FCC Test Report Report No.: AGC01612200101FE02 **FCC ID** : 2AR8X-MH670 **APPLICATION PURPOSE** : Original Equipment **PRODUCT DESIGNATION**: MH670 gaming headphones **BRAND NAME** : COOLER MASTER MODEL NAME : MH-670 **APPLICANT** : Cooler Master Technology Inc. **DATE OF ISSUE** : Jan. 17, 2020 **STANDARD(S)** : FCC Part 15.247 **REPORT VERSION**: V1.0 ### Attestation of Global Compliance (Shenzhen) Co., Ltd #### **CAUTION:** This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context. Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Page 2 of 54 #### REPORT REVISE RECORD | Report Version | Revise Time | Issued Date | Valid Version | Notes | |----------------|-------------|---------------|---------------|-----------------| | V1.0 | 9/ | Jan. 17, 2020 | Valid | Initial Release | Page 3 of 54 #### **TABLE OF CONTENTS** | 1. VERIFICATION OF COMPLIANCE | 5 | |---|----| | 2.GENERAL INFORMATION | 6 | | 2.1PRODUCT DESCRIPTION | 6 | | 2.2. TABLE OF CARRIER FREQUENCYS | 6 | | 2.3 RELATED SUBMITTAL(S)/GRANT(S) | 8 | | 2.4TEST METHODOLOGY | 8 | | 2.5 SPECIAL ACCESSORIES | | | 2.6 EQUIPMENT MODIFICATIONS | | | 3. MEASUREMENT UNCERTAINTY | | | 4. DESCRIPTION OF TEST MODES | | | 5. SYSTEM TEST CONFIGURATION | | | 5.1 CONFIGURATION OF TESTED SYSTEM | 11 | | 5.2 EQUIPMENT USED IN TESTED SYSTEM | | | 5.3. SUMMARY OF TEST RESULTS | 11 | | 6. TEST FACILITY | 12 | | 7. PEAK OUTPUT POWER | 13 | | 7.1. MEASUREMENT PROCEDURE | 13 | | 7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) | | | 7.3. LIMITS AND MEASUREMENT RESULT | 14 | | 8. 6 DB BANDWIDTH | 18 | | 8.1. MEASUREMENT PROCEDURE | 18 | | 8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) | 18 | | 8.3. LIMITS AND MEASUREMENT RESULTS | 18 | | 9.1. MEASUREMENT PROCEDURE | 20 | | 9.1. MEASUREMENT PROCEDURE | 20 | | 9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) | | | 9.3. MEASUREMENT EQUIPMENT USED | | | 9.4. LIMITS AND MEASUREMENT RESULT | | | 10. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY | 25 | #### Page 4 of 54 | 10.1 MEASUREMENT PROCEDURE | 25 | |---|----| | 10.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) | 25 | | 10.3 MEASUREMENT EQUIPMENT USED | 25 | | 10.4 LIMITS AND MEASUREMENT RESULT | 25 | | 11. RADIATED EMISSION | 29 | | 11.1. MEASUREMENT PROCEDURE | 29 | | 11.2. TEST SETUP | | | 11.3. LIMITS AND MEASUREMENT RESULT | | | 11.4. TEST RESULT | 31 | | 12. FCC LINE CONDUCTED EMISSION TEST | 41 | | 12.1. LIMITS OF LINE CONDUCTED EMISSION TEST | 41 | | 12.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST | 41 | | 12.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST | 42 | | 12.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST | | | 12.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST | 43 | | APPENDIX A: PHOTOGRAPHS OF TEST SETUP | 45 | | APPENDIX B: PHOTOGRAPHS OF EUT | 47 | Page 5 of 54 #### 1. VERIFICATION OF COMPLIANCE | Cooler Master Technology Inc. | | |---|--| | 8F., No788-1, Zhongzheng Rd., Zhonghe Dist., New Taipei City 23586, Taiwan | | | GUANGDONG TAKSTAR ELECTRONIC CO., LTD. | | | DINGGANG, NO.5 TEAM, XIALIAO VILLAGE, LONGXI TOWN, BOLUO COUNTY, HUIZHOU CITY | | | Cooler Master Technology Inc. | | | 8F., No788-1, Zhongzheng Rd., Zhonghe Dist., New Taipei City 23586, Taiwan | | | MH670 gaming headphones | | | COOLER MASTER | | | MH-670 | | | Jan. 02, 2020~Jan. 17, 2020 | | | No any deviation from the test method. | | | Normal | | | Pass | | | AGCRT-US-BLE/RF | | | | | #### We hereby certify that: The above equipment was tested by Attestation of Global Compliance (Shenzhen) Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with radiated emission limits of FCC part 15.247. | Prepared By | Injon Hurong | | |-------------|---------------------------------------|---------------| | C CC T | Donjon Huang
(Project Engineer) | Jan. 17, 2020 | | Reviewed By | Max Zhang | | | NGC C | Max Zhang
(Reviewer) | Jan. 17, 2020 | | Approved By | Forrest Oci | | | CC CC | Forrest Lei
(Authorized Officer) | Jan. 17, 2020 | Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community, Page 6 of 54 #### 2.GENERAL INFORMATION #### 2.1PRODUCT DESCRIPTION The EUT is designed as a "MH670 gaming headphones". It is designed by way of utilizing the GFSK technology to achieve the system operation. A major technical description of EUT is described as following | Operation Frequency | 2.40335 GHz to 2.47935GHz | | | |---|---|--|--| | RF Output Power | 2.794dBm(Max) | | | | Modulation | GFSK | | | | Number of channels | 39 Channel | | | | Antenna Designation | Two PCB Antenna which cannot support MIMO (Comply with requirements of the FCC part 15.203) | | | | Antenna Gain | 0.4dBi | | | | Hardware Version | V0.3 | | | | Software Version | V0.6 | | | | Power Supply DC 3.7V by battery or DC 5V by adapter | | | | #### 2.2. TABLE OF CARRIER FREQUENCYS | Frequency Band | Channel Number | Frequency | |--------------------|----------------|------------| | | 1 | 2.40335GHz | | 100 CC | 2 | 2.40535GHz | | | 3 | 2.40735GHz | | -C | 4 | 2.40935GHz | | NO CO | 5 | 2.41135GHz | | | 6 | 2.41335GHz | | ,0 | 7 | 2.41535GHz | | 2.40335~2.47935GHz | 8 | 2.41735GHz | | | 9 0 | 2.41935GHz | | , CO . | 10 | 2.42135GHz | | 100 T | 11) | 2.42335GHz | | · | 12 | 2.42535GHz | | CO C | 13 | 2.42735GHz | | | 14 | 2.42935GHz | Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail:agc@agc-cert.com Servic Service Hotline: 400 089 2118 Report No.: AGC01612200101FE02 Page 7 of 54 | 15 | 2.43135GHz | |----|------------| | 16 | 2.43335GHz | | 17 | 2.43535GHz | | 18 | 2.43735GHz | | 19 | 2.43935GHz | | 20 | 2.44135GHz | | 21 | 2.44335GHz | | 22 | 2.44535GHz | | 23 | 2.44735GHz | | 24 | 2.44935GHz | | 25 | 2.45135GHz | | 26 | 2.45335GHz | | 27 | 2.45535GHz | | 28 | 2.45735GHz | | 29 | 2.45935GHz | | 30 | 2.46135GHz | | 31 | 2.46335GHz | | 32 | 2.46535GHz | | 33 | 2.46735GHz | | 34 | 2.46935GHz | | 35 | 2.47135GHz | | 36 | 2.47335GHz | | 37 | 2.47535GHz | | 38 | 2.47735GHz | | 39 | 2.47935GHz | Page 8 of 54 #### 2.3 RELATED SUBMITTAL(S)/GRANT(S) This submittal(s) (test report) is intended for **FCC ID: 2AR8X-MH670** filing to comply with the FCC Part 15.247 requirements. #### 2.4TEST METHODOLOGY Both conducted and radiated testing was performed according to the procedures in ANSI C63.10 (2013). Radiated testing was performed at an antenna to EUT distance 3 meters. #### 2.5 SPECIAL ACCESSORIES Refer to section 2.2. #### 2.6 EQUIPMENT MODIFICATIONS Not available for this EUT intended for grant. Page 9 of 54 #### 3. MEASUREMENT UNCERTAINTY The reported uncertainty of measurement y ±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%. - Uncertainty of Conducted Emission, Uc = ±3.2 dB - Uncertainty of Radiated Emission below 1GHz, Uc = ±3.9 dB - Uncertainty of Radiated Emission above 1GHz, Uc = ±4.8 dB - Uncertainty of total RF power, conducted, $Uc = \pm 0.8dB$ - Uncertainty of RF power density, conducted, Uc = ±2.6dB - Uncertainty of spurious emissions, conducted, Uc = ±2.7dB - Uncertainty of Occupied Channel Bandwidth: Uc = ±2 % Page 10 of 54 #### 4. DESCRIPTION OF TEST MODES | NO. | TEST MODE DESCRIPTION | | | |-----|-----------------------|--|--| | 1 | Low channel TX | | | | 2 | Middle channel TX | | | | 3 | High channel TX | | | #### Note: - 1. Only the result of the worst case was recorded in the report, if no other cases. - 2. For Radiated Emission, 3axis were chosen for testing for each applicable mode. - 3. For Conducted Test method, a temporary antenna connector is provided by the manufacture. - 4. EUT connects the computer through the serial port tool (USB TO TTL), and then enters the test mode through the test software **VMI debug v1.1.6.56**. Page 11 of 54 #### 5. SYSTEM TEST CONFIGURATION #### **5.1 CONFIGURATION OF TESTED SYSTEM** #### **5.2 EQUIPMENT USED IN TESTED SYSTEM** | Item | Equipment | Model No. | ID or Specification | Remark | |------|----------------------------|-----------|---------------------|---------| | 1 | MH670 gaming
headphones | MH-670 | 2AR8X-MH670 | EUT | | 2 | Adapter | MDY-08-ES | DC5V/2A | Support | #### 5.3. SUMMARY OF TEST RESULTS | FCC RULES | DESCRIPTION OF TEST | RESULT | |---------------|--|-----------| | 15.247 (b)(3) | Peak Output Power | Compliant | | 15.247 (a)(2) | 6 dB Bandwidth | Compliant | | 15.247 (d) | Conducted Spurious Emission | Compliant | | 15.247 (e) | Maximum Conducted Output Power Density | Compliant | | 15.209 | Radiated Emission | Compliant | | 15.207 | Conducted Emission | Compliant | Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail:agc@agc-cert.com Service Hotline:400 089 2118 Page 12 of 54 #### 6. TEST FACILITY | Test Site | Attestation of Global Compliance (Shenzhen) Co., Ltd | | | |--------------------------------------|--|--|--| | Location | 1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China | | | | Designation Number | CN1259 | | | | FCC Test Firm
Registration Number | 975832 | | | | A2LA Cert. No. | 5054.02 | | | | Description | Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by A2LA | | | #### TEST EQUIPMENT OF CONDUCTED EMISSION TEST | Equipment | Manufacturer | Model | S/N | Cal. Date | Cal. Due | |---------------|--------------|-----------------------|--------|---------------|---------------| | TEST RECEIVER | R&S | ESPI | 101206 | Jun. 12, 2019 | Jun. 11, 2020 | | LISN | R&S | ESH2-Z5 | 100086 | Aug. 26, 2019 | Aug. 25, 2020 | | Test software | R&S | ES-K1
(Ver. V1.71) | N/A | N/A | N/A | #### **TEST EQUIPMENT OF RADIATED EMISSION TEST** | Equipment | Manufacturer | Model | S/N | Cal. Date | Cal. Due | |--------------------------------------|----------------|--------------|------------|---------------|---------------| | TEST RECEIVER | R&S | ESCI | 10096 | Jun. 12, 2019 | Jun. 11, 2020 | | EXA Signal
Analyzer | Aglient | N9010A | MY53470504 | Dec. 12, 2019 | Dec. 11, 2020 | | 2.4GHz Fliter | EM Electronics | 2400-2500MHz | N/A | Feb. 27, 2019 | Feb. 26, 2020 | | Attenuator | ZHINAN | E-002 | N/A | Aug. 26, 2019 | Aug. 25, 2020 | | Horn antenna | SCHWARZBECK | BBHA 9170 | #768 | Sep. 09, 2019 | Sep. 08, 2021 | | Active loop
antenna
(9K-30MHz) | ZHINAN | ZN30900C | 18051 | Jun. 14, 2018 | Jun. 13, 2020 | | Double-Ridged
Waveguide Horn | ETS LINDGREN | 3117 | 00034609 | May. 26, 2018 | May. 25, 2020 | | Broadband
Preamplifier | ETS LINDGREN | 3117PA | 00225134 | Oct. 15, 2019 | Oct. 14, 2020 | | ANTENNA | SCHWARZBECK | VULB9168 | 494 | Jan. 09, 2019 | Jan. 08, 2021 | | Test software | Tonscend | JS32-RE | N/A | N/A | N/A | Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community, Page 13 of 54 #### 7. PEAK OUTPUT POWER #### 7.1. MEASUREMENT PROCEDURE For peak power test: - 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator - 2. RBW≥DTS bandwidth - 3. VBW≥3*RBW. - 4. SPAN≥VBW. - 5. Sweep: Auto. - 6. Detector function: Peak. - 7. Trace: Max hold. Allow trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power, after any corrections for external attenuators and cables. ## 7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) PEAK POWER TEST SETUP Page 14 of 54 #### 7.3. LIMITS AND MEASUREMENT RESULT #### Antenna 1 | PEAK OUTPUT POWER MEASUREMENT RESULT FOR GFSK MOUDULATION | | | | | | |---|---------------------|-------------------------|--------------|--|--| | Frequency
(GHz) | Peak Power
(dBm) | Applicable Limits (dBm) | Pass or Fail | | | | 2.40335 | 2.794 | 30 | Pass | | | | 2.44135 | 2.116 | 30 | Pass | | | | 2.47935 | 1.722 | 30 | Pass | | | Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Service Service Hotline: 400 089 2118 #### CH20 #### **CH39** Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Page 16 of 54 #### Antenna 2 | PEAK OUTPUT POWER MEASUREMENT RESULT FOR GFSK MOUDULATION | | | | | | | |---|---------------------|-------------------------|--------------|--|--|--| | Frequency
(GHz) | Peak Power
(dBm) | Applicable Limits (dBm) | Pass or Fail | | | | | 2.40335 | 2.713 | 30 | Pass | | | | | 2.44135 | 2.028 | 30 | Pass | | | | | 2.47935 | 1.567 | 30 | Pass | | | | Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Service Service Hotline: 400 089 2118 CH20 Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Page 18 of 54 #### 8. 6 DB BANDWIDTH #### **8.1. MEASUREMENT PROCEDURE** - 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator - 2. Set the EUT Work on the top, the middle and the bottom operation frequency individually. - 3. Set SPA Centre Frequency = Operation Frequency, RBW= 100 KHz, VBW ≥ 3×RBW. - 4. Set SPA Trace 1 Max hold, then View. Note: The EUT was tested according to ANSI C63.10 for compliance to FCC PART 15.247 requirements. #### 8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) The same as described in section 7.2. #### **8.3. LIMITS AND MEASUREMENT RESULTS** | LIMITS AND MEASUREMENT RESULT | | | | | | | |-------------------------------|----------------|-------------------|----------|--|--|--| | Ampliaghla Limita | | Applicable Limits | | | | | | Applicable Limits | Test Data | (MHz) | Criteria | | | | | >500KHZ | Low Channel | 1.650 | PASS | | | | | | Middle Channel | 1.625 | PASS | | | | | | High Channel | 1.628 | PASS | | | | #### TEST PLOT OF BANDWIDTH FOR LOW CHANNEL Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China #### TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL #### TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL Note: All modes of both antennas were tested, and the report only showed the worst data for the worst antenna (Antenna 1). Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Page 20 of 54 #### 9. CONDUCTED SPURIOUS EMISSION #### 9.1. MEASUREMENT PROCEDURE - 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator - 2, Set the EUT Work on the top, the middle and the bottom operation frequency individually. - 3. Set SPA Trace 1 Max hold, then View. Note: The EUT was tested according to ANSI C63.10 for compliance to FCC PART 15.247 requirements. #### 9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) The same as described in section 7.2. #### 9.3. MEASUREMENT EQUIPMENT USED The same as described in section 6. #### 9.4. LIMITS AND MEASUREMENT RESULT | LIMITS AND MEASUREMENT RESULT | | | | | | | |--|--|--------------|--|--|--|--| | Augusta alda Limita | Measurement Res | sult | | | | | | Applicable Limits | Test Data | Criteria | | | | | | In any 100 KHz Bandwidth Outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produce by the intentional radiator shall be at least 20 dB below that in 100KHz bandwidth within the band that contains the highest level of the desired power. | At least -20dBc than the reference level | PASS
PASS | | | | | TEST RESULT FOR ENTIRE FREQUENCY RANGE #### GFSK MODULATION IN LOW CHANNEL Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China E-mail:agc@agc-cert.com Tel: +86-755 2523 4088 Service Hotline: 400 089 2118 #### GFSK MODULATION IN MIDDLE CHANNEL Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Mkr→Ref Lv More Page 23 of 54 #### GFSK MODULATION IN HIGH CHANNEL Peak Search Marker 1 2.479405585186 GHz Avg Type: Log-Pwr Avg|Hold:>100/100 Trig: Free Run #Atten: 30 dB Next Peak Mkr1 2.479 -1.988 dBm Ref 20.00 dBm **Next Pk Right** Next Pk Left Marker Delta Mkr→CF Mkr→RefLv More Center 2.479350 GHz #Res BW 100 kHz Span 5.000 MHz Sweep 2.000 ms (30000 pts) #VBW 300 kHz Peak Search Avg Type: Log-Pw Avg|Hold:>100/100 rker 3 16.442495749858 GHz **Next Peak** Mkr3 16.442 5 GHz -52.903 dBm Ref 20.00 dBm **Next Pk Right Next Pk Left** Marker Delta Start 30 MHz #Res BW 100 kHz Stop 25.00 GHz **#VBW** 300 kHz Sweep 2.388 s (30000 pts) Mkr→CF #### Note: - 1. The peak emissions without marker on the above plots are fundamental wave and need not to compare with the limit - 2. All modes of both antennas were tested, and the report only showed the worst data for the worst antenna (Antenna 1). Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China STATUS **TEST RESULT FOR BAND EDGE** ### GFSK MODULATION IN LOW CHANNEL #### GFSK MODULATION IN HIGH CHANNEL Note: All modes of both antennas were tested, and the report only showed the worst data for the worst antenna (Antenna 1). Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Page 25 of 54 #### 10. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY #### **10.1 MEASUREMENT PROCEDURE** - (1). Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator - (2). Set the EUT Work on the top, the middle and the bottom operation frequency individually. - (3). Set SPA Trace 1 Max hold, then View. Note: The method of PKPSD in the KDB 558074 item 10.2 was used in this testing. #### 10.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) Refer To Section 7.2. #### **10.3 MEASUREMENT EQUIPMENT USED** Refer To Section 6. #### **10.4 LIMITS AND MEASUREMENT RESULT** #### Antenna 1 | Channel No. | PSD
(dBm/3kHz) | Limit
(dBm/3kHz) | Result | |----------------|-------------------|---------------------|--------| | Low Channel | -13.539 | 8 | Pass | | Middle Channel | -15.145 | 8 | Pass | | High Channel | -14.232 | 8 | Pass | #### TEST PLOT OF SPECTRAL DENSITY FOR LOW CHANNEL Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China TEST PLOT OF SPECTRAL DENSITY FOR MIDDLE CHANNEL #### TEST PLOT OF SPECTRAL DENSITY FOR HIGH CHANNEL Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Page 27 of 54 #### Antenna 2 | Channel No. | PSD
(dBm/3kHz) | Limit
(dBm/3kHz) | Result | |----------------|-------------------|---------------------|--------| | Low Channel | -14.055 | 8 | Pass | | Middle Channel | -15.088 | 8 | Pass | | High Channel | -14.798 | 8 | Pass | #### TEST PLOT OF SPECTRAL DENSITY FOR LOW CHANNEL TEST PLOT OF SPECTRAL DENSITY FOR MIDDLE CHANNEL #### TEST PLOT OF SPECTRAL DENSITY FOR HIGH CHANNEL Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Page 29 of 54 #### 11. RADIATED EMISSION #### 11.1. MEASUREMENT PROCEDURE - 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable. - 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation. - 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization. - 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading. - Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode. - 6. For emissions above 1GHz, use 1MHz RBW and 3MHz VBW for peak reading. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. - 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values. - 8.If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz. - 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported. - 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case. #### 11.2. TEST SETUP #### Radiated Emission Test-Setup Frequency Below 30MHz #### RADIATED EMISSION TEST SETUP 30MHz-1000MHz #### RADIATED EMISSION TEST SETUP ABOVE 1000MHz Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Service Hotline:400 089 2118 Page 31 of 54 #### 11.3. LIMITS AND MEASUREMENT RESULT 15.209 Limit in the below table has to be followed | Frequencies
(MHz) | Field Strength (micorvolts/meter) | Measurement Distance (meters) | | |----------------------|-----------------------------------|-------------------------------|--| | 0.009~0.490 | 2400/F(KHz) | 300 | | | 0.490~1.705 | 24000/F(KHz) | 30 | | | 1.705~30.0 | 30 | 30 | | | 30~88 | 100 | 3 | | | 88~216 | 150 | 3 | | | 216~960 | 200 | 3 | | | Above 960 | 500 | 3 | | Note: All modes were tested For restricted band radiated emission, the test records reported below are the worst result compared to other modes. #### 11.4. TEST RESULT #### **RADIATED EMISSION BELOW 30MHZ** No emission found between lowest internal used/generated frequencies to 30MHz. Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Service Hotline:400 089 2118 Page 32 of 54 #### **RADIATED EMISSION BELOW 1GHZ** | EUT | MH670 gaming headphones | Model Name | MH-670 | |-------------|-------------------------|-------------------|----------------| | Temperature | 25° C | Relative Humidity | 55.4% | | Pressure | 960hPa | Test Voltage | Normal Voltage | | Test Mode | Mode 1 | Antenna | Horizontal | | NO. | Freq.
[MHz] | Level
[dBµV/m] | Factor
[dB] | Limit
[dBµV/m] | Margin
[dB] | Height
[cm] | Angle
[°] | Polarity | |-----|----------------|-------------------|----------------|-------------------|----------------|----------------|--------------|------------| | 1 | 36.7900 | 29.81 | 14.16 | 40.00 | 10.19 | 150 | 241 | Horizontal | | 2 | 57.1600 | 30.51 | 14.13 | 40.00 | 9.49 | 150 | 247 | Horizontal | | 3 | 95.9600 | 30.21 | 10.93 | 43.50 | 13.29 | 150 | 110 | Horizontal | | 4 | 128.9400 | 29.52 | 14.08 | 43.50 | 13.98 | 150 | 234 | Horizontal | | 5 | 245.3400 | 36.08 | 14.76 | 46.00 | 9.92 | 150 | 287 | Horizontal | | 6 | 675.0500 | 33.90 | 25.56 | 46.00 | 12.10 | 150 | 290 | Horizontal | **RESULT: PASS** Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail:agc@agc-cert.com Service Hotline:400 089 2118 Page 33 of 54 | EUT | MH670 gaming headphones | Model Name | MH-670 | |-------------|-------------------------|-------------------|----------------| | Temperature | 25° C | Relative Humidity | 55.4% | | Pressure | 960hPa | Test Voltage | Normal Voltage | | Test Mode | Mode 1 | Antenna | Vertical | | NO. | Freq.
[MHz] | Level
[dBµV/m] | Factor
[dB] | Limit
[dBµV/m] | Margin
[dB] | Height
[cm] | Angle
[°] | Polarity | |-----|----------------|-------------------|----------------|-------------------|----------------|----------------|--------------|----------| | 1 | 36.7900 | 31.27 | 14.16 | 40.00 | 8.73 | 150 | 279 | Vertical | | 2 | 45.5200 | 35.03 | 14.80 | 40.00 | 4.97 | 150 | 345 | Vertical | | 3 | 57.1600 | 33.95 | 14.13 | 40.00 | 6.05 | 150 | 146 | Vertical | | 4 | 127.9700 | 28.91 | 14.01 | 43.50 | 14.59 | 150 | 191 | Vertical | | 5 | 260.8600 | 31.92 | 14.63 | 46.00 | 14.08 | 150 | 39 | Vertical | | 6 | 537.3100 | 33.95 | 22.98 | 46.00 | 12.05 | 150 | 7 | Vertical | #### **RESULT: PASS** #### Note - 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit. - 2. All test modes had been tested. The mode 1 is the worst case and recorded in the report. - 3. All modes of both antennas were tested, and the report only showed the worst data for the worst antenna (Antenna 1). Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Page 34 of 54 #### **RADIATED EMISSION ABOVE 1GHZ** | EUT | MH670 gaming headphones | Model Name | MH-670 | |-------------|-------------------------|-------------------|----------------| | Temperature | 25° C | Relative Humidity | 55.4% | | Pressure | 960hPa | Test Voltage | Normal Voltage | | Test Mode | Mode 1 | Antenna | Horizontal | | Frequency | Meter Reading | Factor | Emission Level | Limits | Margin | Value Trees | |-----------|---------------|--------|----------------|----------|--------|-------------| | (MHz) | (dBµV) | (dB) | (dBµV/m) | (dBµV/m) | (dB) | Value Type | | 4806.7 | 47.58 | 0.08 | 47.66 | 74 | -26.34 | peak | | 4806.7 | 40.96 | 0.08 | 41.04 | 54 | -12.96 | AVG | | 7210.05 | 45.76 | 2.21 | 47.97 | 74 | -26.03 | peak | | 7210.05 | 39.74 | 2.21 | 41.95 | 54 | -12.05 | AVG | | | ® | | | | © | | | | | (8) | | | | (2) | | EUT | MH670 gaming headphones | Model Name | MH-670 | |-------------|-------------------------|-------------------|----------------| | Temperature | 25° C | Relative Humidity | 55.4% | | Pressure | 960hPa | Test Voltage | Normal Voltage | | Test Mode | Mode 1 | Antenna | Vertical | | (dBµV) | (AD) | (-ID) //) | | | Value Type | |------------|----------------|--------------------------|---|---|---| | (G D W V) | (dB) | (dBµV/m) | (dBµV/m) | (dB) | 10.00 .) | | 45.75 | 0.08 | 45.83 | 74 | -28.17 | peak | | 40.33 | 0.08 | 40.41 | 54 | -13.59 | AVG | | 42.28 | 2.21 | 44.49 | 74 | -29.51 | peak | | 36.96 | 2.21 | 39.17 | 54 | -14.83 | AVG | | <u> </u> | (8) | | 64 | -6- | | | | 40.33
42.28 | 40.33 0.08
42.28 2.21 | 40.33 0.08 40.41 42.28 2.21 44.49 | 40.33 0.08 40.41 54 42.28 2.21 44.49 74 | 40.33 0.08 40.41 54 -13.59 42.28 2.21 44.49 74 -29.51 | Page 35 of 54 | EUT | MH670 gaming headphones | Model Name | MH-670 | |-------------|-------------------------|-------------------|----------------| | Temperature | 25° C | Relative Humidity | 55.4% | | Pressure | 960hPa | Test Voltage | Normal Voltage | | Test Mode | Mode 2 | Antenna | Horizontal | | Frequency | Meter Reading | Factor | Emission Level | Limits | Margin | Value Tone | |-----------|---------------|--------|----------------|----------|--------|------------| | (MHz) | (dBµV) | (dB) | (dBµV/m) | (dBµV/m) | (dB) | Value Type | | 4882.700 | 47.14 | 0.14 | 47.28 | 74 | -26.72 | peak | | 4882.700 | 41.25 | 0.14 | 41.39 | 54 | -12.61 | AVG | | 7324.050 | 46.66 | 2.36 | 49.02 | 74 | -24.98 | peak | | 7324.050 | 38.87 | 2.36 | 41.23 | 54 | -12.77 | AVG | | | ® | | | | @ | | | | | | | | | (2) | Factor = Antenna Factor + Cable Loss - Pre-amplifier. | EUT | MH670 gaming headphones | Model Name | MH-670 | |-------------|-------------------------|-------------------|----------------| | Temperature | 25° C | Relative Humidity | 55.4% | | Pressure | 960hPa | Test Voltage | Normal Voltage | | Test Mode | Mode 2 | Antenna | Vertical | | Frequency | Meter Reading | Factor | Emission Level | Limits | Margin | Value Type | |-----------|---------------|--------|----------------|----------|--------|------------| | (MHz) | (dBµV) | (dB) | (dBµV/m) | (dBµV/m) | (dB) | | | 4882.700 | 45.66 | 0.14 | 45.8 | 74 | -28.2 | peak | | 4882.700 | 39.69 | 0.14 | 39.83 | 54 | -14.17 | AVG | | 7324.050 | 44.17 | 2.36 | 46.53 | 74 | -27.47 | peak | | 7324.050 | 38.88 | 2.36 | 41.24 | 54 | -12.76 | AVG | | | -C | 0 | | 0 | -C | 8 | | emark: | | 7.0 | 0 | | 9 | C | Page 36 of 54 | EUT | MH670 gaming headphones | Model Name | MH-670 | |-------------|-------------------------|-------------------|----------------| | Temperature | 25° C | Relative Humidity | 55.4% | | Pressure | 960hPa | Test Voltage | Normal Voltage | | Test Mode | Mode 3 | Antenna | Horizontal | | Frequency | Meter Reading | Factor | Emission Level | Limits | Margin | \/-I T | |-----------|---------------|--------|----------------|----------|--------|------------| | (MHz) | (dBµV) | (dB) | (dBµV/m) | (dBµV/m) | (dB) | Value Type | | 4958.700 | 46.96 | 0.22 | 47.18 | 74 | -26.82 | peak | | 4958.700 | 42.02 | 0.22 | 42.24 | 54 | -11.76 | AVG | | 7438.050 | 45.98 | 2.64 | 48.62 | 74 | -25.38 | peak | | 7438.050 | 41.17 | 2.64 | 43.81 | 54 | -10.19 | AVG | | 7.0 | 6 | · | | - 60 | 0 | (0) | Factor = Antenna Factor + Cable Loss - Pre-amplifier. | EUT | T MH670 gaming headphones | | MH-670 | |-------------|---------------------------|-------------------|----------------| | Temperature | 25° C | Relative Humidity | 55.4% | | Pressure | 960hPa | Test Voltage | Normal Voltage | | Test Mode | Mode 3 | Antenna | Vertical | | Frequency
(MHz) | Meter Reading (dBµV) | Factor
(dB) | Emission Level (dBµV/m) | Limits
(dBµV/m) | Margin
(dB) | Value Type | |--------------------|----------------------|----------------|-------------------------|--------------------|----------------|------------| | | | | | | | | | 4958.700 | 42.25 | 0.22 | 42.47 | 54 | -11.53 | AVG | | 7438.050 | 43.46 | 2.64 | 46.1 | 74 | -27.9 | peak | | 7438.050 | 37.23 | 2.64 | 39.87 | 54 | -14.13 | AVG | | | | <u> </u> | | | 60 | G | | Remark: | | 20 | | | | 0 | | actor = Anter | nna Factor + Cabl | e Loss – Pre-a | mplifier. | | ® | | RESULT: PASS #### Note: 1. Other emissions from 1G to 25 GHz are considered as ambient noise. No recording in the test report. Factor = Antenna Factor + Cable loss - Amplifier gain, Over=Measure-Limit. The "Factor" value can be calculated automatically by software of measurement system. 2. All modes of both antennas were tested, and the report only showed the worst data for the worst antenna (Antenna 1). TEST RESULT FOR RESTRICTED BANDS REQUIREMENTS | EUT | MH670 gaming headphones | Model Name | MH-670 | |-------------|-------------------------|-------------------|----------------| | Temperature | 25° C | Relative Humidity | 55.4% | | Pressure | 960hPa | Test Voltage | Normal Voltage | | Test Mode | Mode 1 | Antenna | Horizontal | **RESULT: PASS** Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Service Hotline:400 089 2118 | EUT | MH670 gaming headphones | Model Name | MH-670 | | |-------------|-------------------------|-------------------|----------------|--| | Temperature | 25° C | Relative Humidity | 55.4% | | | Pressure | 960hPa | Test Voltage | Normal Voltage | | | Test Mode | Mode 1 | Antenna | Vertical | | **RESULT: PASS** Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Service Hotline:400 089 2118 | EUT | MH670 gaming headphones | Model Name | MH-670 | |-------------|-------------------------|-------------------|----------------| | Temperature | 25° C | Relative Humidity | 55.4% | | Pressure | 960hPa | Test Voltage | Normal Voltage | | Test Mode | Mode 3 | Antenna | Horizontal | **RESULT: PASS** Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Service Hotline:400 089 2118 **EUT Model Name** MH-670 MH670 gaming headphones **Temperature** 25° C **Relative Humidity** 55.4% **Pressure** 960hPa **Test Voltage** Normal Voltage **Test Mode** Mode 3 **Antenna** Vertical **RESULT: PASS** ### Note: 1. All modes of both antennas were tested, and the report only showed the worst data for the worst antenna (Antenna 1). Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Service Hotline:400 089 2118 Report No.: AGC01612200101FE02 Page 41 of 54 # 12. FCC LINE CONDUCTED EMISSION TEST ### 12.1. LIMITS OF LINE CONDUCTED EMISSION TEST | Francis | Maximum RF Line Voltage | | | | | |---------------|-------------------------|----------------|--|--|--| | Frequency | Q.P.(dBuV) | Average(dBuV) | | | | | 150kHz~500kHz | 66-56 | 56-46 | | | | | 500kHz~5MHz | 56 | 46 | | | | | 5MHz~30MHz | 60 | 50 | | | | #### Note: - 1. The lower limit shall apply at the transition frequency. - 2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz. ### 12.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST Report No.: AGC01612200101FE02 Page 42 of 54 #### 12.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST - 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane. - 2. Support equipment, if needed, was placed as per ANSI C63.10. - 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10. - 4. All support equipments received AC120V/60Hz power from a LISN, if any. - 5. The EUT received DC charging voltage by PC which received AC120V/60Hz power by a LISN... - 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver. - 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes. - 8. During the above scans, the emissions were maximized by cable manipulation. - 9. The test mode(s) were scanned during the preliminary test. Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing. #### 12.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST - 1. EUT and support equipment was set up on the test bench as per step 2 of the preliminary test. - 2. A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector. - 3. The test data of the worst case condition(s) was reported on the Summary Data page. 12.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST Line Conducted Emission Test Line 1-L ### MEASUREMENT RESULT: "agc fin" | 2020/1/10
Frequen | | | Limit
dBµV | Margin
dB | Detector | Line | PE | |----------------------|-----------|------|---------------|--------------|----------|------|-----| | 0.4900 | 000 39.40 | 11.3 | 56 | 16.8 | QP | L1 | FLO | | 0.5220 | 000 37.90 | 11.3 | 56 | 18.1 | QP | L1 | FLO | | 0.6820 | 000 34.10 | 11.3 | 56 | 21.9 | QP | L1 | FLO | | 4.5060 | 000 34.50 | 11.4 | 56 | 21.5 | QP | L1 | FLO | | 17.9380 | 000 44.70 | 12.2 | 60 | 15.3 | QP | L1 | FLO | | 18.3460 | 000 44.20 | 12.2 | 60 | 15.8 | QP | L1 | FLO | ### MEASUREMENT RESULT: "agc fin2" | 2020/1/10 0:54
Frequency
MHz | | Transd
dB | Limit
dBµV | Margin
dB | Detector | Line | PE | |------------------------------------|-------|--------------|---------------|--------------|----------|------|-----| | 0.482000 | 28.20 | 11.3 | 46 | 18.1 | AV | L1 | FLO | | 0.522000 | 30.80 | 11.3 | 46 | 15.2 | AV | L1 | FLO | | 0.682000 | 26.30 | 11.3 | 46 | 19.7 | AV | L1 | FLO | | 0.918000 | 25.70 | 11.3 | 46 | 20.3 | AV | L1 | FLO | | 18.958000 | 33.60 | 12.2 | 50 | 16.4 | AV | L1 | FLO | | 20.190000 | 32.60 | 12.3 | 50 | 17.4 | AV | L1 | FLO | Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Service Service Hotline: 400 089 2118 #### MEASUREMENT RESULT: "agc fin" | Frequen | - | vel Transc
BμV dE | | Margin
dB | Detector | Line | PE | |---------|--------|----------------------|------|--------------|----------|------|-----| | 0.5420 | 00 36. | .60 11.3 | 56 | 19.4 | QP | N | FLO | | 0.7020 | 00 36. | .60 11.3 | 56 | 19.4 | QP | N | FLO | | 0.8420 | 00 35. | .40 11.3 | 56 | 20.6 | QP | N | FLO | | 4.8180 | 00 29. | .80 11.4 | 56 | 26.2 | QP | N | FLO | | 16.5580 | 00 38. | .30 12.1 | . 60 | 21.7 | QP | N | FLO | | 17.8820 | 00 38. | .00 12.2 | 60 | 22.0 | QP | N | FLO | ### MEASUREMENT RESULT: "agc fin2" | 2020/1/10 | 0:50 | | | | | | | |----------------|---------|--------------|---------------|--------------|----------|------|-----| | Frequenc
MH | 4 | Transd
dB | Limit
dBµV | Margin
dB | Detector | Line | PE | | 0.48600 | 0 30.00 | 11.3 | 46 | 16.2 | AV | N | FLO | | 0.54200 | 0 28.90 | 11.3 | 46 | 17.1 | AV | N | FLO | | 0.68600 | 0 27.50 | 11.3 | 46 | 18.5 | AV | N | FLO | | 0.72200 | 0 26.40 | 11.3 | 46 | 19.6 | AV | N | FLO | | 0.80200 | 0 25.30 | 11.3 | 46 | 20.7 | AV | N | FLO | | 18.99400 | 0 29.30 | 12.2 | 50 | 20.7 | AV | N | FLO | #### **RESULT: PASS** Note: All modes of both antennas were tested, and the report only showed the worst data for the worst antenna (Antenna 1). Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Service Service Hotline: 400 089 2118 APPENDIX A: PHOTOGRAPHS OF TEST SETUP Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community, Report No.: AGC01612200101FE02 Page 46 of 54 # CONDUCTED EMISSION TEST SETUP Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community, Page 47 of 54 # **APPENDIX B: PHOTOGRAPHS OF EUT** TOP VIEW OF EUT **BOTTOM VIEW OF EUT** Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community, # FRONT VIEW OF EUT BACK VIEW OF EUT Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community, # LEFT VIEW OF EUT RIGHT VIEW OF EUT Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community, # **OPEN VIEW OF EUT** **BATTERY VIEW OF EUT** Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail:agc@agc-cert.com Service Hotline:400 089 2118 **INTERNAL VIEW OF EUT-2** Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community, # **INTERNAL VIEW OF EUT-3** **INTERNAL VIEW OF EUT-4** Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community, # **INTERNAL VIEW OF EUT-5** **INTERNAL VIEW OF EUT-6** Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community, **INTERNAL VIEW OF EUT-7** --END OF REPORT---- Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail:agc@agc-cert.com Service Hotline:400 089 2118