

4740 Discovery Drive | Lincoln, NE 68521 tel- 402.323.6233 | tel -888.657.6860 | fax - 402.323.6238 info@nceelabs.com | http://nceelabs.com

EMC Test Report

Prepared for:

Appareo Systems, LLC

Address:

1810 NDSU Research Circle Fargo, ND 58102

Product:

GW375

Test Report No:

R230824-21-E2 Rev: B

Approved by:

11/

Fox Lane, EMC Test Engineer

DATE:

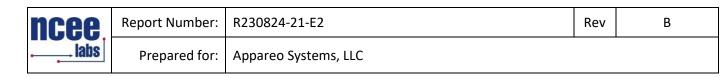
September 11, 2024

Total Pages:

21

The Nebraska Center for Excellence in Electronics (NCEE) authorizes the above named company to reproduce this report provided it is reproduced in its entirety for use by the company's employees only. Any use that a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. NCEE accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

ncee.	Report Number:	R230824-21-E2	Rev	В
labs	Prepared for:	Appareo Systems, LLC		


REVISION PAGE

Rev. No.	Date	Description
		Issued by FLane
0	26 August 2024	Reviewed by KVepuri
		Prepared by FLane
A 26 August 2024		Updated Model
		Added statement regarding integrated modules – FL
В	11 September 2024	Updated Model Name – FL

ncee.	Report Number:	R230824-21-E2	Rev	В
labs	Prepared for:	Appareo Systems, LLC		

CONTENTS

Revi	sion Pa	ge2
1.0	Sum	mary of test results4
2.0	EUT	Description5
	2.1	Equipment under test
	2.2	Description of test modes
	2.3	Description of support units
3.0	Labo	oratory and General Test Description6
	3.1	Laboratory description
	3.2	Test personnel
	3.3	Test equipment
	3.4	General Test Procedure and Setup for Radio Measuremnts
4.0	Res	ults
	4.1	Duty Cycle
	4.2	Radiated emissions12
	4.3	Band edges
Арр	endix A	: Sample Calculation17
Арр	endix B	- Measurement Uncertainty
Арр	endix C	– Graphs and Tables
REP		ID21

1.0 SUMMARY OF TEST RESULTS

The worst-case measurements were reported in this report. Summary of test results presented in this report correspond to the following section:

The EUT has been tested according to the following specifications:

- (1) US Code of Federal Regulations, Title 47, Part 15.249
- (2) ISED RSS-Gen, Issue 5
- (3) ISED RSS-210, Issue 11

APPLIED STANDARDS AND REGULATIONS				
Standard Section	Test Type	Result		
FCC Part 15.35 RSS Gen, Issue 5, Section 6.10	Duty Cycle	Pass		
Informational purposes only	Bandwidth	NA		
FCC Part 15.209 RSS-Gen Issue 5, Section 7.3	Receiver Radiated Emissions	Pass		
FCC Part 15.209 FCC 15.249(a) RSS-210 Issue 11, Annex B.10(a)(b) RSS-Gen Issue 5, Section 6.13	Transmitter Radiated Emissions	Pass		
FCC Part 15.209, 15.249(d) RSS-210 Issue 11 Annex B.10(b) RSS-Gen Issue 5, Section 6.13	Band Edge Measurement	Pass		
FCC Part 15.207 RSS-Gen Issue 5, Section 8.8	Conducted Emissions	N/A*		

*DC powered device

2.0 EUT DESCRIPTION

2.1 EQUIPMENT UNDER TEST

Summary and Operating Condition:

EUT	GW375
IC	12021A-GW375
FCC ID	2AETC-GW375
EUT Received	23 July 2024
EUT Tested	24 July 2024 - 12 August 2024
Serial No.	000202
Operating Band	900MHz – 928MHz
Device Type	□ GMSK □ GFSK □ BT BR □ BT EDR 2MB □ BT EDR 3MB □ 802.11x ⊠ 900-928M
Power Supply / Voltage	12VDC

NOTE: For more detailed features description, please refer to the manufacturer's specifications or user's manual.

2.2 DESCRIPTION OF TEST MODES

The operating range of the EUT is dependent on the device type found in section 2.1: Transmission Frequencies

Channel	Frequency
CH 0	916MHz
CH 1	908.4MHz

These are the only representative channels tested in the frequency range according to FCC Part 15.31 and RSS-Gen Table A1. See the operational description for a list of all channel frequency and designations.

2.3 DESCRIPTION OF SUPPORT UNITS

Power setting 5 was used for testing.

В

3.0 LABORATORY AND GENERAL TEST DESCRIPTION

3.1 LABORATORY DESCRIPTION

All testing was performed at the following Facility:

The Nebraska Center for Excellence in Electronics (NCEE Labs)4740 Discovery DriveLincoln, NE 68521A2LA Certificate Number:1953.01FCC Accredited Test Site Designation No:US1060Industry Canada Test Site Registration No:4294ANCC CAB Identification No:US0177

Environmental conditions varied slightly throughout the tests: Relative humidity of 35 \pm 4%

Temperature of 22 \pm 3° Celsius

3.2 TEST PERSONNEL

No.	PERSONNEL	TITLE	ROLE
1	Fox Lane	Test Engineer	Testing and Report
3	Ethan Schmidt	Test Engineer	Testing

Notes: All personnel are permanent staff members of NCEE Labs. No testing or review was sub-contracted or performed by sub-contracted personnel.

3.3 TEST EQUIPMENT

DESCRIPTION AND MANUFACTURER	MODEL NO.	SERIAL NO.	LAST CALIBRATION DATE	CALIBRATION DUE DATE
Keysight MXE Signal Analyzer (44GHz)	N9038A	MY59050109	July 17, 2024	July 18, 2026
Keysight MXE Signal Analyzer (26.5GHz)	N9038A	MY56400083	July 17, 2024	July 18, 2026
SunAR RF Motion	JB1	A091418	July 17, 2024	July 17, 2025
EMCO Horn Antenna	3117	29616	June 12, 2024	June 12, 2025
Agilent Preamp*	87405A	3207A01475	May 2, 2024	May 2, 2026
ETS Red Preamplifier (Orange)*	3115-PA	00218576	January 22, 2024	January 22, 2026
Trilithic High Pass Filter*	6HC330	23042	June 5, 2023	June 5, 2025
MiniCircuits High Pass Filter*	VHF-1320+	15542	June 5, 2023	June 5, 2025
RF Cable (preamplifier to antenna)*	MFR-57500	01-07-002	June 5, 2023	June 5, 2025
ETS – Lindgren- VSWR on 10m Chamber	10m Semi- anechoic chamber-VSWR	4740 Discovery Drive	May 15, 2024	May 15, 2027
NCEE Labs-NSA on 10m Chamber*	10m Semi- anechoic chamber-NSA	NCEE-001	May 22, 2024	May 22, 2026
RF Cable (antenna to 10m chamber bulkhead)*	FSCM 64639	01E3872	June 5, 2023	June 5, 2025
RF Cable (10m chamber bulkhead to control room bulkhead)*	FSCM 64639	01E3874	June 5, 2023	June 5, 2025
RF Cable (control room bulkhead to test receiver)*	FSCM 64639	01F1206	June 5, 2023	June 5, 2025
N connector bulkhead (10m chamber)*	PE9128	NCEEBH1	June 5, 2023	June 5, 2025
N connector bulkhead (control room)*	PE9128	NCEEBH2	June 5, 2023	June 5, 2025
TDK Emissions Lab Software	V11.25	700307	NA	NA

*Internal Characterization

Notes:

All equipment is owned by NCEE Labs and stored permanently at NCEE Labs facilities.

ncee.	Report Number:	R230824-21-E2	Rev	В
labs	Prepared for:	Appareo Systems, LLC		

3.4 GENERAL TEST PROCEDURE AND SETUP FOR RADIO MEASUREMNTS

Measurement type presented in this report (Please see the checked box below):

Conducted \boxtimes

The conducted measurements were performed by connecting the output of the transmitter directly into a spectrum analyzer using an impedance matched cable and connector soldered to the EUT in place of the antenna. The information regarding resolution bandwidth, video bandwidth, span and the detector used can be found in the graphs provided in Appendix C. All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.



Figure 1 - Bandwidth Measurements Test Setup

Radiated 🛛

All the radiated measurements were taken at a distance of 3m from the EUT. The information regarding resolution bandwidth, video bandwidth, span and the detector used can be found in the graphs provided in Appendix C. All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

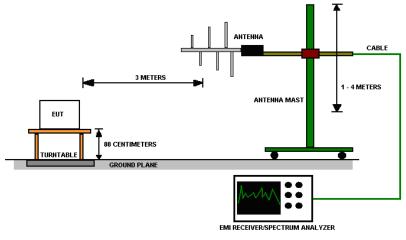



Figure 2 - Radiated Emissions Test Setup

ncee.	Report Number:	R230824-21-E2	Rev	В
labs	Prepared for:	Appareo Systems, LLC		

Figure 3 - Radiated Emissions Test Setup, >1GHz

4.0 RESULTS

DXX Radio Measurements					
CHANNEL	Mode	Occupied BW (kHz)	RESULT		
CH 1	900-928	83.63	PASS		
CH 0	900-928	112.75	PASS		

Unrestricted Band-Edge								
CHANNEL	Mode	Band edge /Meas Frequency (MHz)	Relative Highest out of band level (dBm)	Relative Fundamental (dBm)	Delta (dB)	Min Delta (dB)	Result	
CH 1	900-928	900.00	-84.20	-7.89	76.31	30.00	PASS	
CH 0	900-928	928.00	-78.53	-8.06	70.47	30.00	PASS	

4.1 DUTY CYCLE

Test Method:

Manufacturer declares the worst cast duty cycle as 26%, which gives a DCCF for emissions of 20*log(0.26) = -11.70

NCEE Labs cannot attest for manufacturer declared duty cycle. Results may be affected by this duty cycle.

В

Rev

4.2 RADIATED EMISSIONS

Test Method: ANSI C63.10-2013, Section 6.5, 6.6

Limits for radiated emissions measurements:

Emissions radiated outside of the specified bands shall be applied to the limits in 15.209 as followed:

FREQUENCIES (MHz)	FIELD STRENGTH (μV/m)	MEASUREMENT DISTANCE (m)		
0.009-0.490	2400/F(kHz)	300		
0.490-1.705	24000/F(kHz)	30		
1.705-30.0	30	3		
30-88	100	3		
88-216	150	3		
216-960	200	3		
Above 960	500	3		

NOTE:

1. The lower limit shall apply at the transition frequencies.

2. Emission level (dBuV/m) = 20 * log * Emission level (μ V/m).

3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits by more than 20dB under any condition of modulation.

5. Intermodulation was investigated and found to be below system noise floor

Test procedures:

a. The EUT was placed on the top of a rotating table above the ground plane in a 10 meter semianechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. The table was 0.8m high for measurements from 30MHz-1Ghz and 1.5m for measurements from 1GHz and higher.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna was a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are used to make the measurement.

d. For each suspected emission, the EUT was arranged to maximize its emissions and then the antenna height was varied from 1 meter to 4 meters and the rotating table was turned from 0 degrees to 360 degrees to find the maximum emission reading.

e. The test-receiver system was set to use a peak detector with a specified resolution bandwidth. For spectrum analyzer measurements, the composite maximum of several analyzer sweeps was used for final measurements.

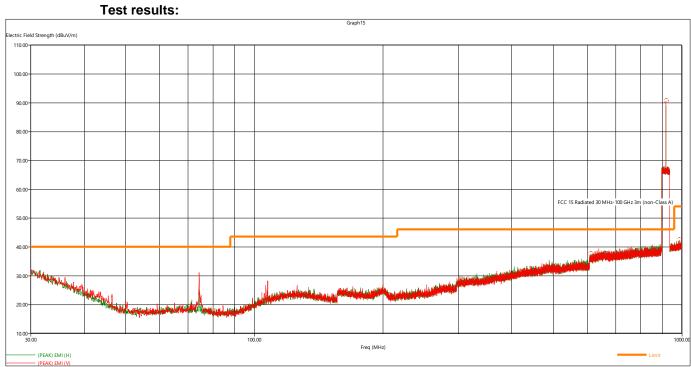
f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. The EUT was maximized in all 3 orthogonal positions. The results are presented for the axis that had the highest emissions.

NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequencies below 1GHz.

2. The resolution bandwidth 1 MHz for all measurements and at frequencies above 1GHz, A peak detector was used for all measurements above 1GHz. Measurements were made with an EMI Receiver.


Deviations from test standard:

No deviation.

EUT operating conditions

Details can be found in section 2.1 of this report.

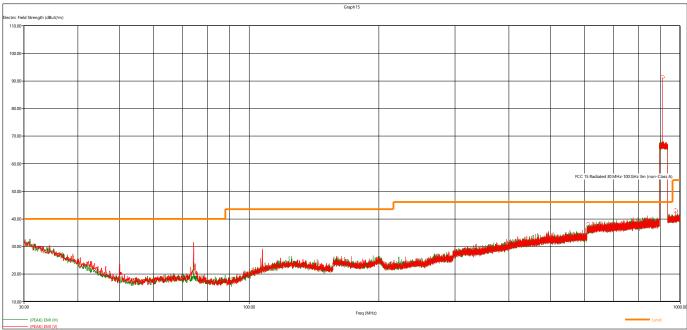


Figure 5 - Radiated Emissions Plot, Channel 1

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Limit value Emission level

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 14 of 21

ncee.	Report Number:	R230824-21-E2	Rev	В
labs	Prepared for:	Appareo Systems, LLC		

Field Strength Measurements, Quasi-Peak								
Frequency Level Limit Margin Height Angle Pol Channel Transmitter							Transmitter	
MHz	dBµV/m	dBµV/m	dB	cm.	deg.			
908.40000	89.36	94.00	4.64	100.0	238.0	V	1	900-928MHz
916.00000	89.92	94.00	4.08	100.0	238.0	V	0	900-928MHz

EUT was measured up to 10GHz, all other measurements were found to be at least 6 dB below the limit and were not tabulated

The EUT was maximized in all 3 orthogonal axes.

Intermodulation of the following modules was investigated and found to be below the system noise floor The following integrated modules were investigated and found to be compliant:

FCCID: XMR201903EG25G Q639603N XF6-RS9113SB 2AETC-000034

В

Rev

Prepared for: Appareo Systems, LLC

4.3 BAND EDGES

Test Method: All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

Limits of band-edge measurements:

For FCC Part 15.249 Device:

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation.

Test procedures:

The highest emissions level beyond the band-edge was measured and recorded. All band edge measurements were evaluated to the general limits in Part 15.209. More details can be found in section 3.4 of this report.

Deviations from test standard:

No deviation.

Test setup:

Test setup details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.

Test results:

Pass

Comments:

- 1. All the band edge plots can be found in Appendix C.
- 2. If the device falls under FCC Part 15.249 (Details can be found in summary of test results), compliance is shown in the unrestricted band edges by showing compliance with 15.209.
- 3. The restricted band edge compliance is shown by comparing it to the general limit defined in Part 15.209.
- 4. Tabulated data is listed in section 4.0.

ncee.	Report Number:	R230824-21-E2	Rev	В
	Prepared for:	Appareo Systems, LLC		

APPENDIX A: SAMPLE CALCULATION

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor, Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows: FS = RA + AF - (-CF + AG) + AV

where FS = Field Strength

RA = Receiver Amplitude

AF = Antenna Factor

CF = Cable Attenuation Factor

AG = Amplifier Gain

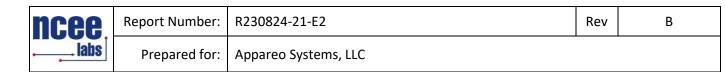
AV = Averaging Factor (if applicable)

Assume a receiver reading of 55 dB μ V is obtained. The Antenna Factor of 12 and a Cable Factor of 1.1 is added. The Amplifier Gain of 20 dB is subtracted, giving a field strength of 48.1 dB μ V/m.

 $FS = 55 + 12 - (-1.1 + 20) + 0 = 48.1 \text{ dB}\mu\text{V/m}$

The 48.1 dB μ V/m value can be mathematically converted to its corresponding level in μ V/m.

Level in μ V/m = Common Antilogarithm [(48.1 dB μ V/m)/20]= 254.1 μ V/m


AV is calculated by taking the $20*\log(T_{on}/100)$ where T_{on} is the maximum transmission time in any 100ms window.

EIRP Calculations

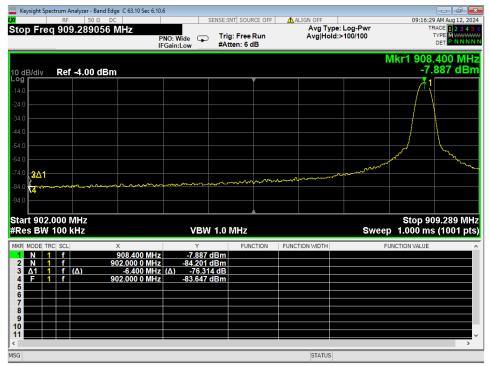
In cases where direct antenna port measurement is not possible or would be inaccurate, output power is measured in EIRP. The maximum field strength is measured at a specified distance and the EIRP is calculated using the following equation;

EIRP (Watts) = [Field Strength (V/m) x antenna distance (m)]² / 30 Power (watts) = $10^{Power} (dBm)/10$] / 1000Voltage (dBµV) = Power (dBm) + 107 (for 50Ω measurement systems) Field Strength (V/m) = 10^{Field} Strength (dBµV/m) / 20] / 10^{6} Gain = 1 (numeric gain for isotropic radiator) Conversion from 3m field strength to EIRP (d=3):

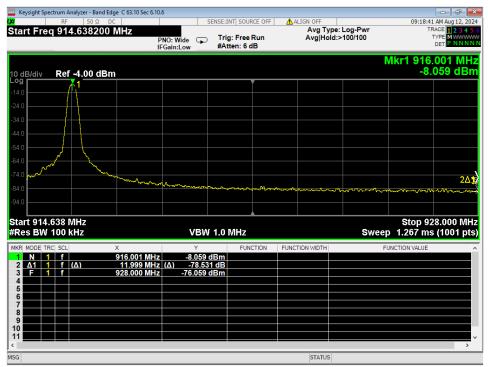
 $EIRP = [FS(V/m) \times d^2]/30 = FS [0.3]$ for d = 3 $EIRP(dBm) = FS(dB\mu V/m) - 10(log 10^9) + 10log[0.3] = FS(dB\mu V/m) - 95.23$ $10log(10^9)$ is the conversion from micro to milli

APPENDIX B – MEASUREMENT UNCERTAINTY

NCEE Labs does not add uncertainty to measurements.


Where relevant, the following measurement uncertainty levels have been for tests performed in this test report:

Test	Frequency Range	Uncertainty Value (dB)
Radiated Emissions, 3m	30MHz - 1GHz	±4.31
Radiated Emissions, 3m	1GHz - 18GHz	±5.08
Emissions limits, conducted	30MHz – 18GHz	±3.03


Expanded uncertainty values are calculated to a confidence level of 95%.

APPENDIX C – GRAPHS AND TABLES

02 Higher Bandedge, Unrestricted

Keysight Spectrum Analyzer - BW using C63.10 Sec 6.9.2/6.9.3

0 dB/div og

- 6 ×

--- dBn

-~~~

В

09:38:07 AM Aug 12, 2024 Radio Std: None ALIGN O Center Freq: 916.000000 MHz Trig: Free Run Avg #Atten: 2 dB Span 300.00 kHz Avg|Hold:>10/10 \mathbf{r} #IFGain:Low Radio Device: BTS Mkr1 924.399 MHz Ref 6.00 dBm VBW 30 kHz

04 Occupied Bandwidth, CH1 Channel

ncee,	Report Number:	R230824-21-E2	Rev	В
labs	Prepared for:	Appareo Systems, LLC		

REPORT END