

PCTEST Engineering Laboratory, Inc.

6660-B Dobbin Road • Columbia, MD 21045 • U.S.A.
TEL (410) 290-6652 • FAX (410) 290-6654
http://www.pctestlab.com

CERTIFICATE OF COMPLIANCE FCC Part 24 & 22 Certification

Class II Permissive Change

SAMSUNG ELECTRONICS CO., LTD. 3351 Michelson Drive, Suite 290 Irvine, CA 92612

Dates of Tests: February 7-10, 2005 Test Report S/N: 0502040064

Test Site: PCTEST Lab, Columbia MD

FCC ID A3LSCHA720

APPLICANT SAMSUNG ELECTRONICS CO., LTD.

Classification: Licensed Portable Transmitter Held to Ear (PCE)

FCC Rule Part(s): §24(E), §22(H); §2

EUT Type: Dual-Band CDMA Phone

Model: SCH-A720

Tx Frequency Range: 824.70 - 848.31MHz (CDMA) / 1851.25MHz - 1908.75MHz (PCS CDMA)
Rx Frequency Range: 869.70 - 893.31MHz (CDMA) / 1931.25MHz - 1988.75MHz (PCS CDMA)

Max. RF Output Power: 0.344 W ERP CDMA (25.36 dBm) / 25.0 dBm Conducted

0.570 W EIRP PCS CDMA (27.56 dBm) / 24.7 dBm Conducted

Max. SAR Measurement: 1.42 W/kg CDMA Head SAR; 1.06 W/kg CDMA Body SAR;

1.48 W/kg PCS CDMA Head SAR; 1.09 W/kg PCS CDMA Body SAR

Emission Designator(s): 1M25F9W (CDMA)

Test Device Serial No. Identical Prototype (S/N: #06301041739)

Permissive Change(s): Changed the EMI spec of rear housing plastic and the antenna coil.

Original Grant Date: December 10, 2004

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947.

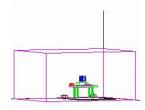
I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Grant Conditions: Power output listed is ERP for Part 22 and EIRP for Part 24. SAR compliance for bodyworn operating configuration is limited to the specific holster/belt clip tested for this filing. End-users must be informed of the body-worn operating requirements for satisfying RF exposure compliance.

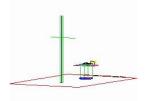
PCTEST certifies that no party to this application has been denied the FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 862.

Alfred Cirwithian
Vice President Engineering

PCTEST™ PT. 22/24 REPORT	Class II Permissive Change Report			Reviewed By: Quality Manager
Test Report S/N: 0502040064	Test Dates: February 7-10, 2005	Phone Type: Dual-Band CDMA	FCC ID: A3LSCHA720	Page 1 of 24


TABLE OF CONTENTS

ATTACHMENT A: COVER LETTER(S)	
ATTACHMENT B: TEST REPORT	
ATTACHMENT C: ATTESTATION STATEMENT(S)	
1.1 SCOPE	3
2.1 INTRODUCTION	4
3.1 DESCRIPTION OF TESTS	5-8
4.1 EFFECTIVE RADIATED POWER OUTPUT	9
5.1 EQUIVALENT ISOTROPIC RADIATED POWER	10
6.1 RADIATED MEASUREMENTS	11-16
7.1 FREQUENCY STABILITY	17-20
8.1 PLOTS OF EMISSIONS	21
9.1 LIST OF TEST EQUIPMENT	22
10.1 SAMPLE CALCULATIONS	23
11.1 CONCLUSION	24
ATTACHMENT D: TEST PLOTS	
ATTACHMENT E: TEST SETUP PHOTOGRAPHS	
ATTACHMENT F: EXTERNAL PHOTOGRAPHS	
ATTACHMENT G: INTERNAL PHOTOGRAPHS	
ATTACHMENT H: SAR MEASUREMENT REPORT	
ATTACHMENT I: SAR TEST DATA	
ATTACHMENT J: SAR TEST SETUP PHOTOGRAPHS	
ATTACHMENT K: DIPOLE VALIDATION	
ATTACHMENT L: PROBE CALIBRATION	


PCTEST™ PT. 22/24 REPORT	Cla	Class II Permissive Change Report		Reviewed By: Quality Manager
Test Report S/N: 0502040064	Test Dates: February 7-10, 2005	Phone Type: Dual-Band CDMA	FCC ID: A3LSCHA720	Page 2 of 24

ATTACHMENT M: COPY OF GRANT

MEASUREMENT REPORT

1.1 Scope

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission.

§2.1033 General Information

Applicant Name: S
Address: S

SAMSUNG ELECTRONICS CO., LTD. 3351 Michelson Drive, Suite 290

Irvine, CA 92612

• FCC ID: A3LSCHA720

Quantity: Quantity production is planned

Emission Designators: 1M25F9W

• Tx Freq. Range: 824.70 – 848.31 MHz (CDMA)

1851.25 - 1908.75 MHz (PCS CDMA)

• Rx Freq. Range: 869.70 – 893.31 MHz (CDMA)

1931.25 - 1988.75 MHz (PCS CDMA)

Max. Power Rating: 0.344 W ERP CDMA (25.36 dBm)

0.570 W EIRP PCS CDMA (27.56 dBm)

• FCC Classification(s): Licensed Portable Tx Held to Ear (PCE)

Equipment (EUT) Type: Dual-Band CDMA Phone

Modulation(s): CDMA

• Frequency Tolerance: \pm 0.00025% (2.5 ppm)

FCC Rule Part(s): § 24(E), §22(H)

Dates of Tests: February 7-10, 2005

Place of Tests:
 PCTEST Lab, Columbia, MD U.S.A.

Test Report S/N: 0502040064

PCTEST™ PT. 22/24 REPORT	Complete Wireless Lab'	Class II Permissive Change Re	Reviewed By: Quality Manager	
Test Report S/N: 0502040064	Test Dates: February 7-10, 2005	Phone Type:	FCC ID: A3LSCHA720	Page 3 of 24

2.1 INTRODUCTION

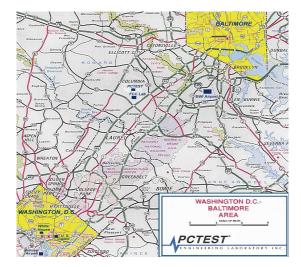


Figure 1. Map of the Greater Baltimore and Metropolitan Washington, D.C. area.

These measurement tests were conducted at *PCTEST Engineering Laboratory, Inc.* facility in New Concept Business Park, Guilford Industrial Park, Columbia, Maryland. The site address is 6660-B Dobbin Road, Columbia, MD 21045. The test site is one of the highest points in the Columbia area with an elevation of 390 feet above mean sea level. The site coordinates are 39° 11′15" N latitude and 76° 49′38" W longitude. The facility is 1.5 miles North of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. There are no FM or TV transmitters within 15 miles of the site. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4 on October 19, 1992.

Open Area Test Site receive antenna 1-4 meters ground screen 3 M

Figure 2. Diagram of 3-meter outdoor test range

Measurement Procedure

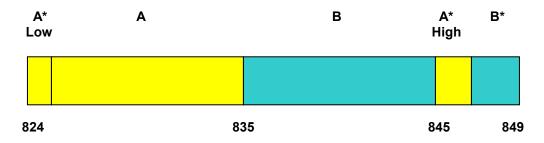
The radiated and spurious measurements were made outdoors at a 3-meter test range (see Figure 2). The equipment under test is placed on a wooden turntable 3-meters from the receive antenna. The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic antenna are taken into consideration.

PCTEST™ PT. 22/24 REPORT	Classification Laboratory	Class II Permissive Change Report		Reviewed By: Quality Manager
Test Report S/N: 0502040064	Test Dates: February 7-10, 2005	Phone Type: Dual-Band CDMA	FCC ID: A3LSCHA720	Page 4 of 24

3.1 DESCRIPTION OF TESTS

3.2 Occupied Bandwidth Emission Limits

- (a) On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log(P) dB.
- (b) Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.
- (c) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the licensee's frequency block edges, both upper and lower, as the design permits.
- (d) The measurement of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.

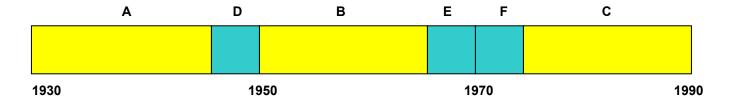

3.3 Cellular - Base Frequency Blocks

BLOCK 1: 869 – 880 MHz (A* Low + A) BLOCK 3: 890 – 891.5 MHz (A* High)

BLOCK 2: 880 – 890 MHz (B) BLOCK 4: 891.5 – 894 MHz (B*)

3.4 Cellular - Mobile Frequency Blocks

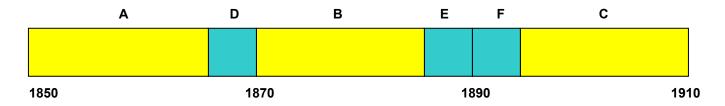
BLOCK 1: 824 – 835 MHz (A* Low + A) BLOCK 3: 845 – 846.5 MHz (A* High)


BLOCK 2: 835 – 845 MHz (B) BLOCK 4: 846.5 – 849 MHz (B*)

PCTEST™ PT. 22/24 REPORT	Clarification Lab	Complete Windows Lab.		
Test Report S/N: 0502040064	Test Dates: February 7-10, 2005	Phone Type: Dual-Band CDMA	FCC ID: A3LSCHA720	Page 5 of 24

3.1 DESCRIPTION OF TESTS (CONTINUED)

3.5 PCS - Base Frequency Blocks



BLOCK 1: 1930 – 1945 MHz (A) BLOCK 4: 1965 – 1970 MHz (E)

BLOCK 2: 1945 – 1950 MHz (D) BLOCK 5: 1970 – 1975 MHz (F)

BLOCK 3: 1950 – 1965 MHz (B) BLOCK 6: 1975 – 1990 MHz (C)

3.6 PCS - Mobile Frequency Blocks

BLOCK 1: 1850 – 1865 MHz (A) BLOCK 4: 1885 – 1890 MHz (E)

BLOCK 2: 1865 – 1870 MHz (D) BLOCK 5: 1890 – 1895 MHz (F)

BLOCK 3: 1870 – 1885 MHz (B) BLOCK 6: 1895 – 1910 MHz (C)

PCTEST™ PT. 22/24 REPORT	Classification Lab	Inter Wiredenen Late*		Reviewed By: Quality Manager
Test Report S/N:	Test Dates:	Phone Type:	FCC ID:	Page 6 of 24
0502040064	February 7-10, 2005	Dual-Band CDMA	A3LSCHA720	

3.1 DESCRIPTION OF TESTS (CONTINUED)

3.7 Spurious and Harmonic Emissions at Antenna Terminal

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to 10 GHz. The transmitter is modulated with a 2500Hz tone at a level of 16dB greater than that required to provided 50% modulation.

At the input terminals of the spectrum analyzer, an isolator (RF circulator with on port terminated with 50 ohms) and an 870 MHz to 890 MHz bandpass filter is connected between the test transceiver (for conducted tests) or the receive antenna (for radiated tests) and the analyzer. The rejection of the bandpass filter to signals in the 825 – 845 MHz range is adequate to limit the transmit energy from the test transceiver which appears to a level which will allow the analyzer to measure signals less than –90dBm. Calibration of the test receiver is performed in the 870 – 890 MHz range to insure accuracy to allow variation in the bandpass filter insertion loss to be calibrated.

3.8 Frequencies

At the input terminals of the spectrum analyzer, an isolator (RF pad) and an high-pass filter are connected between the test transceiver (for conducted tests) or the receive antenna (for radiated tests) and the analyzer. The high-pass filter (signals below 1.6 GHz) is to limit the fundamental frequency from interfering with the measurement of low-level spurious and harmonic emissions and to ensure that the preamplifier is not saturated.

3.9 Radiation Spurious and Harmonic Emissions

Radiation and harmonic emissions are measured outdoors at our 3-meter test range. The equipment under test is placed on a wooden turntable 3-meters from the receive antenna. The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer reading. This level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

PCTEST™ PT. 22/24 REPORT	Clarification Lab	Class II Permissive Change Report		Reviewed By: Quality Manager
Test Report S/N: 0502040064	Test Dates: February 7-10, 2005	Phone Type: Dual-Band CDMA	FCC ID: A3LSCHA720	Page 7 of 24

4.0 Frequency Stability/Temperature Variation.

The frequency stability of the transmitter is measured by:

- a.) **Temperature:** The temperature is varied from -30°C to +60°C using an environmental chamber.
- b.) **Primary Supply Voltage:** The primary supply voltage is varied from 85% to 115% of the voltage normally at the input to the device or at the power supply terminals if cables are not normally supplied.

Specification – The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within ± 0.00025 (± 2.5 ppm) of the center frequency.

Time Period and Procedure:

- 1. The carrier frequency of the transmitter and the individual oscillators is measured at room temperature (22°C to 25°C to provide a reference).
- 2. The equipment is subjected to an overnight "soak" at -30°C without any power applied.
- 3. After the overnight "soak" at -30°C (usually 14-16 hours), the equipment is turned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency of the transmitter and the individual oscillators is made within a three minute interval after applying power to the transmitter.
- 4. Frequency measurements are made at 10°C interval up to room temperature. At least a period of one and one half-hour is provided to allow stabilization of the equipment at each temperature level.
- 5. Again the transmitter carrier frequency and the individual oscillators is measured at room temperature to begin measurement of the upper temperature levels.
- 6. Frequency measurements are at 10 intervals starting at -30°C up to +50°C allowing at least two hours at each temperature for stabilization. In all measurements the frequency is measured within three minutes after re-applying power to the transmitter.
- 7. The artificial load is mounted external to the temperature chamber.

NOTE: The EUT is tested down to the battery endpoint.

PCTEST™ PT. 22/24 REPORT	Cla			Reviewed By: Quality Manager
Test Report S/N: 0502040064	Test Dates: February 7-10, 2005	Phone Type: Dual-Band CDMA	FCC ID: A3LSCHA720	Page 8 of 24

4.2 Effective Radiated Power Output

A. POWER: **High (CDMA Mode)**

EMW

Freq. Tuned (MHz)	REF. LEVEL (dBm)	POL (H/V)	ERP (W)	ERP (dBm)	BATTERY
824.70	-15.910	Н	0.344	25.360	Standard
835.89	-16.250	Н	0.330	25.183	Standard
848.31	-16.300	Н	0.338	25.283	Standard
835.89	-16.100	Н	0.341	25.333	Extended

Note: Standard and extended batteries are options for this phone

NOTES:

Effective Radiated Power Output Measurements by Substitution Method according to ANSI/TIA/FIA-603-A-2001, Aug. 15, 2001:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 1 MHz. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminals of the dipole is measured. The ERP is recorded.

PCTEST™ PT. 22/24 REPORT	Cla	Class II Permissive Change Report		Reviewed By: Quality Manager
Test Report S/N: 0502040064	Test Dates: February 7-10, 2005	Phone Type: Dual-Band CDMA	FCC ID: A3LSCHA720	Page 9 of 24

5.2 Equivalent Isotropic Radiated Power (E.I.R.P.)

Radiated measurements at 3 meters

Supply Voltage: 3.7 VDC

Modulation: PCS CDMA

FREQ. (MHz)	REF. LEVEL (dBm)	POL (H/V)	Azimuth (o angle)	EIRP (dBm)	EIRP (W)	Battery
1851.25	-15.800	Н	90	27.281	0.535	Standard
1880.00	-15.700	Η	90	27.560	0.570	Standard
1908.75	-16.400	Η	90	27.021	0.504	Standard
1880.00	-15.900	Н	90	27.351	0.543	Extended

Note: Standard and extended batteries are options for this phone

NOTES:

Equivalent Isotropic Radiated Power Measurements by Substitution Method according to ANSI/TIA/EIA-603-A-2001, Aug. 15, 2001:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 1 MHz. A Horn antenna was substituted in place of the EUT. This Horn antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminals of the Horn antenna is measured. The difference between the gain of the horn and an isotropic antenna is taken into consideration and the EIRP is recorded.

PCTEST™ PT. 22/24 REPORT	Clarification Lab	Class II Permissive Change Report		Reviewed By: Quality Manager
Test Report S/N: 0502040064	Test Dates: February 7-10, 2005	Phone Type: Dual-Band CDMA	FCC ID: A3LSCHA720	Page 10 of 24

6.2 CELLULAR CDMA Radiated Measurements

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 824.70 MHz

CHANNEL: 1013 (Low)

MEASURED OUTPUT POWER: 25.360 dBm = 0.344 W

MODULATION SIGNAL: CDMA (Internal)

DISTANCE: 3 meters

LIMIT: $43 + 10 \log_{10} (W) = 38.37$ dBc

FREQ. (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	CORRECT GENERATOR LEVEL (dBm)	POL (H/V)	(dBc)
1649.40	-45.38	6.10	-39.28	Н	64.6
2474.10	-47.18	6.70	-40.48	Н	65.8
3298.80	-47.58	6.80	-40.78	Н	66.1
4123.50	-73.68	6.50	-67.18	Н	92.5

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-A-2001, Aug. 15, 2001:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 1 MHz. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

PCTEST™ PT. 22/24 REPORT	Cla	Class II Permissive Change Report		Reviewed By: Quality Manager
Test Report S/N: 0502040064	Test Dates: February 7-10, 2005	Phone Type: Dual-Band CDMA	FCC ID: A3LSCHA720	Page 11 of 24

6.3 CELLULAR CDMA Radiated Measurements

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 835.89 MHz

CHANNEL: 0363 (Mid)

MEASURED OUTPUT POWER: _____ 25.360 ____ dBm = ____ 0.344 _ W

MODULATION SIGNAL: CDMA (Internal)

DISTANCE: 3 meters

LIMIT: $43 + 10 \log_{10} (W) = 38.36$ dBc

FREQ. (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	CORRECT GENERATOR LEVEL (dBm)	POL (H/V)	(dBc)
1671.78	-44.28	6.10	-38.18	Н	63.5
2507.67	-45.48	6.70	-38.78	Н	64.1
3343.56	-47.18	6.80	-40.38	Н	65.7
4179.45	-73.18	6.50	-66.68	Н	92.0

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-A-2001, Aug. 15, 2001:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 1 MHz. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

PCTEST™ PT. 22/24 REPORT	Complete Wireless Lab'	Class II Permissive Change Re	eport samsung	Reviewed By: Quality Manager
Test Report S/N:	Test Dates:	Phone Type:	FCC ID:	Page 12 of 24
0502040064	February 7-10, 2005	Dual-Band CDMA	A3LSCHA720	

6.4 CELLULAR CDMA Radiated Measurements

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 848.31 MHz

CHANNEL: 0777 (High)

MEASURED OUTPUT POWER: 25.360 dBm = 0.344 W

MODULATION SIGNAL: CDMA (Internal)

DISTANCE: 3 meters

LIMIT: $43 + 10 \log_{10} (W) = 38.36$ dBc

FREQ. (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	CORRECT GENERATOR LEVEL (dBm)	POL (H/V)	(dBc)
1696.62	-43.68	6.10	-37.58	Н	62.9
2544.93	-44.58	6.70	-37.88	Н	63.2
3393.24	-45.78	6.80	-38.98	Н	64.3
4241.55	-73.78	6.50	-67.28	Н	92.6

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-A-2001, Aug. 15, 2001:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 1 MHz. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

PCTEST™ PT. 22/24 REPORT	Cla	Class II Permissive Change Report		Reviewed By: Quality Manager
Test Report S/N: 0502040064	Test Dates: February 7-10, 2005	Phone Type: Dual-Band CDMA	FCC ID: A3LSCHA720	Page 13 of 24

6.5 PCS CDMA Radiated Measurements

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 1851.25 MHz

CHANNEL: 0025 (Low)

MEASURED OUTPUT POWER: ______ 27.560 _____ dBm = _____ 0.570 __ W

MODULATION SIGNAL: CDMA (Internal)

DISTANCE: 3 meters

LIMIT: $43 + 10 \log_{10} (W) = 40.56$ dBc

FREQ. (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	CORRECT GENERATOR LEVEL (dBm)	POL (H/V)	(dBc)
3702.50	-41.03	8.70	-32.33	Н	59.9
5553.75	-38.23	9.70	-28.53	Н	56.1
7405.00	-58.43	9.90	-48.53	Н	76.1
9256.25	-77.43	11.40	-66.03	Н	93.6

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-A-2001, Aug. 15, 2001:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 1 MHz. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

PCTEST™ PT. 22/24 REPORT	Cla	8		Reviewed By: Quality Manager
Test Report S/N: 0502040064	Test Dates: February 7-10, 2005	Phone Type: Dual-Band CDMA	FCC ID: A3LSCHA720	Page 14 of 24

6.6 PCS CDMA Radiated Measurements

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 1880.00 MHz

CHANNEL: 0600 (Mid)

MEASURED OUTPUT POWER: _____ 27.560 ____ dBm = ____ 0.570 _ W

MODULATION SIGNAL: CDMA (Internal)

DISTANCE: 3 meters

LIMIT: $43 + 10 \log_{10} (W) = 40.56$ dBc

FREQ. (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	CORRECT GENERATOR LEVEL (dBm)	POL (H/V)	(dBc)
3760.00	-40.23	8.70	-31.53	Н	59.1
5640.00	-38.33	9.70	-28.63	Н	56.2
7520.00	-57.73	9.90	-47.83	Н	75.4
9400.00	-77.23	11.40	-65.83	Н	93.4

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-A-2001, Aug. 15, 2001:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 1 MHz. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

PCTEST™ PT. 22/24 REPORT	Cla	8		Reviewed By: Quality Manager
Test Report S/N: 0502040064	Test Dates: February 7-10, 2005	Phone Type: Dual-Band CDMA	FCC ID: A3LSCHA720	Page 15 of 24

6.7 PCS CDMA Radiated Measurements

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 1908.75 MHz

CHANNEL: 1175 (High)

MEASURED OUTPUT POWER: 27.560 dBm = 0.570 W

MODULATION SIGNAL: CDMA (Internal)

DISTANCE: 3 meters

LIMIT: $43 + 10 \log_{10} (W) = 40.56$ dBc

FREQ. (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	CORRECT GENERATOR LEVEL (dBm)	POL (H/V)	(dBc)
3817.50	-41.13	8.70	-32.43	Н	60.0
5726.25	-38.83	9.70	-29.13	Н	56.7
7635.00	-55.93	9.90	-46.03	Н	73.6
9543.75	-76.93	11.40	-65.53	Н	93.1

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-A-2001, Aug. 15, 2001:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 1 MHz. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

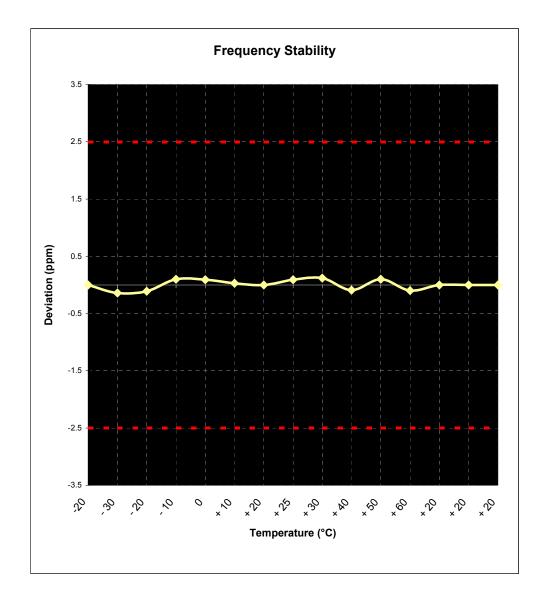
PCTEST™ PT. 22/24 REPORT	<u> </u>			Reviewed By: Quality Manager
Test Report S/N: 0502040064	Test Dates: February 7-10, 2005	Phone Type: Dual-Band CDMA	FCC ID: A3LSCHA720	Page 16 of 24

7.2 FREQUENCY STABILITY (CDMA)

OPERATING FREQUENCY: 835,890,004 Hz

CHANNEL: 363

REFERENCE VOLTAGE: 3.7 VDC


DEVIATION LIMIT: ± 0.00025 % or 2.5 ppm

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQ. (Hz)	Freq. Dev.	Deviation (%)
100 %	3.70	+ 20 (Ref)	835,890,004	0.00	0.000000
100 %		- 30	835,890,121	-117.02	-0.000014
100 %		- 20	835,890,096	-91.95	-0.000011
100 %		- 10	835,889,920	83.59	0.000010
100 %		0	835,889,929	75.23	0.000009
100 %		+ 10	835,889,979	25.08	0.000003
100 %		+ 20	835,890,004	0.00	0.000000
100 %		+ 25	835,889,929	75.23	0.000009
100 %		+ 30	835,889,904	100.31	0.000012
100 %		+ 40	835,890,079	-75.23	-0.000009
100 %		+ 50	835,889,920	83.59	0.000010
100 %		+ 60	835,890,088	-83.59	-0.000010
85 %	3.30	+ 20	835,890,004	0.00	0.000000
115 %	4.26	+ 20	835,890,004	0.00	0.000000
BATT. ENDPOINT	2.92	+ 20	835,890,004	0.00	0.000000

PCTEST™ PT. 22/24 REPORT				Reviewed By: Quality Manager
Test Report S/N: 0502040064	Test Dates: February 7-10, 2005	Phone Type: Dual-Band CDMA	FCC ID: A3LSCHA720	Page 17 of 24

7.3 FREQUENCY STABILITY (CDMA)

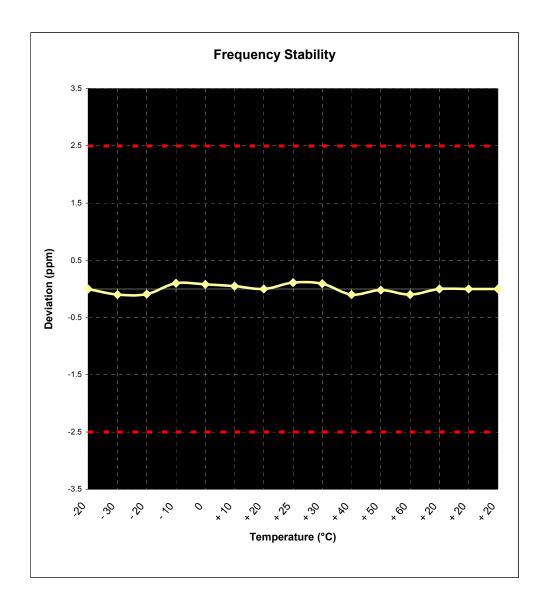
PCTEST™ PT. 22/24 REPORT	<u> </u>			Reviewed By: Quality Manager
Test Report S/N: 0502040064	Test Dates: February 7-10, 2005	Phone Type: Dual-Band CDMA	FCC ID: A3LSCHA720	Page 18 of 24

7.4 FREQUENCY STABILITY (PCS CDMA)

OPERATING FREQUENCY: 1,880,000,006 Hz

CHANNEL: 600

REFERENCE VOLTAGE: 3.7 VDC


DEVIATION LIMIT: ± 0.00025 % or 2.5 ppm

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQ. (Hz)	Freq. Dev.	Deviation (%)
100 %	3.70	+ 20 (Ref)	1,880,000,006	0.00	0.000000
100 %		- 30	1,880,000,194	-188.00	-0.000010
100 %		- 20	1,880,000,175	-169.20	-0.000009
100 %		- 10	1,879,999,818	188.00	0.000010
100 %		0	1,879,999,856	150.40	0.000008
100 %		+ 10	1,879,999,912	94.00	0.000005
100 %		+ 20	1,880,000,006	0.00	0.000000
100 %		+ 25	1,879,999,799	206.80	0.000011
100 %		+ 30	1,879,999,837	169.20	0.000009
100 %		+ 40	1,880,000,194	-188.00	-0.000010
100 %		+ 50	1,880,000,044	-37.60	-0.000002
100 %		+ 60	1,880,000,194	-188.00	-0.000010
85 %	3.15	+ 20	1,880,000,006	0.00	0.000000
115 %	4.26	+ 20	1,880,000,006	0.00	0.000000
BATT. ENDPOINT	2.97	+ 20	1,880,000,006	0.00	0.000000

PCTEST™ PT. 22/24 REPORT	<u> </u>			Reviewed By: Quality Manager
Test Report S/N: 0502040064	Test Dates: February 7-10, 2005	Phone Type: Dual-Band CDMA	FCC ID: A3LSCHA720	Page 19 of 24

7.5 FREQUENCY STABILITY (PCS CDMA)

PCTEST™ PT. 22/24 REPORT	<u> </u>			Reviewed By: Quality Manager
Test Report S/N: 0502040064	Test Dates: February 7-10, 2005	Phone Type: Dual-Band CDMA	FCC ID: A3LSCHA720	Page 20 of 24

8.1 PLOT(S) OF EMISSIONS

(SEE ATTACHMENT C)

PCTEST™ PT. 22/24 REPORT	Cla	Class II Permissive Change Report		Reviewed By: Quality Manager
Test Report S/N: 0502040064	Test Dates: February 7-10, 2005	Phone Type: Dual-Band CDMA	FCC ID: A3LSCHA720	Page 21 of 24

9.1 TEST EQUIPMENT

Туре	Model	Cal. Due Da	te S/N
Microwave Spectrum Analyzer	8566B (100Hz-22GHz) HP	08/15/05	3638A08713
Microwave Spectrum Analyzer	HP 8566B (100Hz-22GHz)	04/17/05	2542A11898
Spectrum Analyzer/Tracking Gen.	HP 8591A (100Hz-1.8GHz)	08/10/05	3144A02458
Signal Generator*	HP 8640B (500Hz-1GHz)	06/03/05	2232A19558
Signal Generator [*]	HP 8640B (500Hz-1GHz)	06/03/05	1851A09816
Signal Generator [*]	Rohde & Schwarz (0.1-1000MHz)	09/11/05	894215/012
Ailtech/Eaton Receiver	NM 37/57A-SL (30-1000MHz)	04/12/05	0792-032
Ailtech/Eaton Receiver	NM 37/57A (30-1000MHz)	03/11/05	0805-03334
Ailtech/Eaton Receiver	NM 17/27A (0.1-32MHz)	09/17/05	0608-03241
Quasi-Peak Adapter	HP 85650A	08/15/05	2043A00301
Ailtech/Eaton Adapter	CCA-7 CISPR/ANSI QP Adapter	03/11/05	0194-04082
ı Gigatronics Universal Power Meter	8657A		1835256
Gigatronics Power Sensor	80701A (0.05-18GHz)		1833460
Signal Generator	HP 8648D (9kHz-4GHz)		3613A00315
Amplifier Research	5S1G4 (5W, 800MHz-4.2GHz)		22322
Network Analyzer	HP 8753E (30kHz-3GHz)		JP38020182
Audio Analyzer	HP 8903B		3011A09025
Modulation Analyzer	HP 8901A		2432A03467
Power Meter	HP 437B		3125U24437
Power Sensor	HP 8482H (30μW-3W)		2237A02084
Harmonic/Flicker	Test System HP 6841A (IEC 555-2	/3)	3531A00115
Broadband Amplifier (2)	HP 8447D	, 0)	1145A00470, 1937A0334
Broadband Amplifier	HP 8447F		2443A03784
Horn Antenna	EMCO Model 3115 (1-18GHz)		9704-5182
Horn Antenna	EMCO Model 3115 (1-18GHz)		9205-3874
Horn Antenna	EMCO Model 3116 (18-40GHz)		9203-2178
Biconical Antenna (4)	Eaton 94455/Eaton 94455-VSinger 9445	5-1/Compliance Desian	1295, 1332, 0355
Log-Spiral Antenna (3)	Ailtech/Eaton 93490-1		0608, 1103, 1104
Roberts Dipoles	Compliance Design (1 set)		
Ailtech Dipoles	DM-105A (1 set)		33448-111
EMCO LISN (6)	3816/2		1079
Microwave Preamplifier 40dB	Gain HP 83017A (0.5-26.5GHz)		3123A00181
Microwave Cables	MicroCoax (1.0-26.5GHz)		0.207.007.
Ailtech/Eaton Receiver	NM37/57A-SL		0792-03271
Spectrum Analyzer	HP 8594A		3051A00187
Spectrum Analyzer (2)	HP 8591A		3034A01395, 3108A020
Microwave Survey Meter	Holaday Model 1501 (2.450GHz)		80931
Digital Thermometer	Extech Instruments 421305		426966
Attenuator	HP 8495A (0-70dB) DC-4GHz		.2000
Bi-Directional Coax Coupler	Narda 3020A (50-1000MHz)		
3r Directional Coax Couplet Shielded Screen Room	RF Lindgren Model 26-2/2-0		6710 (PCT270)
Shielded Semi-Anechoic Chamber	Ray Proof Model 581		R2437 (PCT278)
Snielded Semi-Miechold Chamber Enviromental Chamber	Associated Systems Model 1025 (Ter	nnerature/Humiditul	PCT285
	Associated Systems Model 1025 (Ter traceable to the National Institute of S		

PCTEST™ PT. 22/24 REPORT	<u> </u>			Reviewed By: Quality Manager
Test Report S/N: 0502040064	Test Dates: February 7-10, 2005	Phone Type: Dual-Band CDMA	FCC ID: A3LSCHA720	Page 22 of 24

10.1 SAMPLE CALCULATIONS

A. Emission Designator

Emission Designator = 1M25F9W

CDMA BW = 1.25 MHz
F = Frequency Modulation
9 = Composite Digital Info
W = Combination (Audio/Data)
(Measured at the 99.75% power bandwidth)

B. Spurious Radiated Emission - PCS Band

Example: Channel 25 PCS Mode 2nd Harmonic (3702.50 MHz)

The receive analyzer reading at 3 meters with the EUT on the turntable was -81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0 dBm on the receive analyzer. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 3702.50 MHz. So 6.1 dB is added to the signal generator reading of -30.9 dBm yielding -24.80 dBm. The fundamental EIRP was 25.501 dBm so this harmonic was 25.501 dBm -(-24.80) = 50.3 dBc

PCTEST™ PT. 22/24 REPORT	<u> </u>			Reviewed By: Quality Manager
Test Report S/N: 0502040064	Test Dates: February 7-10, 2005	Phone Type: Dual-Band CDMA	FCC ID: A3LSCHA720	Page 23 of 24

11.1 CONCLUSION

The data collected shows that the **SAMSUNG ELECTRONICS CO., LTD. Dual-Band CDMA Phone FCC ID: A3LSCHA720** complies with all the requirements of Parts 2, 22, and 24 of the FCC rules.

PCTEST™ PT. 22/24 REPORT	<u> </u>			Reviewed By: Quality Manager
Test Report S/N: 0502040064	Test Dates: February 7-10, 2005	Phone Type: Dual-Band CDMA	FCC ID: A3LSCHA720	Page 24 of 24