

Nokia Solutions and Networks

Airscale Base Transceiver Station Remote Radio Head

Model: AHLBBA

FCC 27:2019

FCC 27.53:2019

FCC 90:2019

FCC 901:2019

Report # NOKI0004.1

NVLAP LAB CODE: 201049-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government. This Report shall not be reproduced, except in full without written approval of the laboratory.

EAR-Controlled Data - This document contains technical data whose export and reexport/retransfer is subject to control by the U.S. Department of Commerce under the Export Administration Act and the Export Administration Regulations. The Department of Commerce's prior written approval may be required for the export or reexport/retransfer of such technical data to any foreign person, foreign entity or foreign organization whether in the United States or abroad.

CERTIFICATE OF TEST

Last Date of Test: November 20, 2019
Nokia Solutions and Networks
EUT: AHLBBA RRH

Radio Equipment Testing

Standards

Specification	Method
FCC 27:2019	ANCI 002 20:2045
FCC 27.53:2019	ANSI C63.26:2015
FCC 90:2019	FCC KDB 971168 D01 v03r01 FCC KDB 971168 D03 v01r01
FCC 90I:2019	FCC KDB 971100 D03 V01101
FCC Part 2:2019	

Results

INCOU	, and a second s					
	Test Description	Applied	Results	Comments		
5.2.4	Average Output Power	Yes	Pass	For all testing, ERP depends on antenna gain, which is unknown. Only the highest dBm value is plotted per customer requirements and a Watt/MHz calculation was not made due to the unknown antenna value.		
5.2.3.4	Peak to Average Power Ratio (PAPR)	Yes	Pass	Includes for reference, not required by rule parts for the frequency band		
5.4	Occupied Bandwidth	Yes	Pass			
5.7	Band Edge Compliance	Yes	Pass			
5.7	Spurious Conducted Emissions	Yes	Pass			
5.5	Spurious Radiated Emissions	Yes	Pass			
5.6	Frequency Stability	Yes	Pass			

Deviations From Test Standards

None

Approved By:

Jeremiah Darden, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

Report No. NOKI0004.1 2/574

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
00	None		

Report No. NOKI0004.1 3/574

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

European Union

European Commission - Within Element, we have a EU Notified Body validated for the EMCD and RED Directives.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI - Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC - Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

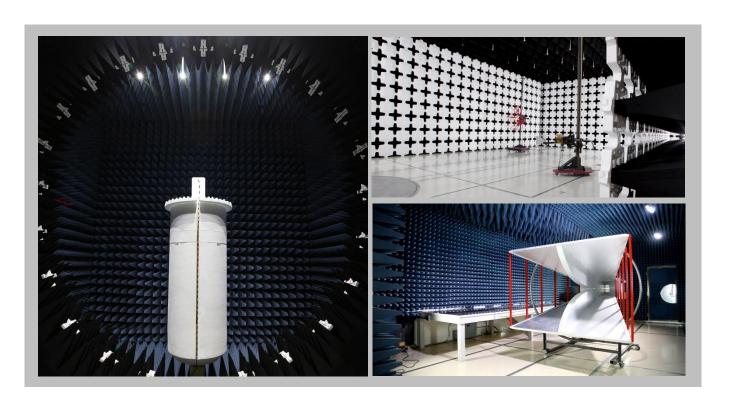
Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit: https://www.nwemc.com/emc-testing-accreditations

Report No. NOKI0004.1 4/574


FACILITIES

California Labs OC01-17 41 Tesla Irvine, CA 92618 (949) 861-8918	Minnesota Labs MN01-10 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136	Oregon Labs EV01-12 6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124 (503) 844-4066	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011 (425)984-6600	
		NVLAP			
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0	
	Innovation, Science and Economic Development Canada				
2834B-1, 2834B-3	2834E-1, 2834E-3	2834D-1	2834G-1	2834F-1	
BSMI					
SL2-IN-E-1154R	SL2-IN-E-1152R	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R	
	VCCI				
A-0029	A-0109	A-0108	A-0201	A-0110	
Recognized Phase I CAB for ISED, ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA					
US0158	US0175	US0017	US0191	US0157	

Report No. NOKI0004.1 5/574

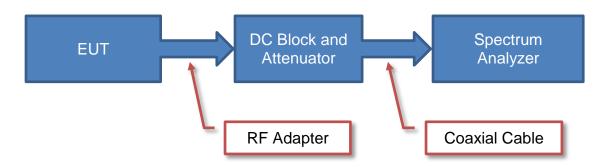
MEASUREMENT UNCERTAINTY

Measurement Uncertainty

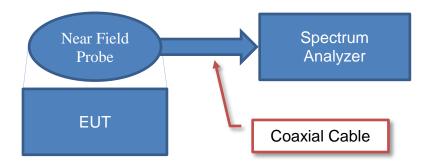
When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

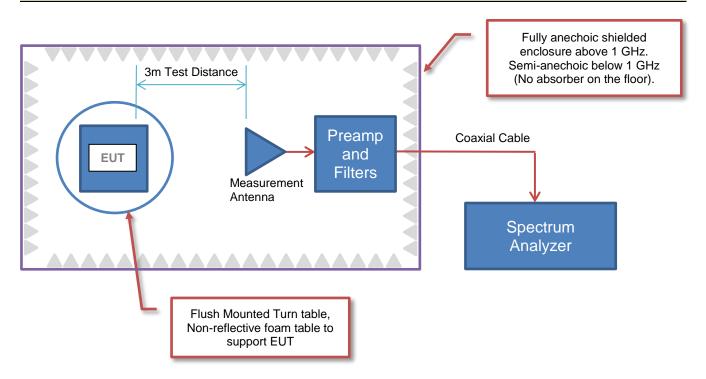
A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.


Test	+ MU	- MU
Frequency Accuracy	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	1.2 dB	-1.2 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.1 dB	-5.1 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB

Report No. NOKI0004.1 6/574


Test Setup Block Diagrams


Antenna Port Conducted Measurements

Near Field Test Fixture Measurements

Spurious Radiated Emissions

Report No. NOKI0004.1 7/574

Client and Equipment Under Test (EUT) Information

Company Name:	Nokia Solutions and Networks
Address:	3201 Olympus Blvd
City, State, Zip:	Dallas, Texas 75019
Test Requested By:	Steve Mitchell
EUT:	AHLBBA RRH
First Date of Test:	November 8, 2019
Last Date of Test:	November 20, 2019
Receipt Date of Samples:	November 7, 2019
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

The equipment under test (EUT) is a Nokia Solutions and Networks Airscale Base Transceiver Station (BTS) Remote Radio Head (RRH) module, model AHLBBA. The AHLBBA remote radio head is a multi-standard multi-carrier radio module designed to support LTE and 5G-NR (fifth generation – new radio). The scope of testing in this effort is for LTE-FDD operations.

The AHLBBA RRH has four transmit/four receive antenna ports (4TX/4RX for Band 12, 4TX/4RX for Band 14 and 2TX for Band 29). Antenna ports 1-4 support 3GPP frequency band 12 (BTS Rx: 699 to 714 MHz/BTS TX: 729 to 744 MHz) and 3GPP frequency band 14 (BTS Rx: 788 to 798 MHz/BTS TX: 758 to 768 MHz) at 80 watts/carrier. Antenna ports 1 & 4 support 3GPP frequency band 29 downlink (BTS TX: 718 to 728 MHz) at 25 watts/carrier. The total output power is 105 watts for antenna ports 1 & 4 (supports frequency bands 12, 14 & 29) and 80 watts for antenna ports 2 & 3 (supports frequency bands 12 & 14 only). The maximum RRH RF output power for all antenna ports (1 – 4) is 370 Watts. The RRH can be operated as a 4x4 MIMO, 2x2 MIMO or as non-MIMO for Bands 12 & 14 and 2port MIMO or as non-MIMO for Band 29. The TX and RX instantaneous bandwidth cover the full operational bandwidth. The RRH supports LTE bandwidths of 5 and 10MHz for 3GPP frequency band 12, band 14 and band 29 operations. The RRH supports four LTE downlink modulation types (QPSK, 16QAM, 64QAM and 256QAM). The LTE modulation types are setup according to 3GPP TS 36.141 E-UTRA Test Models (E-TM) as follows E-TM 1.1: QPSK, E-TM 3.1: 64QAM, E-TM3.1a: 256QAM and E-TM 3.2: 16QAM. Multi-carrier operation is supported.

The RRH has external interfaces including DC power (DC In), ground, transmit/receive (ANT), external alarm (EAC), optical CPRI (OPT) and remote electrical tilt (RET). The RRH with applicable installation kit may be pole or wall mounted.

Report No. NOKI0004.1 8/574

The AHLBBA LTE Band 12 downlink channel numbers and frequencies are as follows:

	Downlink	Downlink	LTE Channel Bandwidtl	
	EARFCN	Frequency (MHz)	5 MHz	10 MHz
	5010	729.0	Band Edge	Band Edge
	5035	731.5	Bottom Ch	
4	••••			
Band 12 (Ant 1, 2, 3, 4)	5060	734.0		Bottom Ch
1, 2				
Ant	5085	736.5	Middle Ch	Middle Ch
12 (•••••			
nd	5110	739.0		Top Channel
Bs				
	5135	741.5	Top Channel	
	5160	744.0	Band Edge	Band Edge

AHLBBA Downlink Band Edge LTE Band 12 Frequency Channels

Notes:

Antenna Ports 1 or 4 Multicarrier Test Cases:

Multicarrier operations in band 12 with three LTE5 carriers (based upon KDB 971168 D03v01) using two carriers (with minimum spacing between carrier frequencies) at the band 12 lower band edge [731.5MHz and 736.5MHz] and a third carrier with maximum spacing between the other two carrier frequencies [741.5MHz] at the band 12 upper band edge. Three carriers cover the entire channel bandwidth.

Multiband Multicarrier operations (band 12 and band 14) with three LTE5 carriers (based upon KDB 971168 D03v01) using two carriers (with minimum spacing between carrier frequencies) at the band 12 lower band edge [731.5MHz and 736.5MHz] and a third carrier with maximum spacing between the other two carrier frequencies [765.5MHz] at the band 14 upper band edge.

Multiband Multicarrier operations (band 29 and band 12) with three LTE5 carriers (based upon KDB 971168 D03v01) using two carriers (with minimum spacing between carrier frequencies) at the band 29 lower band edge [720.5MHz and 725.5MHz] and a third carrier with maximum spacing between the other two carrier frequencies [741.5MHz] at the band 12 upper band edge.

Antenna Ports 2 or 3 Multicarrier Test Cases:

Multicarrier operations in band 12 with three LTE5 carriers (based upon KDB 971168 D03v01) using two carriers (with minimum spacing between carrier frequencies) at the band 12 lower band edge [731.5MHz and 736.5MHz] and a third carrier with maximum spacing between the other two carrier frequencies [741.5MHz] at the band 12 upper band edge will be verified. Three carriers cover the entire channel bandwidth.

Multiband Multicarrier operations (band 12 and band 14) with three LTE5 carriers (based upon KDB 971168 D03v01) using two carriers (with minimum spacing between carrier frequencies) at the band 12 lower band edge [731.5MHz and 736.5MHz] and a third carrier with maximum spacing between the other two carrier frequencies [765.5MHz] at the band 14 upper band edge will be verified.

Report No. NOKI0004.1

The AHLBBA LTE Band 14 downlink channel numbers and frequencies are as follows:

	Downlink EARFCN	Downlink Frequency		
		(MHz)	5 MHz	10 MHz
	5280	758.0	Band Edge	Band Edge
4,	5305	760.5	Bottom Ch	
2,3				
Band 14 (Ant 1, 2, 3, 4)	5330	763.0	Middle Ch	Bottom Ch Middle Ch Top Channel
nd 1				
Ва	5355	765.5	Top Channel	
	5380	768.0	Band Edge	Band Edge

AHLBBA Downlink Band edge LTE Band 14 Frequency Channels

Notes:

Antenna Ports 1 or 4 Multicarrier Test Cases:

Multicarrier operations in band 14 with two LTE5 carriers at the lower and upper band edge channels [760.5MHz and 765.5MHz]. Two carriers cover the entire channel bandwidth so three carrier operation is not available. Multiband Multicarrier operations (band 12 and band 14) with three LTE5 carriers (based upon KDB 971168 D03v01) using two carriers (with minimum spacing between carrier frequencies) at the band 12 lower band edge [731.5MHz and 736.5MHz] and a third carrier with maximum spacing between the other two carrier frequencies [765.5MHz] at the band 14 upper band edge.

Multiband Multicarrier operations (band 29 and band 14) with three LTE5 carriers (based upon KDB 971168 D03v01) using two carriers (with minimum spacing between carrier frequencies) at the band 29 lower band edge [720.5MHz and 725.5MHz] and a third carrier with maximum spacing between the other two carrier frequencies [765.5MHz] at the band 14 upper band edge.

Antenna Ports 2 or 3 Multicarrier Test Cases:

Multicarrier operations in band 14 with two LTE5 carriers at the lower and upper band edge channels [760.5MHz and 765.5MHz]. Two carriers cover the entire channel bandwidth so three carrier operation is not available.

Multiband Multicarrier operations (band 12 and band 14) with three LTE5 carriers (based upon KDB 971168 D03v01) using two carriers (with minimum spacing between carrier frequencies) at the band 12 lower band edge [731.5MHz and 736.5MHz] and a third carrier with maximum spacing between the other two carrier frequencies [765.5MHz] at the band 14 upper band edge.

Report No. NOKI0004.1

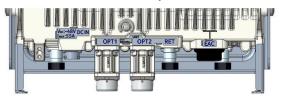
The AHLBBA LTE Band 29 downlink channel numbers and frequencies are as follows:

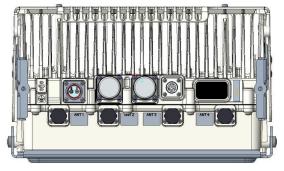
	Downlin	Downlink	LTE Channel Bandwidth		
	k EARFC N	Frequenc y (MHz)	5 MHz	10 MHz	
	9670	718.0	Band Edge	Band Edge	
4,					
nt 1	9695	720.5	Bottom Channel		
(A)	•••••				
AHLBBA Band 29 (Ant 1, 4)	9720	723.0	Middle Channel	Bottom Ch Middle Ch Top Channel	
3B/					
ILE	9745	725.5	Top Channel		
AF					
	9770	728.0	Band Edge	Band Edge	

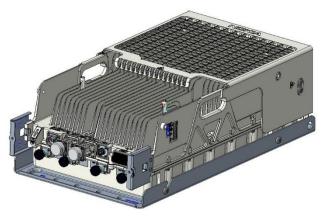
Table 8 AHLBBA Downlink Band Edge LTE Band 29 Frequency Channels

Notes:

Antenna Ports 1 or 4 Multicarrier Test Cases:


Multiband Multicarrier operations (band 29 and band 12) with three LTE5 carriers (based upon KDB 971168 D03v01) using two carriers (with minimum spacing between carrier frequencies) at the band 29 lower band edge [720.5MHz and 725.5MHz] and a third carrier with maximum spacing between the other two carrier frequencies [741.5MHz] at the band 12 upper band edge.


Multiband Multicarrier operations (band 29 and band 14) with three LTE5 carriers (based upon KDB 971168 D03v01) using two carriers (with minimum spacing between carrier frequencies) at the band 29 lower band edge [720.5MHz and 725.5MHz] and a third carrier with maximum spacing between the other two carrier frequencies [765.5MHz] at the band 14 upper band edge will be verified.


Report No. NOKI0004.1 11/574

AHLBBA Connector Layout:

AHLBBA External Interfaces

Name	Qty	Connector Type	Purpose (and Description)
DC In	1	Quick Disconnect	2-pole Power Circular Connector
GND	1	Screw lug (2xM5/1xM8)	Ground
ANT	4	4.3-10	RF signal for Transmitter/Receiver (50 Ohm)
Unit	1	LED	Unit Status LED
EAC	1	MDR26	External Alarm Interface (4 alarms)
ОРТ	2	SFP+ cage	Optical CPRI Interface up to 10 Gps.
RET	1	8-pin circular connector conforming to IEC 60130-9 – Ed.3.0	AISG 2.0 to external devices

Testing Objective:

Seeking to demonstrate compliance of the Cellular radio (718 to 728MHz, 729 to 744MHz, and 758 to 768MHz).

Report No. NOKI0004.1 12/574

Configuration NOKI0004-1

Software/Firmware Running during test			
Description	Version		
BTS Software	SBTS20A_ENB_9999_191028_003503		
RRH Software	FRM59.11.R03		

EUT				
Description Manufacturer Model/Part Number Serial Number				
Remote Radio Head Module	Nokia Solutions and Networks	AHLBBA / 475082A.101	K9193514835	

Peripherals in test setup boundary			
Description	Manufacturer	Model/Part Number	Serial Number
SFP+ 9.8G 300m 850 nm	Nokia Solutions and Networks	473842A.101	MA17331610209

Remote Equipment Outside of Test Setup Boundary				
Description	Manufacturer	Model/Part Number	Serial Number	
Electric Fan	Electrix	L908	None	
Power Supply (Base Station)	Emerson	700-011721-0000	A9124600282	
Laptop Computer	HP	ProBook 6470B	None	
Power Supply (Laptop)	HP	608428-002	F12941232064008	
USB Mouse	HP	MSU1158	None	
Antenna Load 1	API Weinschel, Inc.	1433-3-LIM	TC867	
Antenna Load 2	API Weinschel, Inc.	1433-3-LIM	TC866	
Antenna Load 3	API Weinschel, Inc.	1433-3-LIM	TC870	
Antenna Load 4	API Weinschel, Inc.	1433-3-LIM	TV066	
AirScale Base Station (AMIA)	Nokia Solutions and Networks	473098A.101	J8163420419	
AirScale Base Station (ABIA)	Nokia Solutions and Networks	473096A.102	L1164121378	
AirScale Base Station (ASIA)	Nokia Solutions and Networks	473095A.101	L1164105428	
DC Power Supply (Radiated)	Sorenson	SGA160X63C-0AAA	1421A03560	

Report No. NOKI0004.1 13/574

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
AC Power (Fan)	No	2m	No	AC Mains	Electric Fan
AC Power (PS Base Station)	No	2m	No	AC Mains	Power Supply (Base Station)
DC Power (PS Base Station)	No	0.5m	No	Power Supply (Base Station)	AirScale Base Station (ASIA)
AC Power (Laptop)	No	1.65m	No	AC Mains	Power Supply (Laptop)
DC Power (Laptop)	No	1.7m	Yes	Power Supply (Laptop)	Laptop Computer
USB (Mouse)	Yes	1.8m	No	USB Mouse	Laptop Computer
Ethernet	No	1.8m	No	AirScale Base Station (ASIA)	Laptop Computer
AC Power (Sorenson)	No	4m	No	AC Mains	DC Power Supply (Radiated)
DC Power Leads (Sorenson)	No	7.5m	Yes	DC Power Supply (Radiated)	Remote Radio Head Module
Optical Fiber	No	7.5m	No	AirScale Base Station (ABIA)	Remote Radio Head Module
RET	No	2.4m	No	Remote Radio Head Module	Unterminated
EAC	No	5.4m	No	Remote Radio Head Module	Unterminated
Grounding	No	2.3m	No	Remote Radio Head Module	Turntable Ground
N Type SUCOFLEX_106 Load 1	Yes	1.6m	No	Remote Radio Head Module	Antenna Load 1
N Type SUCOFLEX_106 Load 2	Yes	1.6m	No	Remote Radio Head Module	Antenna Load 2
N Type SUCOFLEX_106 Load 3	Yes	1.6m	No	Remote Radio Head Module	Antenna Load 3
N Type SUCOFLEX_106 Load 4	Yes	1.6m	No	Remote Radio Head Module	Antenna Load 4

Report No. NOKI0004.1 14/574

Configuration NOKI0004- 2

Software/Firmware Running during test				
Description	Version			
BTS Software	SBTS00_ENB_9999_191108_003654			
RRH Software	FRM59.11.R08			

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Remote Radio Head Module	Nokia Solutions and Networks	AHLBBA / 475082A.101	K9193514835

Peripherals in test setup boundary			
Description	Manufacturer	Model/Part Number	Serial Number
SFP+ 9.8G 300m 850 nm	Nokia Solutions and Networks	473842A.101	MA17331610209

Remote Equipment Outside of Test Setup Boundary				
Description	Manufacturer	Model/Part Number	Serial Number	
Electric Fan	Electrix	L908	None	
Power Supply (Base Station)	Emerson	700-011721-0000	A9124600282	
Laptop Computer	HP	ProBook 6470B	None	
Power Supply (Laptop)	HP	608428-002	F12941232064008	
USB Mouse	HP	MSU1158	None	
Antenna Load 1	API Weinschel, Inc.	1433-3-LIM	TC867	
Antenna Load 2	API Weinschel, Inc.	1433-3-LIM	TC866	
Antenna Load 3	API Weinschel, Inc.	1433-3-LIM	TC870	
AirScale Base Station (AMIA)	Nokia Solutions and Networks	473098A.101	J8163420419	
AirScale Base Station (ABIA)	Nokia Solutions and Networks	473096A.102	L1164121378	
AirScale Base Station (ASIA)	Nokia Solutions and Networks	473095A.101	L1164105428	
40dB 250W Attenuator	API Weinschel, Inc.	58-40-53-LIM	TC909	
Power Supply (RRH)	HP	6032A	211754	

Report No. NOKI0004.1 15/574

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
AC Power (Fan)	No	2m	No	AC Mains	Electric Fan
AC Power (PS Base Station)	No	2m	No	AC Mains	Power Supply (Base Station)
DC Power (PS Base Station)	No	0.5m	No	Power Supply (Base Station)	AirScale Base Station (ASIA)
AC Power (Laptop)	No	1.65m	No	AC Mains	Power Supply (Laptop)
DC Power (Laptop)	No	1.7m	Yes	Power Supply (Laptop)	Laptop Computer
USB (Mouse)	Yes	1.8m	No	USB Mouse	Laptop Computer
Ethernet	No	1.8m	No	AirScale Base Station (ASIA)	Laptop Computer
Optical Fiber	No	7.5m	No	AirScale Base Station (ABIA)	Remote Radio Head Module
N Type Load 1	Yes	1.6m	No	Remote Radio Head Module	Antenna Load 1
N Type Load 2	Yes	1.6m	No	Remote Radio Head Module	Antenna Load 2
N Type Load 3	Yes	1.6m	No	Remote Radio Head Module	Antenna Load 3
N Type SUCOFLEX_104	Yes	1.0m	No	40dB 250W Attenuator	Spectrum Analyzer
N Type SUCOFLEX_106	Yes	1.0m	No	Remote Radio Head Module	40dB 250W Attenuator
AC Power (PS RRH)	No	2m	No	AC Mains	Power Supply (RRH)
DC Power (PS RRH)	No	1.7m	Yes	Power Supply (RRH)	Remote Radio Head Module

Report No. NOKI0004.1 16/574

Configuration NOKI0004-3

Software/Firmware Running during test				
Description	Version			
BTS Software	SBTS00_ENB_9999_191108_003654			
RRH Software	FRM59.11.R08			

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Remote Radio Head Module	Nokia Solutions and Networks	AHLBBA / 475082A.101	K9193514835

Peripherals in test setup boundary			
Description	Manufacturer	Model/Part Number	Serial Number
SFP+ 9.8G 300m 850 nm	Nokia Solutions and Networks	473842A.101	MA17331610209

Remote Equipment Outside of Test Setup Boundary				
Description	Manufacturer	Model/Part Number	Serial Number	
Electric Fan	Electrix	L908	None	
Power Supply (Base Station)	Emerson	700-011721-0000	A9124600282	
Laptop Computer	HP	ProBook 6470B	None	
Power Supply (Laptop)	HP	608428-002	F12941232064008	
USB Mouse	HP	MSU1158	None	
Antenna Load 1	API Weinschel, Inc.	1433-3-LIM	TC867	
Antenna Load 2	API Weinschel, Inc.	1433-3-LIM	TC866	
Antenna Load 3	API Weinschel, Inc.	1433-3-LIM	TC870	
AirScale Base Station (AMIA)	Nokia Solutions and Networks	473098A.101	J8163420419	
AirScale Base Station (ABIA)	Nokia Solutions and Networks	473096A.102	L1164121378	
AirScale Base Station (ASIA)	Nokia Solutions and Networks	473095A.101	L1164105428	
40dB 250W Attenuator	API Weinschel, Inc.	58-40-53-LIM	TC909	
Power Supply (RRH)	HP	6032A	211754	
Inline Filter (Conducted Band Edge)	Nokia Solutions and Networks	TRI-BSBP	None	

Report No. NOKI0004.1 17/574

Cables	Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
AC Power (Fan)	No	2m	No	AC Mains	Electric Fan	
AC Power (PS Base Station)	No	2m	No	AC Mains	Power Supply (Base Station)	
DC Power (PS Base Station)	No	0.5m	No	Power Supply (Base Station)	AirScale Base Station (ASIA)	
AC Power (Laptop)	No	1.65m	No	AC Mains	Power Supply (Laptop)	
DC Power (Laptop)	No	1.7m	Yes	Power Supply (Laptop)	Laptop Computer	
USB (Mouse)	Yes	1.8m	No	USB Mouse	Laptop Computer	
Ethernet	No	1.8m	No	AirScale Base Station (ASIA)	Laptop Computer	
Optical Fiber	No	7.5m	No	AirScale Base Station (ABIA)	Remote Radio Head Module	
N Type Load 1	Yes	1.6m	No	Remote Radio Head Module	Antenna Load 1	
N Type Load 2	Yes	1.6m	No	Remote Radio Head Module	Antenna Load 2	
N Type Load 3	Yes	1.6m	No	Remote Radio Head Module	Antenna Load 3	
N Type SUCOFLEX_106	Yes	1.0m	No	Remote Radio Head Module	40dB 250W Attenuator	
AC Power (PS RRH)	No	2m	No	AC Mains	Power Supply (RRH)	
DC Power (PS RRH)	No	1.7m	Yes	Power Supply (RRH)	Remote Radio Head Module	
N Type SUCOFLEX_104	Yes	1.0m	No	40dB 250W Attenuator	Inline Filter (Conducted Band Edge)	
N Type SUCOFLEX_104	Yes	1.0m	No	Inline Filter (Conducted Band Edge)	Spectrum Analyzer	

Report No. NOKI0004.1 18/574

Configuration NOKI0004- 4

Software/Firmware Running during test					
Description	Version				
BTS Software	SBTS00_ENB_9999_191108_003654				
RRH Software	FRM59.11.R08				

EUT						
Description	Manufacturer	Model/Part Number	Serial Number			
Remote Radio Head Module	Nokia Solutions and Networks	AHLBBA / 475082A.101	K9193514835			

Peripherals in test setup boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
SFP+ 9.8G 300m 850 nm	Nokia Solutions and Networks	473842A.101	MA17331610209		

Remote Equipment Outside of Test Setup Boundary						
Description	Manufacturer	Model/Part Number	Serial Number			
Electric Fan	Electrix	L908	None			
Power Supply (Base Station)	Emerson	700-011721-0000	A9124600282			
Laptop Computer	HP	ProBook 6470B	None			
Power Supply (Laptop)	HP	608428-002	F12941232064008			
USB Mouse	HP	MSU1158	None			
Antenna Load 1	API Weinschel, Inc.	1433-3-LIM	TC867			
Antenna Load 2	API Weinschel, Inc.	1433-3-LIM	TC866			
Antenna Load 3	API Weinschel, Inc.	1433-3-LIM	TC870			
AirScale Base Station	Nokia Solutions and	473098A.101	J8163420419			
(AMIA)	Networks	473090A.101	30103420413			
AirScale Base Station (ABIA)	Nokia Solutions and Networks	473096A.102	L1164121378			
AirScale Base Station (ASIA)	Nokia Solutions and Networks	473095A.101	L1164105428			
Power Supply (RRH)	HP	6032A	211754			
Low Pass Filter (3 pieces)	Mini-Circuits	NLP-550	None			
10dB 100W Attenuator	Weinschel, Inc.	48-10-34-LIM	BJ1771			
20dB 150W Attenuator	Aeroflex/Weinschel	66-20-33	BZ2075			

Report No. NOKI0004.1 19/574

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
AC Power (Fan)	No	2m	No	AC Mains	Electric Fan
AC Power (PS Base Station)	No	2m	No	AC Mains	Power Supply (Base Station)
DC Power (PS Base Station)	No	0.5m	No	Power Supply (Base Station)	AirScale Base Station (ASIA)
AC Power (Laptop)	No	1.65m	No	AC Mains	Power Supply (Laptop)
DC Power (Laptop)	No	1.7m	Yes	Power Supply (Laptop)	Laptop Computer
USB (Mouse)	Yes	1.8m	No	USB Mouse	Laptop Computer
Ethernet	No	1.8m	No	AirScale Base Station (ASIA)	Laptop Computer
Optical Fiber	No	7.5m	No	AirScale Base Station (ABIA)	Remote Radio Head Module
N Type Load 1	Yes	1.6m	No	Remote Radio Head Module	Antenna Load 1
N Type Load 2	Yes	1.6m	No	Remote Radio Head Module	Antenna Load 2
N Type Load 3	Yes	1.6m	No	Remote Radio Head Module	Antenna Load 3
AC Power (PS RRH)	No	2m	No	AC Mains	Power Supply (RRH)
DC Power (PS RRH)	No	1.7m	Yes	Power Supply (RRH)	Remote Radio Head Module
N Type SUCOFLEX_106	Yes	1.0m	No	Remote Radio Head Module	20dB 150W Attenuator
N Type SUCOFLEX_104	Yes	1.0m	No	Spectrum Analyzer	Low Pass Filter (3 pieces)

Report No. NOKI0004.1 20/574

Configuration NOKI0004-5

Software/Firmware Running during test					
Description	Version				
BTS Software	SBTS00_ENB_9999_191108_003654				
RRH Software	FRM59.11.R08				

EUT						
Description	Manufacturer	Model/Part Number	Serial Number			
Remote Radio Head Module	Nokia Solutions and Networks	AHLBBA / 475082A.101	K9193514835			

Peripherals in test setup boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
SFP+ 9.8G 300m 850 nm	Nokia Solutions and Networks	473842A.101	MA17331610209		

Remote Equipment Outside of Test Setup Boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
Electric Fan	Electrix	L908	None		
Power Supply (Base Station)	Emerson	700-011721-0000	A9124600282		
Laptop Computer	HP	ProBook 6470B	None		
Power Supply (Laptop)	HP	608428-002	F12941232064008		
USB Mouse	HP	MSU1158	None		
Antenna Load 1	API Weinschel, Inc.	1433-3-LIM	TC867		
Antenna Load 2	API Weinschel, Inc.	1433-3-LIM	TC866		
Antenna Load 3	API Weinschel, Inc.	1433-3-LIM	TC870		
AirScale Base Station (AMIA)	Nokia Solutions and Networks	473098A.101	J8163420419		
AirScale Base Station (ABIA)	Nokia Solutions and Networks	473096A.102	L1164121378		
AirScale Base Station (ASIA)	Nokia Solutions and Networks	473095A.101	L1164105428		
Power Supply (RRH)	HP	6032A	211754		
20dB 150W Attenuator	Aeroflex/Weinschel	66-20-33	BZ2075		
3dB 100W Attenuator	Aeroflex/Weinschel	47-3-33	CG5493		
High Pass Filter	RLC ELECTRONICS	F-14699	0050		

Report No. NOKI0004.1 21/574

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
AC Power (Fan)	No	2m	No	AC Mains	Electric Fan
AC Power (PS Base Station)	No	2m	No	AC Mains	Power Supply (Base Station)
DC Power (PS Base Station)	No	0.5m	No	Power Supply (Base Station)	AirScale Base Station (ASIA)
AC Power (Laptop)	No	1.65m	No	AC Mains	Power Supply (Laptop)
DC Power (Laptop)	No	1.7m	Yes	Power Supply (Laptop)	Laptop Computer
USB (Mouse)	Yes	1.8m	No	USB Mouse	Laptop Computer
Ethernet	No	1.8m	No	AirScale Base Station (ASIA)	Laptop Computer
Optical Fiber	No	7.5m	No	AirScale Base Station (ABIA)	Remote Radio Head Module
N Type Load 1	Yes	1.6m	No	Remote Radio Head Module	Antenna Load 1
N Type Load 2	Yes	1.6m	No	Remote Radio Head Module	Antenna Load 2
N Type Load 3	Yes	1.6m	No	Remote Radio Head Module	Antenna Load 3
AC Power (PS RRH)	No	2m	No	AC Mains	Power Supply (RRH)
DC Power (PS RRH)	No	1.7m	Yes	Power Supply (RRH)	Remote Radio Head Module
N Type SUCOFLEX_106	Yes	1.0m	No	Remote Radio Head Module	20dB 150W Attenuator
N Type SUCOFLEX_104	Yes	1.0m	No	High Pass Filter	Spectrum Analyzer

Report No. NOKI0004.1 22/574

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
		Spurious	Tested as	No EMI suppression	EUT remained at
1	2019-11-08	Radiated	delivered to	devices were added or	Element following
		Emissions	Test Station.	modified during this test.	the test.
		Occupied	Tested as	No EMI suppression	EUT remained at
2	2019-11-18	Bandwidth	delivered to	devices were added or	Element following
		Dandwidth	Test Station.	modified during this test.	the test.
		Peak to Average	Tested as	No EMI suppression	EUT remained at
3	2019-11-18	Power Ratio	delivered to	devices were added or	Element following
		(PAPR)	Test Station.	modified during this test.	the test.
		Band Edge	Tested as	No EMI suppression	EUT remained at
4	2019-11-19	Compliance	delivered to	devices were added or	Element following
		Compliance	Test Station.	modified during this test.	the test.
		Spurious Conducted	Tested as	No EMI suppression	EUT remained at
5	2019-11-19		delivered to	devices were added or	Element following
		Emissions	Test Station.	modified during this test.	the test.
		Frequency	Tested as	No EMI suppression	EUT remained at
6	2019-11-19		delivered to	devices were added or	Element following
		Stability	Test Station.	modified during this test.	the test.
			Tested as	No EMI suppression	EUT remained at
7	2019-11-19	Average Power	delivered to	devices were added or	Element following
		_	Test Station.	modified during this test.	the test.
		Spurious	Tested as	No EMI suppression	Scheduled testing
8	2019-11-20	Conducted	delivered to	devices were added or	
		Emissions	Test Station.	modified during this test.	was completed.

Report No. NOKI0004.1 23/574

XMit 2019.09.05

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5171B-506	TEW	2-May-18	2-May-21
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	19-Mar-19	19-Mar-20

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The fundamental emission output power (maximum average conducted output power) was measured using the channels and modes as called out on the following data sheets. The transmit power was set to its default maximum.

The method in section 5.2.4.4 of ANSI C63.26 was used to make the measurement. This method uses trace averaging across ON and OFF times of the EUT transmissions in the spectrum analyzer channel power function using an RMS detector. Following the measurement a duty cycle correction was applied by adding [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times.

Per FCC sections 27.50(c)(3), the Effective Radiated Power (ERP) of the transceiver cannot exceed 1000 Watts/MHz.

Report No. NOKI0004.1

EUT: AHLBBA RRH
Serial Number: K9193514835
Customer: Nokia Solutions and Networks
Attendess: John Rattanavong
Project: None
Tested by: Jonathan Kiefer
TEST SPECIFICATIONS Work Order: NOKI0004

Date: 18-Nov-19

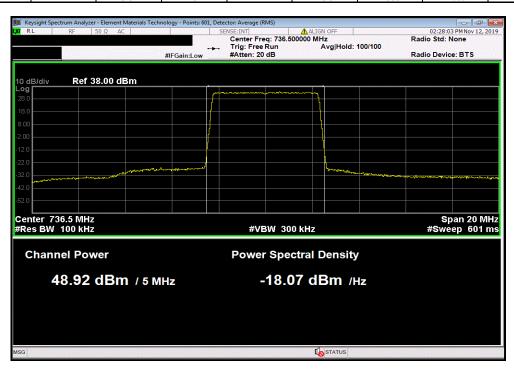
Temperature: 22.4 °C

Humidity: 29.7% RH

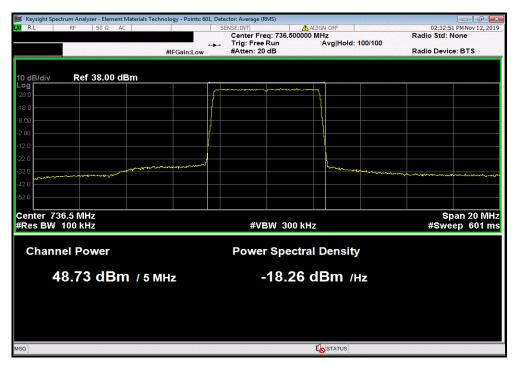
Barometric Press: 1019 mbar Power: 54VDC Test Method Job Site: TX09 FCC 27:2019 ANSI C63.26:2015 COMMENTS Band 12 average power measurements for LTE5 channel bandwidth at Mid channel using 256QAM on all four antenna ports. EUT is operated at 100% duty cycle. ERP depends on antenna gain, which is unknown Only the highest dBm value is plotted per customer requirements and a Watt/MHz calculation was not made due to the unknown antenna value. DEVIATIONS FROM TEST STANDARD Configuration # 2 Jonathan Kiefer Signature Avg Cond Pwr (dBm) Duty Cycle Factor (dB) Value (dBm) Limit (W ERP/MHz) Results 256QAM Modulation


LTE5 Bandwidth

Mid Channel, 736.5 MHz


Antenna Port 1 49 48.9 48.7 1000 1000 49.02 Pass 0 0 0 48.921 48.727 Pass Pass Antenna Port 3 1000 Antenna Port 4 48.879 0 48.9 1000 Pass

Report No. NOKI0004.1 25/574



	Ba	and 12, 256QAM	Modulation, LTE5	Bandwidth, Mid	Channel, 736.5 N	/IHz, Antenna Por	t 2
		Avg Cond	Duty Cycle		Value	Limit	
_		Pwr (dBm)	Factor (dB)		(dBm)	(W ERP/MHz)	Results
l		48.921	0		48.9	1000	Pass



Report No. NOKI0004.1 26/574

	Ba	and 12, 256QAM	Modulation, LTE5	Bandwidth, Mid	Channel, 736.5 N	/IHz, Antenna Por	t 4
		Avg Cond	Duty Cycle		Value	Limit	
_		Pwr (dBm)	Factor (dB)		(dBm)	(W ERP/MHz)	Results
l		48.879	0		48.9	1000	Pass

Report No. NOKI0004.1 27/574

XMit 2019.09.05

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5171B-506	TEW	2-May-18	2-May-21
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	19-Mar-19	19-Mar-20

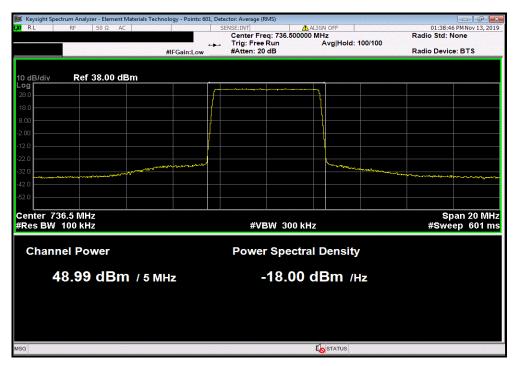
TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The fundamental emission output power (maximum average conducted output power) was measured using the channels and modes as called out on the following data sheets. The transmit power was set to its default maximum.

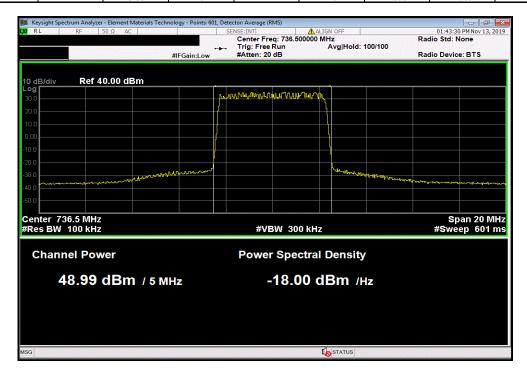
The method in section 5.2.4.4 of ANSI C63.26 was used to make the measurement. This method uses trace averaging across ON and OFF times of the EUT transmissions in the spectrum analyzer channel power function using an RMS detector. Following the measurement a duty cycle correction was applied by adding [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times.

Per FCC sections 27.50(c)(3), the Effective Radiated Power (ERP) of the transceiver cannot exceed 1000 Watts/MHz.

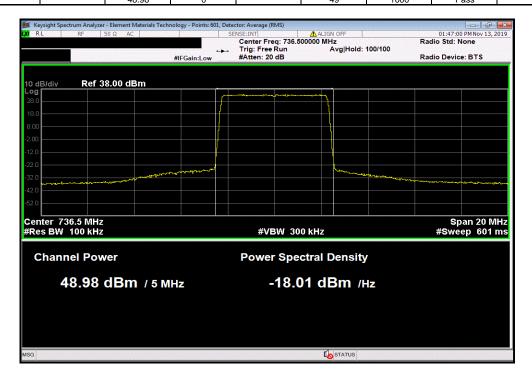
Report No. NOKI0004.1



EUT: AHLBBA RRH
Serial Number: K9193514835
Customer: Nokia Solutions and Networks
Attendess: John Rattanavong
Project: None
Tested by: Jonathan Kiefer
TEST SPECIFICATIONS Work Order: NOKI0004
Date: 18-Nov-19
Temperature: 22.4 °C Humidity: 29.6% RH Barometric Pres.: 1019 mbar Power: 54VDC Test Method Job Site: TX09 FCC 27:2019 ANSI C63.26:2015 COMMENTS Band 12 average power measurements for LTE5 channel bandwidth at Mid channel for four modulation types. Tested on highest power antenna port (Port 1) determined from antenna ports 1 & 4 measurements for LTE5/256QAM/Mid Channel. EUT is operated at 100% duty cycle. ERP depends on antenna gain, which is unknown. Only the highest dBm value is plotted per customer requirements and a Watt/MHz calculation was not made due to the unknown antenna value.
DEVIATIONS FROM TEST STANDARD Configuration # 2 Jonathan Kiefer Signature Avg Cond Pwr (dBm) Duty Cycle Factor (dB) Value (dBm) Limit (W ERP/MHz) Results QPSK Modulation LTE5 Bandwidth Mid Channel, 736,5 MHz 48.994 Ω 49 1000 Pass 16QAM Modulation LTE5 Bandwidth Mid Channel, 736.5 MHz 48.987 49 1000 Pass 0 64QAM Modulation LTE5 Bandwidth Mid Channel, 736.5 MHz 48.98 0 49 1000 Pass


Report No. NOKI0004.1 29/574

| Band 12, QPSK Modulation, LTE5 Bandwidth, Mid Channel, 736.5 MHz
| Avg Cond Duty Cycle Value Limit
| Pwr (dBm) Factor (dB) (dBm) (W ERP/MHz) Results
| 48.994 0 49 1000 Pass


	Band 12, 1	6QAM Modulatio	n, LTE5 Bandwid	th, Mid Channel,	736.5 MHz	
	Avg Cond	Duty Cycle		Value	Limit	
	Pwr (dBm)	Factor (dB)		(dBm)	(W ERP/MHz)	Results
	48.987	0		49	1000	Pass

Report No. NOKI0004.1 30/574

| Band 12, 64QAM Modulation, LTE5 Bandwidth, Mid Channel, 736.5 MHz
| Avg Cond Duty Cycle Value Limit
| Pwr (dBm) Factor (dB) (dBm) (W ERP/MHz) Results
| 48.98 0 49 1000 Pass

Report No. NOKI0004.1 31/574

XMit 2019.09.05

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5171B-506	TEW	2-May-18	2-May-21
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	19-Mar-19	19-Mar-20

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The fundamental emission output power (maximum average conducted output power) was measured using the channels and modes as called out on the following data sheets. The transmit power was set to its default maximum.

The method in section 5.2.4.4 of ANSI C63.26 was used to make the measurement. This method uses trace averaging across ON and OFF times of the EUT transmissions in the spectrum analyzer channel power function using an RMS detector. Following the measurement a duty cycle correction was applied by adding [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times.

Per FCC sections 27.50(c)(3) and 90.542, the Effective Radiated Power (ERP) of the transceiver cannot exceed 1000 Watts/MHz.

Report No. NOKI0004.1

EUT: AHLBBA RRH
Serial Number: K9193514835
Customer: Nokia Solutions and Networks
Attendess: John Rattanavong
Project: None
Tested by: Jonathan Kiefer
TEST SPECIFICATIONS Work Order: NOKI0004

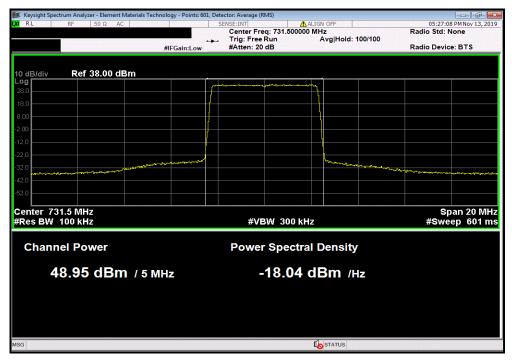
Date: 18-Nov-19

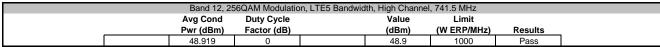
Temperature: 22.4 °C

Humidity: 29.7% RH

Barometric Press: 1019 mbar Power: 54VDC Test Method Job Site: TX09 FCC 27:2019 ANSI C63.26:2015 COMMENTS Band 12 average power for 256QAM modulation type at Low, Mid and High channels for LTE5 and LTE10 channel bandwidths. Tested on highest power antenna port (Port 1) determined from antenna ports 1 & 4 measurements for LTE5/256QAM/Mid Channel. EUT is operated at 100% duty cycle. Note: 256QAM LTE5 BW Mid Channel data shown elsewhere in the report. ERP depends on antenna gain, which is unknown. Only the highest dBm value is plotted per customer requirements and a Watt/MHz calculation was not made due to the unknown antenna value. DEVIATIONS FROM TEST STANDARD Configuration # 2 Jonathan Kiefer Signature Value (dBm) Avg Cond Pwr (dBm) Duty Cycle Factor (dB) Limit (W ERP/MHz) Results 256QAM Modulation LTE5 Bandwidth Low Channel, 731.5 MHz High Channel, 741.5 MHz 1000 1000 Pass Pass 48.949 0 48.9 48.919 48.9 LTE10 Bandwidth Mid Channel, 736.5 MHz 48.96 0 49 1000 Pass Low Channel, 734.0 MHz High Channel, 739.0 MHz 49 49 1000 1000 Pass Pass 48.987 0 48.99

Report No. NOKI0004.1 33/574

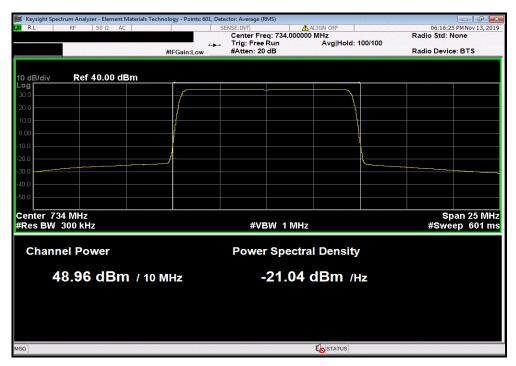


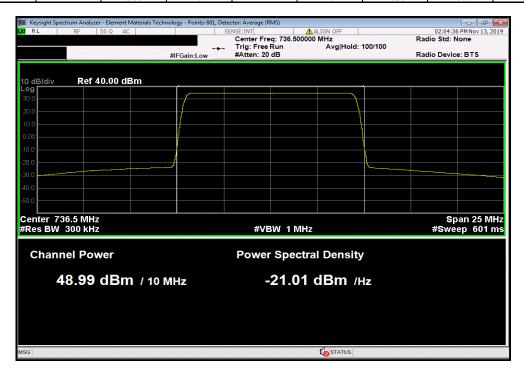

Band 12, 256QAM Modulation, LTE5 Bandwidth, Low Channel, 731.5 MHz


Avg Cond Duty Cycle Value Limit

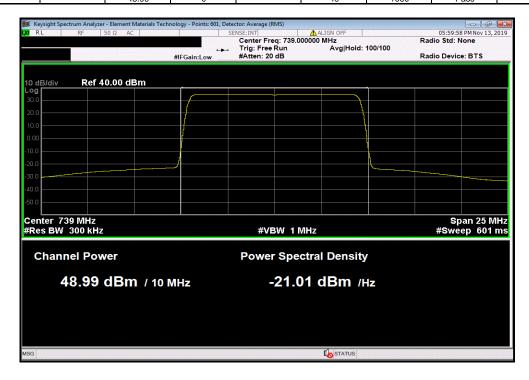
Pwr (dBm) Factor (dB) (dBm) (W ERP/MHz) Results

48.949 0 48.9 1000 Pass




Report No. NOKI0004.1 34/574

| Band 12, 256QAM Modulation, LTE10 Bandwidth, Mid Channel, 736.5 MHz
| Avg Cond Duty Cycle Value Limit
| Pwr (dBm) Factor (dB) (dBm) (W ERP/MHz) Results
| 48.96 0 49 1000 Pass


	Band 12, 25	6QAM Modulation	n, LTE10 Bandwi	dth, Low Channe	l, 734.0 MHz	
	Avg Cond	Duty Cycle		Value	Limit	
_	Pwr (dBm)	Factor (dB)		(dBm)	(W ERP/MHz)	Results
l	48.987	0		49	1000	Pass

Report No. NOKI0004.1 35/574

| Band 12, 256QAM Modulation, LTE10 Bandwidth, High Channel, 739.0 MHz
| Avg Cond Duty Cycle Value Limit
| Pwr (dBm) Factor (dB) (dBm) (W ERP/MHz) Results
| 48.99 0 49 1000 Pass

Report No. NOKI0004.1 36/574

XMit 2019.09.05

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5171B-506	TEW	2-May-18	2-May-21
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	19-Mar-19	19-Mar-20

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The fundamental emission output power (maximum average conducted output power) was measured using the channels and modes as called out on the following data sheets. The transmit power was set to its default maximum.

The method in section 5.2.4.4 of ANSI C63.26 was used to make the measurement. This method uses trace averaging across ON and OFF times of the EUT transmissions in the spectrum analyzer channel power function using an RMS detector. Following the measurement a duty cycle correction was applied by adding [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times.

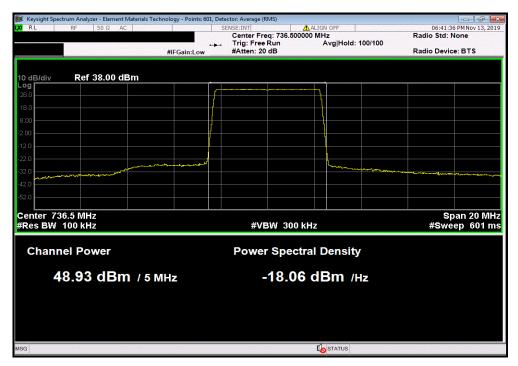
Per FCC sections 27.50(c)(3), the Effective Radiated Power (ERP) of the transceiver cannot exceed 1000 Watts/MHz.

EUT: AHLBBA RRH
Serial Number: K9193514835
Customer: Nokia Solutions and Networks
Attendess: John Rattanavong
Project: None
Tested by: Jonathan Kiefer
TEST SPECIFICATIONS Work Order: NOKI0004

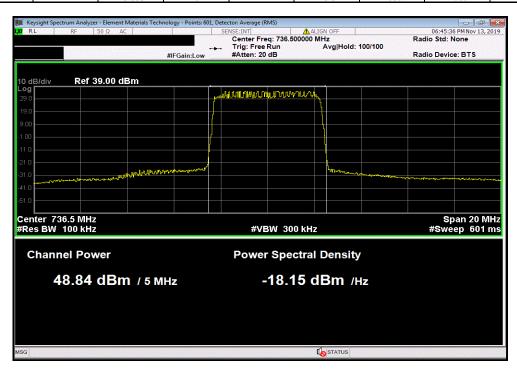
Date: 18-Nov-19

Temperature: 22.4 °C

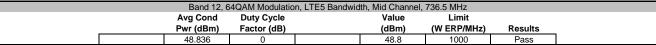
Humidity: 29.7% RH


Barometric Press: 1019 mbar Power: 54VDC Test Method Job Site: TX09 FCC 27:2019 ANSI C63.26:2015 COMMENTS Band 12 average power measurements for LTE5 channel bandwidth at Mid channel for four modulation types. Tested on highest power antenna port (Port 2) determined from antenna ports 2 & 3 measurements for LTE5/2560AM/Mid Channel. EUT is operated at 100% duty cycle. ERP depends on antenna gain, which is unknown. Note: 256QAM modulation data is shown elsewhere in the report. Only the highest dBm value is plotted per customer requirements and a Watt/MHz calculation was not made due to the unknown antenna value.

DEVIATIONS FROM TEST STANDARD Configuration # 2 Jonathan Kiefer Signature Avg Cond Pwr (dBm) Duty Cycle Factor (dB) Value (dBm) Limit (W ERP/MHz) Results QPSK Modulation LTE5 Bandwidth Mid Channel, 736,5 MHz 48 928 Ω 48.9 1000 Pass 16QAM Modulation LTE5 Bandwidth Mid Channel, 736.5 MHz 48.838 48.8 1000 Pass 0 64QAM Modulation LTE5 Bandwidth Mid Channel, 736.5 MHz 48.836 0 48.8 1000 Pass


Report No. NOKI0004.1 38/574

| Band 12, QPSK Modulation, LTE5 Bandwidth, Mid Channel, 736.5 MHz
| Avg Cond Duty Cycle Value Limit
| Pwr (dBm) Factor (dB) (dBm) (W ERP/MHz) Results
| 48.928 0 48.9 1000 Pass


	Band 12, 16QAM Modulation, LTE5 Bandwidth, Mid Channel, 736.5 MHz							
		Avg Cond	Duty Cycle		Value	Limit		
		Pwr (dBm)	Factor (dB)		(dBm)	(W ERP/MHz)	Results	
1		48.838	0		48.8	1000	Pass	



Report No. NOKI0004.1 39/574

Band 12, 64QAM Modulation, LTE5 Bandwidth, Mid Channel, 736.5 MHz Value

XMit 2019.09.05

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5171B-506	TEW	2-May-18	2-May-21
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	19-Mar-19	19-Mar-20

TEST DESCRIPTION

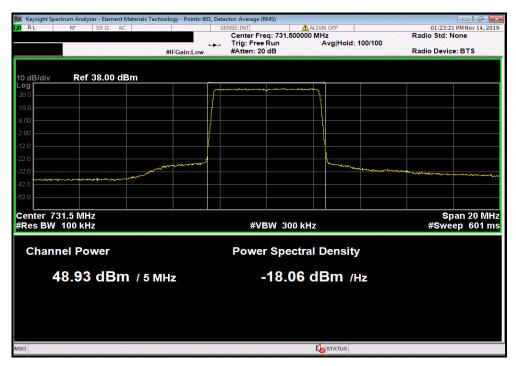
The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The fundamental emission output power (maximum average conducted output power) was measured using the channels and modes as called out on the following data sheets. The transmit power was set to its default maximum.

The method in section 5.2.4.4 of ANSI C63.26 was used to make the measurement. This method uses trace averaging across ON and OFF times of the EUT transmissions in the spectrum analyzer channel power function using an RMS detector. Following the measurement a duty cycle correction was applied by adding [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times.

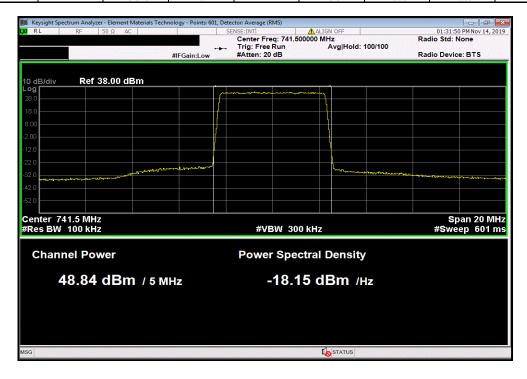
Per FCC sections 27.50(c)(3), the Effective Radiated Power (ERP) of the transceiver cannot exceed 1000 Watts/MHz.

EUT: AHLBBA RRH
Serial Number: K9193514835
Customer: Nokia Solutions and Networks
Attendess: John Rattanavong
Project: None
Tested by: Jonathan Kiefer
TEST SPECIFICATIONS Work Order: NOKI0004

Date: 18-Nov-19


Temperature: 22.4 °C

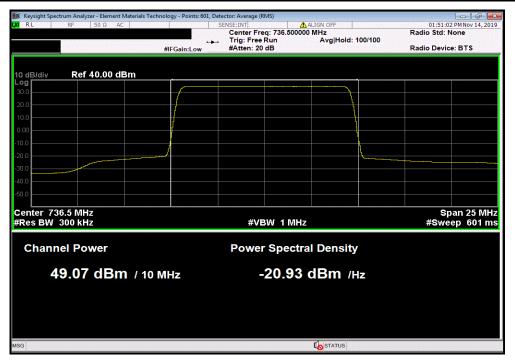
Humidity: 29.7% RH

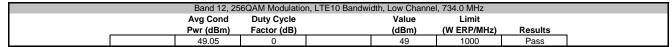

Barometric Press: 1019 mbar Power: 54VDC Test Method Job Site: TX09 FCC 27:2019 ANSI C63.26:2015 COMMENTS Band 12 average power for 256QAM modulation type at Low, Mid and High channels for LTE5 and LTE10 channel bandwidths. Tested on highest power antenna port (Port 2) determined from antenna ports 2 & 3 measurements for LTE5/256QAM/Mid Channel. EUT is operated at 100% duty cycle. Note: 256QAM LTE5 BW Mid Channel data shown elsewhere in the report. ERP depends on antenna gain, which is unknown. Only the highest dBm value is plotted per customer requirements and a Watt/MHz calculation was not made due to the unknown antenna value. DEVIATIONS FROM TEST STANDARD Configuration # 2 Jonathan Kiefer Signature Value (dBm) Avg Cond Pwr (dBm) Duty Cycle Factor (dB) Limit (W ERP/MHz) Results 256QAM Modulation LTE5 Bandwidth Low Channel, 731.5 MHz High Channel, 741.5 MHz 1000 1000 Pass Pass 48.929 0 48.9 48.843 48.8 LTE10 Bandwidth Mid Channel, 736.5 MHz 49.07 49.1 0 1000 Pass Low Channel, 734.0 MHz High Channel, 739.0 MHz 49.05 49.012 49 49 1000 1000 Pass Pass 0

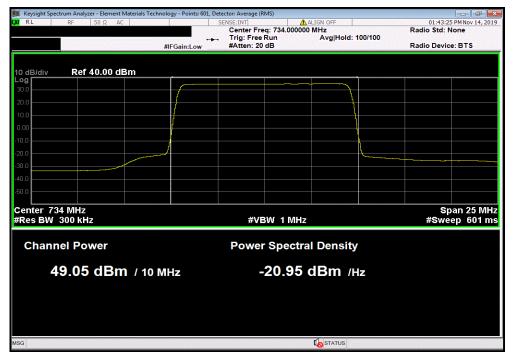
Report No. NOKI0004.1 42/574

Band 12, 256QAM Modulation, LTE5 Bandwidth, High Channel, 741.5 MHz							
	Avg Cond	Duty Cycle		Value	Limit		
	Pwr (dBm)	Factor (dB)		(dBm)	(W ERP/MHz)	Results	
	48.843	0		48.8	1000	Pass	

Report No. NOKI0004.1 43/574

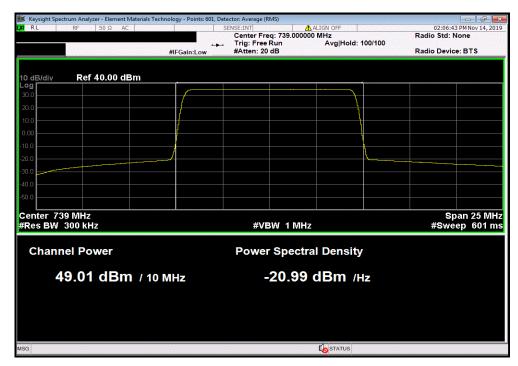



Band 12, 256QAM Modulation, LTE10 Bandwidth, Mid Channel, 736.5 MHz


Avg Cond Duty Cycle Value Limit

Pwr (dBm) Factor (dB) (dBm) (W ERP/MHz) Results

49.07 0 49.1 1000 Pass



Report No. NOKI0004.1 44/574

Band 12, 250	6QAM Modulation	n, LTE10 Bandwid	dth, High Channe	l, 739.0 MHz		
Avg Cond	Duty Cycle		Value	Limit		
Pwr (dBm)	Factor (dB)		(dBm)	(W ERP/MHz)	Results	
49.012	0		49	1000	Pass	

Report No. NOKI0004.1 45/574

XMit 2019.09.05

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5171B-506	TEW	2-May-18	2-May-21
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	19-Mar-19	19-Mar-20

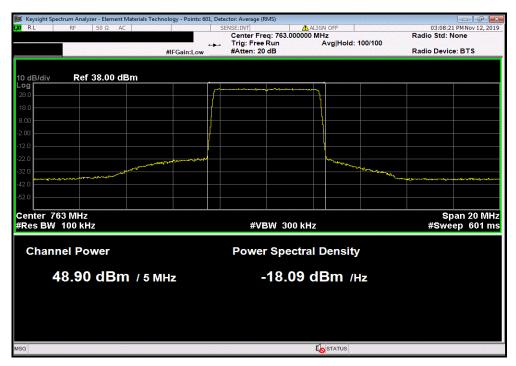
TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The fundamental emission output power (maximum average conducted output power) was measured using the channels and modes as called out on the following data sheets. The transmit power was set to its default maximum.

The method in section 5.2.4.4 of ANSI C63.26 was used to make the measurement. This method uses trace averaging across ON and OFF times of the EUT transmissions in the spectrum analyzer channel power function using an RMS detector. Following the measurement a duty cycle correction was applied by adding [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times.

Per FCC section 90.542, the Effective Radiated Power (ERP) of the transceiver cannot exceed 1000 Watts/MHz.

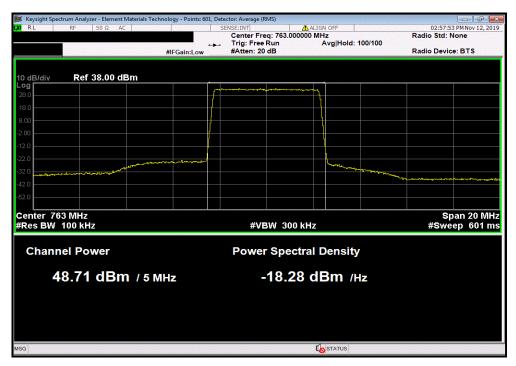
EUT: AHLBBA RRH
Serial Number: K9193514835
Customer: Nokia Solutions and Networks
Attendess: John Rattanavong
Project: None
Tested by: Jonathan Kiefer
TEST SPECIFICATIONS Work Order: NOKI0004
Date: 18-Nov-19
Temperature: 22.4 °C Humidity: 29.6% RH Barometric Pres.: 1019 mbar Power: 54VDC Test Method Job Site: TX09 FCC 90I:2019 ANSI C63.26:2015 COMMENTS Band 14 average power measurements for LTE5 channel bandwidth at Mid channel using 256QAM on all four antenna ports. EUT is operated at 100% duty cycle. ERP depends on antenna gain, which is unknown Only the highest dBm value is plotted per customer requirements and a Watt/MHz calculation was not made due to the unknown antenna value. DEVIATIONS FROM TEST STANDARD Configuration # 2 Jonathan Kiefer Signature Avg Cond Pwr (dBm) Duty Cycle Factor (dB) Value (dBm) Limit (W ERP/MHz) Results 256QAM Modulation


LTE5 Bandwidth

Mid Channel, 763.0 MHz

Antenna Port 1 48.9 48.8 48.7 1000 1000 48.902 Pass 0 0 0 48.759 48.715 Pass Pass Antenna Port 3 1000 Antenna Port 4 48.878 0 48.9 1000 Pass

Report No. NOKI0004.1 47/574



	Ba	and 14, 256QAM	Modulation, LTE5	Bandwidth, Mid	Channel, 763.0 N	/IHz, Antenna Por	t 2
		Avg Cond	Duty Cycle		Value	Limit	
_		Pwr (dBm)	Factor (dB)		(dBm)	(W ERP/MHz)	Results
i í		48.759	0		48.8	1000	Pass



Report No. NOKI0004.1 48/574

	Band 14, 256QAM Modulation, LTE5 Bandwidth, Mid Channel, 763.0 MHz, Antenna Port 4						
		Avg Cond	Duty Cycle		Value	Limit	
_		Pwr (dBm)	Factor (dB)		(dBm)	(W ERP/MHz)	Results
l		48.878	0		48.9	1000	Pass

Report No. NOKI0004.1 49/574

XMit 2019.09.05

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

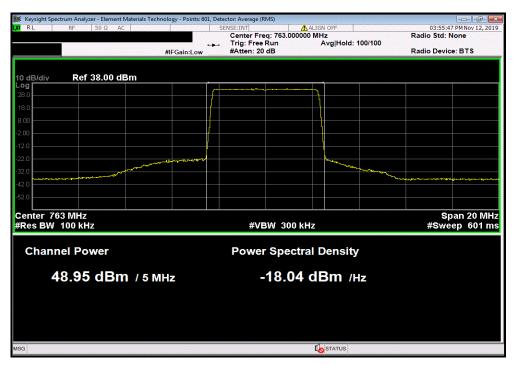
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5171B-506	TEW	2-May-18	2-May-21
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	19-Mar-19	19-Mar-20

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The fundamental emission output power (maximum average conducted output power) was measured using the channels and modes as called out on the following data sheets. The transmit power was set to its default maximum.

The method in section 5.2.4.4 of ANSI C63.26 was used to make the measurement. This method uses trace averaging across ON and OFF times of the EUT transmissions in the spectrum analyzer channel power function using an RMS detector. Following the measurement a duty cycle correction was applied by adding [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times.

Per FCC section 90.542, the Effective Radiated Power (ERP) of the transceiver cannot exceed 1000 Watts/MHz.



EUT: AHLBBA RRH
Serial Number: K9193514835
Customer: Nokia Solutions and Networks
Attendess: John Rattanavong
Project: None
Tested by: Jonathan Kiefer
TEST SPECIFICATIONS Work Order: NOKI0004
Date: 18-Nov-19
Temperature: 22.4 °C Humidity: 29.6% RH Barometric Pres.: 1019 mbar Power: 54VDC Test Method Job Site: TX09 FCC 90I:2019 ANSI C63.26:2015 COMMENTS Band 14 average power measurements for LTE5 channel bandwidth at Mid channel for four modulationt types. Tested on highest power antenna port (Port 1) determined from antenna ports 1 & 4 measurements for LTE5/256QAM/Mid Channel. EUT is operated at 100% duty cycle. ERP depends on antenna gain, which is unknown. Note 256QAM modulation LTE5 Mid channel data is shown elsewhere in this report. Only the highest dBm value is plotted per customer requirements and a Watt/MHz calculation was not made due to the unknown antenna value.
DEVIATIONS FROM TEST STANDARD Configuration # 2 Jonathan Kiefer Signature Avg Cond Pwr (dBm) Duty Cycle Factor (dB) Value (dBm) Limit (W ERP/MHz) Results QPSK Modulation LTE5 Bandwidth Mid Channel, 763.0 MHz 48 953 Ω 49 1000 Pass 16QAM Modulation LTE5 Bandwidth Mid Channel, 763.0 MHz 48.899 48.9 1000 0 Pass 64QAM Modulation LTE5 Bandwidth Mid Channel, 763.0 MHz 48.936 0 48.9 1000 Pass


Report No. NOKI0004.1 51/574

| Band 14, QPSK Modulation, LTE5 Bandwidth, Mid Channel, 763.0 MHz
| Avg Cond Duty Cycle Value Limit
| Pwr (dBm) Factor (dB) (dBm) (W ERP/MHz) Results
| 48.953 0 49 1000 Pass

	Band 14, 1	6QAM Modulatio	n, LTE5 Bandwid	th, Mid Channel,	763.0 MHz	
	Avg Cond	Duty Cycle		Value	Limit	
	Pwr (dBm)	Factor (dB)		(dBm)	(W ERP/MHz)	Results
	48.899	0		48.9	1000	Pass

Report No. NOKI0004.1 52/574

| Band 14, 64QAM Modulation, LTE5 Bandwidth, Mid Channel, 763.0 MHz
| Avg Cond Duty Cycle Value Limit
| Pwr (dBm) Factor (dB) (dBm) (W ERP/MHz) Results
| 48.936 0 48.9 1000 Pass

Report No. NOKI0004.1 53/574

XMit 2019.09.05

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

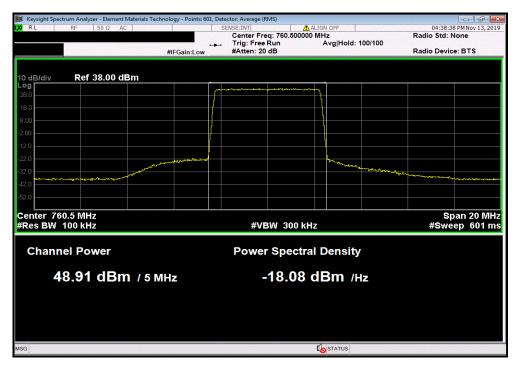
TEST EQUIPMENT

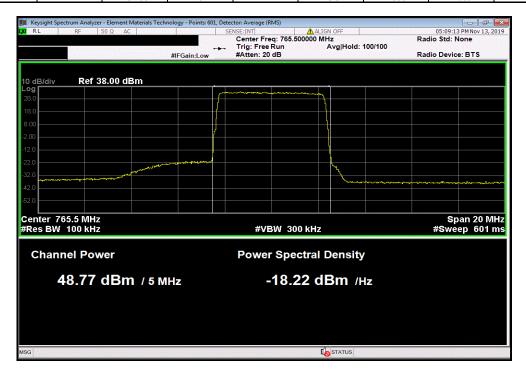
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5171B-506	TEW	2-May-18	2-May-21
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	19-Mar-19	19-Mar-20

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The fundamental emission output power (maximum average conducted output power) was measured using the channels and modes as called out on the following data sheets. The transmit power was set to its default maximum.

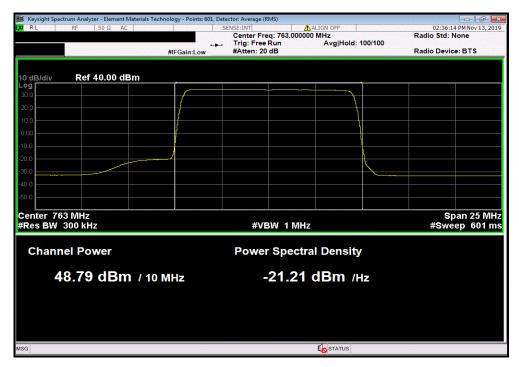
The method in section 5.2.4.4 of ANSI C63.26 was used to make the measurement. This method uses trace averaging across ON and OFF times of the EUT transmissions in the spectrum analyzer channel power function using an RMS detector. Following the measurement a duty cycle correction was applied by adding [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times.


Per FCC sections 90.542, the Effective Radiated Power (ERP) of the transceiver cannot exceed 1000 Watts/MHz.


EUT: AHLBBA RRH
Serial Number: K9193514835
Customer: Nokia Solutions and Networks
Attendess: John Rattanavong
Project: None
Tested by: Jonathan Kiefer
TEST SPECIFICATIONS Work Order: NOKI0004
Date: 18-Nov-19
Temperature: 22.4 °C Humidity: 29.6% RH Barometric Pres.: 1019 mbar Power: 54VDC Test Method Job Site: TX09 FCC 90I:2019 ANSI C63.26:2015 COMMENTS Band 14 average power for 256QAM modulation type at Low, Mid and High channels for LTE5 and LTE10 channel bandwidths. Tested on highest power antenna port (Port 1) determined from antenna ports 1 & 4 measurements for LTE5/256QAM/Mid Channel. EUT is operated at 100% duty cycle. Note 256QAM LTE5 BW Mid channel data shown elsewhere in the report. ERP depends on antenna gain, which is unknown. Only the highest dBm value is plotted per customer requirements and a Watt/MHz calculation was not made due to the unknown antenna value. DEVIATIONS FROM TEST STANDARD Configuration # 2 Jonathan Kiefer Signature Avg Cond Pwr (dBm) Duty Cycle Factor (dB) Value (dBm) Limit (W ERP/MHz) Results 256QAM Modulation LTE5 Bandwidth Low Channel, 760.5 MHz High Channel, 765.5 MHz 1000 1000 Pass Pass 48.908 0 48.9 48.766 LTE10 Bandwidth Single Channel, 763.0 MHz 48.8 1000 48.79 0 Pass

Report No. NOKI0004.1 55/574

Band 14, 25	6QAM Modulatio	n, LTE5 Bandwic	lth, High Channe	l, 765.5 MHz	
Avg Cond	Duty Cycle		Value	Limit	
 Pwr (dBm)	Factor (dB)		(dBm)	(W ERP/MHz)	Results
48.766	0		48.8	1000	Pass



Report No. NOKI0004.1 56/574

Dec 144 OFFICAM Med 1975 - 17740 Dec 1974 Obered 700 O Mile

Band 14, 256QAM Modulation, LTE10 Bandwidth, Single Channel, 763.0 MHz									
	Avg Cond	Duty Cycle		Value	Limit				
	Pwr (dBm)	Factor (dB)		(dBm)	(W ERP/MHz)	Results			
	48.79	0		48.8	1000	Pass			

Report No. NOKI0004.1 57/574

XMit 2019.09.05

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5171B-506	TEW	2-May-18	2-May-21
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	19-Mar-19	19-Mar-20

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The fundamental emission output power (maximum average conducted output power) was measured using the channels and modes as called out on the following data sheets. The transmit power was set to its default maximum.

The method in section 5.2.4.4 of ANSI C63.26 was used to make the measurement. This method uses trace averaging across ON and OFF times of the EUT transmissions in the spectrum analyzer channel power function using an RMS detector. Following the measurement a duty cycle correction was applied by adding [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times.

Per FCC sections 90.542, the Effective Radiated Power (ERP) of the transceiver cannot exceed 1000 Watts/MHz.

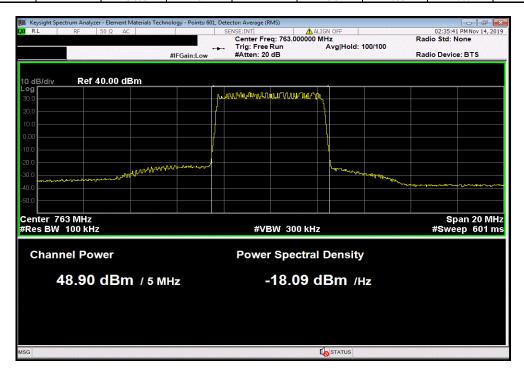
EUT: AHLBBA RRH
Serial Number: K9193514835
Customer: Nokia Solutions and Networks
Attendess: John Rattanavong
Project: None
Tested by: Jonathan Kiefer
TEST SPECIFICATIONS Work Order: NOKI0004

Date: 18-Nov-19

Temperature: 22.4 °C

Humidity: 29.7% RH

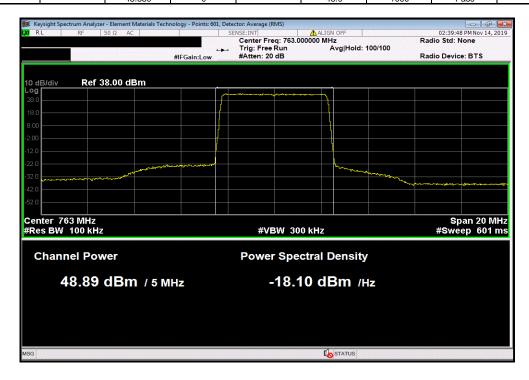
Barometric Press: 1019 mbar Power: 54VDC Test Method Job Site: TX09 FCC 90I:2019 ANSI C63.26:2015 COMMENTS Band 14 average power measurements for LTE5 channel bandwidth at Mid channel for four modulation types. Tested on highest power antenna port (Port 2) determined from antenna ports 2 & 3 measurements for LTE5/256QAM/Mid Channel. EUT is operated at 100% duty cycle. ERP depends on antenna gain, which is unknown. Only the highest dBm value is plotted per customer requirements and a Watt/MHz calculation was not made due to the unknown antenna value.
DEVIATIONS FROM TEST STANDARD Configuration # 2 Jonathan Kiefer Signature Avg Cond Pwr (dBm) Duty Cycle Factor (dB) Value (dBm) Limit (W ERP/MHz) Results QPSK Modulation LTE5 Bandwidth Mid Channel, 763.0 MHz 48.948 Ω 48.9 1000 Pass 16QAM Modulation LTE5 Bandwidth Mid Channel, 763.0 MHz 48.896 48.9 1000 Pass 0 64QAM Modulation LTE5 Bandwidth Mid Channel, 763.0 MHz 48.889 0 48.9 1000 Pass


Report No. NOKI0004.1 59/574

| Band 14, QPSK Modulation, LTE5 Bandwidth, Mid Channel, 763.0 MHz
| Avg Cond Duty Cycle Value Limit
| Pwr (dBm) Factor (dB) (dBm) (W ERP/MHz) Results
| 48.948 0 48.9 1000 Pass

	Band 14, 16QAM Modulation, LTE5 Bandwidth, Mid Channel, 763.0 MHz									
		Avg Cond	Duty Cycle		Value	Limit				
		Pwr (dBm)	Factor (dB)		(dBm)	(W ERP/MHz)	Results			
l		48.896	0		48.9	1000	Pass			

Report No. NOKI0004.1 60/574



Band 14, 64QAM Modulation, LTE5 Bandwidth, Mid Channel, 763.0 MHz

Avg Cond Duty Cycle Value Limit

Pwr (dBm) Factor (dB) (dBm) (W ERP/MHz) Results

48.889 0 48.9 1000 Pass

Report No. NOKI0004.1 61/574

XMit 2019.09.05

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5171B-506	TEW	2-May-18	2-May-21
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	19-Mar-19	19-Mar-20

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The fundamental emission output power (maximum average conducted output power) was measured using the channels and modes as called out on the following data sheets. The transmit power was set to its default maximum.

The method in section 5.2.4.4 of ANSI C63.26 was used to make the measurement. This method uses trace averaging across ON and OFF times of the EUT transmissions in the spectrum analyzer channel power function using an RMS detector. Following the measurement a duty cycle correction was applied by adding [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times.

Per FCC section 90.542, the Effective Radiated Power (ERP) of the transceiver cannot exceed 1000 Watts/MHz.

EUT: AHLBBA RRH
Serial Number: K9193514835
Customer: Nokia Solutions and Networks
Attendess: John Rattanavong
Project: None
Tested by: Jonathan Kiefer
TEST SPECIFICATIONS Work Order: NOKI0004

Date: 18-Nov-19

Temperature: 22.4 °C

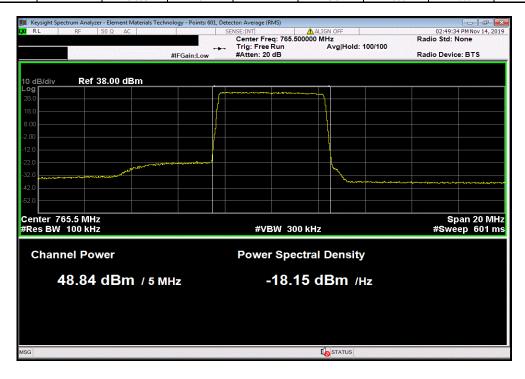
Humidity: 29.7% RH

Barometric Press: 1019 mbar Power: 54VDC Test Method Job Site: TX09 FCC 90I:2019 ANSI C63.26:2015 COMMENTS Band 14 average power for 256QAM modulation type at Low, Mid and High channels for LTE5 and LTE10 channel bandwidths. Tested on highest power antenna port (Port 2) determined from antenna ports 2 & 3 measurements for LTE5/256QAM/Mid Channel. EUT is operated at 100% duty cycle. Note: 256QAM LTE5 BW Mid Channel data shown elsewhere in the report. ERP depends on antenna gain, which is unknown. Only the highest dBm value is plotted per customer requirements and a Watt/MHz calculation was not made due to the unknown antenna value.

DEVIATIONS FROM TEST STANDARD Configuration # 2 Jonathan Kiefer Signature Avg Cond Pwr (dBm) Duty Cycle Factor (dB) Value (dBm) Limit (W ERP/MHz) Results 256QAM Modulation LTE5 Bandwidth Low Channel, 760.5 MHz High Channel, 765.5 MHz 1000 1000 Pass Pass 48.966 0 49 48.838 48.8 LTE10 Bandwidth Single Channel, 763.0 MHz 48.9 1000 48.857 0 Pass

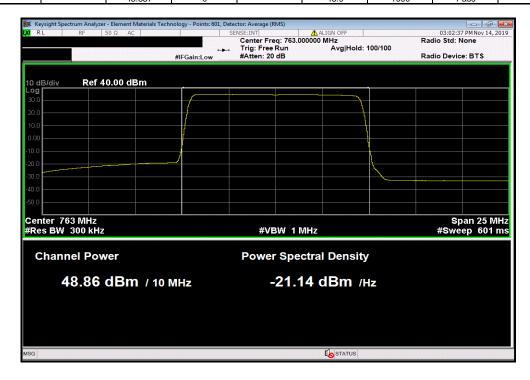
Report No. NOKI0004.1 63/574

Band 14, 256QAM Modulation, LTE5 Bandwidth, Low Channel, 760.5 MHz


Avg Cond Duty Cycle Value Limit

Pwr (dBm) Factor (dB) (dBm) (W ERP/MHz) Results

48.966 0 49 1000 Pass


Band 14, 256QAM Modulation, LTE5 Bandwidth, High Channel, 765.5 MHz									
	Avg Cond	Duty Cycle		Value	Limit				
	Pwr (dBm)	Factor (dB)		(dBm)	(W ERP/MHz)	Results			
	48.838	0		48.8	1000	Pass			

Report No. NOKI0004.1 64/574

| Band 14, 256QAM Modulation, LTE10 Bandwidth, Single Channel, 763.0 MHz
| Avg Cond Duty Cycle Value Limit
| Pwr (dBm) Factor (dB) (dBm) (W ERP/MHz) Results
| 48.857 0 48.9 1000 Pass

Report No. NOKI0004.1 65/574

XMit 2019.09.05

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5171B-506	TEW	2-May-18	2-May-21
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	19-Mar-19	19-Mar-20

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The fundamental emission output power (maximum average conducted output power) was measured using the channels and modes as called out on the following data sheets. The transmit power was set to its default maximum.

The method in section 5.2.4.4 of ANSI C63.26 was used to make the measurement. This method uses trace averaging across ON and OFF times of the EUT transmissions in the spectrum analyzer channel power function using an RMS detector. Following the measurement a duty cycle correction was applied by adding [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times.

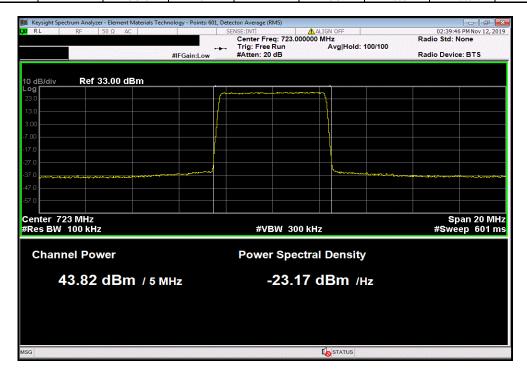
Per FCC section 27.50(c)(3), the Effective Radiated Power (ERP) of the transceiver cannot exceed 1000 Watts/MHz.

EUT: AHLBBA RRH
Serial Number: K9193514835
Customer: Nokia Solutions and Networks
Attendess: John Rattanavong
Project: None
Tested by: Jonathan Kiefer
TEST SPECIFICATIONS Work Order: NOKI0004
Date: 18-Nov-19
Temperature: 22.4 °C Humidity: 29.6% RH Barometric Pres.: 1019 mbar Power: 54VDC Test Method Job Site: TX09 FCC 27:2019 ANSI C63.26:2015 COMMENTS Band 29 average power measurements for LTE5 channel bandwidth at Mid channel using 256QAM on Antenna Ports 1 & 4. EUT is operated at 100% duty cycle. ERP depends on antenna gain, which is unknown. Only the highest dBm value is plotted per customer requirements and a Watt/MHz calculation was not made due to the unknown antenna value. DEVIATIONS FROM TEST STANDARD Configuration # 2 Jonathan Kiefer Signature Limit (W ERP/MHz) Avg Cond Pwr (dBm) Duty Cycle Factor (dB) Value (dBm) Results 256QAM Modulation

LTE5 Bandwidth

Mid Channel, 723.0 MHz

Antenna Port 1


Antenna Port 4 43.791 43.816 43.8 43.8 1000 Pass 0 1000 Pass

Report No. NOKI0004.1 67/574

	Band 29, 256QAM Modulation, LTE5 Bandwidth, Mid Channel, 723.0 MHz, Antenna Port 4										
		Avg Cond	Duty Cycle		Value	Limit					
		Pwr (dBm)	Factor (dB)		(dBm)	(W ERP/MHz)	Results				
1		43.816	0		43.8	1000	Pass				

Report No. NOKI0004.1 68/574

XMit 2019.09.05

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

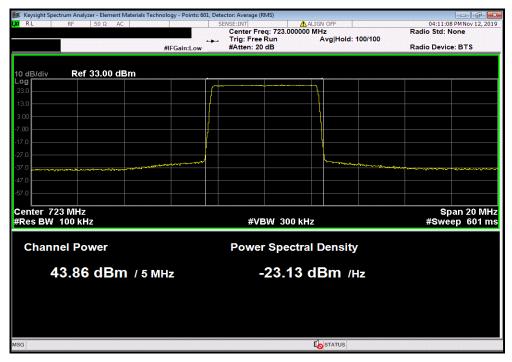
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5171B-506	TEW	2-May-18	2-May-21
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	19-Mar-19	19-Mar-20

TEST DESCRIPTION

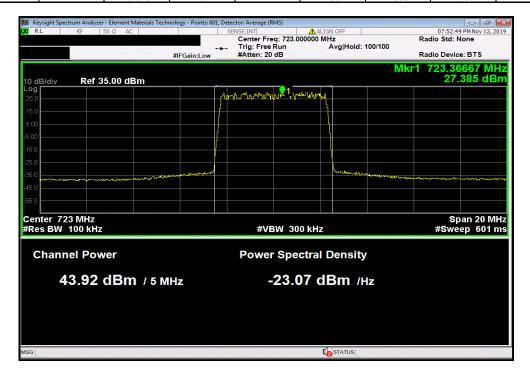
The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The fundamental emission output power (maximum average conducted output power) was measured using the channels and modes as called out on the following data sheets. The transmit power was set to its default maximum.

The method in section 5.2.4.4 of ANSI C63.26 was used to make the measurement. This method uses trace averaging across ON and OFF times of the EUT transmissions in the spectrum analyzer channel power function using an RMS detector. Following the measurement a duty cycle correction was applied by adding [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times.

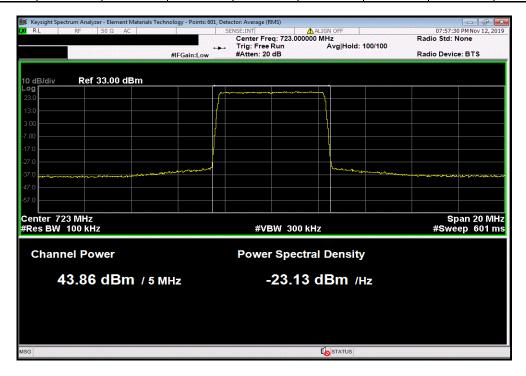
Per FCC section 27.50(c)(3), the Effective Radiated Power (ERP) of the transceiver cannot exceed 1000 Watts/MHz.


EUT: AHLBBA RRH
Serial Number: K9193514835
Customer: Nokia Solutions and Networks
Attendess: John Rattanavong
Project: None
Tested by: Jonathan Kiefer
TEST SPECIFICATIONS Work Order: NOKI0004
Date: 18-Nov-19
Temperature: 22.4 °C Humidity: 29.6% RH Barometric Pres.: 1019 mbar Power: 54VDC Test Method Job Site: TX09 FCC 27:2019 ANSI C63.26:2015 COMMENTS Band 29 average power measurements for LTE5 channel bandwidth at Mid channel for four modulation types. Tested on highest power antenna port (Port 1) determined from antenna ports 1 & 4 measurements for LTE5/2560AM/Mid Channel. EUT is operated at 100% duty cycle. ERP depends on antenna gain, which is unknown. Only the highest dBm value is plotted per customer requirements and a Watt/MHz calculation was not made due to the unknown antenna value. Note 256QAM modulation data is shown elsewhere in the report.

DEVIATIONS FROM TEST STANDARD Configuration # 2 Jonathan Kiefer Signature Avg Cond Pwr (dBm) Duty Cycle Factor (dB) Value (dBm) Limit (W ERP/MHz) Results QPSK Modulation LTE5 Bandwidth Mid Channel, 723.0 MHz 43 857 Ω 43.9 1000 Pass 16QAM Modulation LTE5 Bandwidth Mid Channel, 723.0 MHz 43.919 43.9 1000 0 Pass 64QAM Modulation LTE5 Bandwidth Mid Channel, 723.0 MHz 43.86 0 43.9 1000 Pass


Report No. NOKI0004.1 70/574

| Band 29, QPSK Modulation, LTE5 Bandwidth, Mid Channel, 723.0 MHz
| Avg Cond Duty Cycle Value Limit
| Pwr (dBm) Factor (dB) (dBm) (W ERP/MHz) Results
| 43.857 0 43.9 1000 Pass


Band 29, 16QAM Modulation, LTE5 Bandwidth, Mid Channel, 723.0 MHz									
	Avg Cond	Duty Cycle		Value	Limit				
	Pwr (dBm)	Factor (dB)		(dBm)	(W ERP/MHz)	Results			
	43.919	0		43.9	1000	Pass			

Report No. NOKI0004.1 71/574

| Band 29, 64QAM Modulation, LTE5 Bandwidth, Mid Channel, 723.0 MHz
| Avg Cond Duty Cycle Value Limit
| Pwr (dBm) Factor (dB) (dBm) (W ERP/MHz) Results
| 43.86 0 43.9 1000 Pass

Report No. NOKI0004.1 72/574

XMit 2019.09.05

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

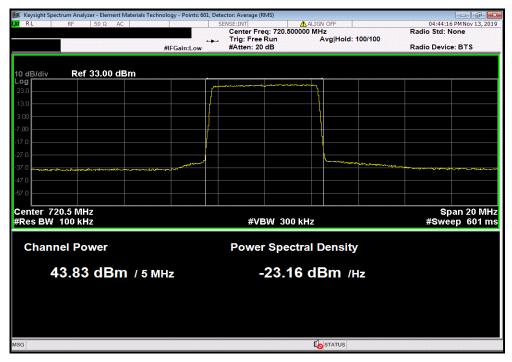
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5171B-506	TEW	2-May-18	2-May-21
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	19-Mar-19	19-Mar-20

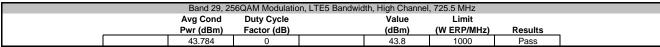
TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The fundamental emission output power (maximum average conducted output power) was measured using the channels and modes as called out on the following data sheets. The transmit power was set to its default maximum.

The method in section 5.2.4.4 of ANSI C63.26 was used to make the measurement. This method uses trace averaging across ON and OFF times of the EUT transmissions in the spectrum analyzer channel power function using an RMS detector. Following the measurement a duty cycle correction was applied by adding [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times.

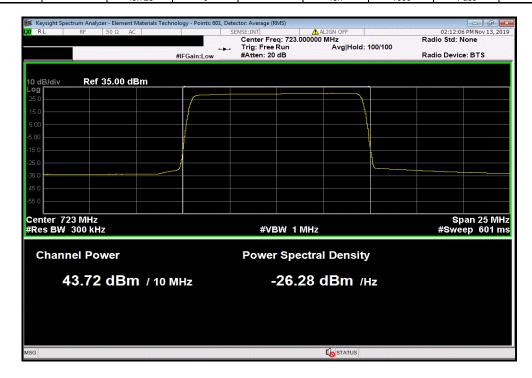
Per FCC section 27.50(c)(3), the Effective Radiated Power (ERP) of the transceiver cannot exceed 1000 Watts/MHz.




EUT: AHLBBA RRH
Serial Number: K9193514835
Customer: Nokia Solutions and Networks
Attendess: John Rattanavong
Project: None
Tested by: Jonathan Kiefer
TEST SPECIFICATIONS Work Order: NOKI0004
Date: 18-Nov-19
Temperature: 22.4 °C Humidity: 29.6% RH Barometric Pres.: 1019 mbar Power: 54VDC Test Method Job Site: TX09 ANSI C63.26:2015 COMMENTS Band 29 average power measurements for 256QAM modulation type at Low, Mid and High channels for LTE5 and LTE10 channel bandwidths. Tested on highest power antenna port (Port 1) determined from antenna ports 1 & 4 measurements for LTE5/256QAM/Mid Channel. EUT is operated at 100% duty cycle. Note: 256QAM LTE5 BW Mid channel data shown elsewhere in the report. ERP depends on antenna gain, which is unknown. Only the highest dBm value is plotted per customer requirements and a Watt/MHz calculation was not made due to the unknown antenna value.

DEVIATIONS FROM TEST STANDARD Configuration # 2 Jonathan Kiefer Signature Avg Cond Pwr (dBm) Duty Cycle Factor (dB) Value (dBm) Limit (W ERP/MHz) Results 256QAM Modulation LTE5 Bandwidth Low Channel, 720.5 MHz High Channel, 725.5 MHz 1000 1000 Pass Pass 43.834 0 43.8 43.784 LTE10 Bandwidth Single Channel, 723.0 MHz 43.723 43.7 1000 0 Pass

Report No. NOKI0004.1 74/574



Report No. NOKI0004.1 75/574

| Band 29, 256QAM Modulation, LTE10 Bandwidth, Single Channel, 723.0 MHz
| Avg Cond Duty Cycle Value Limit
| Pwr (dBm) Factor (dB) (dBm) (W ERP/MHz) Results
| 43.723 0 43.7 1000 Pass

Report No. NOKI0004.1 76/574