

RF Test Report

For

Applicant Name: MOKO TECHNOLOGY LIMITED

Address: Factory 201, 107 Pinshun Rd Guixiang community, Guanlan Street,

Longhua, Shenzhen, China 518110

EUT Name: Beacon Brand Name: N/A Model Number: H8

Series model number: H8-BNDAX-Z,H8-BNDA-Z,H8-BNDNX-Z,H8-BNDN-Z,H8-BNDAX

H8-BNDA, H8-BNDNX, H8-BNDN

Issued By

Company Name: BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen,

China

Report Number: BTF240628R00401 Test Standards: 47 CFR Part 15.247

Test Conclusion: Pass

Address:

FCC ID: 2AO94-H8

Test Date: 2024-06-29 to 2024-07-08

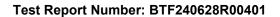
Date of Issue: 2024-07-09

Prepared By: Are the

Ace Xie Rn
Date: 2024-07/209

Approved By:

Ryan.CJ / EMC Manager

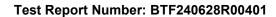

Date: 2024-07-09

Note: All the test results in this report only related to the testing samples. Which can be duplicated completely for the legal use with approval of applicant; it shall not be reproduced except in full without the written approval of BTF Testing Lab (Shenzhen) Co., Ltd., All the objections should be raised within thirty days from the date of issue. To validate the report, you can contact us.

(She*nzh*

Total or partial reproduction of this document without permission of the Laboratory is not allowed.

Page 1 of 60



Revision History			
Version	Issue Date	Revisions Content	
R_V0	2024-07-09	Original	
Nata Ocean Heav	revision has been made, then pre-	de la companya de la completa del completa de la completa del completa de la completa del completa de la completa del completa de la completa del la completa della della completa de la completa della c	

Table of Contents

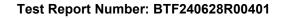
1	INTR	ODUCTION	5
	1.1	Identification of Testing Laboratory	5
	1.2	Identification of the Responsible Testing Location	
	1.3	Announcement	
2	PRO	DUCT INFORMATION	. 6
		Application Information	
	2.1	Manufacturer Information	
	2.2	Factory Information	
	2.4	General Description of Equipment under Test (EUT)	
	2.5	Technical Information	
3	SIIM	MARY OF TEST RESULTS	
3			
	3.1 3.2	Test Standards	
	3.2	Uncertainty of Test	
4	TEST	CONFIGURATION	
	4.1	Test Equipment List	
	4.2	Test Auxiliary Equipment	
	4.3	Test Modes	
5	EVAL	LUATION RESULTS (EVALUATION)	11
	5.1	Antenna requirement	11
		5.1.1 Conclusion:	
6	ΒΛΠ	O SPECTRUM MATTER TEST RESULTS (RF)	
U		` '	
	6.1	Conducted Emission at AC power line	
		6.1.1 E.U.T. Operation:	
		6.1.2 Test Setup Diagram:	
	0.0	6.1.3 Test Data:	
	6.2	Occupied Bandwidth	
		6.2.1 E.U.T. Operation: 6.2.2 Test Setup Diagram:	
		6.2.2 Test Setup Diagram: 6.2.3 Test Data:	
	6.3	Maximum Conducted Output Power	
	6.3	·	
		6.3.1 E.U.T. Operation: 6.3.2 Test Setup Diagram:	
		6.3.3 Test Data:	
	6.4	Power Spectral Density	
	0.4	6.4.1 E.U.T. Operation:	
		6.4.2 Test Setup Diagram:	
		6.4.3 Test Data:	
	6.5	Emissions in non-restricted frequency bands	
	0.0	6.5.1 E.U.T. Operation:	
		6.5.2 Test Setup Diagram:	
		6.5.3 Test Data:	
	6.6	Band edge emissions (Radiated)	
		6.6.1 E.U.T. Operation:	
		6.6.2 Test Setup Diagram:	
		6.6.3 Test Data:	
	6.7	Emissions in frequency bands (below 1GHz)	
		6.7.1 E.U.T. Operation:	
		6.7.2 Test Setup Diagram:	
			-

	6.7.3	Test Data:	20
6	3.8 Emiss	sions in frequency bands (above 1GHz)	22
	6.8.1	E.U.T. Operation:	22
		Test Setup Diagram:	
		Test Data:	
7 T	TEST SETU	JP PHOTOS	25
8 E	EUT CONST	TRUCTIONAL DETAILS (EUT PHOTOS)	26
APPEN			30

Test Report Number: BTF240628R00401

1 Introduction

1.1 Identification of Testing Laboratory


Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.
	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China
Phone Number:	+86-0755-23146130
Fax Number:	+86-0755-23146130

1.2 Identification of the Responsible Testing Location

Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.		
Address: F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China			
Phone Number: +86-0755-23146130			
Fax Number:	+86-0755-23146130		
FCC Registration Number:	518915		
Designation Number:	CN1330		

1.3 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by BTF and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

2 Product Information

2.1 Application Information

Company Name:	MOKO TECHNOLOGY LIMITED
Address:	Factory 201, 107 Pinshun Rd Guixiang community, Guanlan Street, Longhua, Shenzhen, China 518110

2.2 Manufacturer Information

Company Name: MOKO TECHNOLOGY LIMITED	
Address:	Factory 201, 107 Pinshun Rd Guixiang community, Guanlan Street, Longhua, Shenzhen, China 518110

2.3 Factory Information

Company Name:	MOKO TECHNOLOGY LIMITED	
Address:	Factory 201, 107 Pinshun Rd Guixiang community, Guanlan Street, Longhua, Shenzhen, China 518110	

2.4 General Description of Equipment under Test (EUT)


EUT Name:	Beacon
Test Model Number:	H8
Series model name:	H8-BNDAX-Z,H8-BNDA-Z,H8-BNDNX-Z,H8-BNDN-Z,H8-BNDAX H8-BNDA,H8-BNDNX ,H8-BNDN
Description of model name differentiation:	H8-BNDAX-Z with accelerometer, clock crystal oscillator, and motor H8-BNDA-Z with accelerometer without clock crystal oscillator and motor H8-BNDNX-Z without accelerometer with clock crystal oscillator and motor H8-BNDN-Z without accelerometer, without clock crystal oscillator, with motor H8-BNDAX with accelerometer, clock crystal oscillator, and no motor H8-BNDA with accelerometer, no clock, crystal oscillator, no motor H8-BNDNX without accelerometer, clock crystal oscillator, and motor H8-BNDN without accelerometer, clock, crystal oscillator, and motor

2.5 Technical Information

Battery	DC 3V		
Operation Frequency:	2402MHz to 2480MHz		
Number of Channels:	40		
Modulation Type:	GFSK		
Antenna Type:	PCB Antenna		
Antenna Gain#:	0.06dBi		
Note:			

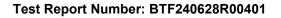
#: The antenna gain provided by the applicant, and the laboratory will not be responsible for the accumulated calculation results which covers the information provided by the applicant.

Bluetooth Version: 5.0

3 Summary of Test Results

3.1 Test Standards

The tests were performed according to following standards: **47 CFR Part 15.247:** Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

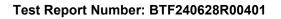

3.2 Uncertainty of Test

Item	Measurement Uncertainty
Conducted Emission (150 kHz-30 MHz)	±2.64dB
Occupied Bandwidth	±69kHz
Transmitter Power, Conducted	±0.87dB
Power Spectral Density	±0.69dB
Conducted Spurious Emissions	±0.95dB
Radiated Spurious Emissions (above 1GHz)	1-6GHz: ±3.94dB 6-18GHz: ±4.16dB
Radiated Spurious Emissions (30M - 1GHz)	±4.12dB

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

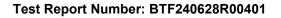
3.3 Summary of Test Result

Item	Standard	Requirement	Result
Antenna requirement	47 CFR Part 15.247	47 CFR 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15.247	47 CFR 15.207(a)	Pass
Occupied Bandwidth	47 CFR Part 15.247	47 CFR 15.247(a)(2)	Pass
Maximum Conducted Output Power	47 CFR Part 15.247	47 CFR 15.247(b)(3)	Pass
Power Spectral Density	47 CFR Part 15.247	47 CFR 15.247(e)	Pass
Emissions in non-restricted frequency bands	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass
Band edge emissions (Radiated)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (below 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (above 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass



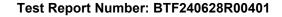
Test Configuration

Test Equipment List


Conducted Emission at AC power line					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Pulse Limiter	SCHWARZBECK	VTSD 9561-F	00953	2023-11-13	2024-11-12
Coaxial Switcher	SCHWARZBECK	CX210	CX210	2023-11-13	2024-11-12
V-LISN	SCHWARZBECK	NSLK 8127	01073	2023-11-16	2024-11-15
LISN	AFJ	LS16/110VAC	16010020076	2023-11-16	2024-11-15
EMI Receiver	ROHDE&SCHWA RZ	ESCI3	101422	2023-11-15	2024-11-14

Occupied Bandwidth Maximum Conducted Output Power Power Spectral Density Emissions in non-restricted frequency bands					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	1	V1.00	1	1	1
RF Control Unit	Techy	TR1029-1	1	2023-11-13	2024-11-12
RF Sensor Unit	Techy	TR1029-2	1	2023-11-13	2024-11-12
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-13	2024-11-12
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15

Band edge emissions (Radiated) Emissions in frequency bands (below 1GHz)					
Emissions in frequency bands (below 1GHz) Emissions in frequency bands (above 1GHz)					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-11-13	2024-11-12
Preamplifier	SCHWARZBECK	BBV9744	00246	2023-11-13	2024-11-12
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2023-11-13	2024-11-12
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2023-11-13	2024-11-12
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2023-11-13	2024-11-12
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2023-11-13	2024-11-12
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2023-11-13	2024-11-12
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	2023-11-13	2024-11-12
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2023-11-13	2024-11-12
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2023-11-16	2024-11-15
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2023-11-16	2024-11-15
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	2023-11-13	2024-11-12
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-11-16	2024-11-15
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2023-11-16	2024-11-15
EZ_EMC	Frad	FA-03A2 RE+	1	1	1
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	2023-11-13	2024-11-12
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2023-11-13	2024-11-12

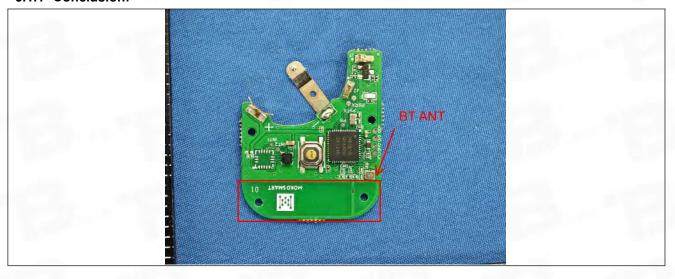


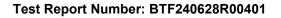
4.2 Test Auxiliary Equipment

The EUT was tested as an independent device.

4.3 Test Modes

No.	Test Modes	Description
TM1	TX mode	Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation.


5 Evaluation Results (Evaluation)

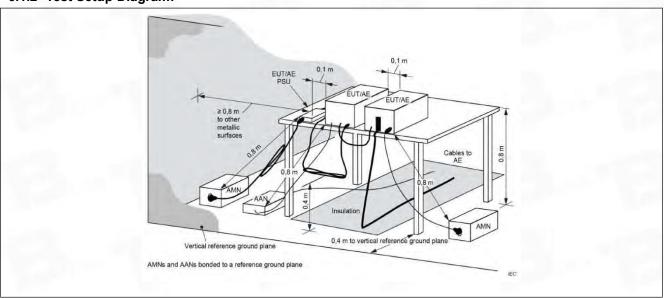

5.1 Antenna requirement

Test Requirement:

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

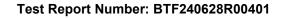
5.1.1 Conclusion:

6 Radio Spectrum Matter Test Results (RF)


6.1 Conducted Emission at AC power line

Test Requirement:	Refer to 47 CFR 15.207(a), Except section, for an intentional radiator utility (AC) power line, the radio from AC power line on any frequency of MHz, shall not exceed the limits in µH/50 ohms line impedance stabil	that is designed to be con- equency voltage that is con- r frequencies, within the ba the following table, as me	nected to the public inducted back onto the and 150 kHz to 30	
Test Method:	ANSI C63.10-2013 section 6.2			
	Frequency of emission (MHz)	Conducted limit (dBµV)		
		Quasi-peak	Average	
_ ,,, ,,	0.15-0.5	66 to 56*	56 to 46*	
Test Limit:	0.5-5	56	46	
	5-30	60	50	
	*Decreases with the logarithm of the frequency.			
Procedure:	Refer to ANSI C63.10-2013 section conducted emissions from unlicen		od for ac power-line	

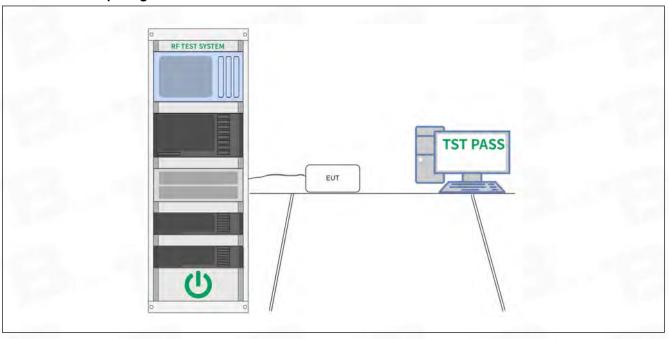
6.1.1 E.U.T. Operation:


Operating Environment:	
Temperature:	24.3 °C
Humidity:	54 %
Atmospheric Pressure:	1010 mbar

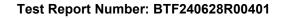
6.1.2 Test Setup Diagram:

6.1.3 Test Data:

This product is battery powered and is not suitable for this project.


6.2 Occupied Bandwidth

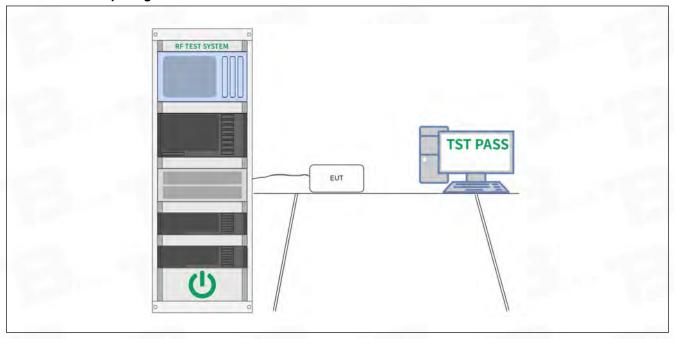
Test Requirement:	47 CFR 15.247(a)(2)
Test Method:	ANSI C63.10-2013, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Test Limit:	Refer to 47 CFR 15.247(a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Procedure:	a) Set RBW = 100 kHz. b) Set the VBW >= [3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.


6.2.1 E.U.T. Operation:

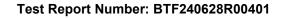
Operating Environment:	
Temperature:	24.2 °C
Humidity:	53 %
Atmospheric Pressure:	1010 mbar

6.2.2 Test Setup Diagram:

6.2.3 Test Data:


6.3 Maximum Conducted Output Power

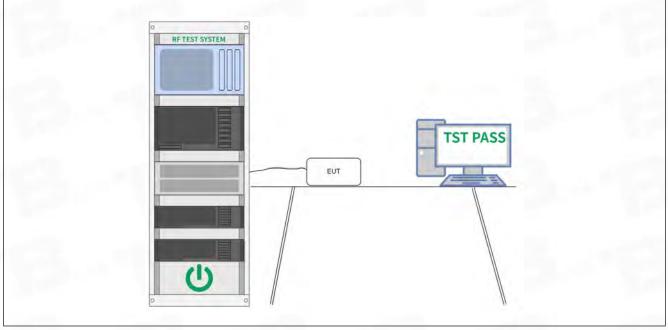
Test Requirement:	47 CFR 15.247(b)(3)
Test Method:	ANSI C63.10-2013, section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02
Test Limit:	Refer to 47 CFR 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Procedure:	ANSI C63.10-2013, section 11.9.1 Maximum peak conducted output power


6.3.1 E.U.T. Operation:

Operating Environment:	
Temperature:	24.2 °C
Humidity:	53 %
Atmospheric Pressure:	1010 mbar

6.3.2 Test Setup Diagram:

6.3.3 Test Data:


6.4 Power Spectral Density

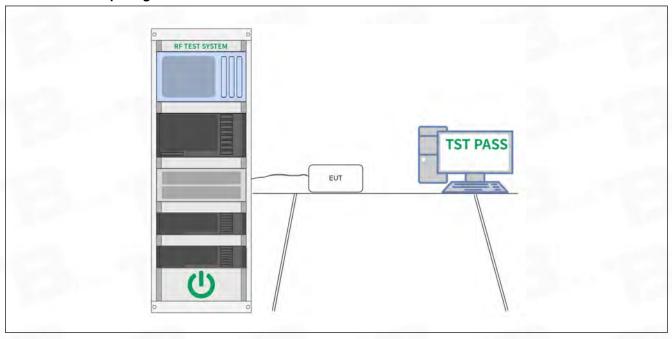
Test Requirement:	47 CFR 15.247(e)
Test Method:	ANSI C63.10-2013, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02
Test Limit:	Refer to 47 CFR 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Procedure:	ANSI C63.10-2013, section 11.10, Maximum power spectral density level in the fundamental emission

6.4.1 E.U.T. Operation:

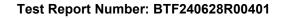
Operating Environment:	
Temperature:	24.2 °C
Humidity:	53 %
Atmospheric Pressure:	1010 mbar

6.4.2 Test Setup Diagram:

6.4.3 Test Data:


6.5 Emissions in non-restricted frequency bands

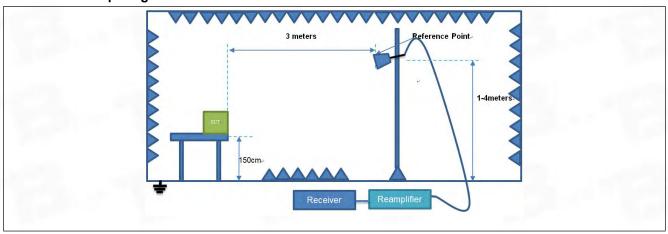
Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Method:	ANSI C63.10-2013 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Procedure:	ANSI C63.10-2013 Section 11.11.1, Section 11.11.2, Section 11.11.3

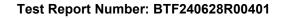

6.5.1 E.U.T. Operation:

Operating Environment:			
Temperature:	24.2 °C		
Humidity:	53 %		
Atmospheric Pressure:	1010 mbar		

6.5.2 Test Setup Diagram:

6.5.3 Test Data:


6.6 Band edge emissions (Radiated)


Test Requirement:	restricted bands, as define	, In addition, radiated emissions d in § 15.205(a), must also com § 15.209(a)(see § 15.205(c)).`	
Test Method:	ANSI C63.10-2013 section KDB 558074 D01 15.247 N		
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
Test Limit:	Above 960	500	3
	radiators operating under t 54-72 MHz, 76-88 MHz, 17 these frequency bands is p 15.231 and 15.241. In the emission table above The emission limits shown employing a CISPR quasi-	aragraph (g), fundamental emiss his section shall not be located in 74-216 MHz or 470-806 MHz. However, the tighter limit applies at the limit he above table are based on peak detector except for the frequency of the MHz. Radiated emission limits.	n the frequency bands owever, operation within f this part, e.g., §§ band edges. measurements quency bands 9–90 kHz,
		nts employing an average detect	
Procedure:	ANSI C63.10-2013 section	6.10.5.2	

6.6.1 E.U.T. Operation:

Operating Environment:	
Temperature:	23.5 °C
Humidity:	47 %
Atmospheric Pressure:	1010 mbar

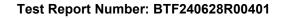
6.6.2 Test Setup Diagram:

6.6.3 Test Data:

Note: All the mode have been tested, and only the worst case of mode are in the report TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: L

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2310.000	46.82	-4.39	42.43	74.00	-31.57	peak	P
2 *	2310.000	40.97	-4.39	36.58	54.00	-17.42	AVG	P
3	2390.000	45.65	-4.29	41.36	74.00	-32.64	peak	P
4	2390.000	39.70	-4.29	35.41	54.00	-18.59	AVG	P

TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: L

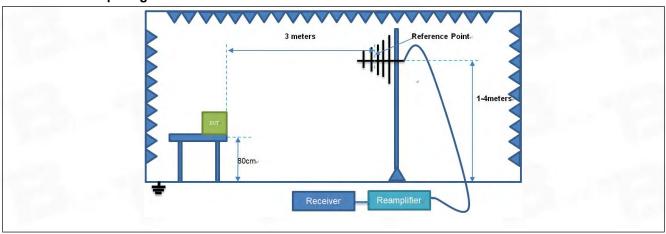

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Límit (dBuV/m)	Margin (dB)	Detector	P/F
1	2310.000	71.96	-30.59	41.37	74.00	-32.63	peak	Р
2	2310.000	66.22	-30.59	35.63	54.00	-18.37	AVG	P
3	2390.000	72.69	-30.49	42.20	74.00	-31.80	peak	P
4 *	2390.000	66.49	-30.49	36.00	54.00	-18.00	AVG	P

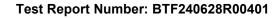
TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: H

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2483.500	72.70	-30.39	42.31	74.00	-31.69	peak	P
2	2483.500	65.86	-30.39	35.47	54.00	-18.53	AVG	P
3	2500.000	71.93	-30.37	41.56	74.00	-32.44	peak	P
4 *	2500.000	66.67	-30.37	36.30	54.00	-17.70	AVG	P

TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: H

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2483.500	73.75	-30.39	43.36	74.00	-30.64	peak	P
2 *	2483.500	68.63	-30.39	38.24	54.00	-15.76	AVG	P
3	2500.000	73.31	-30.37	42.94	74.00	-31.06	peak	P
4	2500.000	67.43	-30.37	37.06	54.00	-16.94	AVG	P

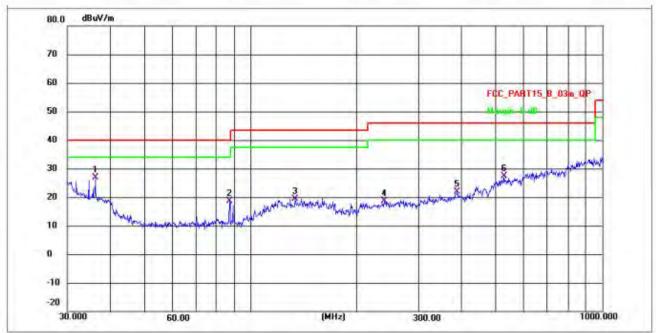

6.7 Emissions in frequency bands (below 1GHz)

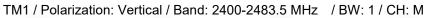

Test Requirement:	restricted bands, as defi	Refer to 47 CFR 15.247(d), In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).								
Test Method:	ANSI C63.10-2013 secti KDB 558074 D01 15.24	on 6.6.4 7 Meas Guidance v05r02								
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)							
	0.009-0.490	2400/F(kHz)	300							
	0.490-1.705	24000/F(kHz)	30							
	1.705-30.0	30	30							
	30-88	100 **	3							
	88-216	150 **	3							
	216-960	200 **	3							
Test Limit:	Above 960	500	3							
	radiators operating under 54-72 MHz, 76-88 MHz, these frequency bands in 15.231 and 15.241. In the emission table about the emission limits shown and above 110–490 kHz and above	paragraph (g), fundamental emer this section shall not be located 174-216 MHz or 470-806 MHz. It is permitted under other sections ove, the tighter limit applies at the first and the above table are based si-peak detector except for the first 1000 MHz. Radiated emission tents employing an average detector this section is the section of the first and the section is the section of the section of the section is the section of	ed in the frequency bands. However, operation within s of this part, e.g., §§ ne band edges. on measurements frequency bands 9–90 kHz, limits in these three bands							
		. , ,	ector.							
Procedure:	ANSI C63.10-2013 secti	on 6.6.4								

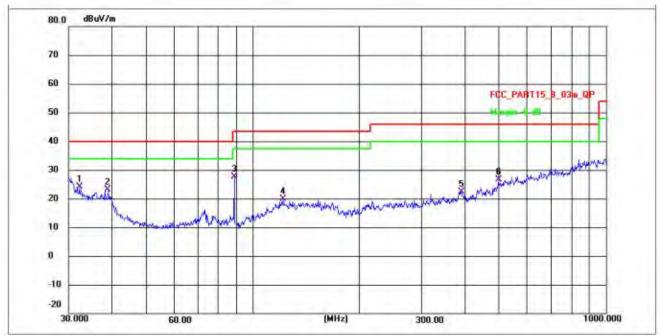
6.7.1 E.U.T. Operation:

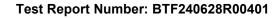
Operating Environment:	
Temperature:	24.6 °C
Humidity:	55 %
Atmospheric Pressure:	1010 mbar

6.7.2 Test Setup Diagram:

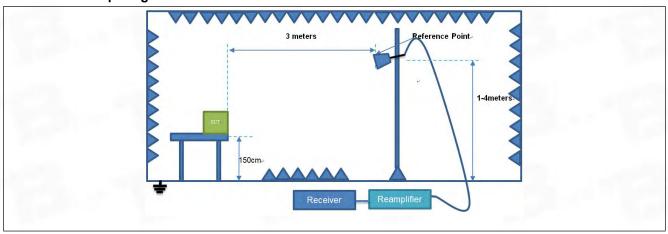


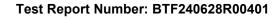

6.7.3 Test Data:


TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: M


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	36.0007	31.13	-4.30	26.83	40.00	-13.17	QP	Р
2	87.1117	41.38	-22.67	18.71	40.00	-21.29	QP	P
3	133.8533	41.64	-22.15	19.49	43.50	-24.01	QP	Р
4	239.5670	39.71	-21.15	18.56	46.00	-27.44	QP	P
5	387.3123	41.90	-19.93	21.97	46.00	-24.03	QP	P
6	526.3967	46.28	-18.82	27.46	46.00	-18.54	QP	P

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	32.2925	28.45	-4.31	24.14	40.00	-15.86	QP	Р
2	38.9560	27.44	-4.30	23.14	40.00	-16.86	QP	P
3	88.4972	37.49	-9.90	27.59	43.50	-15.91	QP	Р
4	121.5486	33.49	-13.54	19.95	43.50	-23.55	QP	P
5	389.3549	35.11	-12.78	22.33	46.00	-23.67	QP	Р
6	496.8047	38.78	-12.14	26.64	46.00	-19.36	QP	P


6.8 Emissions in frequency bands (above 1GHz)


Test Requirement:	15.205(a), must also cor	In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).`						
Test Method:		ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02						
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)					
	0.009-0.490	2400/F(kHz)	300					
	0.490-1.705	24000/F(kHz)	30					
	1.705-30.0	30	30					
	30-88	100 **	3					
	88-216	150 **	3					
	216-960	200 **	3					
Test Limit:	Above 960	500	3					
	radiators operating under 54-72 MHz, 76-88 MHz, these frequency bands is 15.231 and 15.241. In the emission table about the emission limits show employing a CISPR quare	paragraph (g), fundamental emer this section shall not be located 174-216 MHz or 470-806 MHz. It is permitted under other sections ove, the tighter limit applies at the true in the above table are based si-peak detector except for the factor of the facto	ed in the frequency bands However, operation within s of this part, e.g., §§ ne band edges. on measurements requency bands 9–90 kHz,					
	110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.							
Procedure:	ANSI C63.10-2013 secti	on 6.6.4						

6.8.1 E.U.T. Operation:

Operating Environment:	
Temperature:	24.5 °C
Humidity:	55 %
Atmospheric Pressure:	1010 mbar

6.8.2 Test Setup Diagram:

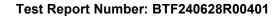
6.8.3 Test Data:

Note: All the mode have been tested, and only the worst case of mode are in the report

TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: L

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4804.000	69.22	-27.92	41.30	74.00	-32.70	peak	P
2	4804.000	63.17	-27.92	35.25	54.00	-18.75	AVG	P
3	7206.000	70.27	-24.87	45.40	74.00	-28.60	peak	P
4	7206.000	63.98	-24.87	39.11	54.00	-14.89	AVG	Р
5	9608.000	72.30	-23.43	48.87	74.00	-25.13	peak	Р
6 *	9608.000	65.62	-23.43	42.19	54.00	-11.81	AVG	Р

TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: L

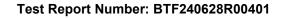

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4804.000	67.22	-27.92	39.30	74.00	-34.70	peak	Р
2	4804.000	61.17	-27.92	33.25	54.00	-20.75	AVG	P
3	7206.000	70.27	-24.87	45.40	74.00	-28.60	peak	Р
4	7206.000	64.33	-24.87	39.46	54.00	-14.54	AVG	P
5	9608.000	72.66	-23.43	49.23	74.00	-24.77	peak	P
6 *	9608.000	66.62	-23.43	43.19	54.00	-10.81	AVG	P

TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: M

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4880.000	73.25	-27.71	45.54	74.00	-28.46	peak	Р
2	4880.000	66.96	-27.71	39.25	54.00	-14.75	AVG	P
3	7320.000	73.33	-24.83	48.50	74.00	-25.50	peak	Р
4	7320.000	67.02	-24.83	42.19	54.00	-11.81	AVG	Р
5	9760.000	74.63	-23.77	50.86	74.00	-23.14	peak	Р
6 *	9760.000	68.16	-23.77	44.39	54.00	-9.61	AVG	Р

TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: M

4 4000.0		(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	P/F
1 4880.0	000 70.25	-27.71	42.54	74.00	-31.46	peak	Р
2 4880.0	000 64.29	-27.71	36.58	54.00	-17.42	AVG	Р
3 7320.0	000 73.24	-24.83	48.41	74.00	-25.59	peak	P
4 7320.0	000 67.48	-24.83	42.65	54.00	-11.35	AVG	P
5 9760.0	000 73.13	-23.77	49.36	74.00	-24.64	peak	Р
6 * 9760.0	000 67.34	-23.77	43.57	54.00	-10.43	AVG	Р

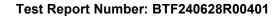


TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: H

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4960.000	73.10	-27.49	45.61	74.00	-28.39	peak	Р
2	4960.000	67.06	-27.49	39.57	54.00	-14.43	AVG	P
3	7440.000	72.49	-24.80	47.69	74.00	-26.31	peak	P
4	7440.000	66.91	-24.80	42.11	54.00	-11.89	AVG	P
5	9920.000	72.28	-24.11	48.17	74.00	-25.83	peak	P
6 *	9920.000	66.47	-24.11	42.36	54.00	-11.64	AVG	P

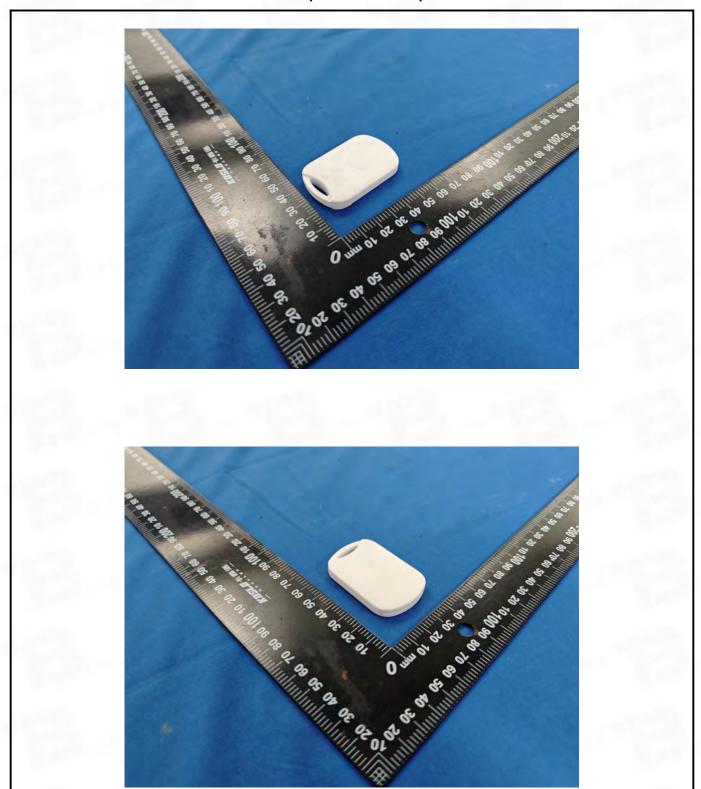
TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: H

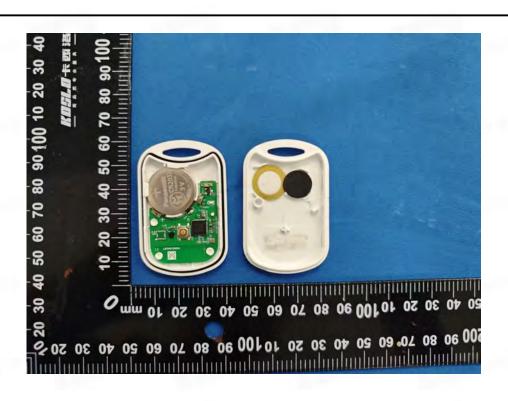
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4960.000	72.10	-27.49	44.61	74.00	-29.39	peak	P
2	4960.000	66.08	-27.49	38.59	54.00	-15.41	AVG	P
3	7440.000	69.69	-24.80	44.89	74.00	-29.11	peak	P
4	7440.000	62.21	-24.80	37.41	54.00	-16.59	AVG	P
5	9920.000	72.28	-24.11	48.17	74.00	-25.83	peak	P
6 *	9920.000	66.06	-24.11	41.95	54.00	-12.05	AVG	P



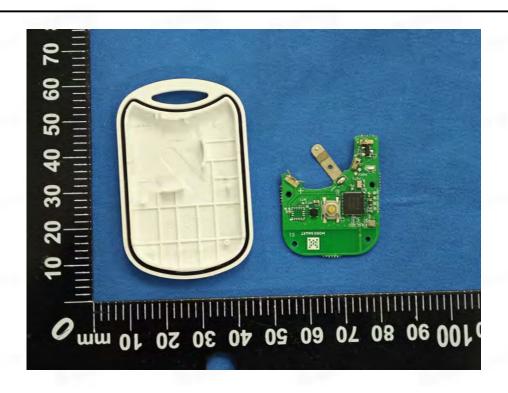
Test Setup Photos

Band edge emissions (Radiated) Emissions in frequency bands (above 1GHz)

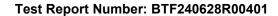

Emissions in frequency bands (below 1GHz)

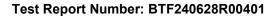


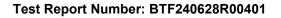
EUT Constructional Details (EUT Photos) 8







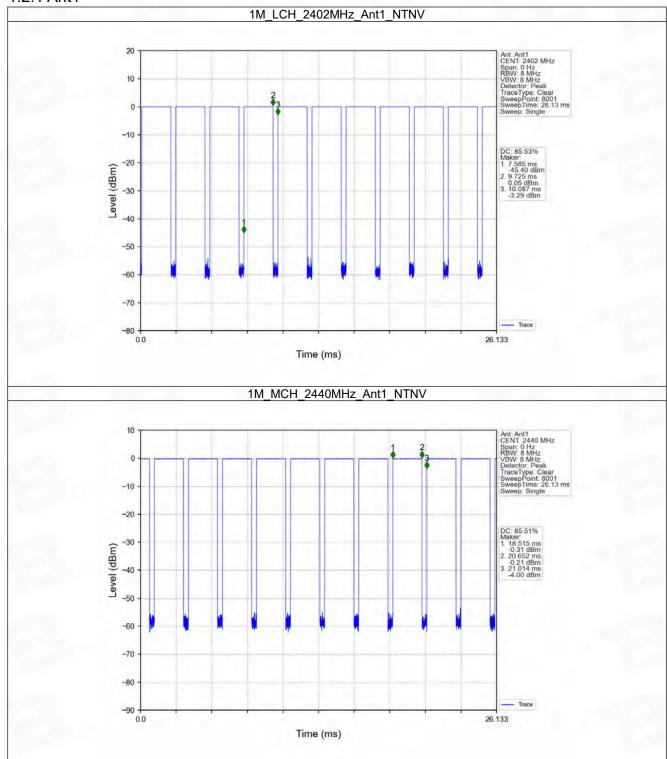




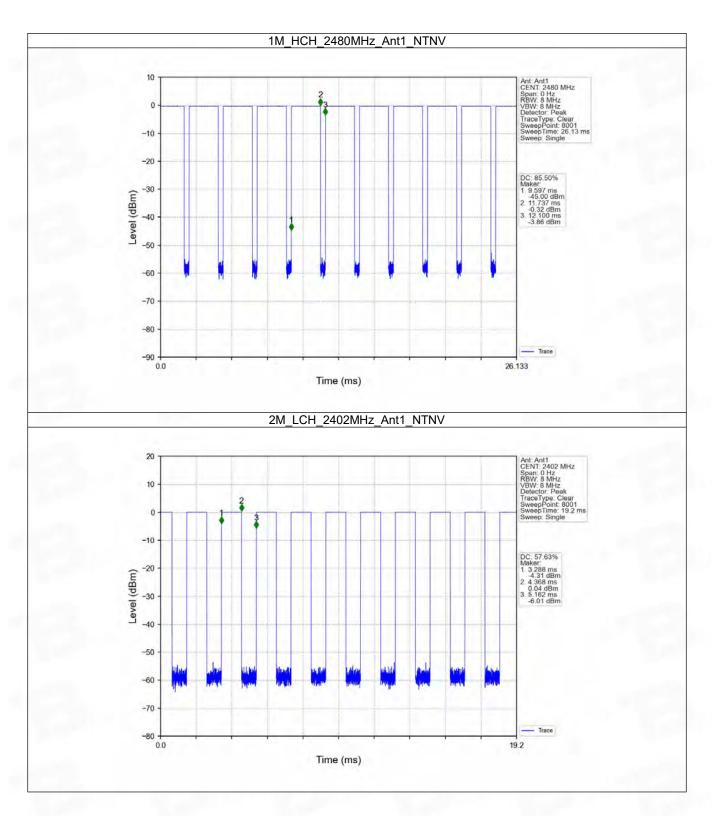
Appendix

1. Duty Cycle

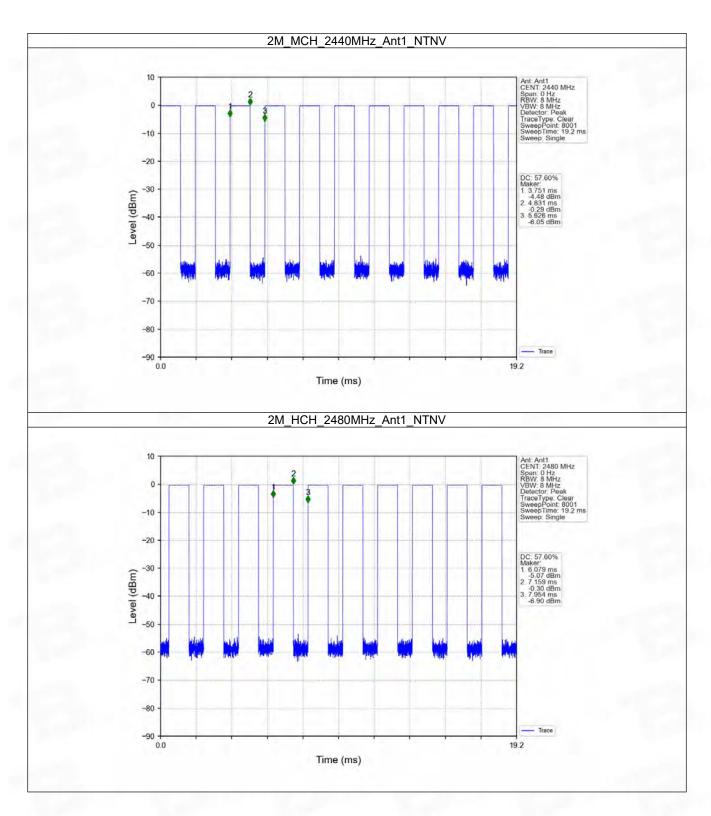
1.1 Test Result

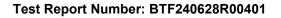

1.1.1 Ant1

	Ant1										
Mode	TX	Frequency	T_on	Period	Duty Cycle	Duty Cycle	Max. DC				
Type		(MHz)	(ms)	(ms)	(%)	Correction Factor (dB)	Variation (%)				
		2402	2.140	2.502	85.53	0.68	0.11				
1M	1M SISO	2440	2.137	2.499	85.51	0.68	0.13				
		2480	2.140	2.503	85.50	0.68	0.11				
		2402	1.080	1.874	57.63	2.39	0.13				
2M	SISO	2440	1.080	1.875	57.60	2.40	0.13				
		2480	1.080	1.875	57.60	2.40	0.13				



1.2 Test Graph


1.2.1 Ant1

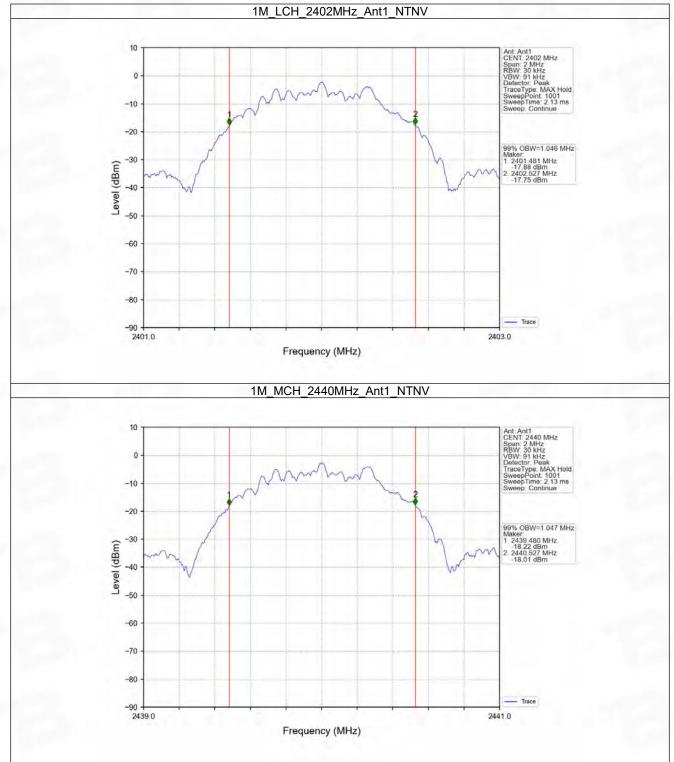


2. Bandwidth

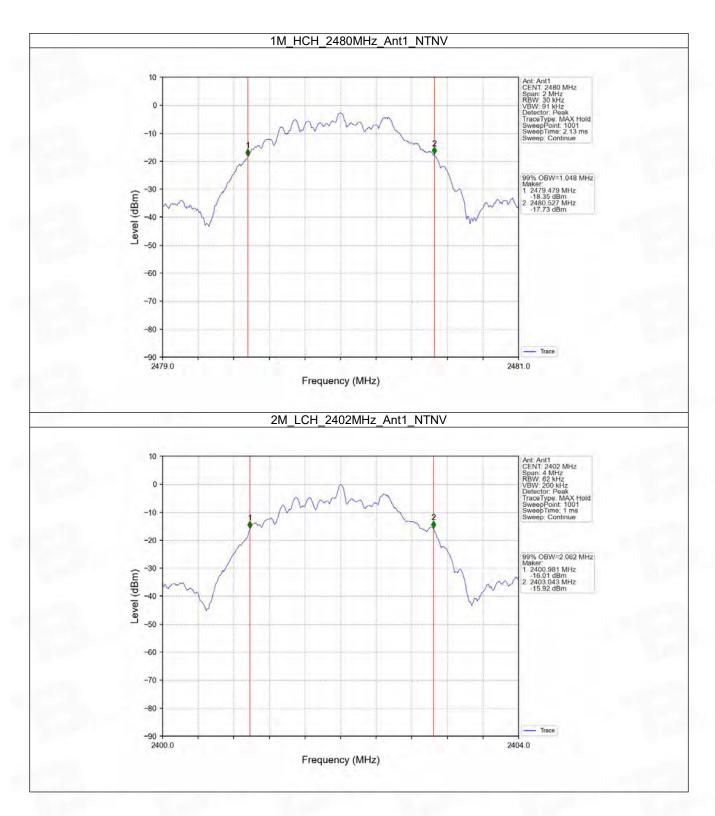
2.1 Test Result

2.1.1 OBW

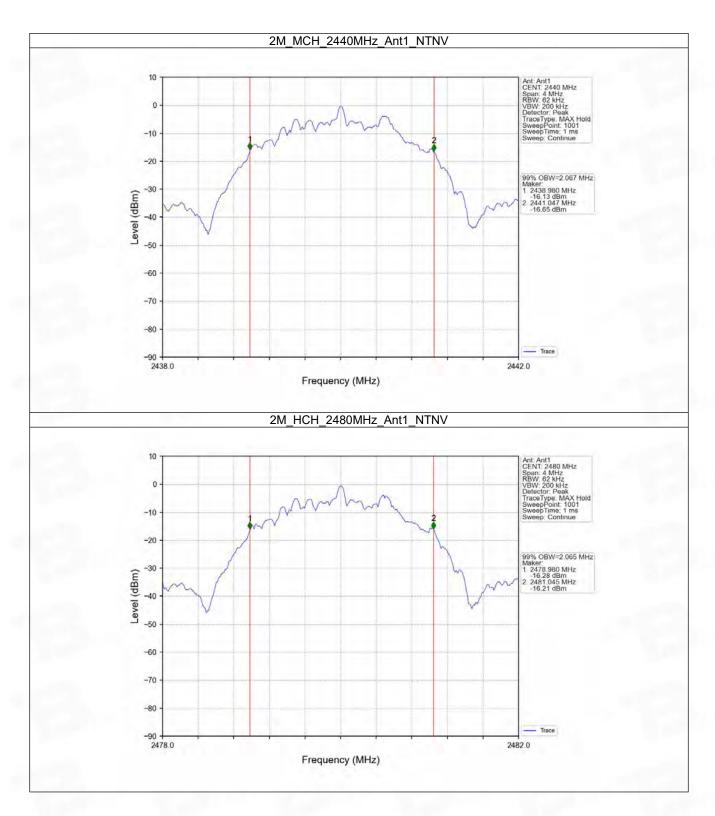
Mada	TX	Frequency	ANT	99% Occupied Ba	ndwidth (MHz)	Verdict
Mode Type	Туре	(MHz)	ANI	Result	Limit	verdict
		2402	1	1.046	1	Pass
1M	SISO	2440	1	1.047	1	Pass
		2480	1	1.048	1	Pass
		2402	1	2.062	1	Pass
2M	SISO	2440	1	2.067	1	Pass
		2480	1	2.065	1	Pass

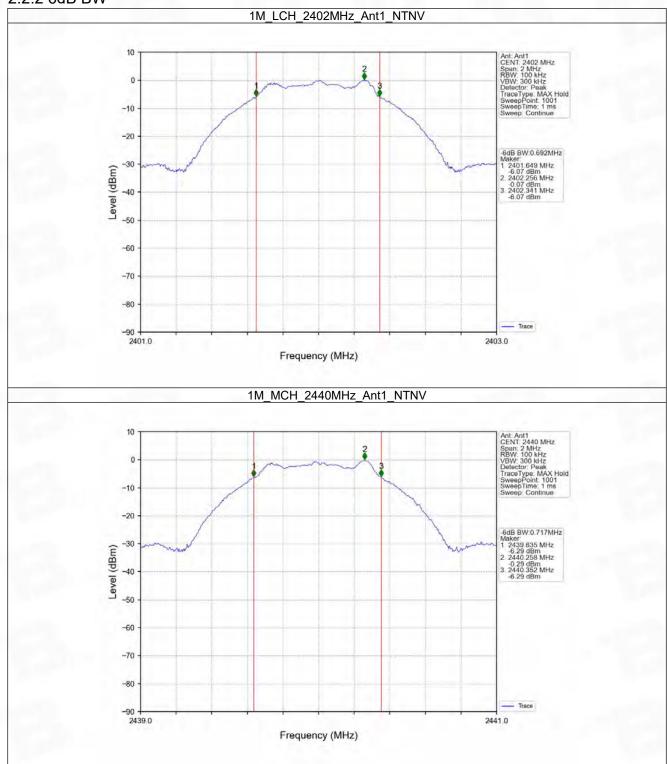

2.1.2 6dB BW

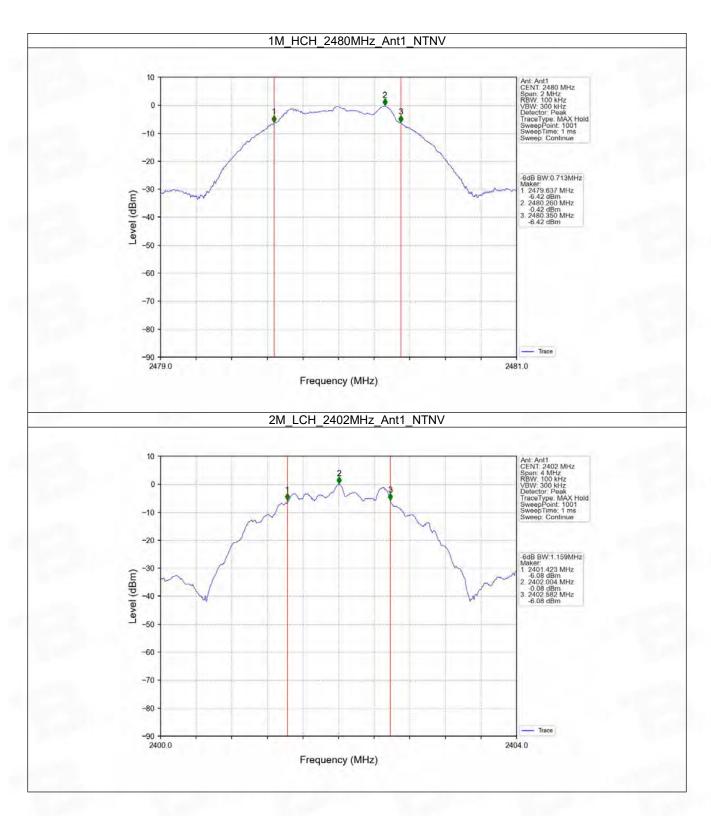
Mode	TX	Frequency	ANT	6dB Bandv	vidth (MHz)	Verdict
Mode	Type	(MHz)	ANI	Result	Limit	verdict
	SISO	2402	1	0.692	>=0.5	Pass
1M		2440	1	0.717	>=0.5	Pass
		2480	1	0.713	>=0.5	Pass
		2402	1	1.159	>=0.5	Pass
2M	SISO	2440	1	1.163	>=0.5	Pass
		2480	1	1.152	>=0.5	Pass

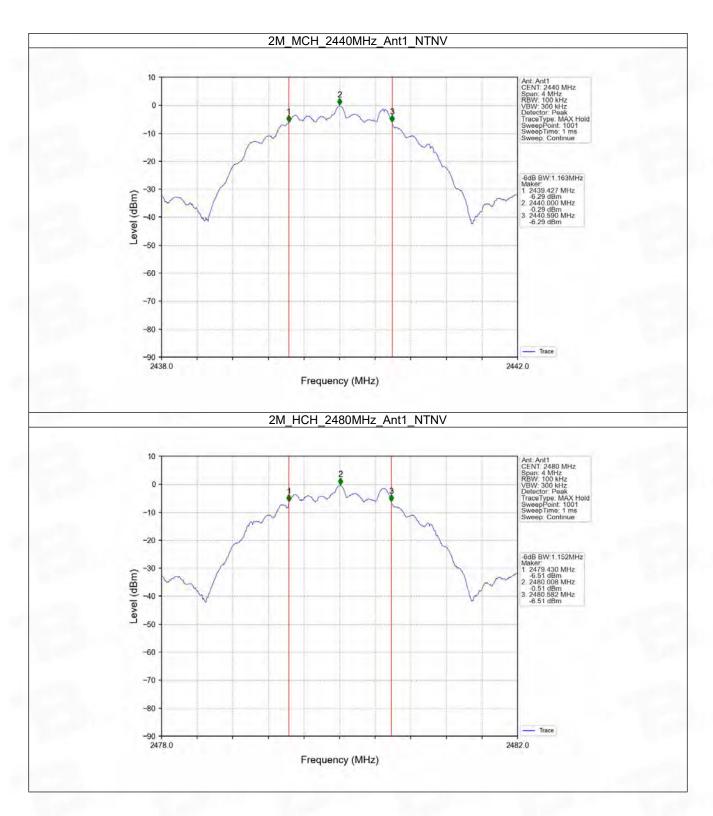


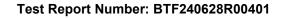
2.2 Test Graph


2.2.1 OBW



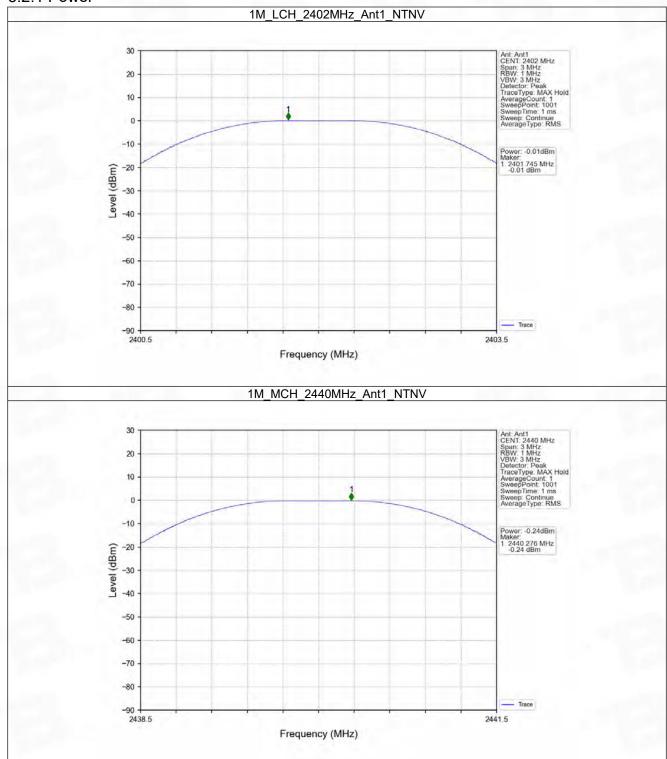



2.2.2 6dB BW

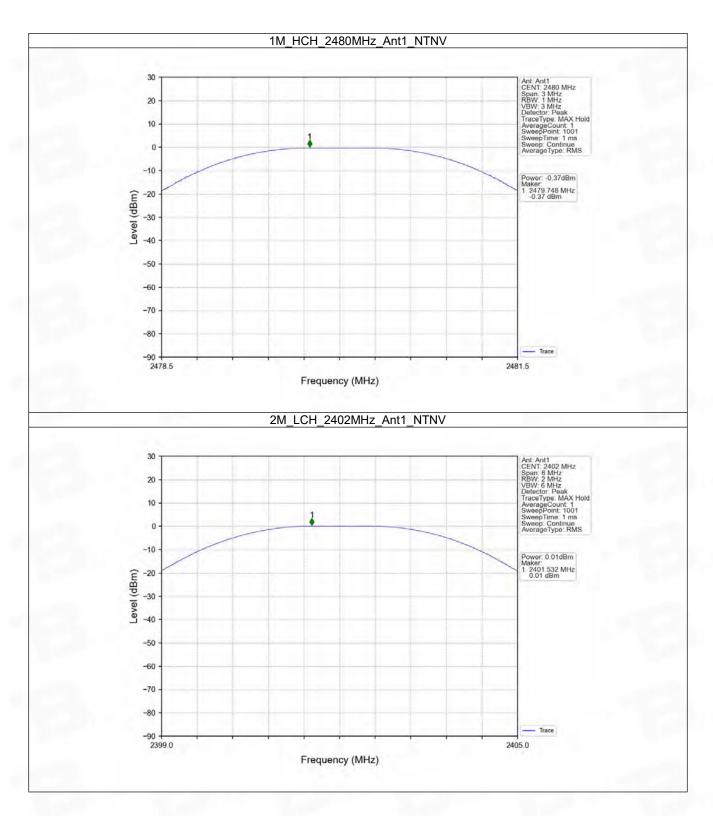


3. Maximum Conducted Output Power

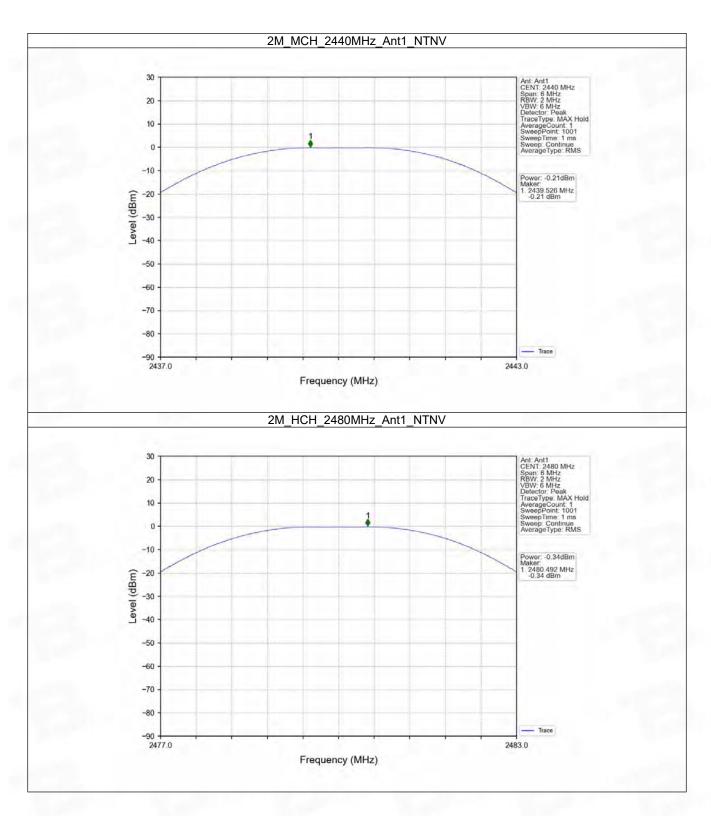
3.1 Test Result

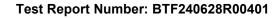

3.1.1 Power

Mada	TX	Frequency	Maximum Peak Condu	\/ordigt	
Mode	Type (MHZ) ANT1 Li	Limit	Verdict		
1M	SISO	2402	-0.01	<=30	Pass
		2440	-0.24	<=30	Pass
		2480	-0.37	<=30	Pass
2M	SISO	2402	0.01	<=30	Pass
		2440	-0.21	<=30	Pass
		2480	-0.34	<=30	Pass



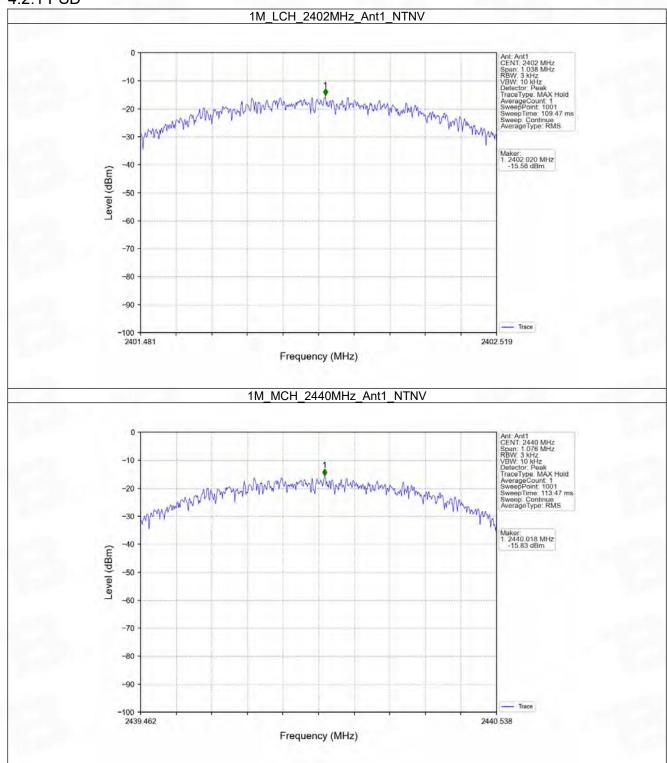
3.2 Test Graph


3.2.1 Power

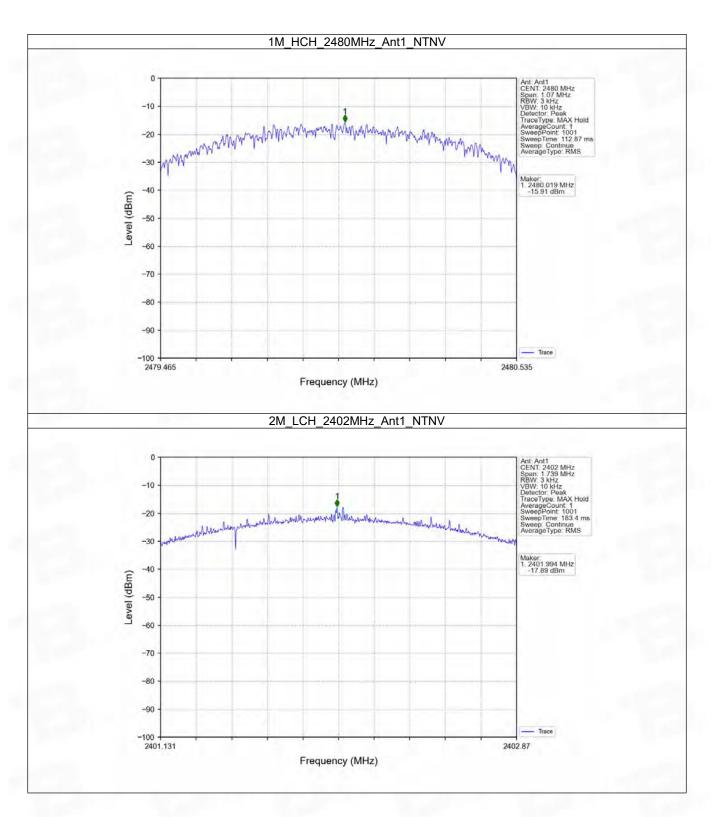


4. Maximum Power Spectral Density

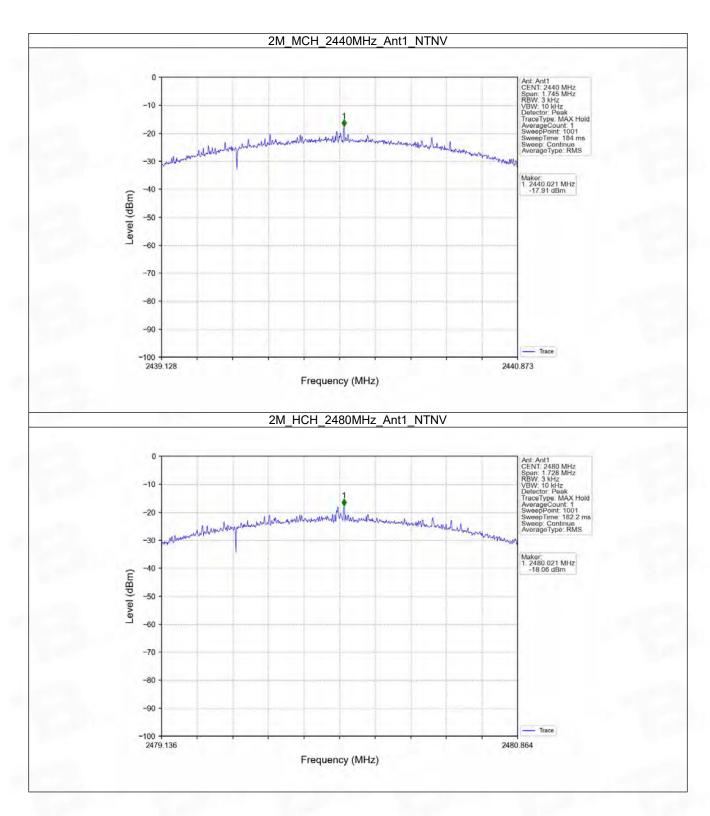
4.1 Test Result


4.1.1 PSD

Mada	TX	Frequency	Maximum PSD (dBm/3kHz)		\/audiat
Mode	Туре	(MHz)	ANT1	Limit	Verdict
1M		2402	-15.56	<=8	Pass
	SISO	2440	-15.83	<=8	Pass
		2480	-15.91	<=8	Pass
2M	SISO	2402	-17.89	<=8	Pass
		2440	-17.91	<=8	Pass
		2480	-18.06	<=8	Pass



4.2 Test Graph


4.2.1 PSD

Test Report Number: BTF240628R00401

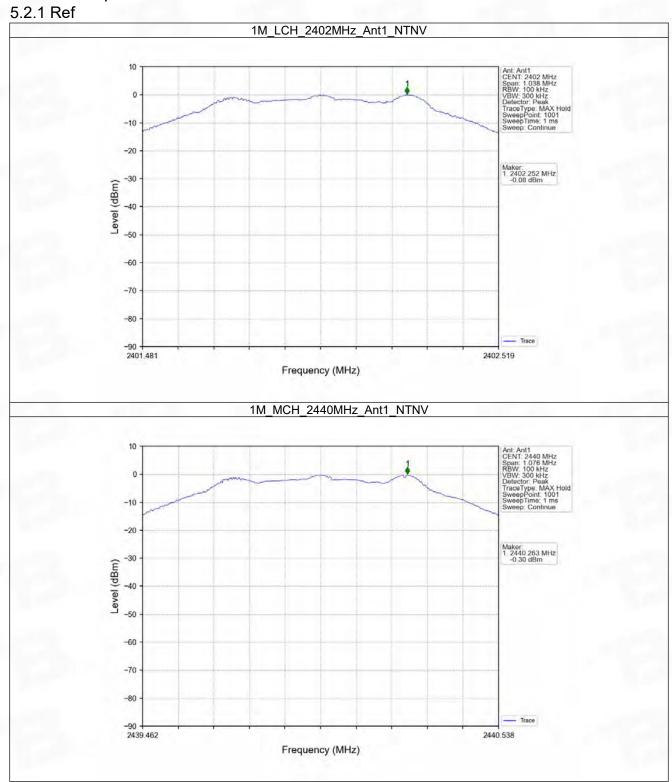
5. Unwanted Emissions In Non-restricted Frequency Bands

5.1 Test Result

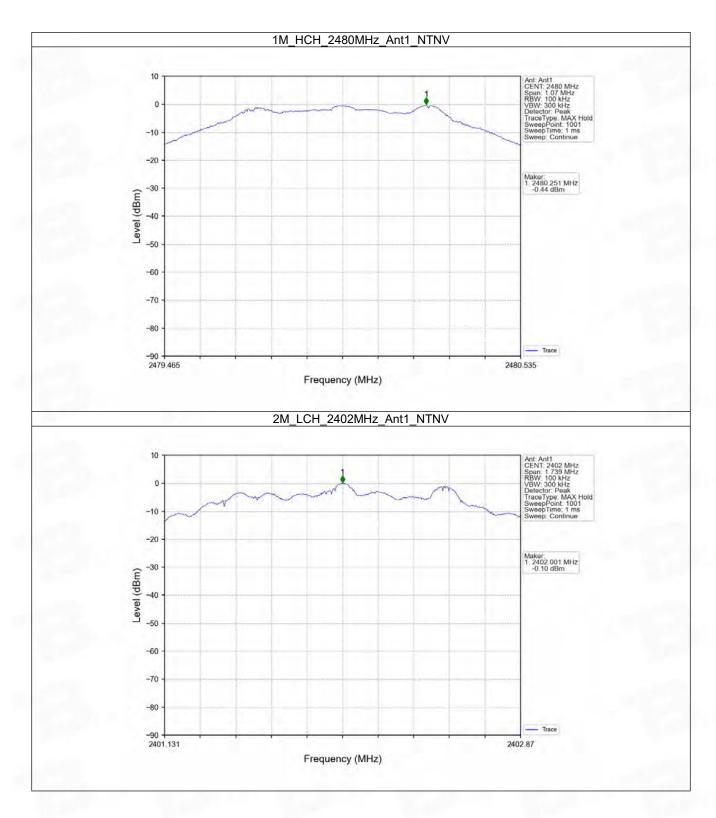
5.1.1 Ref

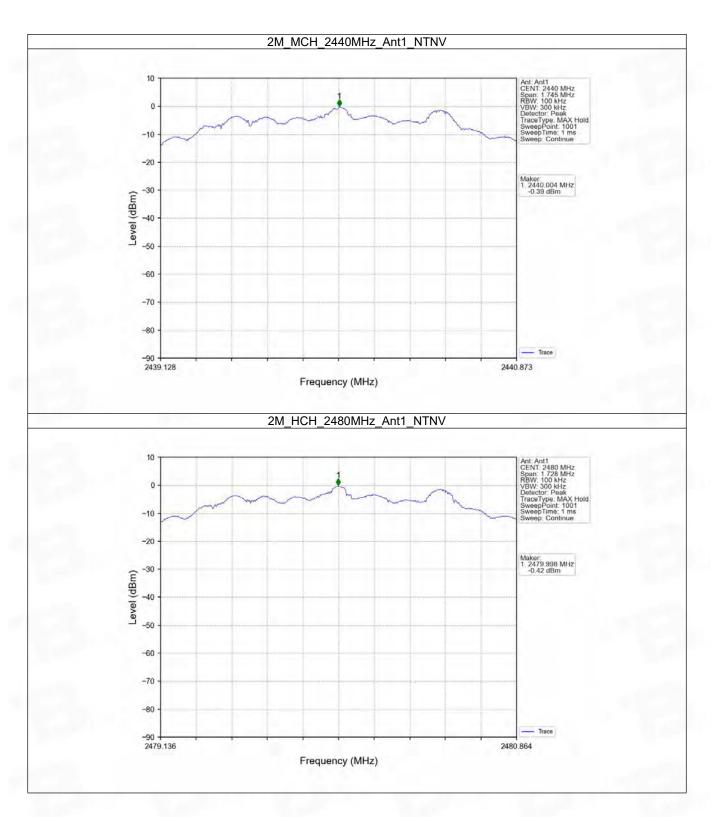
Mode	TX Type	Frequency (MHz)	ANT	Level of Reference (dBm)
1M	SISO	2402	1	-0.08
		2440	1	-0.30
		2480	1	-0.44
2M	SISO	2402	1	-0.10
		2440	1	-0.39
		2480	1	-0.42

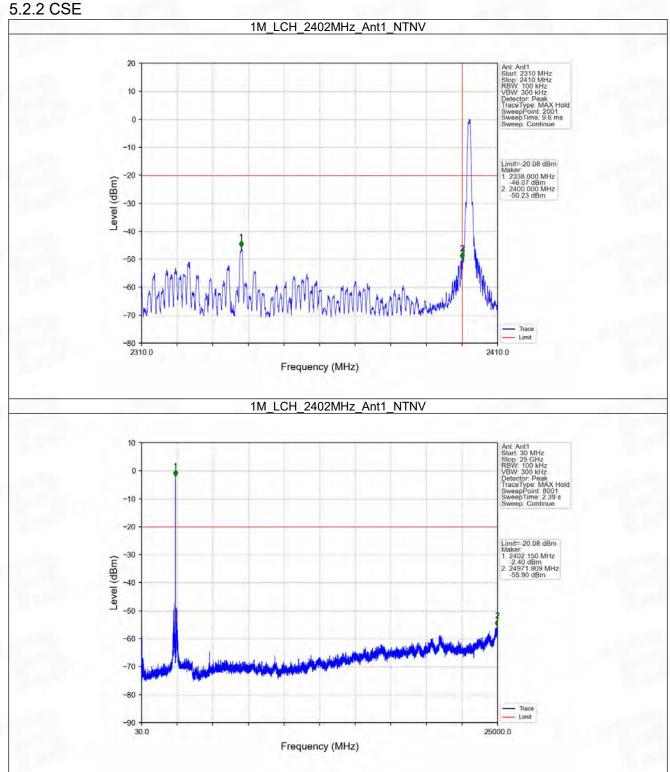
Note1: Refer to FCC Part 15.247 (d) and ANSI C63.10-2013, the channel contains the maximum PSD level was used to establish the reference level.

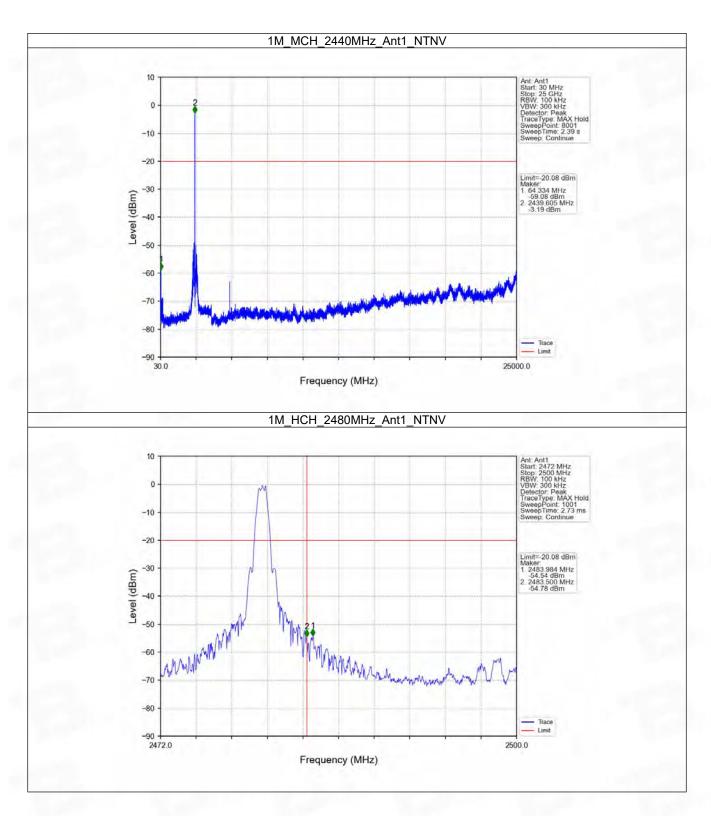

5.1.2 CSE

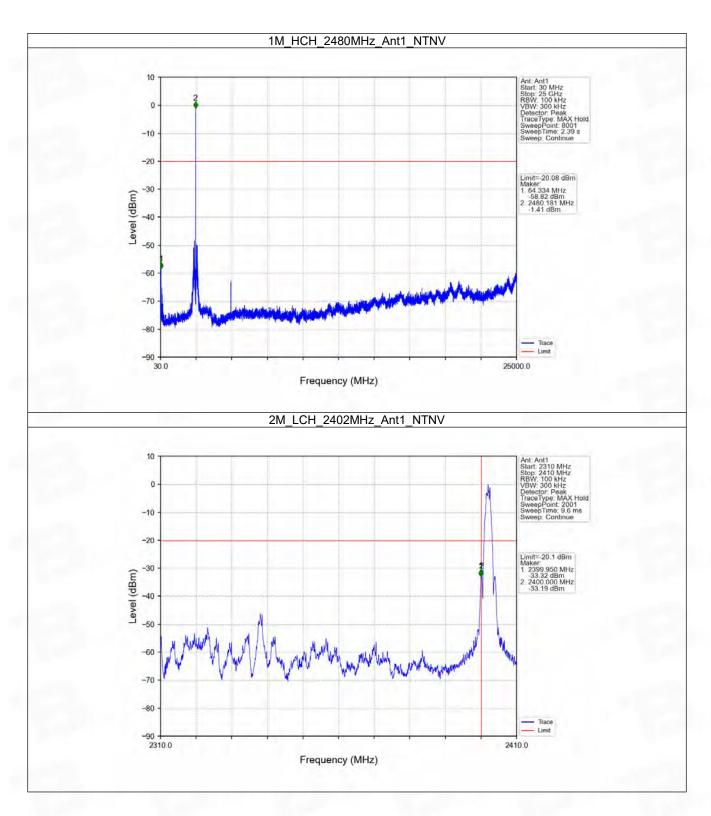
Mode	TX Type	Frequency (MHz)	ANT	Level of Reference (dBm)	Limit (dBm)	Verdict
1M	SISO	2402	1	-0.08	-20.08	Pass
		2440	1	-0.08	-20.08	Pass
		2480	1	-0.08	-20.08	Pass
2M	SISO	2402	1	-0.10	-20.10	Pass
		2440	1	-0.10	-20.10	Pass
		2480	1	-0.10	-20.10	Pass

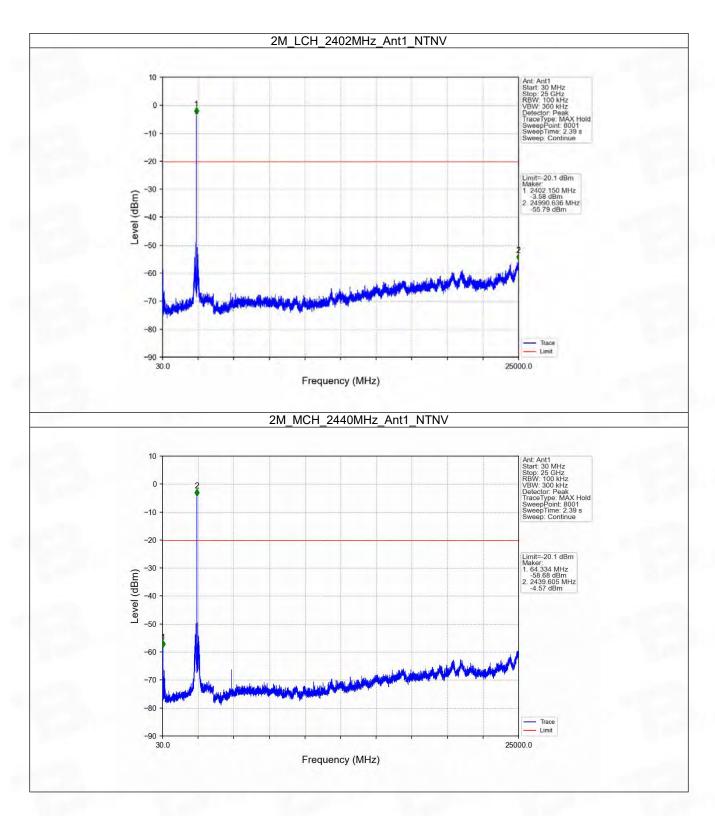

Note1: Refer to FCC Part 15.247 (d) and ANSI C63.10-2013, the channel contains the maximum PSD level was used to establish the reference level.

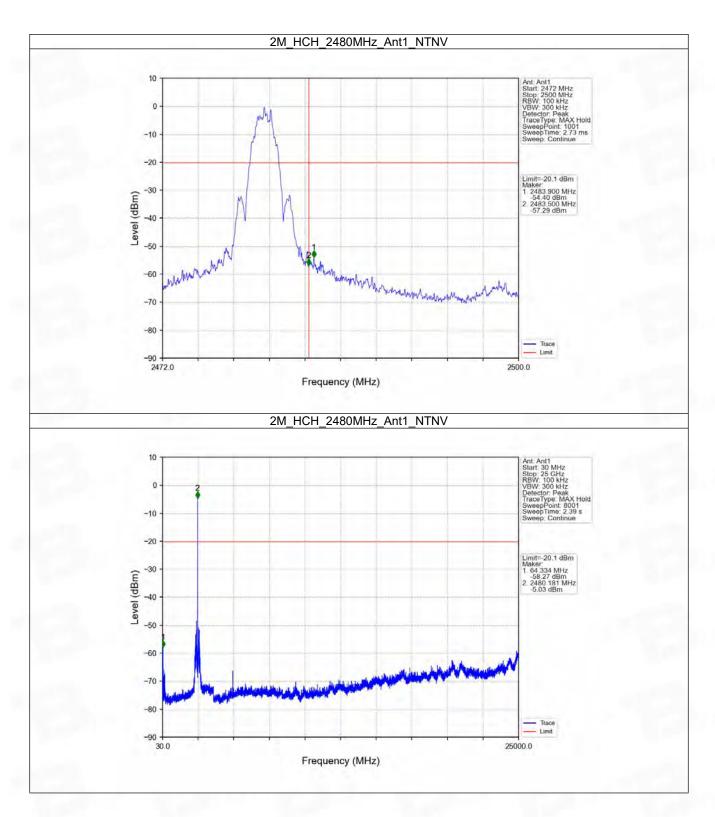

5.2 Test Graph

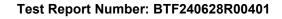


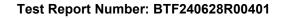












6. Form731

6.1 Test Result

6.1.1 Form731

Lower Freq (MHz)	High Freq (MHz)	MAX Power (W)	MAX Power (dBm)
2402	2480	0.0010	0.01

BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

www.btf-lab.com

-- END OF REPORT --