

FCC RF Test Report

APPLICANT	:	Akteena
EQUIPMENT	:	Akteena LumosX AI Dashcam
BRAND NAME	:	Akteena
MODEL NAME	:	A9-2299D
FCC ID	:	2BL79-A922
STANDARD	:	47 CFR Part 90(S)
CLASSIFICATION	:	PCS Licensed Transmitter (PCB)
TEST DATE(S)	:	Mar. 19, 2025 ~ Apr. 19, 2025

We, Sporton International Inc. (Kunshan), would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.26-2015 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Kunshan), the test report shall not be reproduced except in full.

JasonJia

Approved by: Jason Jia

Sporton International Inc. (Kunshan) No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

TABLE OF CONTENTS

RE	VISIO	N HISTORY	3
รบ	MMAF	RY OF TEST RESULT	4
1	GEN	ERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Feature of Equipment Under Test	5
	1.4	Product Specification of Equipment Under Test	5
	1.5	Modification of EUT	5
	1.6	Maximum Conducted Power and Emission Designator	6
	1.7	Testing Site	
	1.8	Test Software	
	1.9	Applied Standards	7
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	8
	2.1	Test Mode	8
	2.2	Connection Diagram of Test System	9
	2.3	Support Unit used in test configuration and system	9
	2.4	Measurement Results Explanation Example	9
	2.5	Frequency List of Low/Middle/High Channels1	0
3	TEST	RESULT1	1
	3.1	Conducted Output Power Measurement1	1
	3.2	99% Occupied Bandwidth and 26dB Bandwidth Measurement1	2
	3.3	Emissions Mask Measurement1	3
	3.4	Emissions Mask – Out Of Band Emissions Measurement1	5
	3.5	Field Strength of Spurious Radiation Measurement1	6
	3.6	Frequency Stability Measurement1	9
4	LIST	OF MEASURING EQUIPMENT2	1
5	MEAS	SUREMENT UNCERTAINTY2	2

- APPENDIX A. TEST RESULTS OF CONDUCTED TEST
- APPENDIX B. TEST RESULTS OF RADIATED TEST

APPENDIX C. TEST SETUP PHOTOGRAPHS

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FG4O2401D	Rev. 01	Initial issue of report	May 08, 2025

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark						
3.1	§2.1046	Conducted Output Power	_	Report only	-						
2.0	§2.1049	Occupied Bandwidth and		Deperturb							
3.2	§90.209	26dB Bandwidth		Report only	-						
	§2.1051	Emission masks –		DAGO							
3.3	§90.691	In-band emissions	< 50+10log ₁₀ (P[Watts])	PASS	-						
2.4	§2.1051	Emission masks –	- 42 + 10 log (D[\/(attal))	PASS							
3.4	§90.691	Out of band emissions	< 43+10log ₁₀ (P[Watts])	PASS	-						
3.5	§2.1053	Field Strength of Spurious	< 43+10log ₁₀ (P[Watts])	PASS	Under limit 44.06 dB at						
0.0	§90.691	Radiation			1632.00 MHz						
3.6	§2.1055	Frequency Stability for	< 2 E ppm	PASS							
3.0	§90.213	Temperature & Voltage	< 2.5 ppm	FA00	-						
Conformity	Assessment Con	dition:									
	 The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of 										

non-compliance that may potentially occur if measurement uncertainty is taken into account.

2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty"

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

1 General Description

1.1 Applicant

Akteena

Akteena INC, 41369 Vincenti Ct., Novi Michigan 48375, U.S.A

1.2 Manufacturer

VVDN Technologies Pvt Ltd

Plot No: CP-07, Sector-8, IMT Manesar, Gurugram-122050, Haryana, INDIA

1.3 Feature of Equipment Under Test

	Product Feature
Equipment	Akteena LumosX AI Dashcam
Brand Name	Akteena
Model Name	A9-2299D
FCC ID	2BL79-A922
IMEI Code	Conducted: 357750172665241 Radiation: 357750172665239
HW Version	C1
SW Version	Thermal-DCV2.7
EUT Stage	Identical Prototype

Remark:

- **1.** The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.
- **2.** The device supports Powered by 12Vdc and 24Vdc, for RF testing, we evaluate is not affect RF performance, so we choice 12Vdc power source to test.

1.4 Product Specification of Equipment Under Test

Product Specification subjective to this standard							
Tx Frequency	814 ~ 824 MHz						
Rx Frequency	859 ~ 869 MHz						
Bandwidth	1.4MHz / 3MHz / 5MHz / 10MHz / 15MHz						
Maximum Output Power to Antenna	23.55 dBm						
Antenna Gain	-2.2 dBi						
Type of Modulation	QPSK / 16QAM						

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Maximum Conducted Power and Emission Designator

Ľ	TE Band 26	QP	SK	16QAM			
BW (MHz)	Frequency Range (MHz)	Maximum Conducted power (W)	Emission Designator (99%OBW)	Maximum Conducted power (W)	Emission Designator (99%OBW)		
1.4	814.7 ~ 823.3	0.2065	1M08G7D	0.1675	1M10W7D		
3	815.5 ~ 822.5	0.2070	2M72G7D	0.1679	2M73W7D		
5	816.5 ~ 821.5	0.2138	4M48G7D	0.1726	4M48W7D		
10	819.0	0.2265	8M97G7D	0.1663	9M01W7D		
15	824	0.2070	13M4G7D	0.1622	13M4W7D		

Note: All modulations have been tested, and only the worst test results of PSK & QAM are shown in the report.

1.7 Testing Site

Sporton International Inc. (Kunshan) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Test Firm	Sporton International Inc. (Kunshan)								
	No. 1098, Pengxi North Road, Kunshan Economic Development Zone								
Test Site Location	Jiangsu Province 215300 People's Republic of China								
	TEL : +86-512-57900158								
	Sporton Site No.	FCC Designation No.	FCC Test Firm						
Test Site No.	Sporton Site No.	FCC Designation No.	Registration No.						
	03CH04-KS TH01-KS	CN1257	314309						

1.8 Test Software

ltem	Site	Manufacturer	nufacturer Name	
1.	TH01-KS	SPORTON	Part2224_Ver5.0 200330	5.0
2.	03CH04-KS	AUDIX	E3	210616

1.9 Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

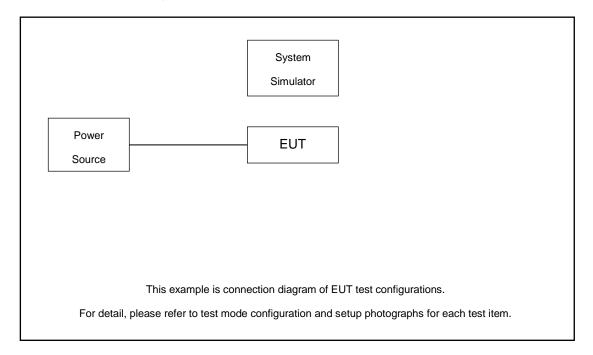
- 47 CFR 90(S)
- ANSI C63.26-2015
- FCC KDB 971168 D01 Power Meas. License Digital Systems v03r01
- FCC KDB 971168 D02 Misc Rev Approv License Devices v02r02

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Test Mode


During all testing, EUT is in link mode with base station emulator at maximum power level. The spurious emission measurements were carried out in semi-anechoic chamber with 3-meter test range, and EUT is rotated on three test planes to find out the worst emission.

	Bandwidth (MHz)					Modulation				RB #			Test Channel				
Test Items	Band	1.4	3	5	10	15	20	QPSK	16 QAM	64 QAM	256 QAM	1	Half	Full	L	м	н
Max. Output Power	26	v	v	v	v	v	-	v	v	-	-	v	v	v	v	v	v
26dB and 99% Bandwidth	26	v	v	v	v	v	-	v	v	-	-			v		v	
Emission masks In-band emissions	26	v	v	v	v	v	-	v	~	-	-	>		v	v		v
Emission masks – Out of band emissions	26	v	v	v	v	v	-	v		-	-	v			v	v	v
Frequency Stability	26				v		-	v		-	-			v		v	
Radiated Spurious Emission	26						W	orse Ca	ise							v	
Note	 The mark "v " means that this configuration is chosen for testing The mark "-" means that this bandwidth is not supported. LTE Band26 transmit frequency for part22 rule is 824MHz-849MHz, for part90 rule is 814MHz-824MHz. ERP over 15MHz bandwidth complies the ERP limit line of part22 rule, therefore ERP of the partial frequency spectrum which falls within part 22 also complies. 																

Frequency range investigated for radiated emission is 30 MHz to 9000 MHz.

2.2 Connection Diagram of Test System

2.3 Support Unit used in test configuration and system

lte	em Equipment		Trade Name	Model No.	FCC ID	Data Cable	Power Cord
1		System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m
2	2.	Power Supply	GWINSTEK	PSS-2002	N/A	N/A	Unshielded, 1.8 m

2.4 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss between RF conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level will be exactly the RF output level.

The spectrum analyzer offset is derived from RF cable loss.

Offset = RF cable loss.

The following shows an offset computation example with RF cable loss 4.6dB.

Example :

Offset(dB) = RF cable loss(dB).

= 4.6(dB)

2.5 Frequency List of Low/Middle/High Channels

	LTE Band 26 Channel and Frequency List										
BW [MHz]	Channel/Frequency(MHz)	Lowest	Middle	Highest							
10	Channel	-	26740	-							
10	Frequency	-	819	-							
5	Channel	26715	26740	26765							
D	Frequency	816.5	819	821.5							
3	Channel	26705	26740	26775							
3	Frequency	815.5	819	822.5							
1.4	Channel	26697	26740	26783							
1.4	Frequency	814.7	819	823.3							

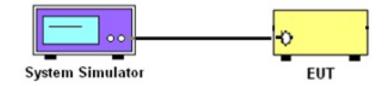
	LTE Band 26 Cross-ru	le Channel and Fre	equency List	
BW [MHz]	Channel/Frequency(MHz)	-	Middle	-
15	Channel	-	26790	-
15	Frequency	-	824	-
10	Channel	-	26790	-
10	Frequency	-	824	-
5	Channel	-	26790	-
5	Frequency	-	824	-
3	Channel	-	26790	-
5	Frequency	-	824	-
1.4	Channel	-	26790	-
1.4	Frequency	-	824	-

3 Test Result

3.1 Conducted Output Power Measurement

3.1.1 Description of the Conducted Output Power Measurement

A system simulator was used to establish communication with the EUT. Its parameters were set to enforce EUT transmitting at the maximum power. The measured power in the radio frequency on the transmitter output terminals shall be reported.


3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedures

- 1. The transmitter output port was connected to the system simulator.
- 2. Set EUT at maximum power through the system simulator.
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Measure and record the power level from the system simulator.

3.1.4 Test Setup

3.1.5 Test Result of Conducted Output Power

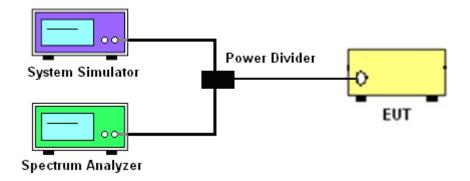
Please refer to Appendix A.

3.2 99% Occupied Bandwidth and 26dB Bandwidth Measurement

3.2.1 Description of (Occupied) Bandwidth Limitations Measurement

The 99% occupied bandwidth is the width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5% of the total mean transmitted power.

The emission bandwidth is defined as the width of the signal between two points, located at the 2 sides of the carrier frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.


3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

- 1. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- The 26dB and 99% occupied bandwidth (BW) of the middle channel for the highest RF power with full RB sizes were measured.

3.2.4 Test Setup

3.2.5 Test Result of 99% Occupied Bandwidth and 26dB Bandwidth

Please refer to Appendix A.

3.3 Emissions Mask Measurement

3.3.1 Description of Emissions Mask Measurement

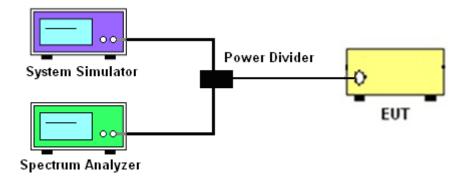
Equipment used in this licensed to EA or non-EA systems shall comply with the emission mask provisions of FCC Part 90.691.(a):

(a) Out-of-band emission requirement shall apply only to the "outer" channels included in an EA license and to spectrum adjacent to interior channels used by incumbent licensees. The emission limits are as follows:

(1) For any frequency removed from the EA licensee's frequency block by up to and including 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 116 Log₁₀(f/6.1) decibels or 50 + 10 Log₁₀(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 12.5 kHz.

(2) For any frequency removed from the EA licensee's frequency block greater than 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 43 + 10Log₁₀(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 37.5 kHz.

3.3.2 Measuring Instruments


The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

- 1. The EUT was connected to spectrum analyzer and base station via power divider.
- 2. The emissions mask of low and high channels for the highest RF powers were measured.
- The measured RBW and the VBW set 3 times of RBW are then set in spectrum analyzer, and the RBW correction factor 10log (1% of OBW/measured RBW)(dB) was compensated, if required.
- 4. The test results were shown below plots with a correction offset factor including cable loss, insertion loss of power divider.

3.3.4 Test Setup

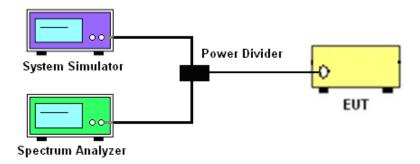
3.3.5 Test Result (Plots) of Conducted Emissions Mask

Please refer to Appendix A.

3.4 Emissions Mask – Out Of Band Emissions Measurement

3.4.1 Description of Conducted Emissions Out of band emissions measurement

The power of any emission FCC Part 90.691 (a)(2) on any frequency removed from the assigned frequency by out of the authorized bandwidth at least $43 + 10 \log (P) dB$. It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its 10^{th} harmonic.


3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.4.3 Test Procedures

- 1. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. The middle channel for the highest RF power within the transmitting frequency was measured.
- 4. The conducted spurious emission for the whole frequency range was taken.
- 5. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz, taking the record of maximum spurious emission.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- 7. The limit line is derived from 43 + 10log(P)dB below the transmitter power P(Watts)

3.4.4 Test Setup

3.4.5 Test Result (Plots) of Conducted Emission

Please refer to Appendix A.

3.5 Field Strength of Spurious Radiation Measurement

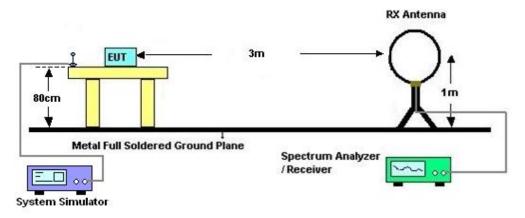
3.5.1 Description of Field Strength of Spurious Radiated Measurement

The radiated spurious emission was measured by substitution method according to ANSI C63.26. The power of any emission FCC Part 90.691 on any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth at least 43 + 10 log (P) dB. The spectrum is scanned from 30 MHz up to a frequency including its 10th harmonic.

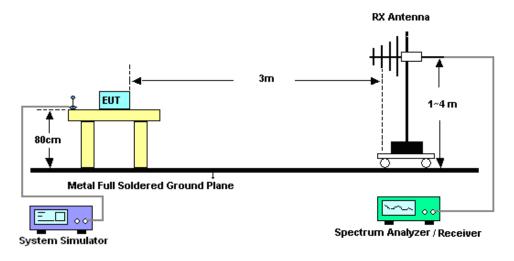
The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least 43+10log₁₀(P[Watts]) dB. The spectrum is scanned from 30 MHz up to a frequency including its 10th harmonic.

3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

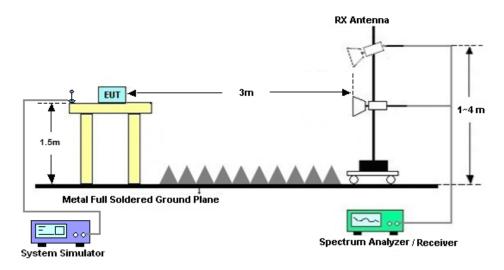

3.5.3 Test Procedures

- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the receiving antenna, which was mounted on the antenna tower.
- 3. The table was rotated 360 degrees to determine the position of the highest spurious emission.
- 4. The height of the receiving antenna is varied between one meter and four meters to search the maximum spurious emission for both horizontal and vertical polarizations.
- 5. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz, Sweep = 500ms, Taking the record of maximum spurious emission.
- 6. A horn antenna was substituted in place of the EUT and was driven by a signal generator.
- 7. Tune the output power of signal generator to the same emission level with EUT maximum spurious emission.
- 8. Taking the record of output power at antenna port.
- 9. Repeat step 7 to step 8 for another polarization.
- 10. EIRP (dBm) = S.G. Power Tx Cable Loss + Tx Antenna Gain
- 11. ERP (dBm) = EIRP 2.15
- 12. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- 13. The limit line is derived from 43 + 10log(P) dB below the transmitter power P(Watts)



3.5.4 Test Setup

For radiated test from 30MHz



For radiated test from 30MHz to 1GHz

For radiated test above 1GHz

3.5.5 Test Result of Field Strength of Spurious Radiated

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

Please refer to Appendix B.

3.6 Frequency Stability Measurement

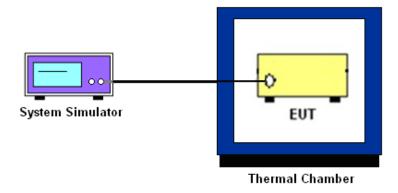
3.6.1 Description of Frequency Stability Measurement

The frequency stability shall be measured by variation of ambient temperature and variation of primary supply voltage to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within $\pm 0.00025\%$ (± 2.5 ppm) of the center frequency according to FCC Part 90.213.

3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.6.3 Test Procedures for Temperature Variation


- 1. The EUT was set up in the thermal chamber and connected with the base station.
- 2. With power OFF, the temperature was decreased to -30°C and the EUT was stabilized for three hours. Power was applied and the maximum change in frequency was recorded within one minute.
- 3. With power OFF, the temperature was raised in 10°C step up to 50°C. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.

3.6.4 Test Procedures for Voltage Variation

- 1. The EUT was placed in a temperature chamber at 20±5°C and connected with the system simulator.
- 2. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value for other than hand carried battery equipment.
- 3. For hand carried, battery powered equipment, reduce the primary ac or dc supply voltage to the
- 4. battery operating end point, which shall be specified by the manufacturer.
- 5. The variation in frequency was measured for the worst case.

3.6.5 Test Setup

3.6.6 Test Result of Temperature Variation

Please refer to Appendix A.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101040	10Hz~40GHz	Oct. 10, 2024	Apr. 19, 2025	Oct. 09, 2025	Conducted (TH01-KS)
Power divider	STI	STI08-0055	-	0.5~40GHz	NCR	Apr. 19, 2025	NCR	Conducted (TH01-KS)
Temperature & humidity chamber	Hongzhan	LP-150U	H2014011440	-40~+150°C 20%~95%RH	Jul. 04, 2024	Apr. 19, 2025	Jul. 03, 2025	Conducted (TH01-KS)
EXA Spectrum Analyzer	Keysight	N9010A	MY55370528	10Hz-44G,MAX 30dB	Oct. 11, 2024	Mar. 19, 2025	Oct. 10, 2025	Radiation (03CH04-KS)
Loop Antenna	R&S	HFH2-Z2E	101125	9kHz~30MHz	Sep. 08, 2024	Mar. 19, 2025	Sep. 07, 2025	Radiation (03CH04-KS)
Bilog Antenna	TeseQ	CBL6111D	44483	30MHz-1GHz	Nov. 23, 2024	Mar. 19, 2025	Nov. 22, 2025	Radiation (03CH04-KS)
Double Ridge Horn Antenna	ETS-Lindgren	3117	00227860	1GHz~18GHz	Aug. 16, 2024	Mar. 19, 2025	Aug. 15, 2025	Radiation (03CH04-KS)
Amplifier	SONOMA	310N	380826	9KHz-1GHz	Jul. 03, 2024	Mar. 19, 2025	Jul. 02, 2025	Radiation (03CH04-KS)
high gain Amplifier	EM	EM01G18G A	060840	1Ghz-18Ghz	Oct. 09, 2024	Mar. 19, 2025	Oct. 08, 2025	Radiation (03CH04-KS)
Amplifier	EM	EM01G18G A	060892	1Ghz-18Ghz	Oct. 09, 2024	Mar. 19, 2025	Oct. 08, 2025	Radiation (03CH04-KS)
AC Power Source	Chroma	61601	F104090004	N/A	NCR	Mar. 19, 2025	NCR	Radiation (03CH04-KS)
Turn Table	ChamPro	EM 1000-T	060762-T	0~360 degree	NCR	Mar. 19, 2025	NCR	Radiation (03CH04-KS)
Antenna Mast	ChamPro	EM 1000-A	060762-A	1 m~4 m	NCR	Mar. 19, 2025	NCR	Radiation (03CH04-KS)

NCR: No Calibration Required

5 Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.26-2015. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of Conducted Measurement

Test Item	Uncertainty
Conducted Spurious Emission & Bandedge	±2.22 dB
Occupied Channel Bandwidth	±0.1%
Conducted Power	±0.50 dB
Peak to Average Ratio	±0.46 dB
Frequency Stability	±0.4 Hz

Uncertainty of Radiated Emission Measurement (9 KHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	3.30dB
of 95% (U = 2Uc(y))	0.0002

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of	2.83dB
Confidence of 95% (U = 2Uc(y))	2:0508

Uncertainty of Radiated Emission Measurement (1 GHz ~ 18 GHz)

Measuring Uncertainty for a Level of	2.83dB
Confidence of 95% (U = 2Uc(y))	2.0300

----- THE END ------

Appendix A. Test Results of Conducted Test

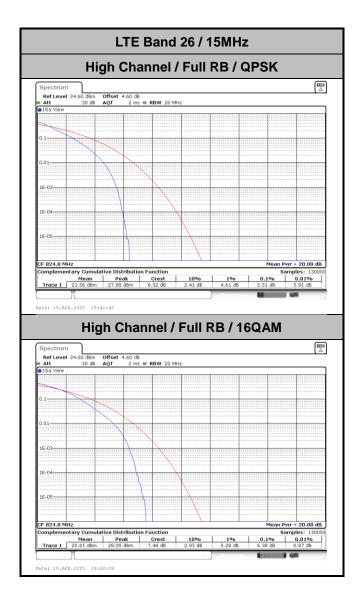
Toot Engineer		Temperature :	22~23°C
Test Engineer :	Smile Wang	Relative Humidity :	40~42%

Conducted Output Power (Average power)

BW [MHz]	Modulation	RB Size	RB Offset	Power Low Ch. / Freq.	Power Middle Ch. / Freq.	Power High Ch. / Freq.
	Cha	nnel			26790	
	Frequen	cy (MHz)			824	
15	QPSK	1	0		23.16	
15	QPSK	1	37		23.10	
15	QPSK	1	74		22.85	
15	QPSK	36	0		22.22	
15	QPSK	36	20		22.06	
15	QPSK	36	39		22.02	
15	QPSK	75	0		22.07	
15	16QAM	1	0		22.10	
15	16QAM	1	37		22.08	
15	16QAM	1	74		21.63	
15	16QAM	36	0		21.24	
15	16QAM	36	20		21.07	
15	16QAM	36	39		21.00	
15	16QAM	75	0		21.07	
	Cha	nnel			26740	
	Frequen	cy (MHz)			819	
10	QPSK	1	0		23.11	
10	QPSK	1	25		23.55	
10	QPSK	1	49		23.15	
10	QPSK	25	0		22.27	
10	QPSK	25	12		22.28	
10	QPSK	25	25		22.08	
10	QPSK	50	0		22.20	
10	16QAM	1	0		22.11	
10	16QAM	1	25		22.21	
10	16QAM	1	49		22.18	
10	16QAM	25	0		21.32	
10	16QAM	25	12		21.20	
10	16QAM	25	25		21.08	
10	16QAM	50	0		21.19	
	Cha	nnel		26715	26740	26765
	Frequen	cy (MHz)		816.5	819	821.5
5	QPSK	1	0	23.10	23.13	23.11
5	QPSK	1	12	23.17	23.30	23.25
5	QPSK	1	24	22.78	22.91	22.88
5	QPSK	12	0	22.30	22.24	22.14
5	QPSK	12	7	22.10	22.19	22.15

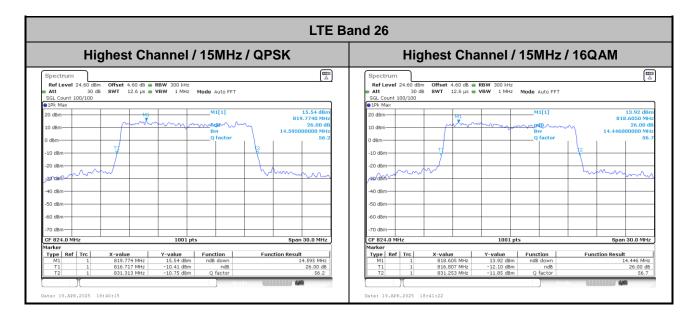
Sporton International Inc. (Kunshan) TEL : +86-512-57900158 FCC ID : 2BL79-A922 Page Number : A1 of A24

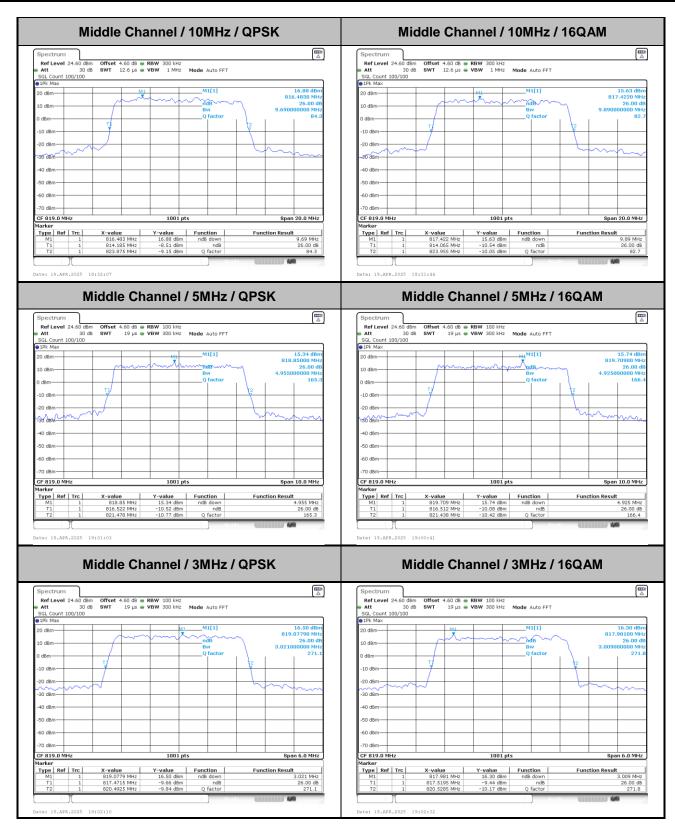
Report No. : FG4O2401D


5	QPSK	12	13	22.18	22.19	22.15
5	QPSK	25	0	22.15	22.18	22.17
5	16QAM	1	0	22.14	22.01	22.11
5	16QAM	1	12	22.30	22.37	22.30
5	16QAM	1	24	21.92	21.97	21.89
5	16QAM	12	0	21.25	21.26	21.30
5	16QAM	12	7	21.25	21.25	21.31
5	16QAM	12	13	21.10	21.12	21.05
5	16QAM	25	0	21.15	21.16	21.25
	Cha	nnel		26705	26740	26775
	Frequen	cy (MHz)		815.5	819	822.5
3	QPSK	1	0	23.07	23.14	23.11
3	QPSK	1	8	23.14	23.16	23.15
3	QPSK	1	14	23.15	23.16	23.13
3	QPSK	8	0	22.17	22.22	22.15
3	QPSK	8	4	22.17	22.24	22.18
3	QPSK	8	7	22.21	22.19	22.15
3	QPSK	15	0	22.15	22.19	22.11
3	16QAM	1	0	22.11	22.21	22.14
3	16QAM	1	8	22.22	22.14	22.25
3	16QAM	1	14	22.19	22.12	22.05
3	16QAM	8	0	21.24	21.23	21.31
3	16QAM	8	4	21.19	21.26	21.32
3	16QAM	8	7	21.15	21.21	21.17
3	16QAM	15	0	21.11	21.15	21.07
	Cha	nnel		26697	26740	26783
	Frequen	cy (MHz)		814.7	819	823.3
1.4	QPSK	1	0	23.00	23.05	23.11
1.4	QPSK	1	3	23.11	23.14	23.15
1.4	QPSK	1	5	23.14	23.15	23.05
1.4	QPSK	3	0	22.23	22.19	22.20
1.4	QPSK	3	1	22.29	22.24	22.17
1.4	QPSK	3	3	22.31	22.25	22.17
1.4	QPSK	6	0	22.15	22.15	22.21
1.4	16QAM	1	0	22.11	22.17	22.21
1.4	16QAM	1	3	22.09	22.14	22.20
1.4	16QAM	1	5	22.11	22.20	22.24
1.4	16QAM	3	0	21.22	21.34	21.35
1.4	16QAM	3	1	21.26	21.32	21.17
1.4	16QAM	3	3	21.29	21.23	21.15
1.4	16QAM	6	0	21.10	21.17	21.10

LTE Band 26

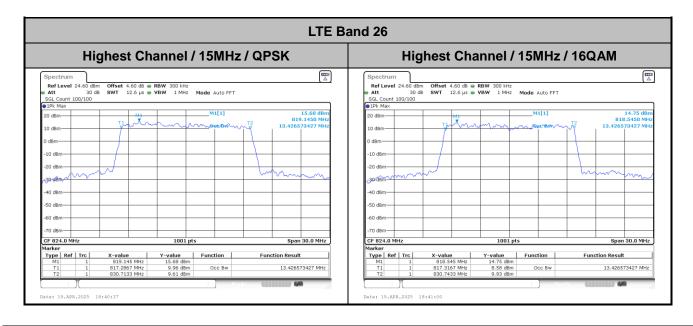
Peak-to-Average Ratio


Mode	LTE Band 26 / 15MHz		
Mod.	QPSK	16QAM	Limit: 13dB
RB Size	Full RB	Full RB	Result
High CH	5.51	6.38	PASS

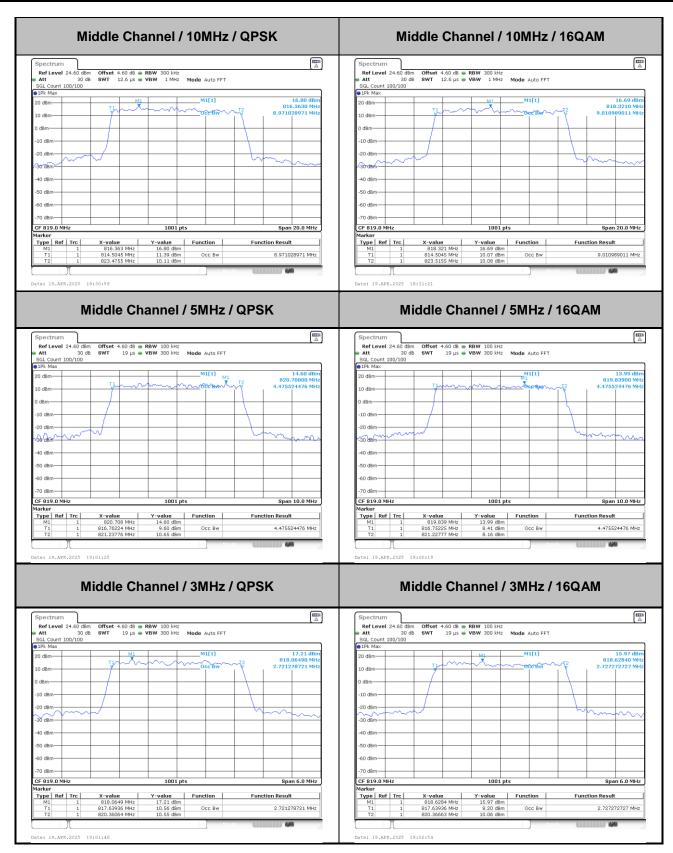


26dB Bandwidth

Mode	LTE Band 26 :	26dB BW(MHz)
BW	15N	ЛНz
Mod.	QPSK	16QAM
High CH	14.60	14.45
BW	10N	ЛНz
Mod.	QPSK	16QAM
Mid CH	9.69	9.89
BW	5M	Hz
Mod.	QPSK	16QAM
Mid CH	4.96	4.93
BW	3M	Hz
Mod.	QPSK	16QAM
Mid CH	3.02	3.01
BW	1.4	MHz
Mod.	QPSK	16QAM
Mid CH	1.27	1.26

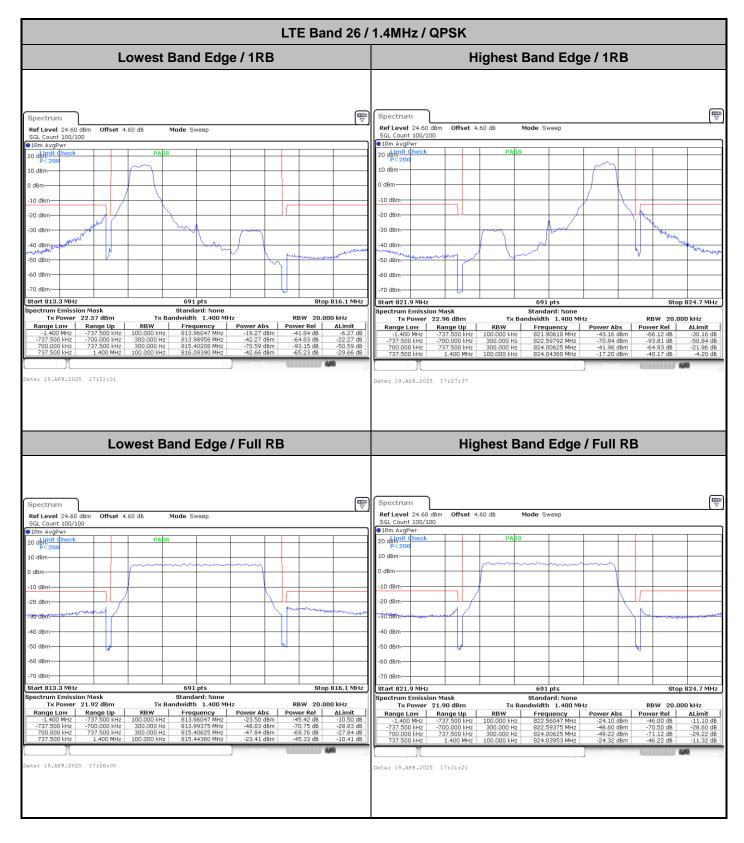


Spectrum Image: Control of Spectrum Ref Level 24.60 dbm Offset 4.60 db @ RBW 30 IHz 30 dbm 30 db @ RBW 30 IHz 50 Lown 100 IM2 Mode Auto FFT 20 dbm 10.6.77 dbm 90 dbm 10.6.77 dbm 90 dbm 90 dbm 10.6.77 dbm 90 dbm 90 dbm 10.6.77 dbm 91.272700000 MHz 643.7 -10 dbm T1 0 dactor 10 dbm 90 dbm 643.7 -20 dbm T1 0 dbm 643.7 -30 dbm T1 0 dbm 0 dactor -30 dbm 10 dbm 10 dbm 10 dbm -30 dbm 10 dbm 10 dbm 10 dbm	20 dBm 819.	15.92 dB 34970 Mi 26.00 d 300000 d 649
Ber Level 24.60 dBm Offset 4.00 dB RBW 30 Ht; 30 dB Mode Auto FFT SGL_Count 100/100 32 µs @ YBW 100 kHz Mode Auto FFT 10.67 rBm 20 dBm 10.47 rBm 10.67 rBm 10.67 rBm 10 dBm 10.72700000 MHz 643.2 10.67 rBm -10 dBm 10 0 factor 12 -20 dBm -10 dBm -10 dBm -10 dBm -10 dBm -20 dBm -10 dBm -10 dBm -10 dBm -10 dBm	Att 30 dB SWT 63.2 µs • VBW 100 kHz Mode Auto FFT SGL Count 100/100 Byk Max 20 dBm	15.92 dB .34970 MF 26.00 d 500000 MF 649
01/k Max M1 16.67 dBm 20 dBm M1 11 818.636 400 Hz 10 dBm 06.00 Hz 26.00 dBm 26.00 dBm 0 dBm 0 foctor 1.272700000 HHz 643.2 -10 dBm 0	(b) I/k Max M1[j_i] 819. 10 dBm 0 0 -10 dBm 1 0 -20 dBm 1 0	.34970 MF 26.00 d 500000 MF 649
20 dłam M1[1] 16.67 dłam 10 dłam M1[1] 81.8.6340 MHz 10 dłam Biw 2.26.000 MHz 0 dłam O factor 1.272700000 MHz 20 dłam V2 643.2 20 dłam V2 643.2 20 dłam V2 643.2 40 dłam V2 40 dłam	20 dBm M1[1] B19. 10 dBm 0 dBm 0 dBm 1.2615 0 dBm 0 factor 12 1.2615 -10 dBm 0 0 0 0	.34970 MF 26.00 d 500000 MF 649
10 d8m	10 dBm 0 dBm 0 factor 12 1.2615	26.00 d 600000 MH 649
0 dBm Q factor 643.2 10 dBm V2 20 dBm J2 30 dBm 40 dBm J4	0 dem 11 12 12 12 12 12 12 12 12 12 12 12 12	
-10 dBm	-10 dem	in m
30 08m	and the second s	him
40 dBm	-30'dBm	mm
50 dBm	-40 dBm	
	-50 dBm	
-60 dBm	-60 dBm-	
-70 dBm-	-70 dBm	
CF 819.0 MHz 1001 pts Span 2.8 MHz		an 2.8 MH:
Marker Type Ref Trc X-value Y-value Function Function Result	Marker Type Ref Trc X-value Y-value Function Function Result	
Type Ref Trc X-value Y-value Function Function Result M1 1 818.6364 MHz 16.67 dBm ndB down 1.2727 MHz		t 1.2615 MH:
T1 1 818.3455 MHz -9.55 dBm ndB 26.00 dB	T1 1 818.3594 MHz -10.15 dBm ndB	26.00 de
T2 1 819.6182 MHz -9.53 dBm Q factor 643.2	T2 1 819.621 MHz -9.82 dBm Q factor	649.5
Ready	Ready	6

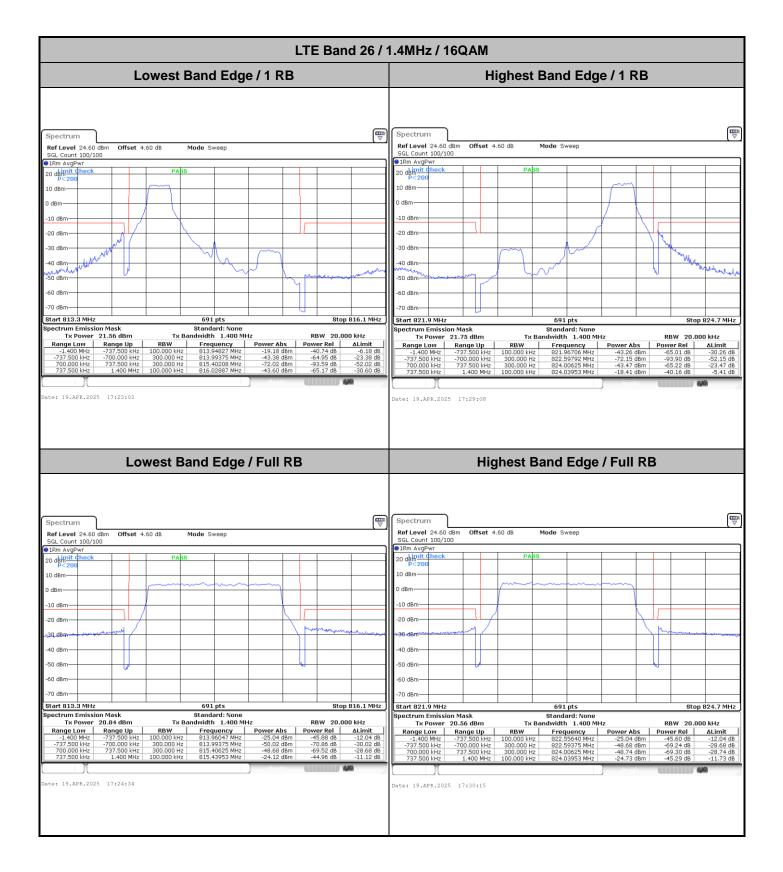


Occupied Bandwidth

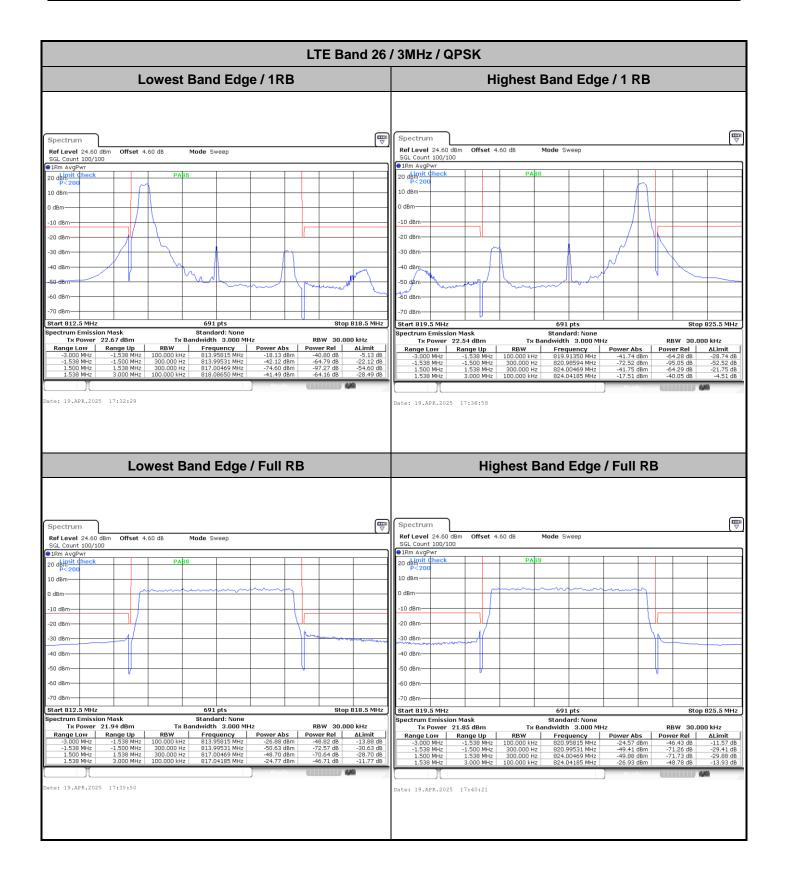
Mode	LTE Band 26 : 99%OBW(MHz)				
BW	15MHz				
Mod.	QPSK	16QAM			
High CH	13.43	13.43			
BW	10MHz				
Mod.	QPSK	16QAM			
Mid CH	8.97	9.01			
BW	5MHz				
Mod.	QPSK	16QAM			
Mid CH	4.48	4.48			
BW	3MHz				
Mod.	QPSK	16QAM			
Mid CH	2.72	2.73			
BW	1.4MHz				
Mod.	QPSK 16QAM				
Mid CH	1.08 1.10				

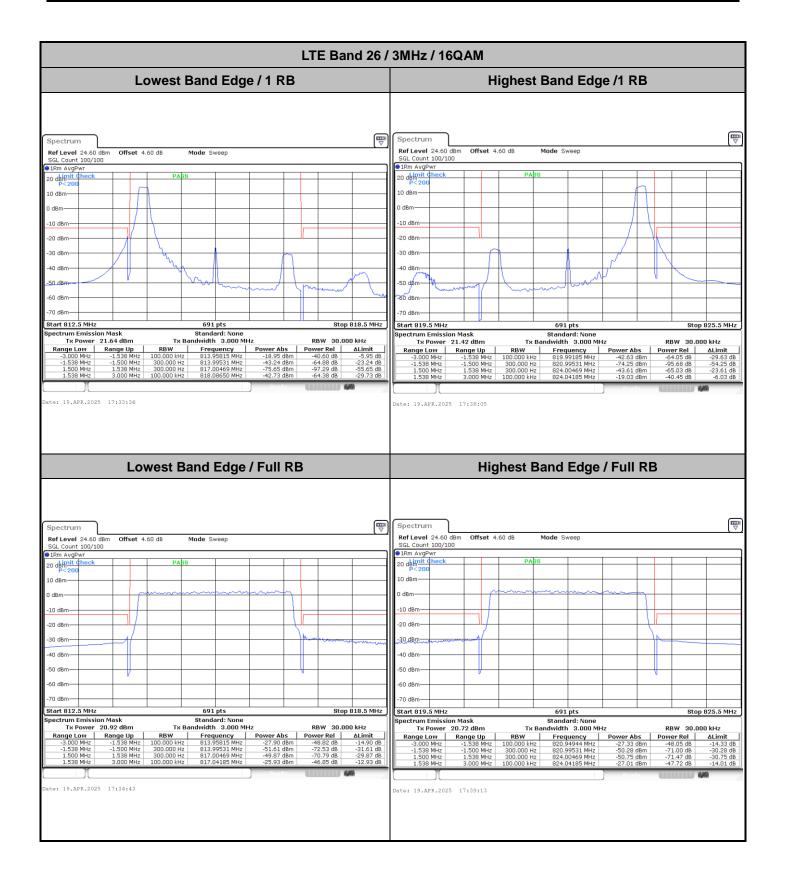


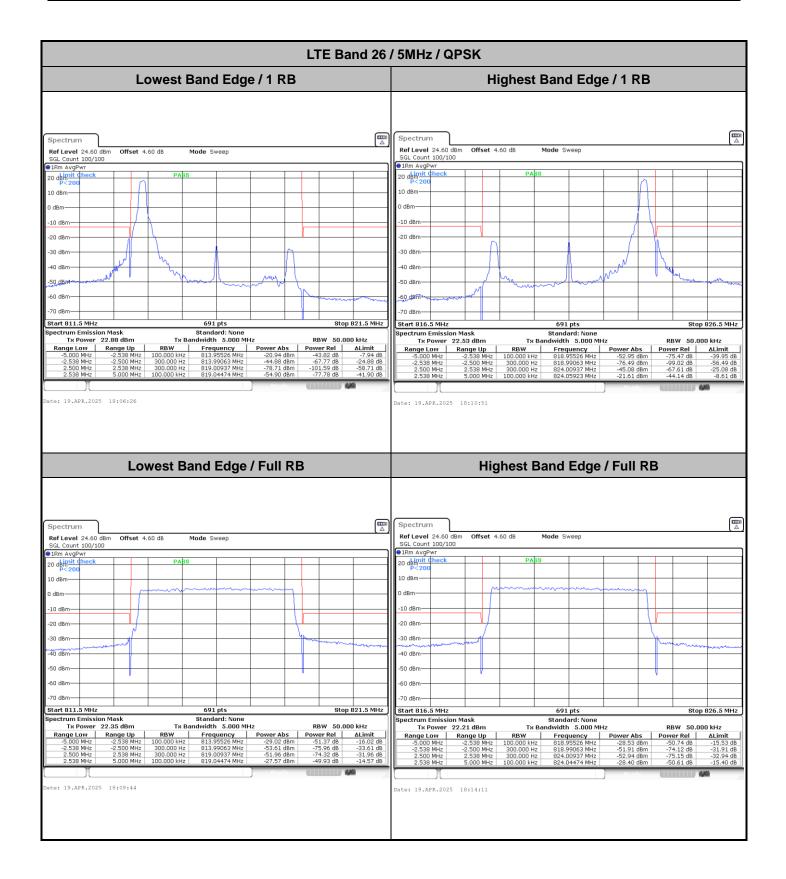
Middle Channel / 1.4MHz / QPSK	Middle Channel / 1.4MHz / 16QAM			
Spectrum Item RefLevel 24.60 dBm Offset 4.60 dB = RBW 30 KHz Att 30 dB SWT 63.2 µs VBW 100 KHz SGL Count 100/100 SWT 63.2 µs VBW	Spectrum # RefLevel 24.60 dBm Offset 4.60 dB ● RBW 30 HHz # Att 30 dB SWT 63.2 µs ¥ BW 100 HHz SGL Count 100/100 SWT 63.2 µs ¥ BW 100 HHz Mode Auto FFT			
p1Pk Max	IPk Max			
20 dBm	20 dBm			
0 dBm	0 d8m			
20 dim	20 dim-			
-40 d8m	-40 dBm			
-50 dBm	-50 dBm-			
-70 dBm-	-70 dBm-			
CF 819.0 MHz 1001 pts Span 2.8 MHz	CF 819.0 MHz 1001 pts Span 2.8 MHz			
Marker Your Section Function Result Type Ref Trc X-value Y-value Function Function Result M1 1 019,2825 MHz 16,94 dBm Image: Section Result Section Result	Marker Type Ref Trc X-value Y-value Function Function Result M1 1 019.4727 MHz 15.32 dbm Function Function Result			
Mil 1 019-2020 MHz 10.99 dbm T1 1 818-8734 MHz 9.17 dbm Occ Bw 1.082517483 MHz T2 1 819.53986 MHz 10.31 dBm Occ Bw 1.082517483 MHz	Mil 1 019.97.27 MHz 13.32 dbm 015.32 dbm 1.104895105 MHz T1 1 818.45455 MHz 7.22 dbm Occ Bw 1.104895105 MHz T2 1 819.55944 MHz 7.41 dBm 0.011100000000000000000000000000000000			
Ready Ma	Ready United States			

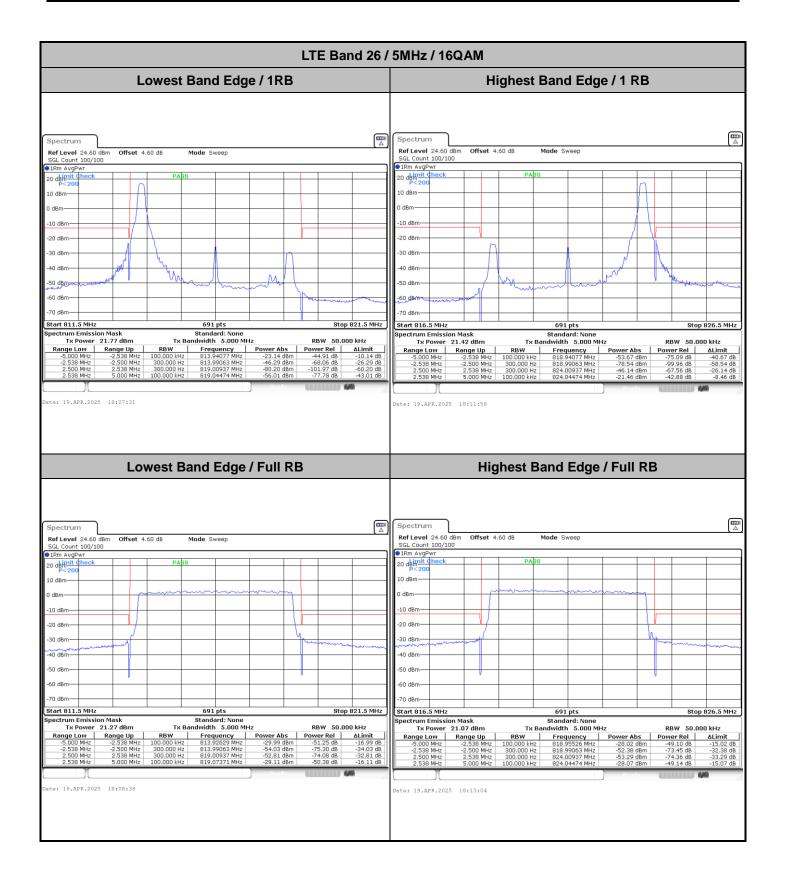


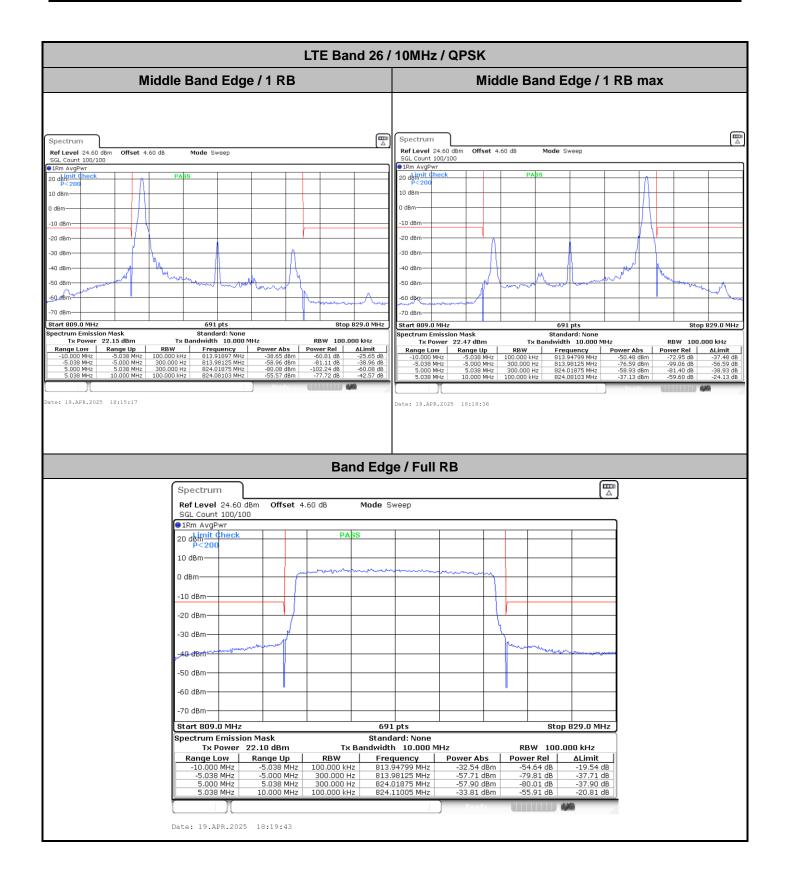
Conducted Band Edge

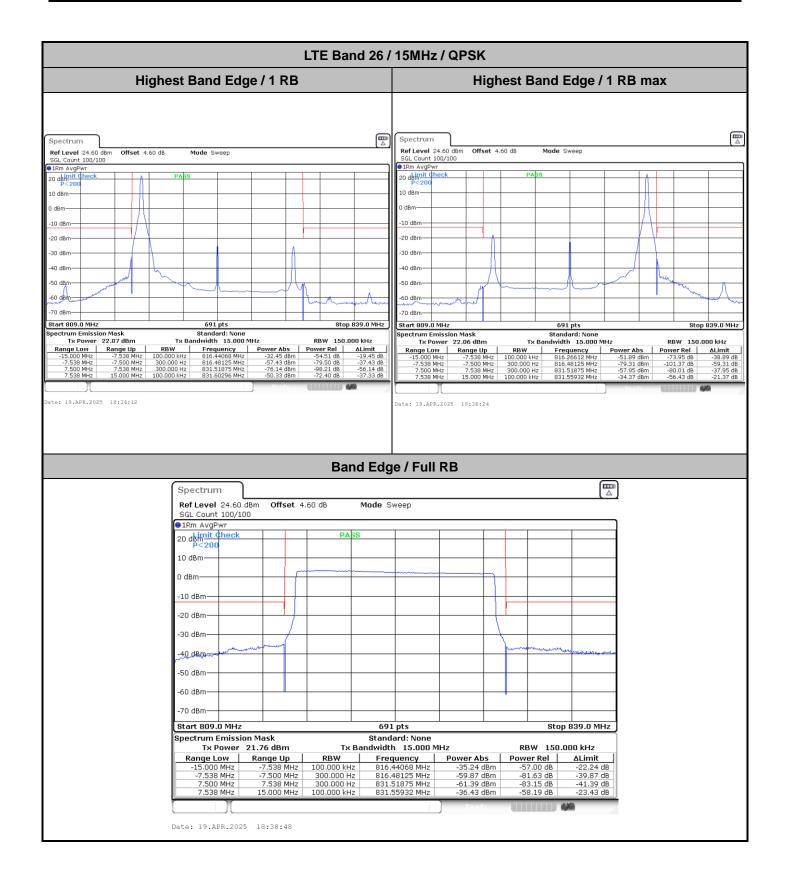


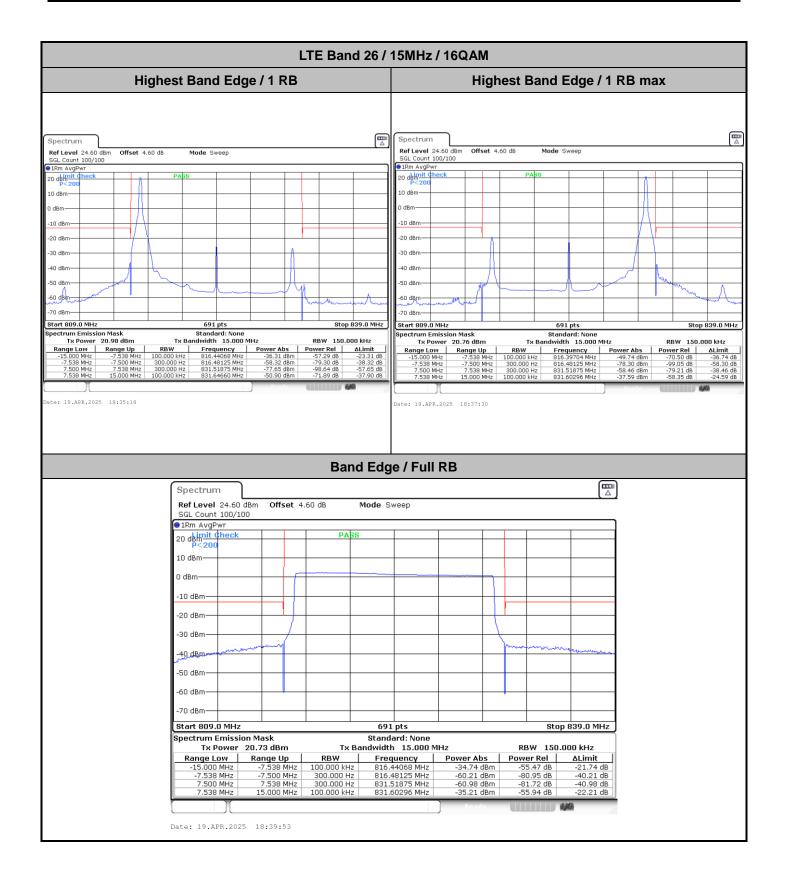


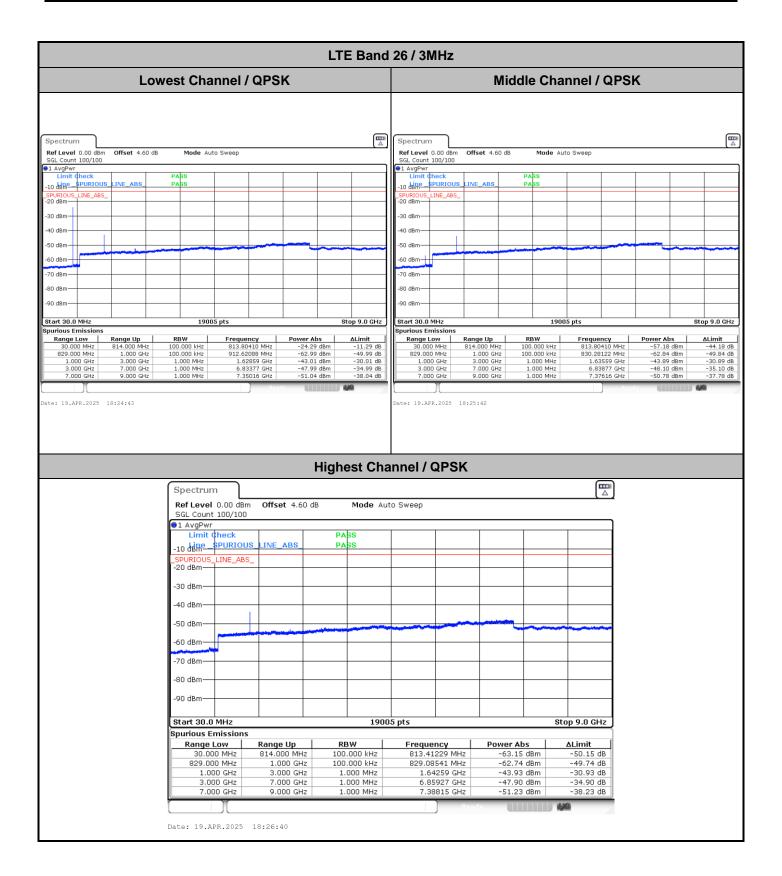




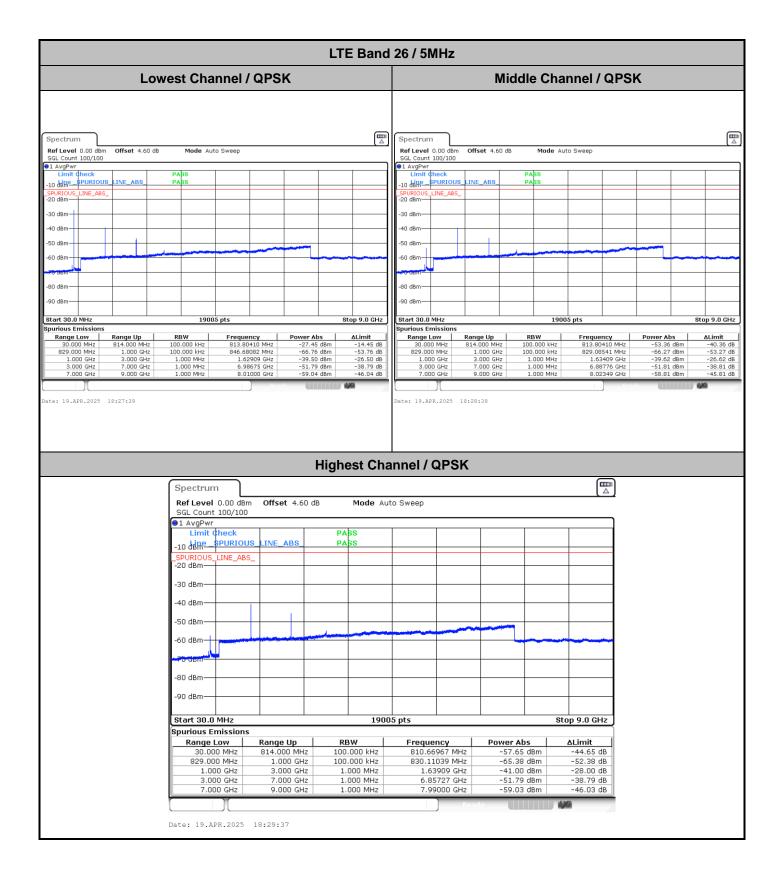


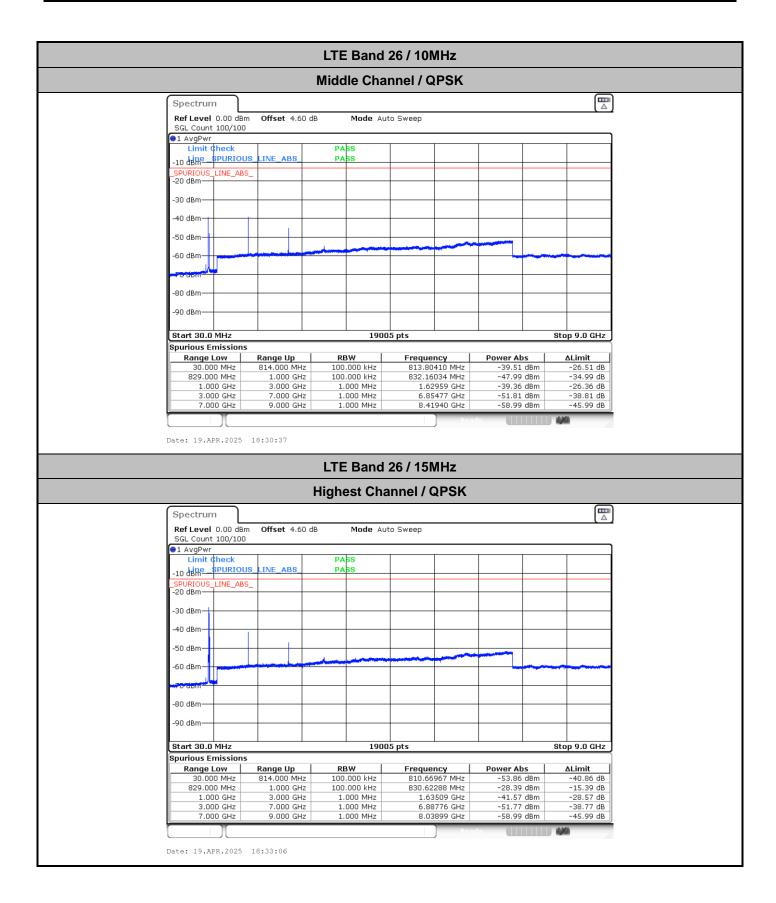






Conducted Spurious Emission





Frequency Stability

Test Conditions		LTE Band 26 (QPSK) / Middle Channel	
_		BW 10MHz	Note 2.
Temperature (°C)	Voltage (Volt)	Deviation (ppm)	Result
50	Normal Voltage	0.0017	
40	Normal Voltage	0.0024	
30	Normal Voltage	0.0033	
20(Ref.)	Normal Voltage	0.0000	
10	Normal Voltage	0.0028	
0	Normal Voltage	0.0026	
-10	Normal Voltage	0.0017	PASS
-20	Normal Voltage	0.0031	
-30	Normal Voltage	0.0044	
20	Maximum Voltage	0.0036	
20	Normal Voltage	0.0029	
20	Minimum Voltage	0.0012	

Note:

1. Normal Voltage =12 V. ; Minimum Voltage =10.8 V. ; Maximum Voltage =13.2 V.

2. Note: The frequency fundamental emissions stay within the authorized frequency block.

Appendix B. Test Results of Radiated Test

Radiated Spurious Emission

Test Engineer :		lako	Jake		Temperature :		21~25℃		
		Jake			Relative Humidity :		52~53%		
LTE Band 26 / 10MHz / QPSK									
Channel	Frequency (MHz)	ERP (dBm)	Limit (dBm)	Over Limit (dB)	S.G. Power (dBm)	TX Cable loss (dB)	TX Antenna Gain (dBi)	Polarization (H/V)	
Middle	1632	-58.94	-13	-45.94	-65.91	1.58	10.70	Н	
	2440	-61.39	-13	-48.39	-69.64	2.102	12.50	Н	
	3256	-60.36	-13	-47.36	-69.25	2.856	13.90	Н	
	1632	-57.06	-13	-44.06	-64.03	1.58	10.70	V	
	2440	-59.87	-13	-46.87	-68.12	2.10	12.50	V	
	3256	-59.93	-13	-46.93	-68.82	2.86	13.90	V	

Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line.