

Report Number: 24020910HKG-001

Class II Permissive Change of 47 CFR Part 15 Certification

Unlicensed Personal Communication Service Devices

(Base Unit)

FCC ID: EW780-0899-00

Prepared and Checked by: Approved by:

Signed on File Leung Chiu Kuen, Stanley Engineer

Tang Kwan Mo, Jess Assistant Supervisor Date: Jul 19, 2024 2/F., Garment Centre,

Telephone: Facsimile:

www.intertek.com

576 Castle Peak Road, Kowloon, Hong Kong SAR, China.

(852) 2173 8888

(852) 2785 5487

Intertek's standard Terms and Conditions can be obtained at our website http://www.intertek.com/terms/.

The test report only allows to be revised within the retention period unless further standard or the requirement was noticed.

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

GENERAL INFORMATION

Grantee: VTech Telecommunications Ltd.

Grantee Address: 23/F., Tai Ping Industrial Centre, Block 1,

57 Ting Kok Road, Tai Po,

Hong Kong.

FCC Specification Standard: FCC Part 15, October 1, 2022 Edition

FCC ID: EW780-0899-00 C620, C620 XXXXX

Type of EUT: Unlicensed Personal Communications Service Devices

Description of EUT: SIP Wireless Conference Phone – Base Unit

Serial Number: CHNLB26012400021
Sample Receipt Date: March 04, 2024

Date of Test: March 07, 2024 to March 20, 2024

Report Date: July 19, 2024

Environmental Conditions: Temperature: +10 to 40°C

Relative Humidity: 10 to 90%

Conclusion: Test was conducted by client submitted sample. The submitted

sample as received complied with the 47 CFR Part 15 Certification.

TABLE OF CONTENTS

1.0	TEST	RESULTS SUMMARY & STATEMENT OF COMPLIANCE	4
	1.1	Summary of Test Results	4
	1.2	Summary of Test Results	5
	1.3	Statement of Compliance	5
2.0	GENE	RAL DESCRIPTION	6
	2.1	Product Description	6
	2.2	Technical Description	6
	2.3	Test Methodology	6
	2.4	Test Facility	6
3.0	SYSTE	EM TEST CONFIGURATION	7
	3.1	Justification	7
	3.2	Radiated Emission Test Setup	8
	3.3	AC Line Conducted Emission Test Setup	9
	3.4	Conducted Emission Test Configuration	9
	3.5	Conducted Monitoring and Operational Test Configuration	10
	3.6	EUT Exercising Software	10
	3.7	Details of EUT and Description of Accessories	11
	3.8	Measurement Uncertainty	11
4.0	MEAS	SUREMENT RESULTS	12
	4.1	Antenna Requirements	12
	4.2	Emission Bandwidth	12
	4.2	Directional Gain of the Antenna	14
	4.4	Power Spectral Density	15
	4.5	Unwanted Emission Inside the Sub-Band	17
	4.6	Emissions Outside the Sub-Band	20
	4.6.1	Radiated Emissions Configuration Photographs	
	4.6.2	Radiated Emissions Data	21
	4.6.3	Field Strength Calculation	
	4.6.4	Average Factor Calculation and Transmitter ON Time Measurements	26
	4.7	AC Power Line Conducted Emissions	
	4.7.1	AC Power Line Conducted Emissions Configuration Photographs	
	4.7.2	AC Power Line Conducted Emissions Data	28
5.0	EQUI	PMENT LIST	31

1.0 TEST RESULTS SUMMARY & STATEMENT OF COMPLIANCE

1.1 Summary of Test Results

General Technical Requirements				
Test Items	FCC Part 15 Section	Test Procedure ANSI C63.17 / ANSI C63.4*	Results	Details See Section
Antenna Requirement	15.317		Complied	4.1
Occupied/Emission Bandwidth	15.323(a)	6.1.3	Complied	4.2
Directional Gain of the Antenna	15.319(e)	4.3.1	Complied	4.3
Power Spectral Density	15.319(d)	6.1.5	Complied	4.4
AC Power Line Conducted Emissions from EUT	15.315	7 *	Complied	4.7

1.2 Summary of Test Results

Specific Requirements for UPCS Device				
Test Items	FCC Part 15 Section	Test Procedure ANSI C63.17	Results	Details See Section
Unwanted Emission Inside the Sub-Band	15.323(d)	6.1.6.1	Complied	4.5
Emissions Outside the Sub-Band	15.323(d)	6.1.6.2	Complied	4.6

1.3 Statement of Compliance

The equipment under test is found to be complying with the following standards:

FCC Part 15, October 1, 2022 Edition

2.0 GENERAL DESCRIPTION

2.1 Product Description

The C620 (35-400172BS) is a SIP Wireless Conference Phone – Base Unit. It operates at frequency range of 1921.536MHz to 1928.448MHz with 5 channels (1921.536MHz, 1923.264MHz, 1924.992MHz, 1926.720MHz and 1928.448MHz). The Base Unit is powered by an adaptor 100-240VAC 50/60Hz 0.3A.

The antennas used in Base Unit are integral, and the test sample is a prototype.

For FCC, the Model(s): C620 XXXXX is the same as the Model: C620 in electronics/electrical designs including software & firmware, PCB layout and construction design/physical design/enclosure as declared by client. The only differences between these models are color, model number and trade name to be sold for marketing purpose as declared by client. Suffix ("X, X, X, X, X" of "C620 XXXXX") can be 0-9, a-z, A-Z or blank to represent different packaging or color options as declared by client.

2.2 Purpose of Change

The purpose of change is saved with filename: product change.pdf.

2.3 Test Methodology

The radiated emission measurements for unintentional radiator and AC power line-conducted emission measurements were performed according to the test procedures specified in ANSI C63.4 (2014). The radiated emission measurements for intentional radiator contained in UPCS device, conducted emission measurements were performed according to the test procedures specified in ANSI C63.17 (2013). All radiated measurements were performed in radiated emission test site. Preliminary scans were performed in the radiated emission test site only to determine worst case modes. All radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "Justification Section" of this Application.

2.4 Test Facility

The radiated emission test site, AC power line conducted measurement facility and antenna port conducted measurement facility used to collect the radiated data, AC Power Line conducted data are at Intertek Testing Services Hong Kong Limited, which is located at Workshop No. 3, G/F., World-Wide Industrial Centre, 43-47 Shan Mei Street, Fo Tan, Sha Tin, N.T., Hong Kong SAR, China. This test facility and site measurement data have been fully placed on file with FCC.

3.0 SYSTEM TEST CONFIGURATION

3.1 Justification

For emissions testing, the equipment under test (EUT) was set up to transmit continuously in burst mode with pseudo-random data to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, all cables (if any) were manipulated to produce worst-case emissions.

The Base Unit was powered by an adaptor 100-240VAC 50/60Hz 0.3A to 5VDC 2.0A 10.0W.

For the measurements, the EUT was attached to a plastic stand if necessary and placed on the wooden turntable. If the EUT is attached to accessories, they were connected and operational (as typical as possible).

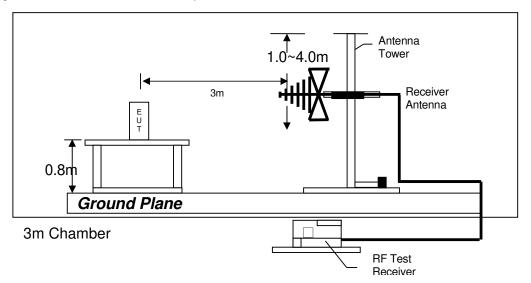
The signal was maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization were varied during the search for maximum signal level. The antenna height was varied from 1 to 4 meters. Detector function was in peak mode. Radiated emissions are taken at three meters unless the signal level was too low for measurement at that distance. If necessary, a preamplifier was used and/or the test was conducted at a closer distance.

For UPCS transmitter radiated measurement, the spectrum analyzer resolution bandwidth was approximately 1% of EUT emission bandwidth, unless otherwise specified.

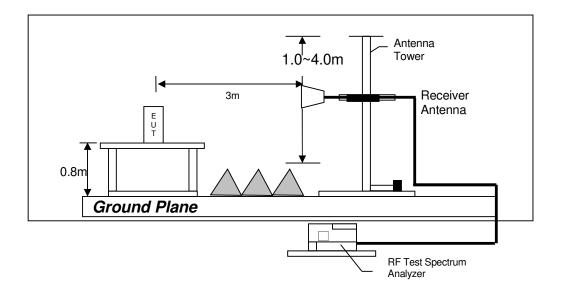
Radiated emission measurements for UPCS transmitter were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

As the Base Unit has 2 antennas, both have been checked. While conducting the test on one of antennas, another one was being disable its transmission. The data in this report represented the worst-case

For FCC, RF module and antenna for C620 is the same with original granted model VDP800. Therefore, conducted emission measurement for jitter, frame repetition stability, carrier stability and listen before transmit requirements for the C620 are skipped.


For AC line conducted emission test, the EUT along with its peripherals were placed on a 1.0m(W)x1.5m(L) and 0.8m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane. The EUT was connected to power mains through a line impedance stabilization network (LISN), which provided 50ohm coupling impedance for measuring instrument. The LISN housing, measuring instrument case, reference ground plane, and vertical ground plane were bounded together. The excess power cable between the EUT and the LISN was bundled.

All connecting cables of EUT and peripherals were manipulated to find the maximum emission. All relevant operation modes have been tested and the worst data is included in this report.



3.2 Radiated Emission Test Setup

The figure below shows the test setup, which is utilized to make these measurements.

Test setup of radiated emissions up to 1GHz

Test setup of radiated emissions above 1GHz

Figure 3.2.1

3.3 AC Line Conducted Emission Test Setup

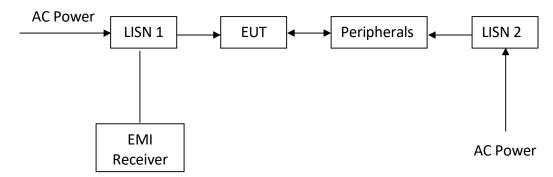


Figure 3.3.1

3.4 Conducted Emission Test Configuration

The setup and equipment setting were made in accordance with ANSI C63.17. The antenna of EUT transmitter was replaced by a coaxial cable. The impendence matching of connection, cable loss and external RF attenuator are taken into account. The EUT was arranged to communicate via a fixed carrier frequency between its transmitter and a companion device. The transmission was configured in burst mode with pseudo-random data as typical as normal operation.

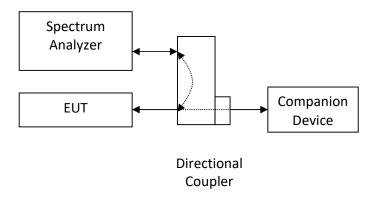


Figure 3.4.1

3.5 Conducted Monitoring and Operation Test Configuration

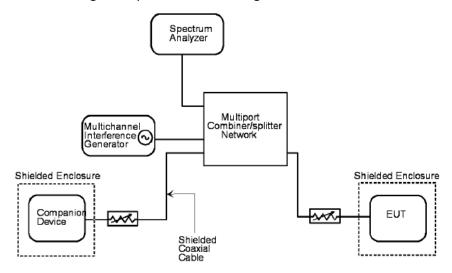


Figure 3.5.1

3.6 EUT Exercising Software

The EUT exercise program Unit tools V4.9.1 used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use.

3.7 Details of EUT and Description of Accessories

Details of EUT:

An AC adaptor was used to power the device. Their descriptions are listed below.

(1) Base Unit: alternative AC adaptor (100-240VAC 50/60Hz 0.3A to 5VDC 2.0A 10.0W, Model: NBS12E050200UV, Brand: MASS POWER) (Provided by Applicant)

Description of Accessories:

- (1) Speaker Box, Model: C620, FCC ID: EW780-1553-00 (Provided by Applicant)
- (2) Wireless Mic, Model: C620, FCC ID: EW780-1553-01 (Provided by Applicant)
- (3) 2 x CAT5 LAN cable with 1.5m long (Supplied by Intertek)
- (4) Notebook, HP Model: RTL8188EE, FCC ID: TX2-RTL8188EE (Supplied by Intertek)

3.8 Measurement Uncertainty

Decision Rule for compliance: For FCC/IC standard, the measured value must be within the limits of applicable standard without accounting for the measurement uncertainty. For EN/IEC/HKTA/HKTC standard, conformity rules will be used as per standard directly excepted EN/IEC 61000-3-2, EN/IEC 61000-3-3, HKTA1004, HKCA1008, HKTA1019, HKTA1020, HKTA1041 and HKTA1044. The values of the Measurement uncertainty for radiated emission test, AC line conducted emission test and RF conducted test are \pm 5.3dB, \pm 4.2dB and \pm 1dB respectively.

Uncertainty and Compliance - Unless the standard specifically states that measured values are to be extended by the measurement uncertainty in determining compliance, all compliance determinations are based on the actual measured value.

4.0 MEASUREMENT RESULTS

4.1 Antenna Requirements, FCC Rule 15.317:

EUT must meet the antenna requirement of FCC Rule 15.203.

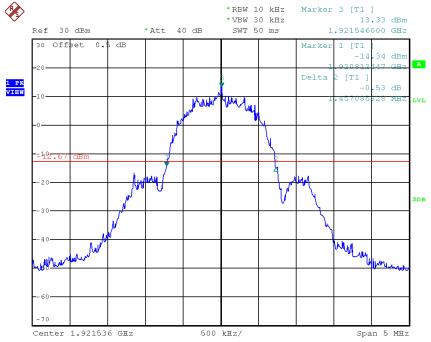
- [X] EUT uses permanently attached antenna(s) which is considered sufficient to comply with the provisions of this rule. Please refer to internal photos.pdf for more details.
- [] EUT uses unique antenna jack(s) or electrical connector(s) which is considered sufficient to comply with the provisions of this rule. Please refer to internal photos.pdf for more details.
- 4.2 Emission Bandwidth, FCC Rule 15.323(a):

Operation shall be contained within the 1920 - 1930 MHz band. The emission bandwidth (B) shall be less than 2.5 MHz and greater than 50 kHz.

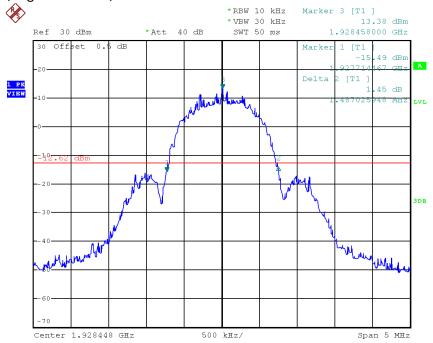
Measurements are made in accordance with ANSI C63.17 sub-clause 6.1.3. Test setup is shown in section 3.4 Figure 3.4.1.

Test Results:

I. Base unit - Traffic Carrier


Channel	Channel Frequency (MHz)	Measuring Signal Level	Measured Emission Bandwidth (MHz)	Results
Lowest	1921.536	26 dB down	1.46	Pass
Highest	1928.448	26 dB down	1.49	Pass

The plots of emission bandwidth are saved as below.



PLOTS OF EMISSION BANDWIDTH

Base unit, Highest channel, Traffic carrier

VTech Telecommunications Ltd. Intertek Report No: 24020910HKG-001

TEST REPORT

4.3 Directional Gain of the Antenna, FCC Rule FCC 15.319(e):

The peak transmit power limit shall be reduced by the amount in dB that the maximum directional gain of the antenna exceeds 3 dBi.

The requirements are made in accordance with ANSI C63.17 sub-clause 4.3.1.

[X]	Manufacturer declares that the directional gain of the antenna is less than or equal to 3dBi. No peak transmit power limit reduction is required.
[]	Manufacturer declares that the directional gain of the antenna is greater than 3dBi. The peak transmit power limit shall be reduced by dB.

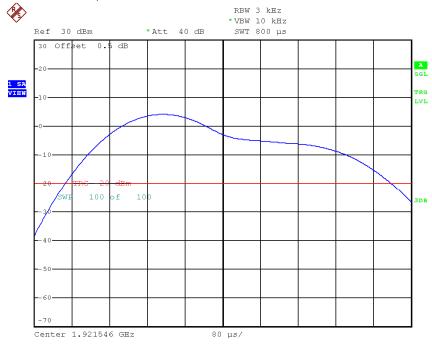
4.4 Power Spectral Density, FCC Rule 15.319(d):

Power spectral density shall not exceed 3 mW (4.8dBm) in any 3 kHz bandwidth as measured with a spectrum analyzer having a resolution bandwidth of 3 kHz.

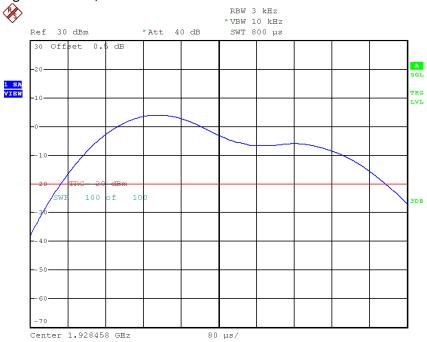
Measurements are made in accordance with ANSI C63.17 sub-clause 6.1.5. Test setup is shown in section 3.4 Figure 3.4.1.

Test Results:


I. Base unit - Traffic Carrier


Channel	Channel Frequency (MHz)	Measured Power Spectral Density (dBm/3kHz)	Limit (dBm/3 kHz)	Results
Lowest	1921.536	-2.3	4.8	Pass
Highest	1928.448	-2.4	4.8	Pass

The plots of the power spectral density are as below.



PLOTS OF THE POWER SPECTRAL DENSITY

Base unit, Highest channel, Traffic carrier

4.5 Unwanted Emission Inside the Sub-Band, FCC Rule 15.323(d):

Emissions inside the sub-band must comply with the following emission mask:

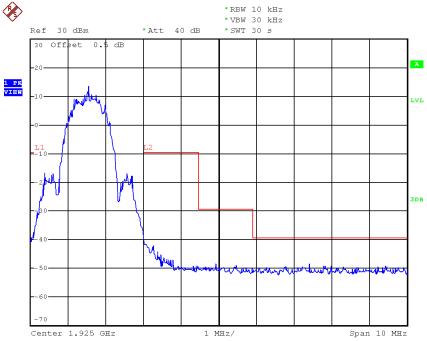
- 1. In the bands between 1*B* and 2*B* measured from the center of the emission bandwidth, emission shall be at least 30 dB below the permitted peak transmit power.
- 2. In the bands between 2B and 3B measured from the center of the emission bandwidth, emission shall be at least 50 dB below the permitted peak transmit power.
- 3. In the bands between 3*B* and the band edge, emission shall be at least 60 dB below the permitted peak transmit power.

Where B = emission bandwidth in Hz

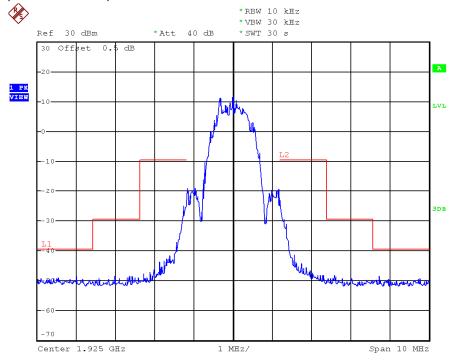
Measurements are made in accordance with ANSI C63.17 sub-clause 6.1.6.1. Test setup is shown in section 3.4 Figure 3.4.1

Test Results:

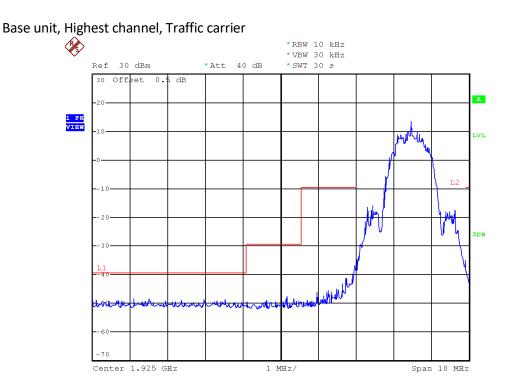
I. Base unit - Traffic Carrier


Channel	Channel Frequency (MHz)	Results
Lowest	1921.536	Pass
Middle	1924.992	Pass
Highest	1928.448	Pass

The plots of the unwanted emission inside the sub-band are as below.



PLOTS OF THE UNWANTED EMISSION INSIDE THE SUB-BAND



Base unit, Middle channel, Traffic carrier

PLOTS OF THE UNWANTED EMISSION INSIDE THE SUB-BAND

4.6 Emissions Outside the Sub-Band, FCC Rule 15.323(d):

Emissions outside the sub-band shall be attenuated below a reference power of 112 mW (20.5 dBm) as follows:

- 1. 30 dB between the band edge and 1.25 MHz above or below the band;
- 2. 50 dB between 1.25 and 2.5 MHz above or below the band; and
- 3. 60 dB at 2.5 MHz or greater above or below the band, or shall meet the requirement of FCC Rule 15.319(g) which shall not exceed the limits of FCC Rule 15.209.

Example: Calculation of Limit for emissions between the band edge and 1.25 MHz (1920.000 – 1918.750 MHz)

The emissions shall not exceed the Limit: 20.5 dBm - 30 dB = -9.5 dBm

Measurements are made in accordance with ANSI C63.17 sub-clause 6.1.6.2. Radiated emissions test method is used. Emissions that are directly caused by digital circuits in the transmit path and transmitter portion are measured.

Test setup is shown in section 3.2 Figure 3.2.1

Test Results:

Channel	Carrier Frequency (MHz)	Measured Band (MHz)	Limit (dBm)	Results
		1920.000 - 1918.750	-9.5	Pass
Lowest	1921.536	1918.750 - 1917.500	-29.5	Pass
		0.009 - 1917.500 & 1932.500 - 19300.000	-39.5 / FCC Rule 15.209	Pass
	1928.448	1930.000 - 1931.250	-9.5	Pass
Highest		1931.250 - 1932.500	-29.5	Pass
		0.009 – 1917.500 & 1932.500 - 19300.000	-39.5 / FCC Rule 15.209	Pass

4.6.1 Radiated Emissions Configuration Photographs:

Worst Case Radiated Emission at

Base Unit: 3843.072 MHz

The worst case radiated emission configuration photographs are saved with filename: config photos.pdf

4.6.2 Radiated Emissions Data:

Data are included of the worst case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included. All measurements were performed with peak detection unless otherwise specified.

The data in table 1-3 list the significant emission frequencies, the limit and the margin of compliance.

Judgement:

Base Unit - Passed by 9.1 dB margin

RADIATED EMISSIONS DATA

Mode: DECT Transmission

Table 1, Base Unit

Pursuant to FCC Part 15 Section 15.323 (d) Emissions Requirements

Lowest Channel

Polarization	Frequency	Measured	Power	Margin
	(MHz)	Power	Limit	(dB)
		(dBm)	(dBm)	
V	1917.429	-59.0	-39.5	-19.5
V	1918.734	-53.7	-29.5	-24.2
V	1919.819	-44.9	-9.5	-35.4
V	2881.687	-59.6	-39.5	-20.1
V	3843.072	-48.6	-39.5	-9.1
V	5764.608	-67.7	-39.5	-28.2
V	7686.144	-65.2	-39.5	-25.7
Н	9607.680	-67.4	-39.5	-27.9
V	11529.216	-64.2	-39.5	-24.7

NOTES:

- 1. Peak detector is used for the emission measurement.
- 2. All measurements were made at 3 meters.
- 3. Negative value in the margin column shows emission below limit.

Mode: DECT Transmission

Table 2, Base Unit

Pursuant to FCC Part 15 Section 15.323 (d) Emissions Requirements

Highest Channel

Polarization	Frequency	Measured	Power	Margin
	(MHz)	Power	Limit	(dB)
		(dBm)	(dBm)	
V	1930.036	-51.0	-9.5	-41.5
V	1931.368	-59.2	-29.5	-29.7
V	1932.760	-60.3	-39.5	-20.8
V	2892.313	-52.2	-39.5	-12.7
Н	3856.896	-55.2	-39.5	-15.7
Н	5785.344	-64.7	-39.5	-25.2
V	7713.792	-68.7	-39.5	-29.2
V	9642.240	-67.3	-39.5	-27.8
V	11570.688	-65.2	-39.5	-25.7

NOTES:

- 1. Peak detector is used for the emission measurement.
- 2. All measurements were made at 3 meters.
- 3. Negative value in the margin column shows emission below limit.

Mode: Talk

Table 3, Base Unit

Pursuant to FCC Part 15 Section 15.323 (d) Emissions Requirements

Polarization	Frequency	Measured	Power	Margin
	(MHz)	Power	Limit	(dB)
		(dBm)	(dBm)	
V	56.069	-70.4	-39.5	-30.9
V	92.323	-76.8	-39.5	-37.3
V	145.188	-80.2	-39.5	-40.7
Н	374.956	-64.8	-39.5	-25.3
V	425.033	-59.8	-39.5	-20.3
V	499.965	-58.9	-39.5	-19.4
V	552.951	-60.1	-39.5	-20.6
V	624.974	-49.3	-39.5	-9.8
Н	825.036	-57.9	-39.5	-18.4
V	925.068	-59.0	-39.5	-19.5
V	950.045	-57.5	-39.5	-18.0

NOTES:

- 1. Peak detector is used for the emission measurement.
- 2. All measurements were made at 3 meters.
- 3. Negative value in the margin column shows emission below limit.

4.6.3 4.4.3 Field Strength Calculation

The field strength is calculated by adding the reading on the Spectrum Analyzer to the factors associated with preamplifiers (if any), antennas, cables, pulse desensitization and average factors (when specified limit is in average and measurements are made with peak detectors). A sample calculation is included below.

FS = RA + AF + CF - AG + PD + AV

Where FS = Field Strength in $dB\mu V/m$

RA = Receiver Amplitude (including preamplifier) in dBμV

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB

AG = Amplifier Gain in dB

PD = Pulse Desensitization in dB

AV = Average Factor in -dB

In the radiated emission table which follows, the reading shown on the data table may reflect the preamplifier gain. An example of the calculations, where the reading does not reflect the preamplifier gain, follows:

FS = RA + AF + CF - AG + PD + AV

Example

Assume a receiver reading of 62.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29.0 dB is subtracted. The pulse desensitization factor of the spectrum analyzer is 0.0 dB, and the resultant average factor is -10.0 dB. The net field strength for comparison to the appropriate emission limit is 32.0 dB μ V/m. This value in dB μ V/m is converted to its corresponding level in μ V/m.

 $RA = 62.0 dB\mu V$

AF = 7.4 dB

CF = 1.6 dB

AG = 29.0 dB

PD = 0.0 dB

AV = -10 dB

 $FS = 62.0 + 7.4 + 1.6 - 29.0 + 0.0 + (-10.0) = 32.0 \text{ dB}\mu\text{V/m}$

Level in μ V/m = Common Antilogarithm [(32.0 dB μ V/m)/20] = 39.8 μ V/m Level in dBm (EIRP) = FS - 95.23 = 32 - 95.23 = -63.23 dBm

Level in dBm (ERP) = FS - 95.23 -2.15 = 32 - 95.23 -2.15 = -65.38 dBm

4.6.4	Average Factor Calculation and Transmitter ON Time Measurements, FCC Rule 15.35(b, c)
[]	The EUT antenna output port was connected to the input of the spectrum analyzer. The analyzer center frequency was set to EUT RF channel carrier. The SPAN function on the analyzer was set to ZERO. The transmitter ON time was determined from the resultant time-amplitude display:
	Please refer to the attached plots for more details:
	The plots of Transmitter ON Time Measurements are as below.
[]	Please refer to the attached transmitter timing diagram that are provided by manufacturer
[×]	Not applicable - No average factor is required.
[]	Please refer to Technical Description (descri.pdf) for more details

4.7 AC Power Line Conducted Emissions, FCC Rule 15.315:

The AC power line conducted emission shall not exceed the limits of FCC Rule 15.207.4.

Measurements are made in accordance with ANSI C63.4 sub-clause 7. Emissions that are directly caused by digital circuits in the transmit path and transmitter portion are measured.

Test se	etup is shown in section 3.3 Figure 3.3.1.
[]	Not applicable – EUT is only powered by battery for operation.
[×]	EUT connects to AC power line. Emission Data is listed in following pages.
[]	Base Unit connects to AC power line and has transmission. Speaker Box connects to AC power line (indirectly) but has no transmission. Emission Data of Base Unit is listed in following pages.
[]	Speaker Box connects to AC power line (indirectly) only during charging. Emission Data is listed in following pages.

4.7.1 AC Power Line Conducted Emissions Configuration Photographs:

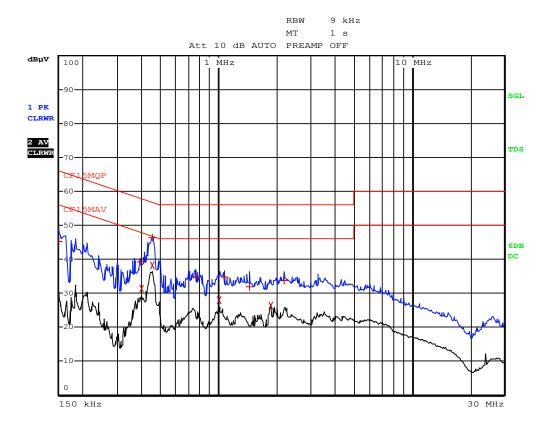
Worst Case AC Power Line Conducted Emission at

Base Unit: 451.5 kHz

The worst case AC power Line conducted emission configuration photographs are saved with filename: config photos.pdf

4.7.2 AC Power Line Conducted Emissions Data:

The plot(s) and data in the following pages list the significant emission frequencies, the limit and the worst case margin of compliance.


Judgment:

Passed by 8.61dB margin compared with CISPR Average limit

CONDUCTED EMISSIONS DATA

Worst Case: Talk

CONDUCTED EMISSIONS DATA

Worst Case: Talk

		EDIT	PEAK	LIST (F	'inal	Measure	ement	Results)
Tra	ce1:		CF15M	QΡ				
Tra	ce2:		CF15M	AV				
Tra	.ce3:							
	TRAG	CE	F	REQUENCY	Ž.	LEVEL	dΒμV	DELTA LIMIT dB
1	Quasi	Peak	150 k	Ηz		45.15	L1	-20.84
1	Quasi	Peak	393 k	Hz		39.19	N	-18.80
2	CISPR	Average	397.5	kHz		31.38	N	-16.52
1	Quasi	Peak	451.5	kHz		46.25	N	-10.59
2	CISPR	Average	451.5	kHz		38.23	N	-8.61
1	Quasi	Peak	766.5	kHz		34.78	N	-21.21
2	CISPR	Average	1.005	MHz		27.99	N	-18.00
1	Quasi	Peak	1.068	MHz		34.75	N	-21.24
1	Quasi	Peak	1.437	MHz		31.80	N	-24.19
2	CISPR	Average	1.869	MHz		26.45	N	-19.54
1	Quasi	Peak	2.188	5 MHz		33.84	N	-22.15

5.0 EQUIPMENT LIST

1) Radiated Emissions Test

Equipment	EMI Test Receiver	Signal and Spectrum Analyzer (10Hz to 40GHz)	BiConiLog Antenna (30MHz - 6GHz)
Registration No.	EW-3156	EW-2466	EW-3061
Manufacturer	ROHDESCHWARZ	ROHDESCHWARZ	EMCO
Model No.	ESR	FSP	3142E
Calibration Date	January 31, 2024	October 10, 2023	August 23, 2023
Calibration Due Date	January 31, 2025	October 10, 2024	February 23, 2025

Equipment	14m Double Shield RF Cable (9kHz - 6GHz)	14m Double Shield RF Cable (1GHz - 26GHz)	Double Ridged Guide Antenna
Registration No.	EW-2376	EW-2781	EW-0194
Manufacturer	RADIALL	RADIALL	EMCO
Model No.	N(m)-BR56-BNC(m) L=	SMA(m)-SHF5MPU-	3115
	14M	SMA(m) R.A 14m, 26G	
Calibration Date	September 19, 2023	January 16, 2024	May 10, 2023
Calibration Due Date	September 19, 2024	January 16, 2025	November 10, 2024

Equipment	Log Periodic Antenna (200MHz - 2GHz)	Biconical Antenna (30MHz – 300MHz)	RF Pre-Amplifier (9kHz to 40GHz)
Registration No.	EW-3244	EW-3241	EW-3229
Manufacturer	EMCO	EMCO	BONN ELEKTRO
Model No.	3148B	3110C	BLMA 0118-5G
Calibration Date	August 30, 2022	February 26, 2022	September 26, 2023
Calibration Due Date	May 30, 2024	May 26, 2024	September 26, 2024

Equipment	1.9GHz Notch Filter	Pyramidal Horn Antenna (18.0 - 26.5)GHz
Registration No.	EW-3434	EW-0905
Manufacturer	Microwave	EMCO
Model No.	N0319501	3160-09
Calibration Date	December 20, 2023	December 15, 2023
Calibration Due Date	December 20, 2024	June 15, 2025

5.0 EQUIPMENT LIST (CONT'D)

2) Conducted Emissions Test

Equipment	EMI Test Receiver	RF Cable RG142 (9kHz- 30MHz) 2.4m length	LISN
Registration No.	EW-3095	EW-2454	EW-3360
Manufacturer	ROHDESCHWARZ	RADIALL	R&S
Model No.	ESCI	BNC M ST/ 142	ENV-216
Calibration Date	January 18, 2024	June 13, 2023	April 25, 2023
Calibration Due Date	January 18, 2025	June 13, 2024	April 25, 2024

END OF TEST REPORT