

TEST REPORT

Report No.:	BCTC2308008401-1E	
Applicant:	Ugreen Group Limited	
Product Name:	Ultra Slim Wireless Keyboard	
Model/Type reference:	KU005	CHENZH
Tested Date:	2023-08-30 to 2023-09-22	
Issued Date:	2023-09-22	
She	nzhen BCTC Testing Co., Ltd.	
No.: BCTC/RF-EMC-007	Page: 1 of 47	Edition: B,0

FCC ID:2AQI5-KU005

Product Name:	Ultra Slim Wireless Keyboard
Trademark:	UGREEN
Model/Type Reference:	KU005 15258, 15956, 25165
Prepared For:	Ugreen Group Limited
Address:	Ugreen Building, Longcheng Industrial Park, Longguanxi Road, Longhua, ShenZhen, China
Manufacturer:	Ugreen Group Limited
Address:	Ugreen Building, Longcheng Industrial Park, Longguanxi Road, Longhua, ShenZhen, China
Prepared By:	Shenzhen BCTC Testing Co., Ltd.
Address:	1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Sample Received Date:	2023-08-30
Sample tested Date:	2023-08-30 to 2023-09-22
Issue Date:	2023-09-22
Report No.:	BCTC2308008401-1E
Test Standards	FCC Part15.247 ANSI C63.10-2013
Test Results	PASS
Remark:	This is SRD-2.4G radio test report.

Tested by:

kelsey Ton

Kelsey Tan/ Project Handler

Approved by:

Zero Zhou/Reviewer

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

Page: 2 of 4

Table Of Content

Test	Report Declaration	Page
1.	Version	5
2.	Test Summary	6
3.	Measurement Uncertainty	7
4.	Product Information And Test Setup	8
4.1	Product Information	
4.2	Test Setup Configuration	8
4.4	Channel List	9
4.5	Test Mode	
4.6	Table Of Parameters Of Text Software Setting	10
5.	Test Facility And Test Instrument Used	
5.1	Test Facility	
5.2	Test Instrument Used	11
6.	Conducted Emissions	13
6.1	Block Diagram Of Test Setup	
6.2	Limit	
6.3	Test procedure	
6.4	EUT operating Conditions	
6.5	Test Result	
7.	Radiated emissions	
7.1	Block Diagram Of Test Setup	
7.2	Limit	
7.3	Test procedure	
7.4	EUT operating Conditions	
7.5	Test Result	
8.	Radiated Band Emission Measurement And Restricted Bands Of Operat	
8.1	Block Diagram Of Test Setup	
8.2	Limit	
8.3	Test procedure	
8.4	EUT operating Conditions	24
8.5	Test Result	
9.	Spurious RF Conducted Emissions	
9.1	Block Diagram Of Test Setup	26
9.2	Limit Test procedure Test Result	26
9.3	lest procedure	26
9.4	Test Result	
10.	20 dB Bandwidth	30
10.1	Block Diagram Of Test Setup.	
10.2	Limit	
10.3	가지 않는 것을 다 가지 않는 것을 하는	
10.4	I est Kesult	30
11.	Maximum Peak Output Power	
11.1	Block Diagram Of Test Setup.	
11.2		
11.3	Test procedure	

11.4	Test Result	33
12.	Hopping Channel Separation	36
12.1	Block Diagram Of Test Setup	
12.2	Limit	36
12.3	Test procedure	36
12.4	Test Result	36
13.	Number Of Hopping Frequency	39
13.1	Block Diagram Of Test Setup	39
13.2		
13.3		
13.4		
14.	Dwell Time	41
14.1	Block Diagram Of Test Setup	41
14.2		
14.3		
14.4	Test Result	42
15.	Antenna Requirement	
15.1	Limit	43
15.2		
16.	EUT Photographs	44
17.	EUT Test Setup Photographs	45

(Note: N/A Means Not Applicable)

检

Page: 4 of 47

1. Version

Report No.	Issue Date	Description	Approved
BCTC2308008401-1E	2023-09-22	Original	Valid

No.: BCTC/RF-EMC-007

Page: 5 of 47

2. Test Summary

The Product has been tested according to the following specifications:

No.	Test Parameter	Clause No	Results
1	Conducted emission AC power port	§15.207	PASS
2	Conducted peak output power for FHSS	§15.247(b)(1)	PASS
3	20dB Occupied bandwidth	§15.247(a)(1)	PASS
4	Hopping channel separation	§15.247(a)(1)	PASS
5	Number of hopping frequencies	§15.247(a)(1)(iii)	PASS
6	Dwell Time	§15.247(a)(1)(iii)	PASS
7	Spurious RF conducted emissions	§15.247(d)	PASS
8	Band edge	§15.247(d)	PASS
9	Spurious radiated emissions for transmitter	§15.247(d) & §15.209 & §15.205	PASS
10	Antenna Requirement	15.203	PASS

Page: 6 of 47

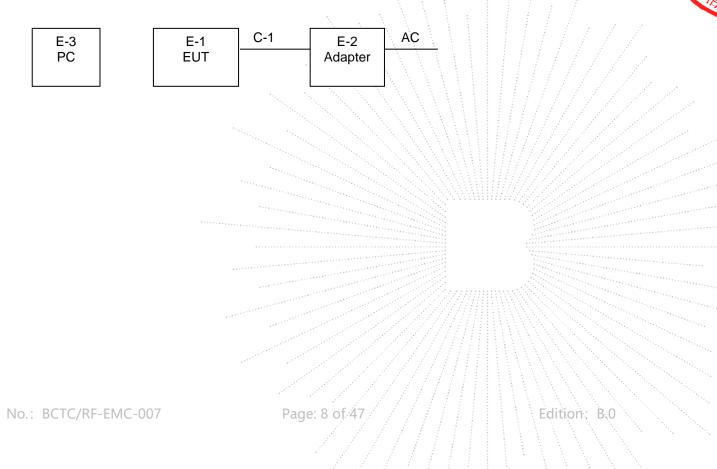
3. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Uncertainty
1	3m chamber Radiated spurious emission(30MHz-1GHz)	U=4.3dB
2	3m chamber Radiated spurious emission(9KHz-30MHz)	U=3.7dB
3	3m chamber Radiated spurious emission(1GHz-18GHz)	U=4.5dB
4	3m chamber Radiated spurious emission(18GHz-40GHz)	U=3.34dB
5	Conducted Emission (150kHz-30MHz)	U=3.20dB
6	Conducted Adjacent channel power	U=1.38dB
7	Conducted output power uncertainty Above 1G	U=1.576dB
8	Conducted output power uncertainty below 1G	U=1.28dB
9	humidity uncertainty	Ú=5.3%
10	Temperature uncertainty	U=0.59°C

E

4. Product Information And Test Setup


4.1 Product Information

Model/Type reference:	KU005 15258, 15956, 25165
Model differences:	All the model are the same circuit and RF module, except model names.
Hardware Version:	N/A
Software Version:	N/A
Operation Frequency:	2403MHz-2480MHz
Type of Modulation:	GFSK
Number Of Channel	16CH
Antenna installation:	Internal antenna
Antenna Gain:	2.67 dBi
Ratings:	USB: DC 5V Battery :DC 3.7V

4.2 Test Setup Configuration

See test photographs attached in *EUT TEST SETUP PHOTOGRAPHS* for the actual connections between Product and support equipment.

Conducted Emission and Radiated Spurious Emission:

4.3 Support Equipment

No.	Device Type	Brand	Model	Series No.	Note
E-1	Ultra Slim Wireless Keyboard	UGREEN	KU005	N/A	EUT
E-2	Adapter	N/A	CD226	N/A	Auxiliary
E-3	PC	N/A	Thinkpad S2	N/A	Auxiliary

ltem	Shielded Type	Ferrite Core	Length	Note
C-1	N/A	N/A	1M	DC cable unshielded

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.4 Channel List

Channel Number	Frequency (MHz)	Channel Number	Frequency (MHz)
1	2403	9	2441
2	2407	10	2445
3	2414	11	2453
4	2419	12	2459
5	2422	,13	2463
6	2426	14	2466
7	2436	15	2473
8	2439	16	2480

,TC 3C PR

4.5 Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Test Mode	Test mode	Low channel	Middle channel	High channel
1.	Transmitting(GFSK)	2403MHz	2441MHz	2480MHz
2.	Transmitting Hopping (Conducted emission & Radiated emission)			

Note:

(1) The measurements are performed at the highest, middle, lowest available channels.

(2) Fully-charged battery is used during the test

4.6 Table Of Parameters Of Text Software Setting

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters

Test software Version	SecureCRT				
Frequency	2403 MHz	2441 MHz	2480 MHz		
Parameters	DEF	DEF	DEF		

No.: BCTC/RF-EMC-007

Page: 10 of 4

5. Test Facility And Test Instrument Used

5.1 Test Facility

All measurement facilities used to collect the measurement data are located at Shenzhen BCTC Testing Co., Ltd. Address: 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards. FCC Test Firm Registration Number: 712850

A2LA certificate registration number is: CN1212

ISED Registered No.: 23583

ISED CAB identifier: CN0017

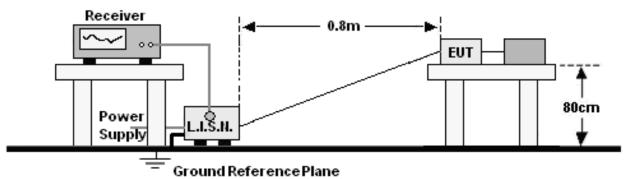
5.2 Test Instrument Used

Conducted Emissions Test							
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.		
Receiver	R&S	ESR3	102075	May 15, 2023	May 14, 2024		
LISN	R&S	ENV216	101375	May 15, 2023	May 14, 2024		
Software	Frad	EZ-EMC	EMC-CON 3A1	١	\		
Attenuator	١	10dB DC-6GHz	1650	May 15, 2023	May 14, 2024		

RF Conducted Test						
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.	
Power Meter	Keysight	E4419	1	May 15, 2023	May 14, 2024	
Power Sensor (AV)	Keysight	E9300A		May 15, 2023	May 14, 2024	
Signal Analyzer20kH z-26.5GHz	Keysight	N9020A	MY49100060	May 15, 2023	May 14, 2024	
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40	100363	May 15, 2023	May 14, 2024	

Radiated Emissions Test (966 Chamber01)							
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.		
966 chamber	ChengYu	966 Room	966	May 15, 2023	May 14, 2026		
Receiver	R&S	ESR3	102075	May 15, 2023	May 14, 2024		
Receiver	R&S	ESRP	101154	May 15, 2023	May 14, 2024		
Amplifier	Schwarzbeck	BBV9744	9744-0037	May 15, 2023	May 14, 2024		
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	942	May 29, 2023	May 28, 2024		
Loop Antenna(9KHz -30MHz)	Schwarzbeck	FMZB1519B	00014	May 31, 2023	May 30, 2024		
Amplifier	SKET	LAPA_01G18 G-45dB	١	May 15, 2023	May 14, 2024		
Horn Antenna	Schwarzbeck	BBHA9120D	1541	May 31, 2023	May 30, 2024		
Amplifier(18G Hz-40GHz)	MITEQ	TTA1840-35- HG	2034381	May 15, 2023	May 14, 2024		
Horn Antenna(18G Hz-40GHz)	Schwarzbeck	BBHA9170	00822	May 31, 2023	May 30, 2024		
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40	100363	May 15, 2023	May 14, 2024		
Software	Frad	EZ-EMC	FA-03A2 RE	١	١		

C. CO.,LTA


No.: BCTC/RF-EMC-007

Page: 12 of 47

6. Conducted Emissions

6.1 Block Diagram Of Test Setup

6.2 Limit

	Limit (dBuV)		
Frequency (MHz)	Quas-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	
Notes:		/	

1. *Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

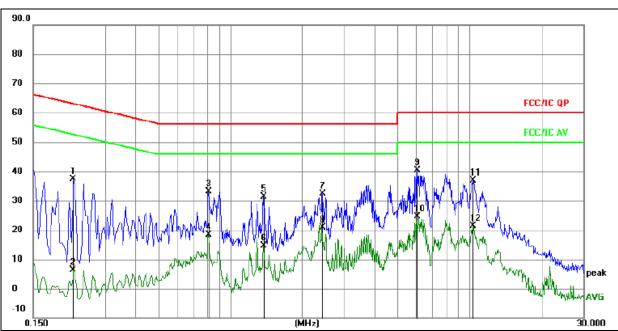
6.3 Test procedure

Receiver Parameters	s s	Setting
Attenuation		10 dB
Start Frequency		0.15 MHz
Stop Frequency		30 MHz
IF Bandwidth		9 kHz

a. The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).

b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.

c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.


6.4 EUT operating Conditions

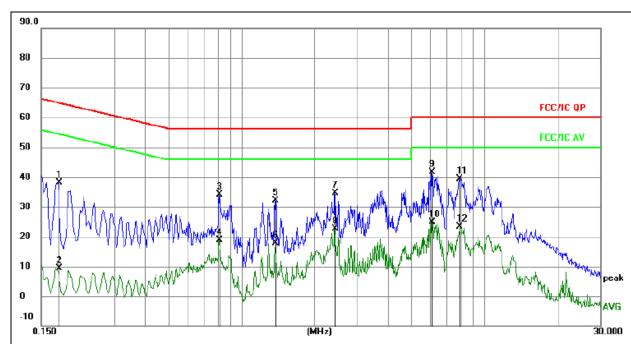
The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

6.5 Test Result

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	L
Test Mode:	Mode 2	Test Voltage :	AC120V/60Hz

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.
 Measurement = Reading Level + Correct Factor


4. Over = Measurement - Limit

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		_
		MHz		dB	dBuV	dBuV	dB	Detector	
1		0.2208	27.72	9.61	37.33	62.79	-25.46	QP	<u>_</u> ,*
2		0.2208	-3.17	9.61	6.44	52.79	-46.35	AVG	- ,,
3		0.8088	23.45	9.66	33.11	56.00	-22.89	QP	_,
4		0.8088	8.61	9.66	18.27	46.00	-27.73	AVG	- .,·
5		1.3738	21.72	9.73	31.45	56.00	-24.55	QP	-,·
6		1.3738	5.00	9.73	14.73	46.00	-31.27	AVG	_
7		2.4218	22.68	9.75	32.43	56.00	-23.57	QP	_,
8		2.4218	11.19	9.75	20.94	46.00	-25.06	AVG	_
9	*	6.0562	30.63	9.77	40.40	60.00	-19.60	QP	
10		6.0562	14.85	9.77	24.62	50.00	-25.38	AVG	
11		10.3422	27.13	9.66	36.79	60.00	-23.21	QP	
12		10.3422	11.64	9.66	21.30	50.00	-28.70	AVG	

F

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Ν
Test Mode:	Mode 2	Test Voltage :	AC120V/60Hz

Remark:

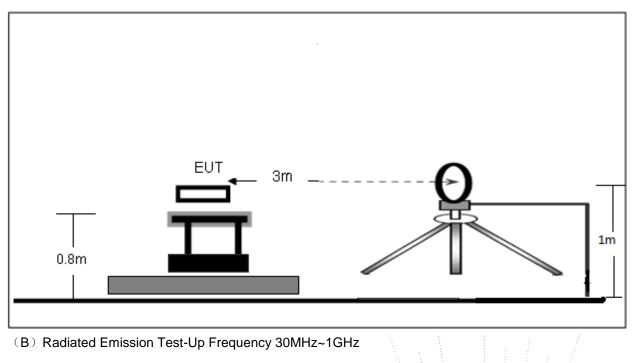
All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.
 Measurement = Reading Level + Correct Factor

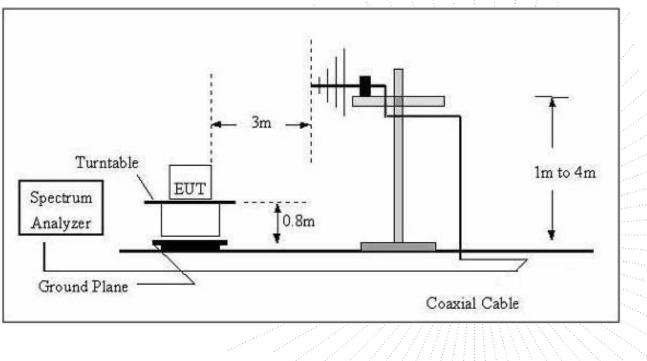
4. Over = Measurement - Limit

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz		dB	dBuV	dBuV	dB	Detector
1	0.1770	28.45	9.56	38.01	64.63	-26.62	QP
2	0.1770	-0.20	9.56	9.36	54.63	-45.27	AVG
3	0.8114	24.57	9.66	34.23	56.00	-21.77	QP
4	0.8114	9.21	9.66	18.87	46.00	-27.13	AVG
5	1.3739	22.43	9.73	32.16	56.00	-23.84	QP
6	1.3739	8.13	9.73	17.86	46.00	-28.14	AVG
7	2.4314	24.84	9.75	34.59	56.00	-21.41	QP
8	2.4314	12.98	9.75	22.73	46.00	-23.27	AVG
9 *	6.0855	31.78	9.77	41.55	60.00	-18.45	QP
10	6.0855	15.16	9.77	24.93	50.00	-25.07	AVG
11	7.8675	29.67	9.72	39.39	60.00	-20.61	QP
12	7.8675	13.66	9.72	23.38	50.00	-26.62	AVG

,TC 3C PR

Page: 15 of 47

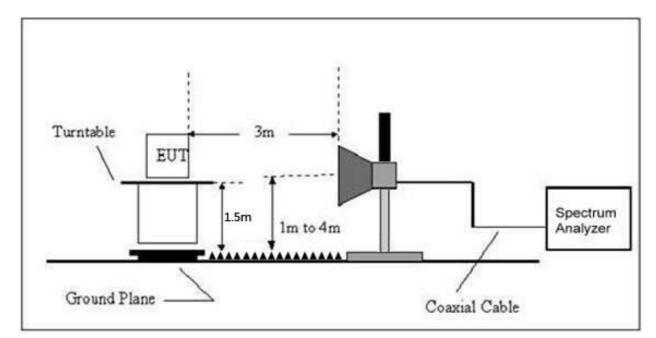

Edition: •B (



7. Radiated emissions

7.1 Block Diagram Of Test Setup

(A) Radiated Emission Test-Up Frequency Below 30MHz



TE,

检

(C) Radiated Emission Test-Up Frequency Above 1GHz

7.2 Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency	Field Strength	Distance	Field Strength Limit at 3m Distance		
(MHz)	uV/m	(m)	uV/m	dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40	
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾	
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾	
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾	

Limits Of Radiated Emission Measurement (Above 1000MHz)

	Limit (dBuV/m) (at 3M)	
Frequency (MHz)	Peak	Average
Above 1000	74	54

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C

(2)The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

Frequency Range Of Radiated Measurement

(a) For an intentional radiator the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least the frequency shown in this paragraph:

(1) If the intentional radiator operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

(2) If the intentional radiator operates at or above 10 GHz and below 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower.

(3) If the intentional radiator operates at or above 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 200 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.

(4) If the intentional radiator operates at or above 95 GHz: To the third harmonic of the highest fundamental frequency or to 750 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.

(5) If the intentional radiator contains a digital device, regardless of whether this digital device controls the functions of the intentional radiator or the digital device is used for additional control or function purposes other than to enable the operation of the intentional radiator, the frequency range shall be investigated up to the range specified in paragraphs (a) (1)through (4) of this section or the range applicable to the digital device, as shown in paragraph (b)(1) of this section, whichever is the higher frequency range of investigation.

7.3 Test procedure

Receiver Parameter	Setting		
Attenuation	Auto		
9kHz~150kHz	RBW 200Hz for QP		
150kHz~30MHz	RBW 9kHz for QP		
30MHz~1000MHz	RBW 120kHz for QP		

Spectrum Parameter	Setting
1-25GHz	RBW 1 MHz /VBW 1 MHz for Peak, RBW 1 MHz / VBW 10Hz for Average

Below 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b.The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the middlest channel, the Highest channel. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

7.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

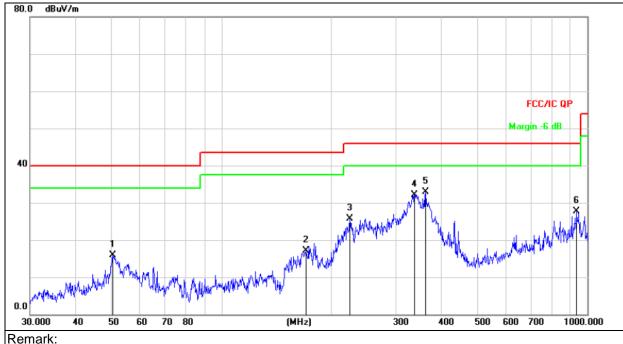
7.5 Test Result

Below 30MHz

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Test Voltage :	AC 120V/60Hz
Test Mode:	Mode 2	Polarization :	$H = \{1, 1, 1, 1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,$

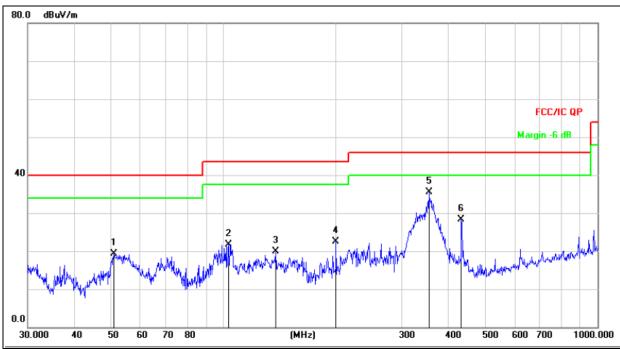
Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

Note:


The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported. Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Horizontal
Test Mode:	Mode 2	Test Voltage :	AC120V/60Hz


Factor = Antenna Factor + Cable Loss – Pre-amplifier. Measurement = Reading Level + Correct Factor Over = Measurement - Limit

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detecto
1		50.4089	31.52	-15.65	15.87	40.00	-24.13	QP
2		170.1948	36.73	-19.56	17.17	43.50	-26.33	QP
3		224.5193	42.41	-16.61	25.80	46.00	-20.20	QP
4		337.2155	45.36	-13.25	32.11	46.00	-13.89	QP
5	*	361.7139	45.46	-12.65	32.81	46.00	-13.19	QP
6		935.5463	32.01	-4.21	27.80	46.00	-18.20	QP

No.: BCTC/RF-EMC-007

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Vertical
Test Mode:	Mode 2	Test Voltage :	AC120V/60Hz

Remark:

1. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

2. Measurement = Reading Level + Correct Factor

3. Over = Measurement - Limit

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		50.9420	35.03	-15.73	19.30	40.00	-20.70	QP
2	1	03.0800	39.69	-17.96	21.73	43.50	-21.77	QP
3	1	37.9028	40.17	-20.25	19.92	43.50	-23.58	QP
4	1	99.9856	39.83	-17.37	22.46	43.50	-21.04	QP
5	* 3	54.1831	48.26	-12.74	35.52	46.00	-10.48	QP
6	4	32.5457	39.98	-11.74	28.24	46.00	-17.76	QP

JC JC PPR

Between 1GHz – 25GHz

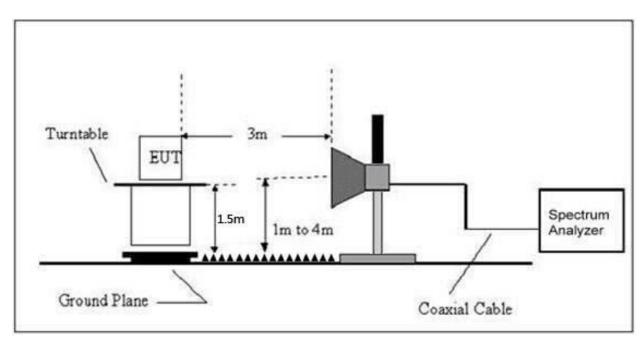
			GFSK				
Polar	Frequency	Reading Level	Correct Factor	Measure- ment	Limits	Over	Detector
(H/V)	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
			Low chanr	nel			
V	4806.00	74.99	-19.99	55.00	74.00	-19.00	PK
V	4806.00	66.73	-19.99	46.74	54.00	-7.26	AV
V	7209.00	66.84	-14.21	52.63	74.00	-21.37	PK
V	7209.00	56.07	-14.21	41.86	54.00	-12.14	AV
Н	4806.00	71.27	-19.99	51.28	74.00	-22.72	PK
Н	4806.00	62.26	-19.99	42.27	54.00	-11.73	AV
Н	7209.00	64.04	-14.21	49.83	74.00	-24.17	PK
Н	7209.00	55.91	-14.21	41.70	54.00	-12.30	AV
		•	Middle char	nel			
V	4882.00	73.74	-19.84	53.90	74.00	-20.10	PK
V	4882.00	65.11	-19.84	45.27	54.00	-8.73	AV
V	7323.00	64.25	-13.90	50.35	74.00	-23.65	PK
V	7323.00	54.53	-13.90	40.63	54.00	-13.37	AV
Н	4882.00	72.15	-19.84	52.31	74.00	-21.69	PK
Н	4882.00	62.11	-19.84	42.27	54.00	-11.73	AV
Н	7323.00	62.78	-13.90	48.88	74.00	-25.12	PK
Н	7323.00	55.24	-13.90	41.34	54.00	-12.66	AV
			High chanı	nel			
V	4960.00	75.51	-19.68	55.83	74.00	-18.17	PK
V	4960.00	66.72	-19.68	47.04	54.00	-6.96	AV
V	7440.00	69.10	-13.57	55.53	74.00	-18.47	PK
V	7440.00	58.37	-13.57	44.80	54.00	-9.20	AV
Н	4960.00	72.57	-19.68	52.89	74.00	-21.11	PK
Н	4960.00	62.63	-19.68	42.95	54.00	-11.05	AV
Н	7440.00	66.79	-13.57	53.22	74.00	-20.78	PK
Н	7440.00	58.53	-13.57	44.96	54.00	-9.04	AV

Remark:

1.Emission Level = Meter Reading + Factor, Factor = Antenna Factor + Cable Loss – Pre-amplifier. Over= Emission Level - Limit

2.If peak below the average limit, the average emission was no test.

3. In restricted bands of operation, The spurious emissions below the permissible value more than 20dB4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.


TE, T(OV

8. Radiated Band Emission Measurement And Restricted Bands Of Operation

8.1 Block Diagram Of Test Setup

Radiated Emission Test-Up Frequency Above 1GHz

8.2 Limit

FCC Part15 C Section 15.209 and 15.205

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

Limits Of Radiated Emission Measurement (Above 1000MHz)

Eroguopov (MHz)	Limit (dBuV/m) (at 3M)					
Frequency (MHz)	Peak Average					
Above 1000	74	54				

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3)Emission level (dBuV/m)=20log Emission level (uV/m).

8.3 Test procedure

Receiver Parameter	Setting
Attenuation	Auto
Start Frequency	2300MHz
Stop Frequency	2520
RB / VB (Emission In Restricted Band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b.The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the middlest channel, the Highest channel.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

8.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

8.5 Test Result

	Polar (H/V)	Frequency (MHz)	Reading Level	Correct Factor	Measure- ment (dBuV/m)	Lim (dBu		Result
	(1.0.0)	(11112)	(dBuV/m)	(dB)	PK	PK	AV	
			Lov	v Channel 24	403MHz			
	Н	2390.00	71.76	-25.43	46.33	74.00	54.00	PASS
	Н	2400.00	75.12	-25.40	49.72	74.00	54.00	PASS
	V	2390.00	72.51	-25.43	47.08	74.00	54.00	PASS
GFSK	V	2400.00	75.96	-25.40	50.56	74.00	54.00	PASS
GISK			Hig	h Channel 24	480MHz			
	Н	2483.50	74.30	-25.15	49.15	74.00	54.00	PASS
	Н	2500.00	69.43	-25.10	44.33	74.00	54.00	PASS
	V	2483.50	75.99	-25.15	50.84	74.00	54.00	PASS
	V	2500.00	72.29	-25.10	47.19	74.00	54.00	PASS

Remark:

1. Emission Level = Meter Reading + Factor,

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Over= Emission Level - Limit

2. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

3 In restricted bands of operation, The spurious emissions below the permissible value more than 20dB 4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Page: 25 of 4

9. Spurious RF Conducted Emissions

9.1 Block Diagram Of Test Setup

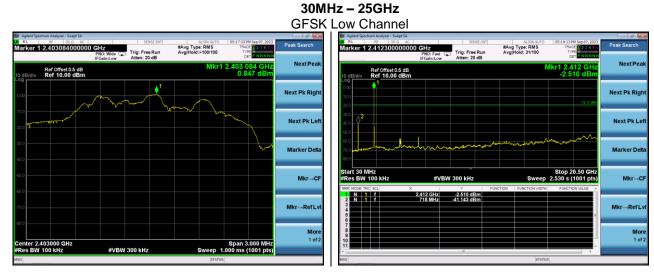
9.2 Limit

Regulation 15.247 (d),In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c))

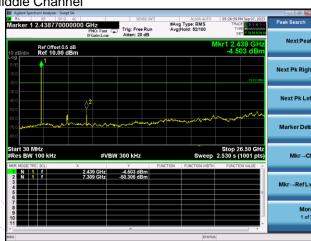
9.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

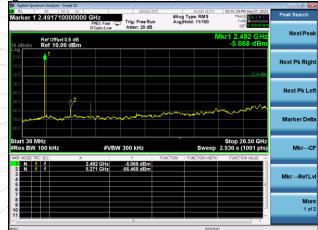
2. Set the spectrum analyzer: Below 30MHz: RBW = 100kHz, VBW = 300kHz, Sweep = auto Detector function = peak, Trace = max hold Above 30MHz: RBW = 100KHz, VBW = 300KHz, Sweep = auto Detector function = peak, Trace = max hold


No.: BCTC/RF-EMC-007

Page: 26 of 4


9.4 Test Result

Temperature :	26 ℃	Relative Humidity :	54%
Test Voltage :	DC 3.7V	Remark:	N/A

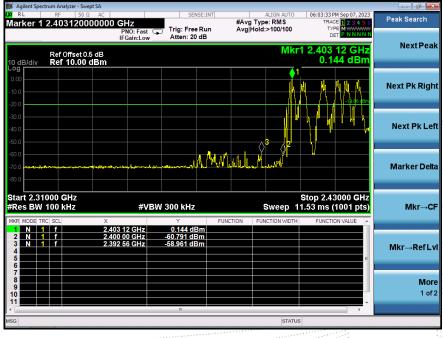

GFSK Middle Channel

GFSK High Channel

No.: BCTC/RF-EMC-007

Edition: B.0

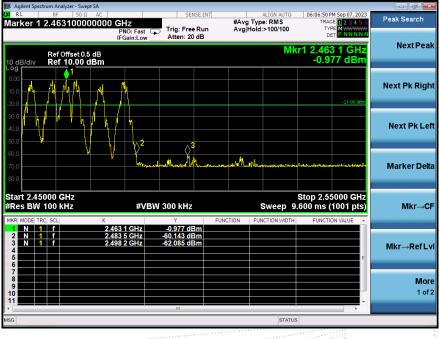
JC JC JC


》测

Agilent Spectrum Ana RL RF Iarker 1 2.403	50 Ω AC 31000000000	GHz PNO:Fast ⊂ IFGain:Low	SENSE:IT Trig: Free Run Atten: 20 dB	#Avg	ALIGN AUTO Type: RMS Hold:>100/100	05:12:58 PM Sep 07, 20 TRACE 1 2 3 4 TYPE M WWW DET P N N N	5 6 WW N N
0 dB/div Ref)ffset 0.5 dB 10.00 dBm				Mk	r1 2.403 1 GH 0.563 dB	
0.00 10.0 20.0						-19.44 d	Next Pk Righ
80.0					3		Next Pk Lef
50.0 70.0 30.0	ndfetchnengtoefaafmaatstroctmaat	and a share of the state of the	่มมารถ _{ึงห} างการรูกการก็จุณาใจก		(Auffred and a second	hand and and and and and and and and and	Marker Delt
tart 2.31000 G Res BW 100 k	Hz ×		V 300 kHz	FUNCTION	Sweep 9	Stop 2.41000 GH .600 ms (1001 pt FUNCTION VALUE	
1 N 1 f 2 N 1 f 3 N 1 f 4	2.40	3 1 GHz 0 0 GHz 5 4 GHz	0.563 dBm -39.616 dBm -56.800 dBm				Mkr→RefLv
7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9							Mon 1 of:
G			III		STATUS	•	

GFSK Transmitting Band edge-left side

GFSK Hopping Band edge-left side


No.: BCTC/RF-EMC-007

GFSK Transmitting Band edge-right side

GFSK Hopping Band edge-right side

10. 20 dB Bandwidth

10.1 Block Diagram Of Test Setup

10.2 Limit

N/A

10.3 Test procedure

- 1. Set RBW = 30kHz.
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

10.4 Test Result

Temperature :	26 ℃	Relative Humidity :	54%				[
Test Voltage :	DC 3.7V	Remark	N/A				
				11	11	1.1	

Modulation	Test Channel	Bandwidth(MHz)
GFSK	Low	2.322
GFSK	Middle	2.286
GFSK	High	2.276

Test plots GFSK Low Channel

GFSK Middle Channel

ENZ

No.: BCTC/RF-EMC-007

Page: 32 of 47

11. Maximum Peak Output Power

11.1 Block Diagram Of Test Setup

11.2 Limit

FCC Part15 (15.247) , Subpart C									
Section	Test Item	Limit	Frequency Range (MHz)	Result					
15.247(b)(1)	Peak Output Power	0.125 watt or 21dBm	2400-2483.5	PASS					

11.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 3MHz. VBW = 3MHz. Sweep = auto; Detector Function = Peak.

3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

11.4 Test Result

Temperature :	26 ℃	Relative Humidity :	54%				
Test Voltage :	DC 3.7V	Remark:	N/A				
						1.1	1. J.

Modulation	Test Channel	Output Power (dBm)	Limit (dBm)
GFSK	Low	1.019	21
GFSK	Middle	0.383	21
GFSK	High	-0.131	21

ТC

	GFSK Low	/ Channel		
Magilent Spectrum Analyzer - Swept SA				
Marker 1 2.402760000000 G	SENSE:INT Trig: Free Run Gain:Low Atten: 20 dB	ALIGN AUTO #Avg Type: RMS Avg Hold:>100/100	05:12:08 PM Sep 07, 2023 TRACE 1 2 3 4 5 6 TYPE M ******* DET P N N N N	Peak Search
Ref Offset 0.5 dB 10 dB/div Ref 10.00 dBm Log		Mkr	1 2.402 76 GHz 1.019 dBm	Next Peak
0.00	↓1			Next Pk Right
-10.0				Next Pk Left
-30.0				Marker Delta
-50 0				Mkr→CF
-70.0				Mkr→RefLvl
Center 2.403000 GHz #Res BW 3.0 MHz	#VBW 3.0 MHz	Sweep 1	Span 10.00 MHz 000 ms (1001 pts)	More 1 of 2
MSG		STATUS		

Test plots GFSK Low Channe

GFSK Middle Channel

000 ↓1 Next Pk Right 000 1 1 Next Pk Right 000 1 1 Next Pk Le 000 1 1 Next Pk Right 000 1 1 Next Pk Le 000 1 1 Next Pk Le 000 1 1 1 000 1 1 1 000 1 1 1 1 000 1 1 1 1 000 1 1 1 1 1 000 1 1 1 1 1 000 1 1 1 1 1 000 1 1 1 1 1 000 1 1 1		Gr	SK HIGH CH	annei	
arker 1 2.479690000000 GHz Free Run Avg Type: RMS Trace Peak Search PRO: Fast Ifg: Free Run Avg Type: RMS Trace Peak Search Next Pk Ref 1 -0.131 dBm Next Pk Right 00 1 1 Next Pk Right Next Pk Right 00 1 1 1 1 Next Pk Right 00 1 1 1 1 Next Pk Right 00 1 1 1 1 Next Pk Le Marker Delt 1 1 1 1 Next Pk Le Net Pk Right 1 1 1 1 1 1 00 1 1 1 1 1 1 1 00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <th></th> <th></th> <th></th> <th></th> <th></th>					
Ref Offset 0.5 dB Mkr1 2.479 69 GHz Next Pea 00 1 0		PNO: Fast Trig: Free	#Avg Type e Run Avg Hold:>	- RMS TRA	CE 12 2 4 5 6 Peak Search
000 1 Next Pk Right 000 1 1 Next Pk Right 000 1 1 Next Pk Right 000 1 1 Next Pk Let 000 1 1 1 000 1 1 1 1 000 1 1 1 1 000 1 1 1 1 000 1 1 1 1 000 1 1 1 1 000 1 1 1 1 1 000 1 1 1 1 1 1 000 1 1 1 1 1 1 1 000 1 1 1 1 1	0 dB/div Ref 10.00 dBm	IFGam:Low Atten: 20		Mkr1 2.479	69 GHz Next Pe
Next Pk Le Marker Det Marker Det Marker Det Marker Det Mkr→Ref L Mkr→Ref L Mor Span 10.00 MHz WBW 3.0 MHz Sweep 1.000 ms (1001 pts)		↓ ¹			Next Pk Ri
00 Image: Constraint of the second of t	0.0				Next Pk L
00 Image: Constraint of the second seco	0.0				Marker D
00 00 00 00 00 00 00 00					
enter 2.480000 GHz Res BW 3.0 MHz	0.0				Mkr-4
enter 2.480000 GHz Res BW 3.0 MHz #VBW 3.0 MHz Sweep 1.000 ms (1001 pts)					Mkr→Ref
	enter 2.480000 GHz			Span 1	10.00 MHz
		#VBW 3.0 MHz	s		(1001 pts)

GFSK High Channel

No.: BCTC/RF-EMC-007

Page: 35 of 47

Edition: B.0

ΞD

12. Hopping Channel Separation

12.1 Block Diagram Of Test Setup

12.2 Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 0.125W.

12.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 30kHz. VBW = 100kHz , Span = 10MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

12.4 Test Result

Modulation	Test Channel	Separation (MHz)	Limit(MHz)	Result
GFSK	Low	4.01	1.548	PASS
GFSK	Middle	2.00	1.524	PASS
GFSK	High	6.99	1.517	PASS

Page: 36 of 47

ALIGN AUTO #Avg Type: RMS Avg|Hold:>100/100 Peak Search Marker 1 Δ 4.010000000 MHz Trig: Free Run Atten: 20 dB PNO: Wide IFGain:Low NextPeak ΔMkr1 4.01 MHz -0.200 dB Ref Offset 0.5 dB Ref 10.00 dBm 0 dB/div Next Pk Right 1Δ2 M² MM h ٧W Next Pk Left WIND I Marker Delta Mkr→CF Mkr→RefLvl More 1 of 2 Center 2.404425 GHz #Res BW 30 kHz Span 10.00 MHz Sweep 10.60 ms (1001 pts) #VBW 100 kHz

Test plots GFSK Low Channel

GFSK Middle Channel

No.: BCTC/RF-EMC-007

Page: 38 of 47

Edition: B.0

F

13. Number Of Hopping Frequency

13.1 Block Diagram Of Test Setup

13.2 Limit

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

13.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 100kHz. VBW = 300kHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
4. Set the spectrum analyzer: Start Frequency = 2.4GHz, Stop Frequency = 2.4835GHz. Sweep=auto;

JC JC PPR

No.: BCTC/RF-EMC-007

Page: 39 of 4

13.4 Test Result

Test Plots: 16 Channels in total

No.: BCTC/RF-EMC-007

Page: 40 of 47

Edition: B.0

检

14. Dwell Time

14.1 Block Diagram Of Test Setup

14.2 Limit

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

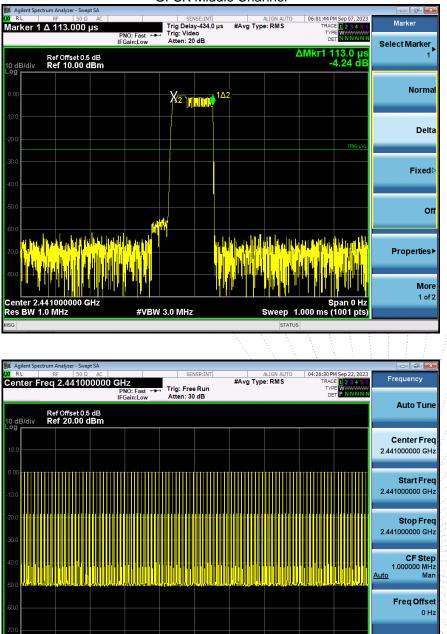
14.3 Test procedure

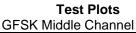
1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set spectrum analyzer span = 0. Centred on a hopping channel;

3. Set RBW = 1MHz and VBW = 3MHz.Sweep = as necessary to capture the entire dwell time per hopping channel.

4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).


No.: BCTC/RF-EMC-007


Page: 41 of 47

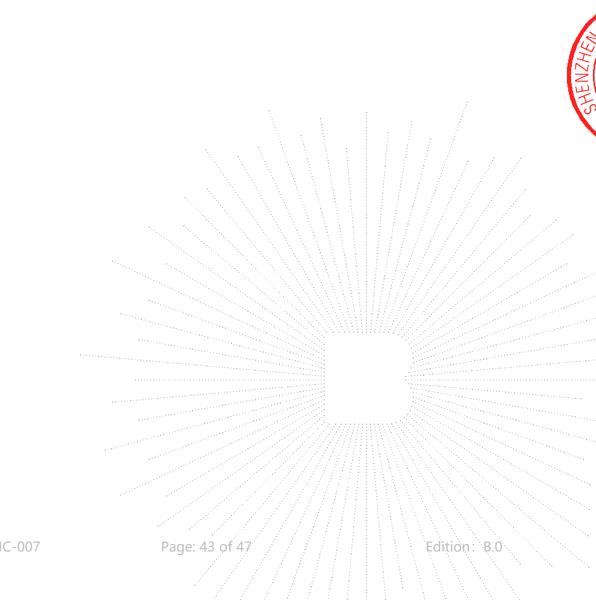
14.4 Test Result

Modulation	Channel Data	pulse time(ms)	Burst Number	Dwell Time(ms)	Limits(s)	Result
GFSK	Middle	0.113	101	11.413	0.4	PASS

Center 2.441000000 GHz Res BW 1.0 MHz

#VBW 3.0 MHz

Span 0 Hz Sweep 6.400 s (1001 pts)


15. Antenna Requirement

15.1 Limit

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

15.2 Test Result

The EUT antenna is Internal antenna, fulfill the requirement of this section.

No.: BCTC/RF-EMC-007

16. EUT Photographs

EUT Photo 1

EUT Photo 2

No.: BCTC/RF-EMC-007

17. EUT Test Setup Photographs

Conducted Measurement Photo

Radiated Measurement Photos

No.: BCTC/RF-EMC-007

Edition: B.0

测枪

No.: BCTC/RF-EMC-007

Page: 46 of 47

Edition: B.0

C /ED

STATEMENT

1. The equipment lists are traceable to the national reference standards.

2. The test report can not be partially copied unless prior written approval is issued from our lab.

3. The test report is invalid without the "special seal for inspection and testing".

4. The test report is invalid without the signature of the approver.

5. The test process and test result is only related to the Unit Under Test.

6. Sample information is provided by the client and the laboratory is not responsible for its authenticity.

7. The quality system of our laboratory is in accordance with ISO/IEC17025.

8. If there is any objection to this test report, the client should inform issuing laboratory within 15 days from the date of receiving test report.

Address:

1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

TEL: 400-788-9558

P.C.: 518103

FAX: 0755-33229357

Website: http://www.chnbctc.com

E-Mail: bctc@bctc-lab.com.cn

***** END *****

No.: BCTC/RF-EMC-007

Page: 47 of 47