

Class 2 Permissive Change Test Report

FCC Part 15.247 Direct Sequence for Symbol Technologies on the Wireless LAN System Model: LA4121 FCC ID: H9PLA4121

Test Report #: 2036369G4 Date of Report: June 26, 2001

Job #: J20036369G Date of Test: April 5 & 6, 2001

Total No of Pages Contained in this Report: 27

RV

Aarnock Hersey

alar.	Constant of the second	No.
Contraction of the local division of the loc	10000	
1	Same /	e ^{fr}

NVLAP Laborato	ry Code: 200201-0
Gli. ZZ	Ollie Moyrong, Test Engineer
David Chemomordik	David Chernomordik, Ph.D., Technical Manager
Review Date:	

All services undertaken are subject to the following general policy: Reports are submitted for exclusive use of the client to whom they are addressed. Their significance is subject to the adequacy and representative character of the samples and to the comprehensiveness of the tests, examinations or surveys made. This report shall not be reproduced except in full, without written consent of Intertek Testing Services, NA Inc. This report must not be used to claim product endorsement by NVLAP, NIST nor any other agency of the U.S. Government.

FCC Part 15 DSSS Cert, Rev 01/01

Symbol Technologies. Model # LA4121 FCC ID: H9PLA4121 Date of Test: April 5 & 6, 2001

Table of Contents

1.0	Intro	luction	;
	1.1	Justification	i
	1.2	Summary of Tests	į
2.0	Gener	ral Description4	ļ
	2.1	Product Description4	
	2.2	Related Submittal(s) Grants	L
	2.3	Test Methodology4	Ļ
	2.4	Test Facility	·
3.0	Syster	n Test Configuration5	;
	3.1	Support Equipment and description5	
	3.2	Block Diagram of Test Setup	,
	3.3	Justification	
	3.4	Software Exercise Program6	;)
	3.5	Mode of Operation During Test	
	3.6	Modifications Required for Compliance	
4.0	Meas	urement Results	,
	4.1	Transmitter Radiated Emissions in Restricted Bands7	!
	4.2	Radiated Emissions from Digital Section of Transceiver (Transmitter)18	;
5.0	Docu	ment History21	
Exhibi	t 1	Test Setup Photos	;

Symbol Technologies. Model # LA4121 FCC ID: H9PLA4121

1.0 Introduction

Date of Test: April 5 & 6, 2001

1.1 Justification

Two new antennas were added to the device which was originally granted. No changes were made in the RF module and modulator, therefore no changes are expected in Power Output, 6 dB Bandwidth, Power Density, Out-of-band Antenna Conducted Emission and Processing Gain.

Only radiated emission test was performed to confirm that the device is in compliance with FCC Part 15 requirements.

1.2 Summary of Tests

MODEL: Model: LA4121 FCC ID: H9PLA4121

TEST	REFERENCE	RESULTS
Max. Output power	15.247(b)	Not Applicable *
6 dB Bandwidth	15.247(a)(2)	Not Applicable *
Max. Power Density	15.247(d)	Not Applicable *
Out-of-band Antenna Conducted Emission	15.247(c)	Not Applicable *
Out-of-band Radiated Emission	15.247(c)	Not Applicable **
Radiated Emission in Restricted Bands	15.35(b)(c)	Passed
AC Conducted Emission	15.207	Not Applicable *
Radiated Emission from Digital Part	15.109	Passed
Radiated Emission from Receiver L.O.	15.109	Not Applicable ***
Processing Gain Measurements	15.247(e)	Not Applicable *
Antenna Requirement	15.203	Passed

* There are no changes which can affect these characteristics (See Section 1.1 for details).

** The EUT passed Out-of-band Antenna Conducted Emission

*** The EUT operates above 960 MHz

1365 Adams Court Menlo Park, CA 94025

Date of Test: April 5 & 6, 2001

Symbol Technologies. Model # LA4121 FCC ID: H9PLA4121

2.0 General Description

2.1 Product Description

The Symbol Technologies model H9PLA4121 is 2.4 GHz Spread Spectrum radio in the form of a PCMCIA card that is used for wireless communication from a computer to a LAN.

Applicant	Symbol Technologies
Trade Name & Model No.	Symbol, LA4121
FCC Identifier	H9PLA4121
Use of Product	Wireless LAN communications
Manufacturer & Model of Spread Spectrum Module	Symbol
Type of Transmission	Direct Sequence Spread Spectrum
Rated RF Output	135 mW
Frequency Range	2412 - 2462
Number of Channel(s)	
Antenna(s) & Gain,	PMAA-2000 and MAA-2000, max Gain 8 dBi
Antenna Requirement	 [] The EUT uses a permanently connected antenna. [X] The antenna is affixed to the EUT using a unique connector which allows for replacement of a broken antenna, but DOES NOT use a standard antenna jack or electrical connector. [] The EUT requires professional installation (attach supporting documentation if using this option).
Manufacturer name & address	Symbol

Overview of Wireless LAN System

2.2 Related Submittal(s) Grants

None.

2.3 Test Methodology

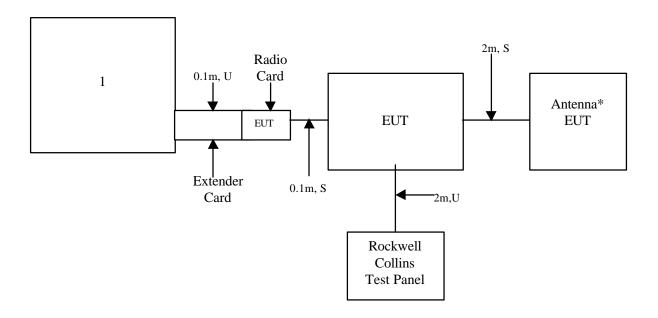
Radiated emissions measurements were performed according to the procedures in ANSI C63.4 (1992). Radiated tests were performed at an antenna to LA4121 distance of 3 meters, unless stated otherwise in the "**Data Sheet**" of this Application. All other measurements were made in accordance with the procedures in part 2 of CFR 47.

2.4 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is site 2 located in Menlo Park, California. This test facility and site measurement data have been fully placed on file with the FCC.

1365 Adams Court Menlo Park, CA 94025

Date of Test: April 5 & 6, 2001


Symbol Technologies. Model # LA4121 FCC ID: H9PLA4121

3.0 System Test Configuration

3.1 Support Equipment and description

Item #	Description	Model No.	Serial No.	FCC ID
1	Dell Computer	POS3410-N500	F999999	DoC

3.2 Block Diagram of Test Setup

- *: Antenna 1 MAA-2000, Antenna 2 PMAA-2000
- m: Length in meters
- U: Unshielded
- S: Shielded

ITS Intertek Testing Services ETL SEMKO

Symbol Technologies. Model # LA4121 FCC ID: H9PLA4121 3.3 Justification Date of Test: April 5 & 6, 2001

For emission testing, the only way to put the equipment under test (EUT) into test mode (to make it transmit on a particular channel) was to configure it as follows:

The chassis cover of the WLU-2001was removed. The LA4121 was removed from the chassis of the WLU-2001 and was inserted into an extender card which was connected to the PCMCIA slot of a laptop computer. The laptop computer has special software to put the LA4121 into test mode. The RF port of the LA4121 was connected to the WLU-2001 as it would be in normal installation.

During testing, all cables were manipulated to produce worst case emissions.

For radiated emission measurements the EUT is placed on the wooden turntable. The EUT is attached to peripherals and they are connected and operational (as typical as possible). The EUT is wired to transmit full power.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. All readings are extrapolated back to the equivalent three-meter reading using inverse scaling with distance.

Tests were performed for both the TWLU and CWLU modes of operation.

3.4 Software Exercise Program

The EUT exercise program used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use.

3.5 Mode of Operation During Test

For emissions testing, the units were setup to transmit continuously at the low, middle, and high frequencies.

3.6 Modifications Required for Compliance

The following modifications were installed during compliance testing in order to bring the product into compliance (Please note that this list does not include changes made specifically by Rockwell Collins prior to compliance testing):

No modifications were installed by Intertek Testing Services.

Date of Test: April 5 & 6, 2001

Symbol Technologies. Model # LA4121 FCC ID: H9PLA4121

4.0 Measurement Results

4.1 Transmitter Radiated Emissions in Restricted Bands FCC Rule 15.35(b), (c):

Radiated emission measurements were performed from 30 MHz to 25000 MHz.

For radiated emission tests, The analyzer setting was as followings:

	<u>RES BW</u>	VID BW
Frequency <1 GHz Frequency >1 GHz	100 kHz 1 MHz 1 MHz	100 kHz (Peak measurements)
1 5	$1 \text{ MHz} \le 100 \text{ Hz}$	(Average measurements)

Data is included of the worst case configuration (the configuration which resulted in the highest emission levels).

The data on the following pages list the significant emission frequencies, the limit and the margin of compliance.

The field strength at the Band-edge frequencies was calculated as $E_F = E_0 - \Delta$.

Where:

 E_F = Field Strength of Band-edge Frequency

E_o= Field Strength of Fundamental Frequency

 Δ = Delta between the level of conducted emission at a Fundamental Frequency and the level of conducted emission at a Band-edge Frequency

Average Field strength at Low Channel 2412.0 MHz = 117.1 dBuV/m Field strength at Band-edge 2390.0 MHz = 117.1 - 60.8 = 56.3 dBuV/m The radio has a Duty cycle of 2.9 dB. Taking this into account the level at the Band-edge is 56.3 - 2.9 = 53.4 dBuV/m. Refer to the attached Duty Cycle calculation sheets.

Field strength at High Channel 2467.0 MHz = 115.9 dBuV/mField strength at Band-edge 2483.5 MHz = 115.9 - 59.5 = 56.4 dBuV/mThe radio has a Duty cycle of 2.9 dB. Taking this into account the level at the Band-edge is 56.4 - 2.9 = 53.5 dBuV/m. Refer to the attached Duty Cycle calculation sheets.

Refer to plots 6a - 6d for details.

1365 Adams Court Menlo Park, CA 94025

Symbol Technologies. Model # LA4121 FCC ID: H9PLA4121

Job No.:		J2003636	9										
Company:		Symbol											
Model:		w/ PMAA	-2000 Ant	enna									
Test Mode:		CWLU D	S - Tx @ L	ow Chann	el 2412 Ml	Hz							
Engineer:		Ollie Moy	yrong										
Date:		April_3_2	2001										╞
FCC Par	t 15.247 Ra	diated En	nissions										
													+
Frequency	Spec.	Antenna	Antenna	Reading	Antenna	Preamp	Correction	Cable	Duty	Corrected	Limit	Margi	in
	Analyzer	Location	Polariz.		Factor		Factor	Loss	Cycle	Reading	At 3 m		
(MHz)	Detector	(m)	(H/V)	(dBuV)	(dB/m)	(dB)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
2412.0	А	3.0	Н	74.0	31.4	0.0	0.0	2.3	0.0	107.7	N/A	N/A	
2412.0	Р	3.0	Н	74.7	31.4	0.0	0.0	2.3	0.0	108.4	N/A	N/A	
4824.0	А	3.0	V	40.2	34.9	-28.1	0.0	3.2	0.0	50.2	54.0	-3.8	
4824.0	Р	3.0	V	43.0	34.9	-28.1	0.0	3.2	0.0	53.0	74.0	-21.0	
7236.0	А	3.0	V	27.9	38.3	-28.0	0.0	4.6	0.0	44.1	54.0	-9.9	
7236.0	Р	3.0	V	37.6	38.3	-28.0	0.0	4.6	0.0	53.8	74.0	-20.2	
12060.0	Α	3.0	V	34.1	41.8	-33.0	0.0	5.9	0.0	48.8	54.0	-5.2	
12060.0	Р	3.0	V	43.5	41.8	-33.0	0.0	5.9	0.0	58.2	74.0	-15.8	
14472.0	A	3.0	V	33.2	41.1	-33.0	0.0	6.8	0.0	48.1	54.0	-5.9	
14472.0	Р	3.0	V	42.8	41.1	-33.0	0.0	6.8	0.0	57.7	74.0	-16.3	
19296.0	А	1.0	V	34.0	40.2	-24.0	-9.5	7.7	0.0	48.4	54.0	-5.6	*
19296.0	Р	1.0	V	44.2	40.2	-24.0	-9.5	7.7	0.0	58.6	74.0	-15.4	*
21708.0	A	1.0	V	31.5	40.3	-24.0	-9.5	8.5	0.0	46.8	54.0	-7.2	**
21708.0	Р	1.0	V	42.0	40.3	-24.0	-9.5	8.5	0.0	57.3	74.0	-16.7	**
Notes:	*: indicates	s noise floo	or measure	nents with	RBW @ 1	MHz							\vdash
	**: indicate	es noise flo	or measure	ements wit	h RBW @	300 kHz		•					1

1365 Adams Court Menlo Park, CA 94025

Symbol Technologies. Model # LA4121 FCC ID: H9PLA4121

Job No.:		J2003636	9										
Company:		Symbol											
Model:		w/ PMAA	-2000 Ant	enna									
Test Mode:		CWLU D	S - Tx @ H	ligh Chann	el 2462 M	Hz							
Engineer:		Ollie Moy	rong										
Date:		April_3_2	2001										
FCC Par	t 15.247 Ra	diated En	nissions			r							.
										-			
Eroquanav	Spec.	Antonno	Antenna	Reading	Antenna	Preamp	Correction	Cable	Duty	Corrected	Limit	Margi	
Frequency	Analyzer	Antenna Location	Polariz.	Reading	Factor	Pleanp	Factor	Loss	Cycle	Reading	At 3 m	Margi	
(MHz)	Detector	(m)	(H/V)	(dBuV)	(dB/m)	(dB)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
2462.0	A	3.0	(II/V) H	(abu v) 73.4	(dD/III) 31.4	0.0	(dD) 0.0	2.3	(uD) 0.0	107.1	N/A	N/A	+
2462.0	P A	3.0	H H	73.4	31.4	0.0	0.0	2.3	0.0	107.1	N/A N/A	N/A	
4924.0	P A	3.0	н V	35.6	34.9	-28.1	0.0	3.2	0.0	45.6	54.0	-8.4	
4924.0	P A	3.0	V	40.3	34.9	-28.1	0.0	3.2	0.0	50.3	74.0	-0.4	
7386.0	A	3.0	V	27.3	34.9	-28.0	0.0	4.6	0.0	42.2	54.0	-23.7	
7386.0	P A	3.0	V	37.3	38.3	-28.0	0.0	4.6	0.0	52.2	74.0	-21.8	
12310.0	A	3.0	V	33.8	41.8	-33.0	0.0	5.9	0.0	48.5	54.0	-5.5	+
12310.0	P	3.0	V	43.4	41.8	-33.0	0.0	5.9	0.0	58.1	74.0	-15.9	
22158.0	A	1.0	v	31.7	40.3	-24.0	-9.5	8.5	0.0	47.0	54.0	-7.0	**
22158.0	P	1.0	V	41.4	40.3	-24.0	-9.5	8.5	0.0	56.7	74.0	-17.3	**
		1.0	•		10.5	29	7.0	0.0	0.0	20.7	7 110	17.5	+
Notes:	**: indicate	es noise flo	or measure	ements wit	h RBW @	300 kHz	1						1

1365 Adams Court Menlo Park, CA 94025

Symbol Technologies. Model # LA4121

C ID: H9P	LA4121											
	J2003636	9										
	Symbol											
	w/ PMAA	-2000 Ant	enna									
•	CWLU DS	S - Tx @ N	/id Channe	el 2437 MF	Iz							
	Ollie Moy	/rong										
	April_3_2001											
t 15.247 Ra	diated En	nissions										
												<u> </u>
Spec	Antenna	Antenna	Reading	Antenna	Preamn	Correction	Cable	Duty	Corrected	Limit	Marg	in
*			Reading		Treamp			,			iviai g	T
			(dBuV)		(dB)			•	0		(dB)	+
	· · /	· /	` '	· /	~ /	· · /	· · /	· · /	```	` '	``'	
												_
-												
		-										
		-						0.0				
			27.1		-28.0	0.0	4.6	0.0		54.0		
Р			36.9	38.2	-28.0	0.0	4.6	0.0	51.7	74.0		
А	3.0	V	33.4	41.8	-33.0	0.0	5.9	0.0	48.1	54.0	-5.9	
Р	3.0	V	42.6	41.8	-33.0	0.0	5.9	0.0	57.3	74.0	-16.7	
А	1.0	V	34.4	40.2	-24.0	-9.5	7.7	0.0	48.8	54.0	-5.2	*
Р	1.0	V	44.5	40.2	-24.0	-9.5	7.7	0.0	58.9	74.0	-15.1	*
												+
												+
	t 15.247 Ra Spec. Analyzer Detector A P A P A P A P A P A P A P A P	Symbol Symbol w/ PMAA CWLU D Ollie Moy April_3_2 t 15.247 Radiated En Spec. Antenna Analyzer Location Detector (m) A 3.0 P 3.0 A 1.0 P 1.0	J20036369 Symbol w/ PMAA-2000 Ant CWLU DS - Tx @ M Ollie Moyrong April_3_2001 Image: April_3_0 Image: April_0 Imad		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	J20036369 Image: symbol sy	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Job No.:	J20036369					
Company:	Symbol					

1365 Adams Court Menlo Park, CA 94025

Symbol Technologies. Model # LA4121 FCC ID: H9PLA4121

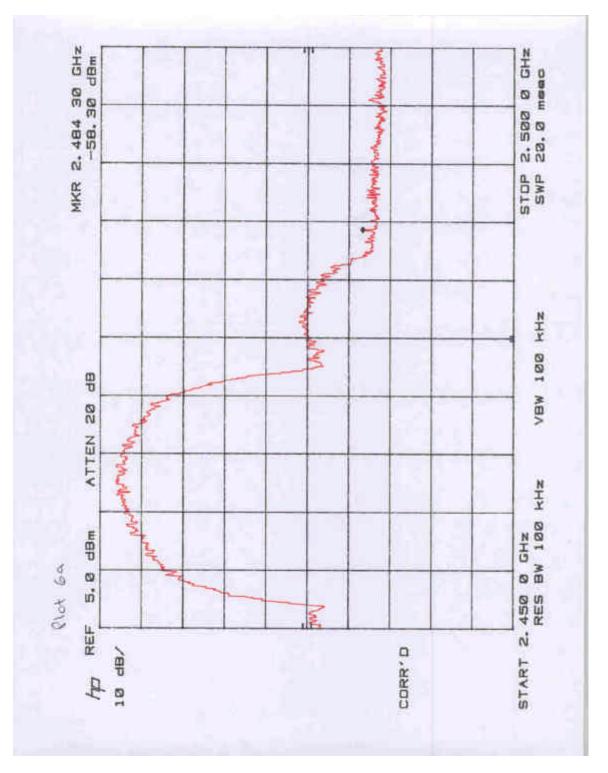
	<u>C ID: H9F</u>												
Model:			2000 Anter										
Test Mode:			S - Tx @ L	ow Channe	el 2412 MI	Iz	-						
Engineer:		Ollie Moy											
Date:		April_3_2	2001										
												<u> </u>	
FCC Par	t 15.247 Ra	diated En	nissions										
												<u> </u>	
Frequency	Spec.	Antenna	Antenna	Reading	Antenna	Preamp	Correction		Duty	Corrected	Limit	Margi	in
	Analyzer	Location	Polariz.		Factor		Factor	Loss	Cycle	Reading	At 3 m		_
(MHz)	Detector	(m)	(H/V)	(dBuV)	(dB/m)	(dB)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
2412.0	Α	3.0	Н	83.4	31.4	0.0	0.0	2.3	0.0	117.1	N/A	N/A	
2412.0	Р	3.0	Н	83.9	31.4	0.0	0.0	2.3	0.0	117.6	N/A	N/A	
4824.0	Α	3.0	V	27.1	34.9	-28.1	0.0	3.2	0.0	37.1	54.0	-16.9	
4824.0	Р	3.0	V	35.9	34.9	-28.1	0.0	3.2	0.0	45.9	74.0	-28.1	
7236.0	A	3.0	V	26.7	38.3	-28.0	0.0	4.6	0.0	42.9	54.0	-11.1	
7236.0	Р	3.0	V	36.9	38.3	-28.0	0.0	4.6	0.0	53.1	74.0	-20.9	
12060.0	A	3.0	V	34.9	41.8	-33.0	0.0	5.9	0.0	49.6	54.0	-4.4	
12060.0	Р	3.0	V	43.8	41.8	-33.0	0.0	5.9	0.0	58.5	74.0	-15.5	
14472.0	A	3.0	V	35.6	41.1	-33.0	0.0	6.8	0.0	50.5	54.0	-3.5	
14472.0	Р	3.0	V	43.3	41.1	-33.0	0.0	6.8	0.0	58.2	74.0	-15.8	
19296.0	A	1.0	V	34.5	40.2	-24.0	-9.5	7.7	0.0	48.9	54.0	-5.1	*
19296.0	Р	1.0	V	44.0	40.2	-24.0	-9.5	7.7	0.0	58.4	74.0	-15.6	*
21708.0	A	1.0	V	32.1	40.3	-24.0	-9.5	8.5	0.0	47.4	54.0	-6.6	**
21708.0	Р	1.0	V	41.8	40.3	-24.0	-9.5	8.5	0.0	57.1	74.0	-16.9	**
													┢
Notes:	*: indicates	s noise floc	or measure	nents with	RBW @ 1	MHz	1						\vdash
	**: indicate	es noise flo	or measure	ements wit	h RBW @	300 kHz							t
							for 4824 & 72	236 MH	z measu	red with EU	T operating	in norm:	al

1365 Adams Court Menlo Park, CA 94025

Symbol Technologies. Model # LA4121 FCC ID: H9PLA4121

Job No.:		J2003636	9										
Company:		Symbol											
Model:		w/ MAA-	2000 Anter	nna									
Test Mode:		TWLU DS	WLU DS - Tx @ Mid Channel 2437 MHz										
Engineer:		Ollie Moy	rong										
Date:		April_3_2	2001										
FCC Par	t 15.247 Ra	diated En	nissions										
												ļ	
												ļ	
Frequency	Spec.	Antenna	Antenna	Reading	Antenna	Preamp	Correction		Duty	Corrected	Limit	Margi	in
	Analyzer	Location	Polariz.		Factor		Factor	Loss	Cycle	Reading	At 3 m	ļ	
(MHz)	Detector	(m)	(H/V)	(dBuV)	(dB/m)	(dB)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
2437.0	А	3.0	Н	84.3	31.4	0.0	0.0	2.3	0.0	118.0	N/A	N/A	
2437.0	Р	3.0	Н	84.8	31.4	0.0	0.0	2.3	0.0	118.5	N/A	N/A	
4874.0	А	3.0	V	35.8	34.9	-28.1	0.0	3.2	0.0	45.8	54.0	-8.2	
4874.0	Р	3.0	V	40.7	34.9	-28.1	0.0	3.2	0.0	50.7	74.0	-23.3	
7311.0	А	3.0	V	27.7	38.3	-28.0	0.0	4.6	0.0	42.6	54.0	-11.4	
7311.0	Р	3.0	V	38.3	38.2	-28.0	0.0	4.6	0.0	53.1	74.0	-20.9	
12185.0	А	3.0	V	32.4	41.8	-33.0	0.0	5.9	0.0	47.1	54.0	-6.9	
12185.0	Р	3.0	V	40.8	41.8	-33.0	0.0	5.9	0.0	55.5	74.0	-18.5	
19496.0	А	1.0	V	34.7	40.2	-24.0	-9.5	7.7	0.0	49.1	54.0	-4.9	*
19496.0	Р	1.0	V	44.3	40.2	-24.0	-9.5	7.7	0.0	58.7	74.0	-15.3	*
													+
Notes:	*: indicates	s noise floo	or measure	nents with	RBW @ 1	MHz	•						1

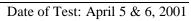
1365 Adams Court Menlo Park, CA 94025


Symbol Technologies. Model # LA4121 FCC ID: H9PLA4121

Job No.:		J2003636	0										Т	
Company:		Symbol											+	
Model:		•	2000 Anter	nno										
Test Mode:			TWLU DS - Tx @ High Channel 2462 MHz											
Engineer:		Ollie Moy		ligii Chailii	CI 2402 IVI								+	
Date:		April_3_2											+	
Date.		Aprii_5_2	2001										+	
ECC Dar	4 15 247 D-		·····											
FCC Par	t 15.247 Ra	alated En	nissions										Т	
Frequency	Spec.	Antenna	Antenna	Reading	Antenna	Preamp	Correction	Cable	Duty	Corrected	Limit	Marg	in	
	Analyzer	Location	Polariz.		Factor		Factor	Loss	Cycle	Reading	At 3 m			
(MHz)	Detector	(m)	(H/V)	(dBuV)	(dB/m)	(dB)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		
2462.0	А	3.0	Н	82.2	31.4	0.0	0.0	2.3	0.0	115.9	N/A	N/A	1	
2462.0	Р	3.0	Н	82.7	31.4	0.0	0.0	2.3	0.0	116.4	N/A	N/A		
4924.0	А	3.0	V	33.4	34.9	-28.1	0.0	3.2	0.0	43.4	54.0	-10.6		
4924.0	Р	3.0	V	38.3	34.9	-28.1	0.0	3.2	0.0	48.3	74.0	-25.7		
7386.0	А	3.0	V	27.9	38.3	-28.0	0.0	4.6	0.0	44.1	54.0	-9.9		
7386.0	Р	3.0	V	37.7	38.3	-28.0	0.0	4.6	0.0	53.9	74.0	-20.1		
12310.0	А	3.0	V	33.0	41.8	-33.0	0.0	5.9	0.0	50.3	54.0	-3.7		
12310.0	Р	3.0	V	41.8	41.8	-33.0	0.0	5.9	0.0	59.1	74.0	-14.9		
22158.0	А	1.0	V	31.9	40.3	-24.0	-9.5	8.5	0.0	47.2	54.0	-6.8	**	
22158.0	Р	1.0	V	41.5	40.3	-24.0	-9.5	8.5	0.0	56.8	74.0	-17.2	**	
Notes:	**: indicate	es noise flo	or measure	ements wit	h RBW @	300 kHz								

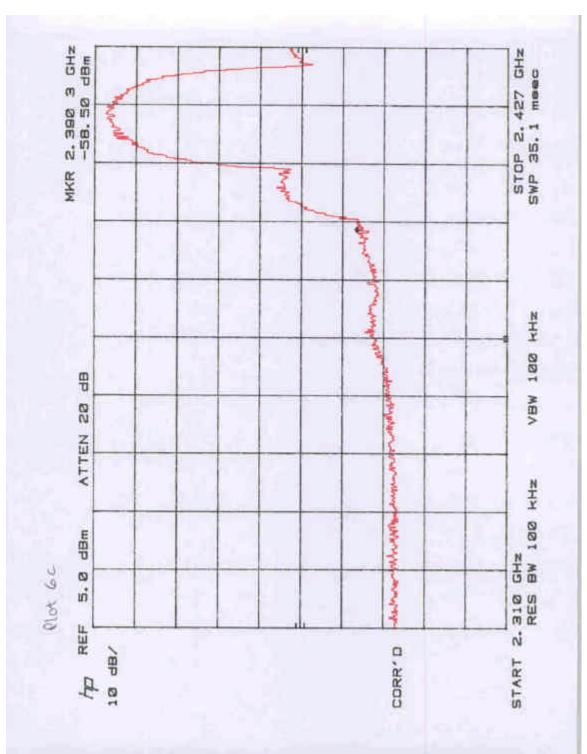
 1365 Adams Court Menlo Park, CA
 94025

 Date of Test: April 5 & 6, 2001

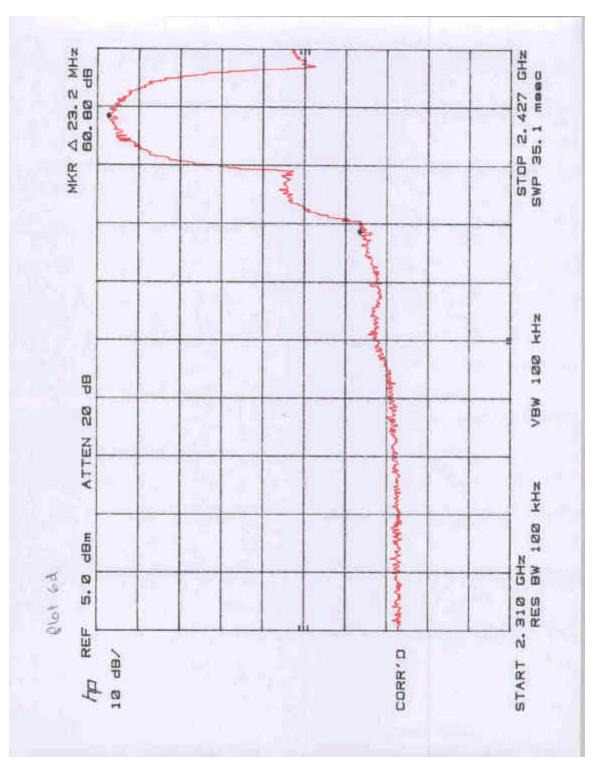

Symbol Technologies. Model # LA4121 FCC ID: H9PLA4121



Plot 6b, High Channel, 2462 MHz


1365 Adams Court Menlo Park, CA 94025

Symbol Technologies. Model # LA4121 FCC ID: H9PLA4121



Symbol Technologies. Model # LA4121 FCC ID: H9PLA4121

1365 Adams Court Menlo Park, CA 94025

Symbol Technologies. Model # LA4121 FCC ID: H9PLA4121

1365 Adams Court Menlo Park, CA 94025

Symbol Technologies. Model # LA4121 FCC ID: H9PLA4121

- 4.2 Radiated Emissions from Digital Section of Transceiver (Transmitter) FCC Ref: 15.109
- [X] Test results are attached

Symbol Technologies. Model # LA4121 FCC ID: H9PLA4121

	036369 ollins		-																		
Model Number: CWLU	11% Job Number: J20036369 Company: Rockwell Collins																				
	Compar Compar	CF	(dB)	-21.1	-22.4	-21.9	-17.8	-10.7	2.6-												
Services MHz - 1000 MHz (QP-Vertical)	24	Reading	(dBuV)	27.4	37.6	38.1	28.1	27.9	29.2												
	.01	Margin	(dB)	-23.2	-14.3	-13.2	-22,6	-18.3	-16.0		actor.	111202									
Intertek Testing Services Radiated Emissions 30 MHz - 100 FCC Part 15 Class B (QP-Vertic	2001	Limit@l0m	(dBuV/m)	29.6	29.5	29.5	0.EE	35.5	35.5		a Antenna F	ttenuator)									
đ	Friday, April 06, 2001	Quast Pk Level	(dBuV/m)	6.3	15.2	16.3	10.4	17.2	19.5	var Roadfno	"F' Covertion Sactor (Includes Antenna Factor.	Preamp Gain, and Attenuator)									
Operator: Barry Smi	12:57:35 PM. F	Frequency	MHZ	35.885 MHz	67.2395 MHz	77.258 MHz	152.8445 MHz	625.079 MHz	450.164 MHz	Reading: Receiver Reading	The Correction	Cable Loss, Pre									

Symbol Technologies. Model # LA4121 FCC ID: H9PLA4121

Operator: Barry	Smith	FCC Part 15 Class B	ass B (Op-	FOC Part 15 Class B (QP-Vertical)		Model Number: CMLU 17S Job Number: J20036369
12:13:41 PM, Pr	Friday, April 06, 2001	, 2001	5	14		Company: Rockwell Collins
Premency 0	Duast Pk Level	Limitelom	Marqin	Reading	CF	
ĥ		(dBuV/m)	(dB)	(dBuV)	{dB}	
77.2635 MHz		29.5	-14.8	36.6	-21.9	
140.006 MHz		33.0	-23,7	28.1	-18.8	
216.7745 MHz		35.5	-30.6	22.2	-17,3	
451.005 NH2		35.5	+17.5	1.15	-9.7	
494.9985 MHz		35.5	-10.9	34.2	-9.5	
500,031 MHz		35.5	-12.9	31.6	-9.1	
Reading: Receiver Reading	er Reading					
CF: Correction Factor (includes Antenna Factor,	Pactor (include	es Antenna F	actor.			
Cable Loss, Pres	Preamp Gain, and Attenuator	(tenuator)				
1 10 1						

1365 Adams Court Menlo Park, CA 94025

Symbol Technologies. Model # LA4121 FCC ID: H9PLA4121 **5.0 Document History**

Revision/ Job Number	Writer Initials	Date	Change
1.0 / J20036369G4	SM	June 30, 2001	Original document