | Back | 1 | 20850 | 2510 | 22.77 | 23 | 1.054 | 0.02 | 1.23 | 1.016 | 1.297 | Report No.: FA412407 ### **General Note:** - 1. Per KDB 865664 D01v01r03, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg - 2. Per KDB 865664 D01v01r03, if the ratio among the repeated measurement is ≤ 1.2 and the measured SAR <1.45W/kg, only one repeated measurement is required. - 3. The ratio is the difference in percentage between original and repeated *measured SAR*. - 4. All measurement SAR result is scaled-up to account for tune-up tolerance and is compliant. SPORTON INTERNATIONAL (XI'AN) INC. ## 16. Simultaneous Transmission Analysis | NO. | Simultaneous Transmission Configurations | P | ortable Hands | Note | | |-----|--|------|---------------|---------|---------------------| | NO. | Simultaneous Transmission Configurations | Head | Body-worn | Hotspot | Note | | 1. | GSM(Voice) + WLAN2.4GHz(data) | Yes | Yes | - | - | | 2. | GSM(Voice) + Bluetooth(data) | Yes | Yes | - | - | | 3. | GPRS/EDGE(Data) + WLAN2.4GHz(data) | Yes | Yes | Yes | 2.4GHz Hotspot | | 4. | LTE(Data) + WLAN2.4GHz(data) | Yes | Yes | Yes | 2.4GHz Hotspot | | 5. | GPRS/EDGE(Data) + Bluetooth(data) | Yes | Yes | Yes | Bluetooth Tethering | | 6. | LTE(Data) + Bluetooth(data) | Yes | Yes | Yes | Bluetooth Tethering | Report No.: FA412407 #### **General Note:** - 1. This device supported VoIP in GPRS/EGPRS, LTE (e.g. 3rd party VoIP). - 2. This device 2.4GHz WLAN supports Hotspot operation. - 3. WLAN 2.4GHz and Bluetooth share the same antenna, and cannot transmit simultaneously. - 4. EUT will choose each of GSM and LTE according to the network signal condition; therefore, they will not transmit simultaneously at any moment. - 5. The Reported SAR summation is calculated based on the same configuration and test position. - 6. Per KDB 447498 D01v05r02, simultaneous transmission SAR is compliant if, - i) Scalar SAR summation < 1.6W/kg. - ii) SPLSR = (SAR1 + SAR2)^1.5 / (min. separation distance, mm), and the peak separation distance is determined from the square root of [(x1-x2)2 + (y1-y2)2 + (z1-z2)2], where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the extrapolated peak SAR locations in the zoom scan. - iii) If SPLSR ≤ 0.04, simultaneously transmission SAR measurement is not necessary. - iv) Simultaneously transmission SAR measurement, and the reported multi-band SAR < 1.6W/kg. - For simultaneous transmission analysis, Bluetooth SAR is estimated per KDB 447498 D01v05r02 based on the formula below. - i) (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances ≤ 50 mm; where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR. - ii) When the minimum separation distance is < 5mm, the distance is used 5mm to determine SAR test exclusion. - iii) 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm. - iv) Bluetooth estimated SAR is conservatively determined by 5mm separation, for all applicable exposure positions. | Bluetooth | Exposure Position | Head | Hotspot | Body worn | |-----------|----------------------|------------|------------|------------| | Max Power | Test separation | 0 mm | 10 mm | 10 mm | | -0.5 dBm | Estimated SAR (W/kg) | 0.042 W/kg | 0.021 W/kg | 0.021 W/kg | # 16.1 Head Exposure Conditions | WWAN Band | | | WWAN WLAN DTS SAR (W/kg) Band (W/kg) | | DTS | Bluetooth DSS | WWAN +
WLAN | WWAN +
Bluetooth | |-----------|---------|-------------------|--|----------|-------|----------------------|----------------------|---------------------| | | | Exposure Position | | | | Estimated SAR (W/kg) | Summed
SAR (W/kg) | Summed | | | GSM1900 | Right Cheek | 0.210 | WLAN2.4G | 0.024 | 0.042 | 0.23 | 0.25 | | 0014 | | Right Tilted | 0.096 | WLAN2.4G | 0.005 | 0.042 | 0.10 | 0.14 | | GSM | | Left Cheek | 0.380 | WLAN2.4G | 0.009 | 0.042 | 0.39 | 0.42 | | | | Left Tilted | 0.064 | WLAN2.4G | 0.002 | 0.042 | 0.07 | 0.11 | | | Band 7 | Right Cheek | 0.425 | WLAN2.4G | 0.024 | 0.042 | 0.45 | 0.47 | | LTE | | Right Tilted | 0.120 | WLAN2.4G | 0.005 | 0.042 | 0.13 | 0.16 | | LTE | | Left Cheek | 0.215 | WLAN2.4G | 0.009 | 0.042 | 0.22 | 0.26 | | | | Left Tilted | 0.098 | WLAN2.4G | 0.002 | 0.042 | 0.10 | 0.14 | Report No.: FA412407 # 16.2 Hotspot Exposure Conditions | | | Evene | WWAN | WLAN DTS | | Bluetooth DSS | WWAN + WLAN | WWAN + | |-----|---------|----------------------|---------------|----------|-------|---------------|----------------------|-----------------------------------| | WWA | N Band | Exposure
Position | SAR
(W/kg) | Rand | | | Summed
SAR (W/kg) | Bluetooth
Summed
SAR (W/kg) | | | | Front | 0.689 | WLAN2.4G | 0.001 | 0.021 | 0.69 | 0.71 | | | | Back | 1.127 | WLAN2.4G | 0.049 | 0.021 | 1.18 | 1.15 | | GSM | GSM1900 | Left side | 0.124 | WLAN2.4G | 0.033 | 0.021 | 0.16 | 0.15 | | | | Right side | 0.089 | | | | 0.09 | 0.09 | | | | Bottom side | 1.428 | | | | 1.43 | 1.43 | | | | Front | 0.492 | WLAN2.4G | 0.001 | 0.021 | 0.49 | 0.51 | | | | Back | 1.318 | WLAN2.4G | 0.049 | 0.021 | 1.37 | 1.34 | | LTE | Band 7 | Left side | 0.088 | WLAN2.4G | 0.033 | 0.021 | 0.12 | 0.11 | | | | Right side | 0.27 | | | | 0.27 | 0.27 | | | | Bottom side | 1.194 | | | | 1.19 | 1.19 | Report No.: FA412407 # 16.3 Body-Worn Accessory Exposure Conditions | WWAN Band | | | WWAN | WLAN | N DTS | Bluetooth DSS | WWAN + | WWAN +
Bluetooth | | |-----------|---------|-------------------|--------------------|----------|---------------|-------------------------|---------------------------|----------------------|--| | | | Exposure Position | SAR
(W/kg) Band | | SAR
(W/kg) | Estimated
SAR (W/kg) | WLAN Summed
SAR (W/kg) | Summed
SAR (W/kg) | | | | | Front | 0.689 | WLAN2.4G | 0.001 | 0.021 | 0.69 | 0.71 | | | GSM | GSM1900 | Back | 1.127 | WLAN2.4G | 0.049 | 0.021 | 1.18 | 1.15 | | | | | Back with Headset | | WLAN2.4G | 0.046 | 0.021 | 0.05 | 0.02 | | | | | Front | 0.492 | WLAN2.4G | 0.001 | 0.021 | 0.49 | 0.51 | | | LTE | Band 7 | Back | 1.318 | WLAN2.4G | 0.049 | 0.021 | 1.37 | 1.34 | | | | | Back with Headset | 1.213 | WLAN2.4G | 0.046 | 0.021 | 1.26 | 1.23 | | **Report No. : FA412407** Test Engineer: Kat Yin # 17. Uncertainty Assessment The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance. Report No.: FA412407 A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement. A type B evaluation of standard uncertainty is typically
based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience, and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in table below. | Uncertainty Distributions | Normal | Rectangular | Triangular | U-Shape | |------------------------------------|--------------------|-------------|------------|---------| | Multi-plying Factor ^(a) | 1/k ^(b) | 1/√3 | 1/√6 | 1/√2 | - (a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity - (b) κ is the coverage factor #### **Table 17.1 Standard Uncertainty for Assumed Distribution** The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances. Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is shown in the following tables. SPORTON INTERNATIONAL (XI'AN) INC. TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date: May 30, 2014 Form version. : 140422 FCC ID: R38YL889N Page 42 of 44 | Error Description | Uncertainty
Value
(±%) | Probability
Distribution | Divisor | Ci
(1g) | Ci
(10g) | Standard
Uncertainty
(1g) | Standard
Uncertainty
(10g) | |------------------------------|------------------------------|-----------------------------|---------|------------|-------------|---------------------------------|----------------------------------| | Measurement System | | | | | | | | | Probe Calibration | 6.0 | Normal | 1 | 1 | 1 | ± 6.0 % | ± 6.0 % | | Axial Isotropy | 4.7 | Rectangular | √3 | 0.7 | 0.7 | ± 1.9 % | ± 1.9 % | | Hemispherical Isotropy | 9.6 | Rectangular | √3 | 0.7 | 0.7 | ± 3.9 % | ± 3.9 % | | Boundary Effects | 1.0 | Rectangular | √3 | 1 | 1 | ± 0.6 % | ± 0.6 % | | Linearity | 4.7 | Rectangular | √3 | 1 | 1 | ± 2.7 % | ± 2.7 % | | System Detection Limits | 1.0 | Rectangular | √3 | 1 | 1 | ± 0.6 % | ± 0.6 % | | Readout Electronics | 0.3 | Normal | 1 | 1 | 1 | ± 0.3 % | ± 0.3 % | | Response Time | 0.8 | Rectangular | √3 | 1 | 1 | ± 0.5 % | ± 0.5 % | | Integration Time | 2.6 | Rectangular | √3 | 1 | 1 | ± 1.5 % | ± 1.5 % | | RF Ambient Noise | 3.0 | Rectangular | √3 | 1 | 1 | ± 1.7 % | ± 1.7 % | | RF Ambient Reflections | 3.0 | Rectangular | √3 | 1 | 1 | ± 1.7 % | ± 1.7 % | | Probe Positioner | 0.4 | Rectangular | √3 | 1 | 1 | ± 0.2 % | ± 0.2 % | | Probe Positioning | 2.9 | Rectangular | √3 | 1 | 1 | ± 1.7 % | ± 1.7 % | | Max. SAR Eval. | 1.0 | Rectangular | √3 | 1 | 1 | ± 0.6 % | ± 0.6 % | | Test Sample Related | | | | | | | | | Device Positioning | 2.9 | Normal | 1 | 1 | 1 | ± 2.9 % | ± 2.9 % | | Device Holder | 3.6 | Normal | 1 | 1 | 1 | ± 3.6 % | ± 3.6 % | | Power Drift | 5.0 | Rectangular | √3 | 1 | 1 | ± 2.9 % | ± 2.9 % | | Phantom and Setup | | | | | | | | | Phantom Uncertainty | 4.0 | Rectangular | √3 | 1 | 1 | ± 2.3 % | ± 2.3 % | | Liquid Conductivity (Target) | 5.0 | Rectangular | √3 | 0.64 | 0.43 | ± 1.8 % | ± 1.2 % | | Liquid Conductivity (Meas.) | 2.5 | Normal | 1 | 0.64 | 0.43 | ± 1.6 % | ± 1.1 % | | Liquid Permittivity (Target) | 5.0 | Rectangular | √3 | 0.6 | 0.49 | ± 1.7 % | ± 1.4 % | | Liquid Permittivity (Meas.) | 2.5 | Normal | 1 | 0.6 | 0.49 | ± 1.5 % | ± 1.2 % | | Combined Standard Uncertaint | у | | | - | • | ± 11.0 % | ± 10.8 % | | Coverage Factor for 95 % | | | | | | K: | =2 | | Expanded Uncertainty | | | | | | ± 22.0 % | ± 21.5 % | Report No.: FA412407 Table 17.2 Uncertainty Budget for frequency range 300 MHz to 3 GHz TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date: May 30, 2014 Form version. : 140422 FCC ID: R38YL889N Page 43 of 44 # 18. References [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations" **Report No. : FA412407** - [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992 - [3] IEEE Std. 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - [4] SPEAG DASY System Handbook - [5] FCC KDB 248227 D01 v01r02, "SAR Measurement Procedures for 802.11 a/b/g Transmitters", May 2007 - [6] FCC KDB 447498 D01 v05r02, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Feb 2014 - [7] FCC KDB 648474 D04 v01r02, "SAR Evaluation Considerations for Wireless Handsets", Dec 2013. - [8] FCC KDB 941225 D03 v01, "Recommended SAR Test Reduction Procedures for GSM / GPRS / EDGE", December 2008 - [9] FCC KDB 941225 D04 v01, "Evaluating SAR for GSM/(E)GPRS Dual Transfer Mode", January 2010 - [10] FCC KDB 941225 D05 v02r03, "SAR Evaluation Considerations for LTE Devices", Dec 2013 - [11] FCC KDB 941225 D06 v01r01, "SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities", May 2013. - [12] FCC KDB 865664 D01 v01r03, "SAR Measurement Requirements for 100 MHz to 6 GHz", Feb 2014. - [13] FCC KDB 865664 D02 v01r01, "RF Exposure Compliance Reporting and Documentation Considerations" May 2013. # Appendix A. Plots of System Performance Check Report No. : FA412407 The plots are shown as follows. SPORTON INTERNATIONAL (XI'AN) INC. ## System Check Head 1900MHz 140414 #### **DUT: D1900V2 - SN:5d170** Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL_1900_140414 Medium parameters used: f = 1900 MHz; $\sigma = 1.456$ S/m; $\varepsilon_r = 40.84$; $\rho = 1.000$ L $_{\odot}$ $_{\odot}$ 1000 kg/m^3 Ambient Temperature: 23.5 °C; Liquid Temperature: 22.5 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3898; ConvF(8.2, 8.2, 8.2); Calibrated: 2014/3/10; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1353; Calibrated: 2014/1/30 - Phantom: SAM2; Type: QD000P40CD; Serial: TP:1754 - Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028) **Pin=250mW/Area Scan (61x61x1):** Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 15.0 W/kg **Pin=250mW/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 102.1 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 19.3 W/kg **SAR(1 g)** = **10.4 W/kg**; **SAR(10 g)** = **5.34 W/kg** Maximum value of SAR (measured) = 14.6 W/kg #### System Check Head 2450MHz 140418 #### **DUT: D2450V2 - SN:908** Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL_2450_140418 Medium parameters used: f = 2450 MHz; $\sigma = 1.81$ S/m; $\epsilon_r = 37.626$; $\rho = 1.81$ S/m; $\epsilon_r = 37.626$; 1000 kg/m^3 Ambient Temperature: 23.5 °C; Liquid Temperature: 22.2 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3898; ConvF(7.55, 7.55, 7.55); Calibrated: 2014/3/10; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1353; Calibrated: 2014/1/30 - Phantom: SAM1; Type: QD000P40CD; Serial: TP:1753 - Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028) **Pin=250mW/Area Scan (81x81x1):** Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 21.2 W/kg Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93.315 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 29.2 W/kg SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.19 W/kgMaximum value of SAR (measured) = 21.4 W/kg ## System Check Head 2600MHz 140419 **DUT: D2600V2 - SN: 1061** Communication System: CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: HSL_2600_140419 Medium parameters used: f = 2600 MHz; $\sigma = 1.981$ S/m; $\varepsilon_r = 38.254$; ρ $= 1000 \text{ kg/m}^3$ Ambient Temperature : 23.5 °C; Liquid Temperature : 22.5 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3898; ConvF(7.34, 7.34, 7.34); Calibrated: 2014/3/10; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1353; Calibrated: 2014/1/30 - Phantom: SAM1; Type: QD000P40CD; Serial: TP:1753 - Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028) **Pin=250mW/Area Scan (61x61x1):** Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 25.3 W/kg **Pin=250mW/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 110.7 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 34.5 W/kg SAR(1 g) = 15.1 W/kg; SAR(10 g) = 6.64 W/kgMaximum value of SAR (measured) = 23.9 W/kg #### System Check Body 1900MHz 140414 #### **DUT: D1900V2 - SN: 5d170** Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: MSL_1900_140414 Medium parameters used: f = 1900 MHz; $\sigma = 1.542$ S/m; $\epsilon_r = 55.338$; ρ $= 1000 \text{ kg/m}^3$ Ambient Temperature: 23.5 °C; Liquid Temperature: 22.5 °C #### DASY5 Configuration: -
Probe: EX3DV4 SN3898; ConvF(7.83, 7.83, 7.83); Calibrated: 2014/3/10; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1353; Calibrated: 2014/1/30 - Phantom: SAM1; Type: QD000P40CD; Serial: TP:1753 - Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028) **Pin=250mW/Area Scan (61x61x1):** Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 13.3 W/kg **Pin=250mW/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 81.978 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 16.6 W/kg SAR(1 g) = 9.43 W/kg; SAR(10 g) = 4.95 W/kgMaximum value of SAR (measured) = 13.3 W/kg #### System Check Body 2450MHz 140418 #### **DUT: D2450V2 - SN:908** Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: MSL_2450_140418 Medium parameters used: f = 2450 MHz; $\sigma = 1.949$ S/m; $\epsilon_r = 53.894$; ρ $= 1000 \text{ kg/m}^3$ Ambient Temperature: 23.5 °C; Liquid Temperature: 22.6 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3898; ConvF(7.49, 7.49, 7.49); Calibrated: 2014/3/10; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1353; Calibrated: 2014/1/30 - Phantom: SAM2; Type: QD000P40CD; Serial: TP:1754 - Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028) **Pin=250mW/Area Scan (81x81x1):** Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 19.9 W/kg **Pin=250mW/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 86.050 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 27.0 W/kg **SAR(1 g) = 12.9 W/kg; SAR(10 g) = 5.94 W/kg** Maximum value of SAR (measured) = 19.8 W/kg -4.47 -8.95 -13.42 -17.90 -22.37 0 dB = 19.8 W/kg #### System Check Body 2600MHz 140417 **DUT: D2600V2 - SN: 1061** Communication System: CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: MSL_2600_140417 Medium parameters used: f = 2600 MHz; $\sigma = 2.201$ S/m; $\epsilon_r = 52.823$; ρ $= 1000 \text{ kg/m}^3$ Ambient Temperature: 23.5 °C; Liquid Temperature: 22.3 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3898; ConvF(7.06, 7.06, 7.06); Calibrated: 2014/3/10; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1353; Calibrated: 2014/1/30 - Phantom: SAM2; Type: QD000P40CD; Serial: TP:1754 - Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028) **Pin=250mW/Area Scan (61x61x1):** Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 25.1 W/kg Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 104.4 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 34.1 W/kg SAR(1 g) = 14.7 W/kg; SAR(10 g) = 6.48 W/kg Maximum value of SAR (measured) = 23.2 W/kg # Appendix B. Plots of High SAR Measurement Report No.: FA412407 The plots are shown as follows. SPORTON INTERNATIONAL (XI'AN) INC. # 01 GSM1900_GPRS (GMSK 3 Tx slots)_Left Cheek_Ch512 Communication System: GPRS (GMSK 3 Tx slot); Frequency: 1850.2 MHz; Duty Cycle: 1:2.77 Medium: HSL_1900_140414 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.403$ S/m; $\epsilon_r = 41.06$; $\rho = 1000$ kg/m³ Date: 2014/4/14 Ambient Temperature: 23.5 °C; Liquid Temperature: 22.5 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3898; ConvF(8.2, 8.2, 8.2); Calibrated: 2014/3/10; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1353; Calibrated: 2014/1/30 - Phantom: SAM2; Type: QD000P40CD; Serial: TP:1754 - Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028) **Ch512/Area Scan (61x111x1):** Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.446 W/kg Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.064 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.503 W/kg SAR(1 g) = 0.328 W/kg; SAR(10 g) = 0.200 W/kg Maximum value of SAR (measured) = 0.424 W/kg # 02 LTE Band 7_QPSK_20M(1,49)_Right Cheek_Ch21350 Communication System: LTE; Frequency: 2560 MHz; Duty Cycle: 1:1 Medium: HSL_2600_140419 Medium parameters used: f = 2560 MHz; $\sigma = 1.944$ S/m; $\epsilon_r = 38.479$; $\rho = 1000$ kg/m³ Date: 2014/4/19 $= 1000 \text{ kg/m}^3$ Ambient Temperature: 23.5 °C; Liquid Temperature: 22.5 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3898; ConvF(7.34, 7.34, 7.34); Calibrated: 2014/3/10; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1353; Calibrated: 2014/1/30 - Phantom: SAM1; Type: QD000P40CD; Serial: TP:1753 - Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028) **Ch21350/Area Scan (71x131x1):** Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.621 W/kg **Ch21350/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.431 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 0.797 W/kg SAR(1 g) = 0.409 W/kg; SAR(10 g) = 0.211 W/kg Maximum value of SAR (measured) = 0.595 W/kg #### 03 WLAN2.4GHz 802.11b Right Cheek Ch11 Communication System: 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1.024 Medium: HSL_2450_140418 Medium parameters used: f = 2462 MHz; $\sigma = 1.824$ S/m; $\epsilon_r = 37.585$; ρ $= 1000 \text{ kg/m}^3$ Ambient Temperature: 23.5 °C; Liquid Temperature: 22.2 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3898; ConvF(7.55, 7.55, 7.55); Calibrated: 2014/3/10; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1353; Calibrated: 2014/1/30 - Phantom: SAM1; Type: QD000P40CD; Serial: TP:1753 - Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028) **Ch11/Area Scan (71x131x1):** Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.0467 W/kg **Ch11/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0.871 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 0.0900 W/kg SAR(1 g) = 0.019 W/kg; SAR(10 g) = 0.00697 W/kg Maximum value of SAR (measured) = 0.0306 W/kg # 04 GSM1900 GPRS (GMSK 3 Tx slots) Bottom side 1.0cm Ch810 Communication System: GPRS (GMSK 3 Tx slot); Frequency: 1909.8 MHz; Duty Cycle: 1:2.77 Medium: MSL 1900 140414 Medium parameters used: f = 1909.8 MHz; $\sigma = 1.554$ S/m; $\varepsilon_r = 55.263$; ρ $= 1000 \text{ kg/m}^3$ Date: 2014/4/14 Ambient Temperature: 23.5 °C; Liquid Temperature: 22.5 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3898; ConvF(7.83, 7.83, 7.83); Calibrated: 2014/3/10; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1353; Calibrated: 2014/1/30 - Phantom: SAM1; Type: QD000P40CD; Serial: TP:1753 - Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028) Ch810/Area Scan (31x61x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.64 W/kg Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.111 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 1.94 W/kgSAR(1 g) = 1.21 W/kg; SAR(10 g) = 0.639 W/kg Maximum value of SAR (measured) = 1.61 W/kg # 05 LTE Band 7_QPSK_20M(1,49)_Back_1.0cm_Ch20850 Communication System: LTE; Frequency: 2510 MHz; Duty Cycle: 1:1 Medium: MSL_2600_140417 Medium parameters used: f = 2510 MHz; $\sigma = 2.085$ S/m; $\epsilon_r = 52.993$; ρ Date: 2014/4/17 $= 1000 \text{ kg/m}^3$ Ambient Temperature: 23.5 °C; Liquid Temperature: 22.3 °C DASY5 Configuration: - Probe: EX3DV4 SN3898; ConvF(7.06, 7.06, 7.06); Calibrated: 2014/3/10; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1353; Calibrated: 2014/1/30 - Phantom: SAM2; Type: QD000P40CD; Serial: TP:1754 - Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028) **Ch20850/Area Scan (71x131x1):** Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 1.75 W/kg **Ch20850/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.806 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 2.47 W/kg SAR(1 g) = 1.25 W/kg; SAR(10 g) = 0.580 W/kg Maximum value of SAR (measured) = 1.85 W/kg ## 06 WLAN2.4GHz 802.11b Back 1.0cm Ch11 Communication System: 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1.024 Medium: MSL_2450_140418 Medium parameters used: f = 2462 MHz; σ = 1.974 S/m; ϵ_r = 53.843; ρ $= 1000 \text{ kg/m}^3$ Ambient Temperature: 23.5 °C; Liquid Temperature: 22.6 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3898; ConvF(7.49, 7.49, 7.49); Calibrated: 2014/3/10; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1353; Calibrated: 2014/1/30 - Phantom: SAM2; Type: QD000P40CD; Serial: TP:1754 - Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028) **Ch11/Area Scan (71x131x1):** Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.0661 W/kg Ch11/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0.997 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 0.0820 W/kg SAR(1 g) = 0.038 W/kg; SAR(10 g) = 0.015 W/kg Maximum value of SAR (measured) = 0.0575 W/kg # 07 GSM1900_GPRS (GMSK 3 Tx slots)_Back_1.0cm_Ch810 Communication System: GPRS (GMSK 3 Tx slot); Frequency: 1909.8 MHz; Duty Cycle: 1:2.77 Medium: MSL_1900_140414 Medium parameters used: f = 1909.8 MHz; $\sigma = 1.554$ S/m; $\epsilon_r = 55.263$; $\rho = 1000$ kg/m³ Date: 2014/4/14 Ambient Temperature: 23.5 °C; Liquid Temperature: 22.5 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3898; ConvF(7.83, 7.83, 7.83); Calibrated: 2014/3/10; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1353; Calibrated: 2014/1/30 - Phantom: SAM1; Type: QD000P40CD; Serial: TP:1753 - Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028) **Ch810/Area Scan (61x111x1):** Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.15 W/kg Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.899 V/m; Power Drift =
0.01 dB Peak SAR (extrapolated) = 1.51 W/kg SAR(1 g) = 0.955 W/kg; SAR(10 g) = 0.522 W/kg Maximum value of SAR (measured) = 1.28 W/kg