Derivation of Field Strengths

- 1. For the detection method peak measurements were taken.
- 2. Actual readings and corrections:

	+	+	+	+	+
Frequency kHz 	Peak Spectrum Analyser Reading dBuV V	Antenna Factor K 	Field at 3 m E dBuV/m Note 1	Correction factor to convert from 3m to 300m Note 2	Corrected field strength for 300m dBuV/m
133.502	87.00	-41.3	97.2	-80 	17.2
400.71	45.00	 -41.4 +	' 55.1 +	 -80 +	 -24.9 +
534	38 +	-41.5 +	48 +	-80 +	-32 +
 667 	 44 +	-41.5 +	54 +	-80 +	-26 +
934	45 	 -41.5 +	55 +	-80 +	-25 +
1068	42 	-41.5 +	52 +	-80 +	-28 +
 1201 	40 	-41.5 +	, 50 +	-80 +	-30

Note 1:

Formula used to obtain field E at 3 m

$$E (dBuV/m) = V (dBuV) + K (dB S/m) + 51.5$$

This formula is taken from the National Physical Laboratory calibration report for the antenna (copied on the following page).

Note 2:

The correction factor of -80 dB to convert from field measured at 3m to field at 300m is taken from 47 CFR 15.31 f (2) (page 661, 10-1-99 edition) which states that an inverse linear distance extrapolation factor of 40 dB/decade can be used. There are 2 decades of distance from 3m to 300m, therefore the extrapolation factor is -2x40 = -80 dB

NATIONAL PHYSICAL LABORATORY

MEASUREMENTS

The loop was positioned at the centre of a Crawford Type TEM Cell with the plane of the loop perpendicular to the magnetic field and parallel to the direction of propagation. The output from the loop was connected through a coaxial cable to a calibrated 50 Ω receiver. A tracking generator was used to set up a calculable, linearly polarised, electromagnetic field in the TEM cell, approximating to a plane wave of 13 μ A/m (5 mV/m).

At each frequency, the ratio of the applied TEM cell voltage to the terminated loop output voltage, was used to calculate the antenna factor according to the following definition.

$$H [dB (\mu A/m)] = V [dB (\mu V)] + K [dB (S/m)]$$

where: H is the magnetic field strength

V is the correctly terminated output voltage from the loop

K is the magnetic antenna factor

The free space equivalent electric field strength can be calculated for linearly polarised plane wave conditions, and is given by:

$$E (dB \mu V/m) = V (dB \mu V) + K + 51.5$$

The reflection coefficients of the loop antenna was measured using a calibrated Hewlett Packard 8753 network analyser.

Reference: CEM/17/98/15/9

Checked by: 20