

FCC Test Report

Test report
On Behalf of
Shenzhen Zhongxin Shidai Technology Co.,Ltd.
For
Security Camera
Model No.: D02

FCC ID: 2BFI9-D02

Prepared For: Shenzhen Zhongxin Shidai Technology Co.,Ltd.

201, Building B, Chunenghui, No. 11 Qinghuamei Road, Guanhu Street, Longhua

District Shenzhen, China

Prepared By: Shenzhen HUAK Testing Technology Co., Ltd.

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping,

Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Date of Test: Mar. 05, 2025 ~ Apr. 03, 2025

Date of Report: Apr. 03, 2025

Report Number: HK2503050950-2E

Test Result Certification

Applicant's name:	Shenzhen Zhongxin Shida	Technology Co.,Ltd.

Street, Longhua District Shenzhen, China

Report No.: HK2503050950-2E

Manufacturer's Name......: Shenzhen Zhongxin Shidai Technology Co.,Ltd.

Street, Longhua District Shenzhen, China

Product description

Trade Mark: N/A

Product name Security Camera

Model and/or type reference : D02

Standards..... FCC Rules and Regulations Part 15 Subpart E Section 15.407

ANSI C63.10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test:

Date (s) of performance of tests..........: Mar. 05, 2025 ~ Apr. 03, 2025

Date of Issue: Apr. 03, 2025

Test Result: Pass

Testing Engineer : UN UM

(Len Liao)

Technical Manager:

Man

(Sliver Wan)

Authorized Signatory:

Jason Hwa

(Jason Zhou)

Table of Contents

1.	Test Result Summary		
	1.1. Test Procedures and Results	N. F.S.TING	W. S. LING
	1.2. Information of the Test Laboratory	NI PILLA	MIN.
	1.3. Measurement Uncertainty		
2.	EUT Description	Wartes	THE THE
	2.1. General Description of EUT		A HUAN
	2.2. Operation Frequency Each of Channel	MATES TIME	
	2.3. Operation of EUT During Testing	No.	
	2.4. Description of Test Setup	WIAK TES	HOWEL
	2.5. Description of Support Units		10
3.	Genera Information		1′
	3.1. Test Environment and Mode	TOW TESTING	1
4.	Test Results and Measurement Data		
	4.1. Conducted Emission		
	4.2. Maximum Conducted Output Power	Who.	1
	4.3. 6db Emission Bandwidth		
	4.4. 26db Bandwidth and 99% Occupied Bandwidth		2
	4.5. Power Spectral Density) .	29
	4.6. Band Edge	HUAK.	30
	4.7. Spurious Emission		4
	4.8. Frequency Stability Measurement		6
	4.9. Antenna Requirement	Was Leading	69
5.	Test Setup Photos of the EUT	(i)	70
G TIN	Dhotos of the EUT		74

Page 4 of 72 Report No.: HK2503050950-2E

** Modified History **

Revision	Description	Issued Data	Remark
Revision 1.0	Initial Test Report Release	Apr. 03, 2025	Jason Zhou
CTING	STING	STING	

1. Test Result Summary

1.1. Test Procedures and Results

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203	PASS
AC Power Line Conducted Emission	§15.207	PASS
Maximum Conducted Output Power	§15.407(a)	PASS
6dB Emission Bandwidth	§15.407(e)	PASS
26dB Emission Bandwidth& 99% Occupied Bandwidth	§15.407(a)	N/A MARKET
Power Spectral Density	§15.407(a)	PASS
Band edge	§15.407(b)/15.209/15.205	PASS
Radiated Emission	§15.407(b)/15.209/15.205	PASS
Frequency Stability	§15.407(g)	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

1.2. Information of the Test Laboratory

Shenzhen HUAK Testing Technology Co., Ltd.

Add.: 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Testing Laboratory Authorization:

A2LA Accreditation Code is 4781.01. FCC Designation Number is CN1229. Canada IC CAB identifier is CN0045. CNAS Registration Number is L9589.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

1.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of

Report No.: HK2503050950-2E

confiden	ice of approximately 95 %.	AKTE
No.	Item	MU
^{NG} 1	Conducted Emission	±0.37dB
2	RF power, conducted	±3.35dB
3	Spurious emissions, conducted	±2.20dB
4	All emissions, radiated(<1G)	±3.90dB
5	All emissions, radiated(>1G)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

2. EUT Description

2.1. General Description of EUT

Equipment:	Security Camera
Model Name:	D02 humin humin
Series Models:	N/A N/TESTING
Model Difference:	N/A HIANTEST
Trade Mark:	N/A THE THE PARTY OF THE PARTY
FCC ID:	2BFI9-D02
Operation Frequency:	IEEE 802.11a/n/ac (HT20)5.745GHz-5.825GHz IEEE 802.11n/ac (HT40)5.755GHz-5.795GHz
Modulation Technology:	IEEE 802.11a/n/ac
Modulation Type:	256QAM, 64QAM, 16QAM, QPSK, BPSK for OFDM
Antenna Type:	Iron sheet antenna
Antenna Gain:	3.86dBi
Power Source:	DC 5V From Type-C or DC 3.7V From Battery
Power Supply:	DC 5V From Type-C or DC 3.7V From Battery
Hardware Version:	V2.0
Software Version:	V2.0 HUNTESTING HUNTESTING

Note: 1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

- 2. Antenna gain Refer to the antenna specifications.
- 3. The cable loss data is obtained from the supplier.
- 4. The test results in the report only apply to the tested sample.

2.2. Operation Frequency Each of Channel

	02.11n(HT20) ac(HT20)		1n(HT40) Iac(HT40)
Channel	Frequency	Channel	Frequency
149	5745	151	5755
153	5765	159	5795
157	5785	AKTES	(a)
161	5805		THE
165	5825		HUAKTES

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

2.3. Operation of EUT During Testing

Ba	and IV (5725 - 5850 MF	Hz)
For	302.11a/n (HT20)/ac(H	T20)
Channel Number	Channel	Frequency (MHz)
149	Low	5745
157	Mid	5785
165	High	5825

- L N		4	4	4.1	
	F	or 802.11n (F	HT40)/ ac(H1	Γ40)	
	annel mber	ut The Ch	annel	Frequency (N	MHz)
HUAK TES	151		_OW	5755	HUAKTES
	159	m ^G		5795	(10)

2.4. Description of Test Setup

HUAK TESTING

Operation of EUT during conducted testing and below 1GHz radiation testing:

Operation of EUT during above1GHz radiation testing:

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. The worst case is X position.

2.5. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Trade Mark	Model/Type No.	Specification	Remark
1	Security Camera	N/A	D02	N/A	TESTING EUT
2	USB Cable	N/A	N/A	Length:1.2m	Accessory
3	Adapter	N/A	MDY-10-EH	Input: 100-240V, 50/60Hz, 0.7A Output: 5V, 3A/9V, 3A/12V, 2.25A/20V, 1.35A	Peripheral
4	Adapter	N/A	N/A	Input: 100-240V, 50/60Hz, 0.5A Output: 5VDC, 2A	Peripheral
AK TESTIN	, ax TESTING	10	TESTING LOK TESTING	JAK TESTING	AKTESTING

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6db Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

3. Genera Information

report and defined as follows:

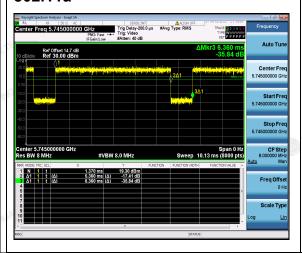
3.1. Test Environment and Mode

Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure:	1010 mbar
est Mode:	
Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations

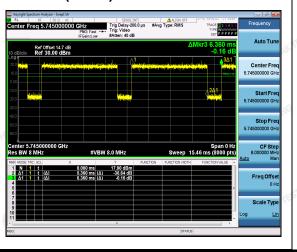
Mode	Data rate
802.11a	6 Mbps
802.11n(HT20)	MCS0
802.11n(HT40)	MCS0
802.11ac(HT20)/ac(HT40)	MCS0

with modulation

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

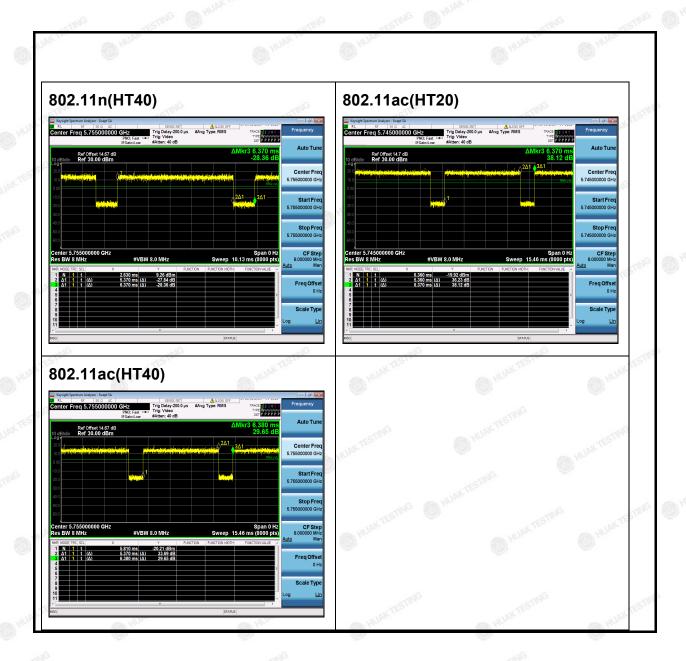


Mode Test Duty Cycle:


Mode	Duty Cycle
802.11a	0.84
802.11n(HT20)	0.84
802.11n(HT40)	0.84
802.11ac(HT20)	0.84
802.11ac(HT40)	0.84

Test plots as follows:

802.11a



802.11n(HT20)

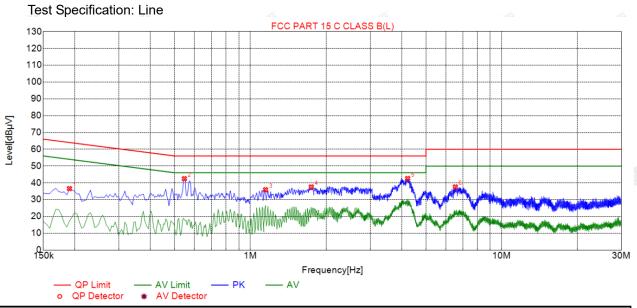
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4. Test Results and Measurement Data

Conducted Emission

4.1.1. Test Specification

STINE	TSTING TSTING	NO STI	We CALL		
Test Requirement:	FCC Part15 C Section	15.207	MI AK I		
Test Method:	ANSI C63.10:2013	TESTING			
Frequency Range:	150 kHz to 30 MHz	O HUAN	WAK TESTING		
Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time:	=auto		
	Frequency range	Limit (d	lBuV)		
	(MHz)	Quasi-peak	Average		
Limits:	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	THE STATE OF THE S	No Sul	NIG STI		
	HUAKTEE				
	Reference	e Plane			
	1,0,				
	40cm				
		LISN			
	E.U.T AC powe	80cm 1			
Test Setup:	NG.	Filter	– AC power		
	Test table/Insulation plane				
	Remark:	Receiver			
	E.U.T. Equipment Under Test LISN: Line Impedence Stabilization No	etwork			
	Test table height=0.8m				
Test Mode:	Tx Mode	"IAK TEST	WAX TEST		
	1. The E.U.T and simu	latore are connec	stad to the main		
	power through a line				
	(L.I.S.N.). This pro				
	impedance for the m	0			
	2. The peripheral device				
	power through a LISN that provides a 50ohm/50uH				
Toot Propodure:	coupling impedance	with 50ohm term	ination. (Please		
Test Procedure:	refer to the block				
	photographs).				
	3. Both sides of A.C. line are checked for maximum				
	conducted interference. In order to find the maximum				
	emission, the relative				
	the interface cables				
	ANSI C63.10: 2013 (
	ANSI C03. 10. 2013 (on conducted files	ioui CiliCili.		
Test Result:	PASS				
	in This	MAK	TING		

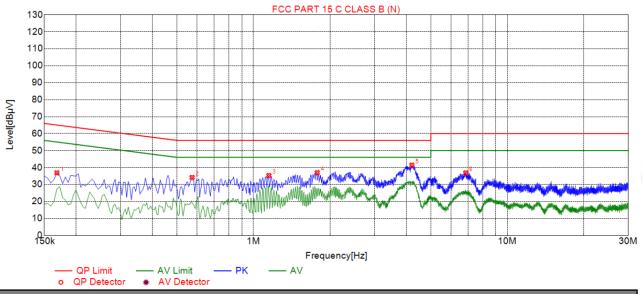


4.1.2. Test Instruments

(800)	Conducted Emission Shielding Room Test Site (843)					
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Receiver	R&S	ESR	HKE-005	Feb. 19, 2025	Feb. 18, 2026	
LISN	R&S	ENV216	HKE-002	Feb. 19, 2025	Feb. 18, 2026	
LISN	R&S	ENV216	HKE-059	Feb. 19, 2025	Feb. 18, 2026	
Coax cable (9KHz-30MHz)	Times	381806-002	N/A	Feb. 19, 2025	Feb. 18, 2026	
EMI Test Software	Tonscend	JS32-CE 2.5.0.6	HKE-081	N/A	N/A	
10dB Attenuator	Schwarzbeck	VTSD9561F	HKE-153	Feb. 19, 2025	Feb. 18, 2026	

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

4.1.3. Test data


Sus	Suspected List							
NO.	Freq. [MHz]	Level [dBµ∀]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Туре
1	0.1905	36.56	19.78	64.01	27.45	16.78	PK	L
2	0.5460	42.47	19.81	56.00	13.53	22.66	PK	L
3	1.1490	35.89	19.83	56.00	20.11	16.06	PK	L
4	1.7475	37.55	20.06	56.00	18.45	17.49	PK	L
5	4.2270	42.58	20.36	56.00	13.42	22.22	PK	L
6	6.5445	37.58	20.40	60.00	22.42	17.18	PK	L

Remark: Margin = Limit - Level

Correction factor = Cable lose + LISN insertion loss Level=Test receiver reading + correction factor

Test Specification: Neutral

Sus	Suspected List							
NO.	Freq. [MHz]	Level [dBµ∀]	Factor [dB]	Limit [dBµ∀]	Margin [dB]	Reading [dBµ∀]	Detector	Туре
1	0.1680	36.88	19.61	65.06	28.18	17.27	PK	N
2	0.5730	34.14	19.75	56.00	21.86	14.39	PK	N
3	1.1490	35.28	19.80	56.00	20.72	15.48	PK	N
4	1.7835	37.03	19.92	56.00	18.97	17.11	PK	N
5	4.2090	41.40	20.18	56.00	14.60	21.22	PK	N
6	6.8595	36.84	20.48	60.00	23.16	16.36	PK	N

Remark: Margin = Limit – Level

Correction factor = Cable lose + LISN insertion loss Level=Test receiver reading + correction factor

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.2. Maximum Conducted Output Power

4.2.1. Test Specification

Test Requirement:	FCC Part15 E Section 15.407(a)			
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02.r01 Section E			
Limit:	Frequency Band Limit			
	5725-5850 1 W			
Test Setup:	RF automatic control unit EUT AUTOMOTIC STREETING AUTOMOTIC STREETING			
Test Mode:	Transmitting mode with modulation			
Test Procedure:	 The testing follows the Measurement Procedure of KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section E, 3, a. The RF output of EUT was connected to the RF automatic control unit by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Measure the conducted output power and record the results in the test report. 			
Test Result:	PASS			
Remark:	Conducted output power= measurement power +10log(1/x) X is duty cycle=1, so 10log(1/1)=0 Conducted output power= measurement power			

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK,

4.2.2. Test Instruments

ASSEC 1 185033		WHO.	10000	7587 c 102	(0)
RF Test Room					
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Spectrum analyzer	Agilent	N9020A	HKE-025	Feb. 19, 2025	Feb. 18, 2026
Power meter	Agilent	E4419B	HKE-085	Feb. 19, 2025	Feb. 18, 2026
Power Sensor	Agilent	E9300A	HKE-086	Feb. 19, 2025	Feb. 18, 2026
RF cable	Times	1-40G	HKE-034	Feb. 19, 2025	Feb. 18, 2026
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 19, 2025	Feb. 18, 2026
RF Test Software	Tonscend	JS1120-3 Version 3.5.39	HKE-083	N/A	N/A

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Test Data

	Configura	tion Band IV (5725 - 5850 M	п2)	
Mode	Test channel	Maximum Conducted Output Power (dBm)	FCC Limit (dBm)	Result
802.11a	CH149	8.30	30	PASS
802.11a	CH157	8.13	30	PASS
802.11a	CH165	9.95	30	PASS
802.11n(HT20)	CH149	9.10	30	PASS
802.11n(HT20)	CH157	8.78	30	PASS
802.11n(HT20)	CH165	7.46	30	PASS
802.11n(HT40)	CH151	7.34	30	PASS
802.11n(HT40)	CH159	8.09	30	PASS
802.11ac(HT20)	CH149	8.44	30	PASS
802.11ac(HT20)	CH157	8.09	30	PASS
802.11ac(HT20)	CH165	7.96	30	PASS
802.11ac(HT40)	CH151	8.13	30	PASS
802.11ac(HT40)	CH159	7.46	30	PASS

TESTING TESTING

Report No.: HK2503050950-2E

4.3. 6db Emission Bandwidth

4.3.1. Test Specification

Test Requirement:	FCC CFR47 Part 15 Section 15.407(e)
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v01r04 Section C
Limit:	>500kHz
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Test Result:	PASS

4.3.2. Test Instruments

		RF Test R	oom		
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Spectrum analyzer	Agilent	N9020A	HKE-025	Feb. 19, 2025	Feb. 18, 2026
RF cable	Times	1-40G	HKE-034	Feb. 19, 2025	Feb. 18, 2026
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 19, 2025	Feb. 18, 2026
RF Test Software	Tonscend	JS1120-3 Version 3.5.39	HKE-083	N/A	N/A

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

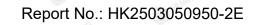
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.3.3. Test data

	E	Band IV (5725 -	· 5850 MHz)		
Mode	Test Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limit (MHz)	Result
802.11a	CH149	5745	16.32	0.5	PASS
802.11a	CH157	5785	16.40	0.5	PASS
802.11a	CH165	5825	16.40	0.5	PASS
802.11n(HT20)	CH149	5745	17.60	(STINE) 0.5	PASS
802.11n(HT20)	CH157	5785	17.64	0.5	PASS
802.11n(HT20)	CH165	5825	17.64	0.5	PASS
802.11n(HT40)	CH151	5755	36.48	0.5	PASS
802.11n(HT40)	CH159	5795	36.32	0.5	PASS
802.11ac(HT20)	CH149	5745	17.64	0.5	PASS
802.11ac(HT20)	CH157	5785	17.60	0.5	PASS
802.11ac(HT20)	CH165	5825	17.56	0.5	PASS
802.11ac(HT40)	© CH151	5755	36.40	0.5	PASS
802.11ac(HT40)	CH159	5795	36.32	0.5	PASS

Test plots as follows:

FICATION


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

High

4.4. 26db Bandwidth and 99% Occupied Bandwidth

4.4.1. Test Specification

Test Requirement:	47 CFR Part 15C Section 15.407 (a)			
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C			
Limit:	No restriction limits			
Test Setup:	Spectrum Analyzer EUT			
Test Mode:	Transmitting mode with modulation			
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth RBW = 1% EBW, VBW≥3RBW, In order to make an accurate measurement. Measure and record the results in the test report. 			
Test Result:	N/A TESTING NAME TESTING NAME TESTING			

4.4.2. Test Instruments

RF Test Room					
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Spectrum analyzer	Agilent	N9020A	HKE-025	Feb. 19, 2025	Feb. 18, 2026
RF cable	Times	1-40G	HKE-034	Feb. 19, 2025	Feb. 18, 2026
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 19, 2025	Feb. 18, 2026
RF Test Software	Tonscend	JS1120-3 Version 3.5.39	HKE-083	N/A	N/A

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

4.4.3. Test Result

N/A

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.5. Power Spectral Density

4.5.1. Test Specification

	EOO D. 145 E.O. (; 45 407 ()				
Test Requirement:	FCC Part15 E Section 15.407 (a)				
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section F				
Limit:	≤30.00dBm/500KHz for Band IV 5725MHz-5850MHz				
Test Setup:	Spectrum Analyzer EUT				
Test Mode:	Transmitting mode with modulation				
Test Procedure:	 Set the spectrum analyzer or EMI receiver span to view the entire emission bandwidth. Set RBW = 510 kHz/1 MHz, VBW ≥ 3*RBW, Sweep time = Auto, Detector = RMS. Allow the sweeps to continue until the trace stabilizes. Use the peak marker function to determine the maximum amplitude level. The E.I.R.P spectral density used radiated test method. At a test site that has been validated using the procedures of ANSI C63.4 or the latest CISPR 16-1-4 for measurements above 1 GHz, so as to simulate a near free-space environment. 				
Test Result:	PASS				

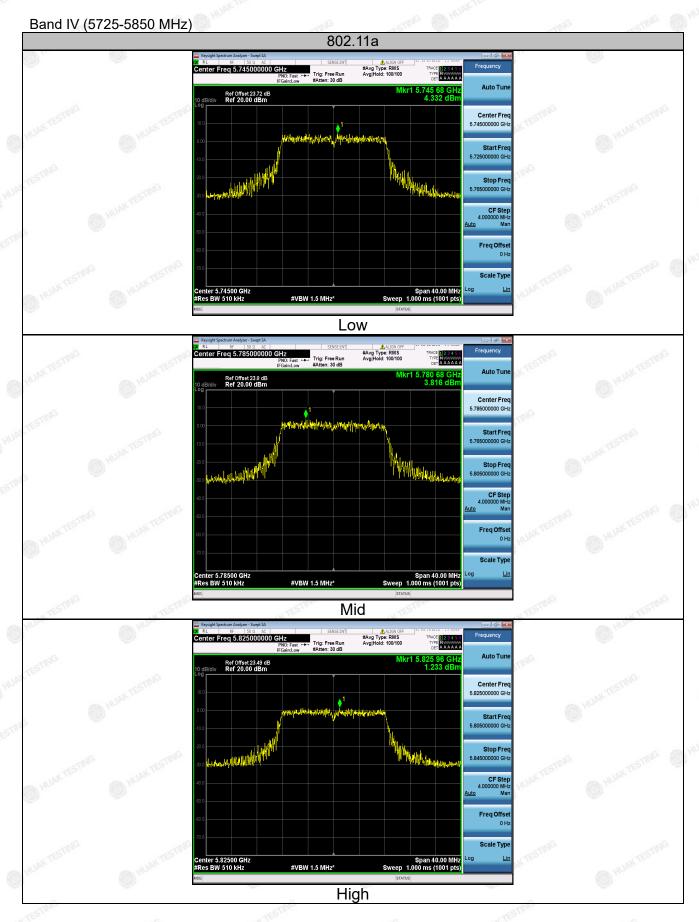
4.5.2. Test Instruments

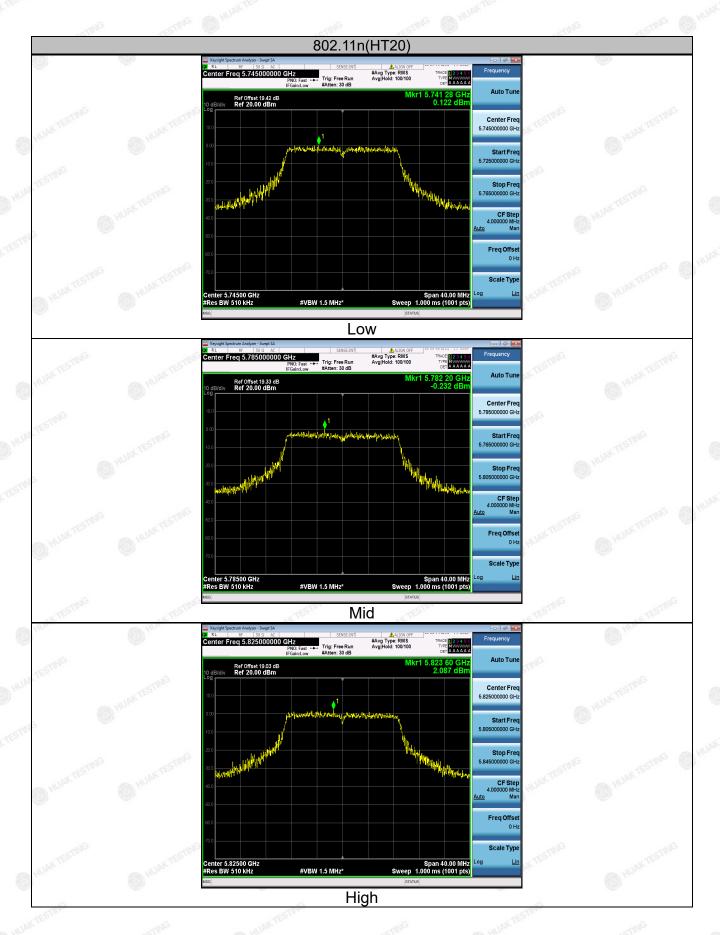
RF Test Room					
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Spectrum analyzer	Agilent	N9020A	HKE-025	Feb. 19, 2025	Feb. 18, 2026
RF cable	Times	1-40G	HKE-034	Feb. 19, 2025	Feb. 18, 2026
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 19, 2025	Feb. 18, 2026
RF Test Software	Tonscend	JS1120-3 Version 3.5.39	HKE-083	N/A	N/A

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

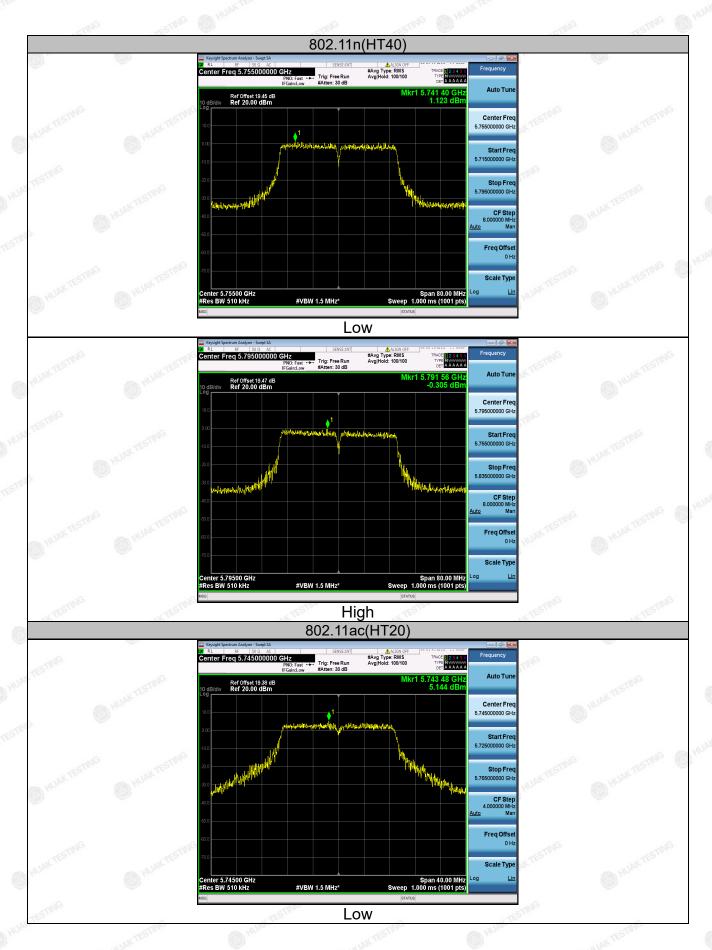
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

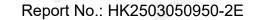
4.5.3. Test data

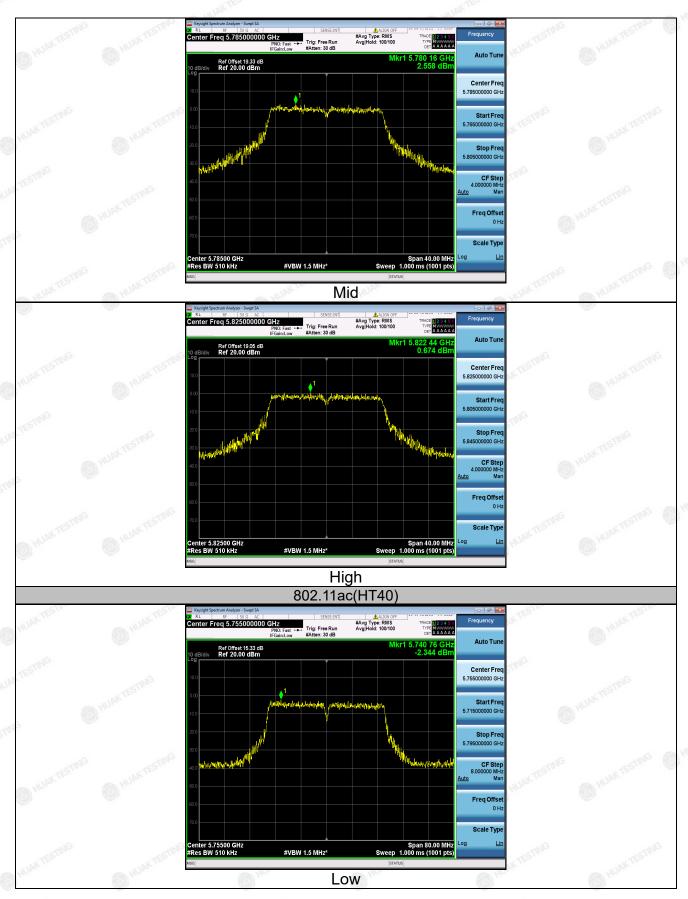

Configuration Band IV (5725 - 5850 MHz)						
Mode	Test Channel	Level [dBm/510kHz]	10log(500/ 510)	Power Spectral Density	Limit (dBm/500kH z)	Result
802.11a	CH149	4.33	-0.086	4.244	30 (1551)	PASS
802.11a	CH157	3.82	-0.086	3.734	30	PASS
802.11a	CH165	1.23	-0.086	1.144	30	PASS
802.11n(HT20)	CH149	0.12	-0.086	0.034	30	PASS
802.11n(HT20)	CH157	-0.23	-0.086	-0.316	30	PASS
802.11n(HT20)	CH165	2.09	-0.086	2.004	30	PASS
802.11n(HT40)	CH151	1.12	-0.086	1.034	5 ¹¹¹⁶ 30	PASS
802.11n(HT40)	CH159	-0.31	-0.086	-0.396	30	PASS
802.11ac(HT20)	CH149	5.14	-0.086	5.054	30	PASS
802.11ac(HT20)	CH157	2.56	-0.086	2.474	30	PASS
802.11ac(HT20)	CH165	0.67	-0.086	0.584	30	PASS
802.11ac(HT40)	CH151	-2.34	-0.086	-2.426	30	PASS
802.11ac(HT40)	CH159	-4.18	-0.086	-4.266	30	PASS


Note: Power Spectral Density= Level [dBm/510kHz]+ (10log(Limit RBW/Test RBW))

Test plots as follows:







Page 35 of 72

Report No.: HK2503050950-2E

THERE ORDERED ORDER ORDERED ORDER ORDER

High

4.6. Band Edge

4.6.1. Test Specification

HUAK TESTING

Test Requirement:	FCC CFR47 Part 15E Section 15.407			
Test Method:	ANSI C63.10 2013			
Limit:	(1)For transmitters operating in the 5.725-5.85 GHz band: (i) All emissions shall be limited to a level of −27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. The limit of frequency below 1GHz and which fall in restricted bands should complies 15.209.			
Test Setup:	Ant. feed point 1.4 m Ground Plane Receiver Amp.			
Test Mode:	Transmitting mode with modulation			
Test Procedure:	1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.			

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Page 37 of 72 Report No.: HK2503050950-2E

	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi peak or average method as specified and then reported in a data sheet.
Test Result:	PASS

4.6.2. Test Instruments

	Radiated Emission Test Site (966)									
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due					
Spectrum analyzer	Agilent	N9020A	HKE-025	Feb. 19, 2025	Feb. 18, 2026					
Spectrum analyzer	R&S	FSV3044	HKE-126	Feb. 19, 2025	Feb. 18, 2026					
Preamplifier	EMCI	EMC051845S	HKE-006	Feb. 19, 2025	Feb. 18, 2026					
Preamplifier	Schwarzbeck	BBV 9743	HKE-016	Feb. 19, 2025	Feb. 18, 2026					
Preamplifier	A.H. Systems	SAS-574	HKE-182	Feb. 19, 2025	Feb. 18, 2026					
6dB Attenuator	Pasternack	6db	HKE-184	Feb. 19, 2025	Feb. 18, 2026					
EMI Test Receiver	Rohde & Schwarz	ESR-7	HKE-010	Feb. 19, 2025	Feb. 18, 2026					
Broadband Antenna	Schwarzbeck	VULB9168	HKE-167	Feb. 21, 2024	Feb. 20, 2026					
Loop Antenna	COM-POWER	AL-130R	HKE-014	Feb. 21, 2024	Feb. 20, 2026					
Horn Antenna	Schwarzbeck	9120D	HKE-013	Feb. 21, 2024	Feb. 20, 2026					
EMI Test Software	Tonscend	JS32-RE 5.0.0	HKE-082	N/A	N/A					
RSE Test Software	Tonscend	JS36-RSE 5.0. 0	HKE-184	N/A	N/A					

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

4.6.3. Test Data

Operation Mode: 802.11a Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Time
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Detector Type
5650	50.23	-2.06	48.17	68.2	-20.03	peak
5700	81.32	-1.96	79.36	105.2	-25.84	peak
5720	83.98	-2.87	81.11	110.8	-29.69	peak
5725	101.38	-2.14	99.24	122.2	-22.96	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	50.32	-2.06	48.26	68.2	-19.94	peak
5700	75.85	-1.96	73.89	105.2	-31.31	peak
5720	83.19	-2.87	80.32	110.8	-30.48	peak
5725	99.43	-2.14	97.29	122.2	-24.91	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Operation Mode: TX CH High with 5.8G

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data at the Turn
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	100.13	-1.97	98.16	122.2	-24.04	peak
5855	80.64	-2.13	78.51	110.8	-32.29	peak
5875	81.43	-2.65	78.78	105.2	-26.42	peak
5925	49.36	-2.28	47.08	68.2	-21.12	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

	Frequency	Meter Reading	Factor	Emission Level	Limits 🔘	Margin	Detector Type
TING	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
	5850	94.54	-1.97	92.57	122.2	-29.63	peak
	5855	86.54	-2.13	84.41	110.8	-26.39	peak
	5875	74.92	-2.65	72.27	105.2	-32.93	peak
MAN	5925	50.52	-2.28	48.24	68.2	-19.96	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin =

Operation Mode: 802.11n/HT20 Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	50.05	-2.06	47.99	68.2	-20.21	peak
5700	80.07	-1.96	78.11	105.2	-27.09	peak
5720	90.11	-2.87	87.24	110.8	-23.56	peak
5725	104.39	-2.14	102.25	122.2	-19.95	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Datastar Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	51.97	-2.06	49.91	68.2	-18.29	peak
5700	86.88	-1.96	84.92	105.2	-20.28	peak
5720	90.94	-2.87	88.07	110.8	-22.73	peak
5725	101.94	-2.14	99.8	122.2	-22.4	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin =

Operation Mode: TX CH High with 5.8G

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Tune
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	103.01	-1.97	101.04	122.2	-21.16	peak
5855	86.64	-2.13	84.51	110.8	-26.29	peak
5875	82.52	-2.65	79.87	105.2	-25.33	peak
5925	50.54	-2.28	48.26	68.2	-19.94	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

	10%	1 1/2	* VI-		100	* U.L.
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	97.14	-1.97	95.17	122.2	-27.03	peak
5855	84.22	-2.13	82.09	110.8	-28.71	peak
5875	82.61	-2.65	79.96	105.2	-25.24	peak
5925	50.22	-2.28	47.94	68.2	-20.26	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Operation Mode: 802.11n/HT40 Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data att Testing
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	 Detector Type
5650	54.22	-2.06	52.16	68.2	-16.04	peak
5700	87.68	-1.96	85.72	105.2	-19.48	peak
5720	83.64	-2.87	80.77	110.8	-30.03	peak
5725	104.12	-2.14	101.98	122.2	-20.22	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

460	. 100	. 100	100		. 125	. 18
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	51.22	-2.06	49.16	68.2	-19.04	peak
5700	87.07	-1.96	85.11	105.2	-20.09	peak
5720	80.62	-2.87	77.75	110.8	-33.05	peak
5725	100.79	-2.14	98.65	122.2	-23.55	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Operation Mode: TX CH High with 5.8G

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data at TESTING
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	97.58	-1.97	95.61	122.2	-26.59	peak
5855	83.64	-2.13	81.51	110.8	-29.29	peak
5875	82.22	-2.65	79.57	105.2	-25.63	peak
5925	50.77	-2.28	48.49	68.2	-19.71	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	100.92	-1.97	98.95	122.2	-23.25	peak
5855	88.82	-2.13	86.69	110.8	-24.11	peak
5875	82.37	-2.65	79.72	105.2	-25.48	peak
5925	52.13	-2.28	49.85	68.2	-18.35	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Operation Mode: 802.11ac/HT20 Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data atak Tima
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	50.45	-2.06	48.39	68.2	-19.81	peak
5700	75.82	-1.96	73.86	105.2	-31.34	peak
5720	86.96	-2.87	84.09	110.8	-26.71	peak
5725	99.41	-2.14	97.27	122.2	-24.93	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

2.39	200	200	/39		27.5%	200
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	50.23	-2.06	48.17	68.2	-20.03	peak
5700	82.34	-1.96	80.38	105.2	-24.82	peak
5720	85.81	-2.87	82.94	110.8	-27.86	peak
5725	101.13	-2.14	98.99	122.2	-23.21	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Operation Mode: TX CH High with 5.8G

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data at a Tura
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	99.78	-1.97	97.81	122.2	-24.39	peak
5855	83.88	-2.13	81.75	110.8	-29.05	peak
5875	78.61	-2.65	75.96	105.2	-29.24	peak
5925	50.42	-2.28	48.14	68.2	-20.06	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

~_		- 1777	4.775			-1 1 1 m	4.177
	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
TIN	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
	5850	100.77	-1.97	98.8	122.2	-23.4	peak
	5855	84.25	-2.13	82.12	110.8	-28.68	peak
	5875	74.81	-2.65	72.16	105.2	-33.04	peak
100	5925	50.23	-2.28	47.95	68.2	-20.25	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Operation Mode: 802.11ac/HT40 Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	50.05	-2.06	47.99	68.2	-20.21	peak
5700	76.67	-1.96	74.71	105.2	-30.49	peak
5720	89.25	-2.87	86.38	110.8	-24.42	peak
5725	99.93	-2.14	97.79	122.2	-24.41	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

La Company of the Com	C. V.		- C-	7.	C 3.	
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	50.23	-2.06	48.17	68.2	-20.03	peak
5700	83.57	-1.96	81.61	105.2	-23.59	peak
5720	88.99	-2.87	86.12	110.8	-24.68	peak
5725	101.56	-2.14	99.42	122.2	-22.78	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit

Operation Mode: TX CH High with 5.8G

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data at S. T. va a
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	97.42	-1.97	95.45	122.2	-26.75	peak
5855	85.59	-2.13	83.46	110.8	-27.34	peak
5875	80.47	-2.65	77.82	105.2	-27.38	peak
5925	51.26	-2.28	48.98	68.2	-19.22	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

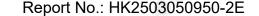
Vertical:

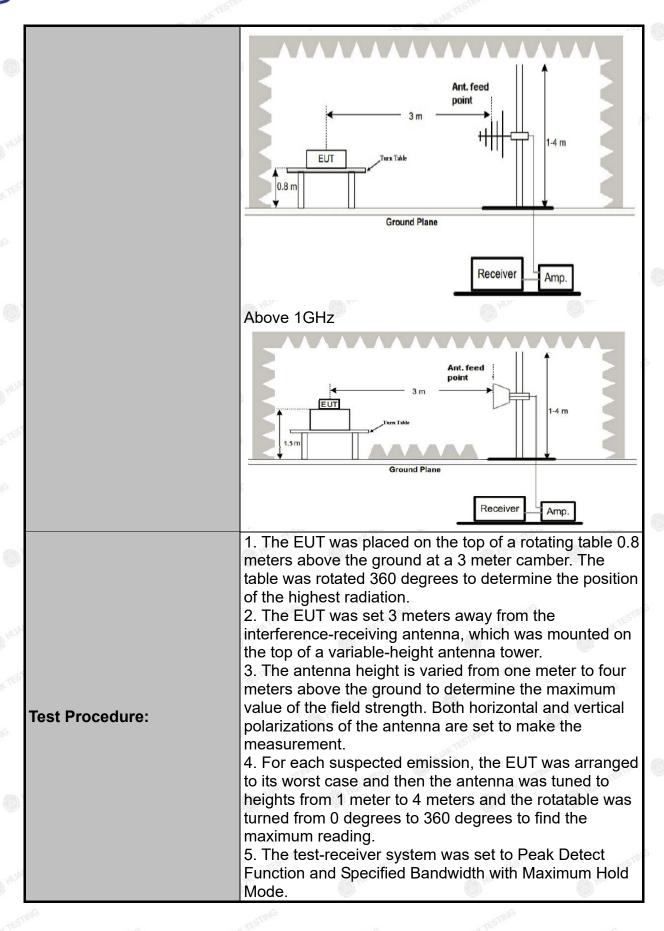
	102.	4 027	* DZ=		102	102.
Frequency	Meter Reading	Factor	Emission Level	Limits 💮	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	108.13	-1.97	106.16	122.2	-16.04	peak
5855	86.45	-2.13	84.32	110.8	-26.48	peak
5875	79.74	-2.65	77.09	105.2	-28.11	peak
5925	52.48	-2.28	50.2	68.2	-18	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

- 1. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.
- 2. In restricted bands of operation, the spurious emissions below the permissible value more than 20dB.
- 3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.





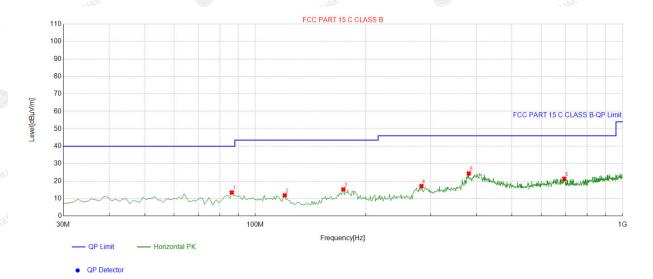
4.7. Spurious Emission

4.7.1.1. Test Specification

Test Requirement:	FCC CFR47	FCC CFR47 Part 15 Section 15.407 & 15.209 & 15.209						
Test Method:	KDB 789033	D02 v02r0)1					
Frequency Range:	9kHz to 40G	Hz		TESTING				
Measurement Distance:	3 m	CANTESTING	Ø ™	Jan.	LAK TESTING			
Antenna Polarization:	Horizontal &	Vertical		m/G	0,110			
Operation mode:	Transmitting	mode with	modulat	ion				
Receiver Setup:	Frequency 9kHz- 150kHz 150kHz- 30MHz	Detector Quasi-peak Quasi-peak	RBW 200Hz 9kHz	VBW 1kHz 30kHz	Remark Quasi-peak Value Quasi-peak Value			
receiver octup.	30MHz-1GHz Above 1GHz	Quasi-peak Peak Peak	120KHz 1MHz 1MHz	300KHz 3MHz 10Hz	Quasi-peak Value Peak Value Average Value			
Limit:	emissions outs an e.i.r.p. of -2 (2) For transmi emissions outs an e.i.r.p. of -2 (3) For transmi emissions outs an e.i.r.p. of -2 (4) For transmi (i) All emission MHz or more at to 10 dBm/MH from 25 MHz at to a level of 15 edge, and from linearly to a level	(1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz. (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz. (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz. (4) For transmitters operating in the 5.725-5.85 GHz band: (i) All emissions shall be limited to a level of −27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. The limit of frequency below 1GHz and which fall in restricted b						
Test setup:	For radiated	3 m Turn Table Ground Pla		RX Antenna Receiver	JANA TESTINE			
	30MHz to 10	SHz	THE WAY	AKTES	COTING			

Page 51 of 72 Report No.: HK2503050950-2E

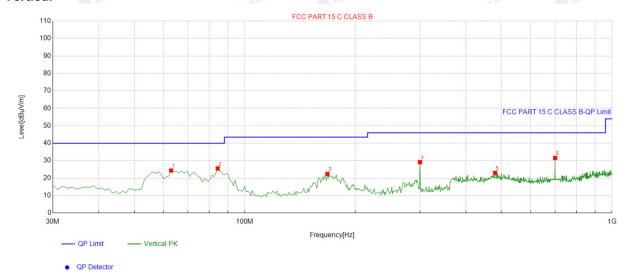
		6. If the emission level of the EUT in peak 10dB lower than the limit specified, then to be stopped and the peak values of the EU reported. Otherwise the emissions that did 10dB margin would bere-tested one by or quasi-peak or average method as specified reported in a data sheet.	esting could IT would be d not have se using peak,
Test results	S:	PASS	an G


4.7.2. Test Data

All the test modes completed for test. The worst case of Radiated Emission; the test data of this mode was reported.

Report No.: HK2503050950-2E

Below 1GHz


Horizontal

Suspe	Suspected List											
	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle				
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity			
1	86.316316	-17.62	31.09	13.47	40.00	26.53	100	341	Horizontal			
2	120.3003	-16.19	28.03	11.84	43.50	31.66	100	198	Horizontal			
3	173.70370	-16.83	32.08	15.25	43.50	28.25	100	114	Horizontal			
4	283.42342	-12.53	29.72	17.19	46.00	28.81	100	152	Horizontal			
5	381.49149	-9.22	33.64	24.42	46.00	21.58	100	93	Horizontal			
6	694.14414	-4.16	25.51	21.35	46.00	24.65	100	117	Horizontal			

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit – Level

Vertical

Suspe	Suspected List											
	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle				
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity			
1	63.013013	-14.48	38.85	24.37	40.00	15.63	100	354	Vertical			
2	84.374374	-17.88	43.37	25.49	40.00	14.51	100	288	Vertical			
3	167.87787	-17.31	39.72	22.41	43.50	21.09	100	119	Vertical			
4	299.92993	-11.71	40.88	29.17	46.00	16.83	100	73	Vertical			
5	480.53053	-8.25	31.29	23.04	46.00	22.96	100	10	Vertical			
6	699.96997	-4.43	36.03	31.60	46.00	14.40	100	15	Vertical			

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit – Level

Harmonics and Spurious Emissions

Frequency Range (9 kHz-30MHz)

PENGL.	PERSONAL PROPERTY.	PROVIDE PROVIDE
Frequency (MHz)	Level@3m (dBµV/m)	Limit@3m (dBµV/m)
	w TESTING	V TESTING
V TESTING	- VESTING	HULD VESTING
HUD	10	HUN
	-E MG	-SIMG

Note: 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement.

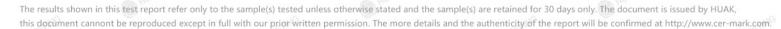
Above 1GHz

Report No.: HK2503050950-2E

RADIATED EMISSION TEST

LOW CH 149 (802.11 a Mode with 5.8G)/5745

Horizontal:


Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotostor Typo
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	52.01	-4.59	47.42	68.2	-20.78	peak
11096	44.18	4.21	48.39	74	-25.61	peak
11096	42.33	4.21	46.54	54	-7.46	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Mar.		-11/1/-			and the same of th	
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	54.26	-4.59	49.67	68.2	-18.53	peak
11096	43.52	4.21	47.73	74	-26.27	peak
11096	52.16	4.21	56.37	54	2.37	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

MID CH157 (802.11 a Mode with 5.8G)/5785

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	51.71	-4.59	47.12	68.2	-21.08	peak
10523	50.23	4.21	54.44	68.2	-13.76	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	54.19	-4.59	49.6	68.2	-18.6	peak
10523	51.22	4.21	55.43	68.2	-12.77	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

HIGH CH 165 (802.11a Mode with 5.8G)/5825

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	D. S. HUAKTES	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type	
2705	54.26	-4.59	49.67	74	-24.33	peak	
2705	44.29	-4.59	39.7	54	-14.3	AVG	
11717	52.33	4.84	57.17	74	-16.83	peak	
11717	38.88	4.84	43.72	54	-10.28	AVG	

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Datastar Tuna
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2705	53.79	-4.59	49.2	74	-24.8	peak
2705	41.19	-4.59	36.6	54	_o -17.4	AVG
11717	50.39	4.84	55.23	74	-18.77	peak
11717	39.12	4.84	43.96	54	-10.04	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

5.8G 802.11n/HT20 Mode

LOW CH 149

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	55.13	-4.59	50.54	68.2	-17.66	peak
11096	49.08	4.21	53.29	74	-20.71	peak
11096	40.22	4.21	44.43	54	-9.57	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	54.74	-4.59	50.15	68.2	-18.05	peak
11096	53.19	4.21	57.4	74	-16.6	peak
11096	40.51	4.21	44.72	54	-9.28	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

MID CH157

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	54.45	-4.59	49.86	68.2	-18.34	peak
10523	51.26	4.21	55.47	68.2	-12.73	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	52.44	-4.59	47.85	68.2	-20.35	peak
10523	45.16	4.21	49.37	68.2	-18.83	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

HIGH CH165

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	MAKTESTA
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2705	54.26	-4.59	49.67	74	-24.33	peak
2705	42.68	-4.59	38.09	54	-15.91	AVG
11717	52.13	4.84	56.97	74 TEST	-17.03	peak
11717	39.91	4.84	44.75	54	-9.25	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = _evel-Limit.

Vertical:

4. 1.	- V. / -	- 41 / 1	11 /2		- 47	- 4/
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2705	55.32	-4.59	50.73	74	-23.27	peak
2705	46.32	-4.59	41.73	54	₅ -12.27	AVG
11717	52.66	4.84	57.5	74	-16.5	peak
11717	40.48	4.84	45.32	54	-8.68	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator - Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency. (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed

5.8G 802.11n/HT40 Mode

LOW CH 151

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	56.29	-4.59	51.7	68.2	-16.5	peak
11096	51.86	4.21	56.07	74	-17.93	peak
11096	40.12	4.21	44.33	54	-9.67	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

176	11/1/2	1,7	11/2/2		11/1/20	
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	58.91	-4.59	54.32	68.2	-13.88	peak
11096	49.81	4.21	54.02	74	-19.98	peak
11096	42.19	4.21	46.4	54	-7.6	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

WAKTES

MID CH159

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	57.54	-4.59	52.95	68.2	-15.25	peak
10523	48.98	4.21	53.19	68.2	-15.01	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data atau Tura
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	53.08	-4.59	48.49	68.2	-19.71	peak
10523	50.47	4.21	54.68	68.2	-13.52	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

5.8G 802.11ac/HT20 Mode

LOW CH 149

Horizontal:

1000	400	67.7	400		600	600
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	53.05	-4.59	48.46	68.2	-19.74	peak
11096	44.41	4.21	48.62	74	-25.38	peak
11096	41.22	4.21	45.43	54	-8.57	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	53.59	-4.59	49	68.2	-19.2	peak
11096	51.36	4.21	55.57	74	-18.43	peak
11096	40.32	4.21	44.53	54	-9.47	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

MID CH157

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	54.21	-4.59	49.62	68.2	-18.58	peak
10523	45.37	4.21	49.58	68.2	-18.62	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	52.79	-4.59	48.2	68.2	-20	peak
10523	51.72	4.21	55.93	68.2	-12.27	peak

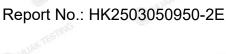
Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

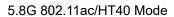
HIGH CH165

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	WAY TESTA
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2705	52.07	-4.59	47.48	74	-26.52	peak
2705	43.26	-4.59	38.67	54	-15.33	AVG
11717	51.59	4.84	56.43	74	-17.57	peak
11717	40.13	4.84	44.97	54	-9.03	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.


Vertical:


4 1	4 1	4 1	4 1		4 1	4 1
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2705	54.26	-4.59	49.67	74	-24.33	peak
2705	42.38	-4.59	37.79	54	_{-16.21}	AVG
11717	51.41	4.84	56.25	74	-17.75	peak
11717	41.41	4.84	46.25	54	-7.75	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

LOW CH 151

HUAK TESTING

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	(9)
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	52.33	-4.59	47.74	68.2	-20.46	peak
11096	50.16	4.21	54.37	74	-19.63	peak
11096	42.55	4.21	46.76	54	-7.24	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator - Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	P HUM
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	54.26	-4.59	49.67	68.2	-18.53	peak
11096	51.21	4.21	55.42	74	₋ -18.58	peak
11096	40.67	4.21	44.88	54	-9.12	AVG

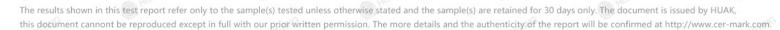
Remark: Factor = Cable loss + Antenna factor + Attenuator - Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

MID CH159

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	57.08	-4.59	52.49	68.2	-15.71	peak
10523	52.71	4.21	56.92	68.2	-11.28	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.


Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotootor Typo
(MHz)	(dBµV)	(dB)	。 (dBμV/m)	(dBµV/m)	(dB)	- Detector Type
3172	53.43	-4.59	48.84	68.2	-19.36	peak
10523	51.26	4.21	55.47	68.2	-12.73	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

4.8. Frequency Stability Measurement

4.8.1. Test Specification

Test Requirement:	FCC Part15 Section 15.407(g)
Test Method:	ANSI C63.10: 2013
Limit:	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 35 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.
Test Setup:	Spectrum Analyzer EUT AC/DC Power supply
Test Procedure:	The EUT was placed inside the environmental test chamber and powered by nominal AC/DC voltage. b. Turn the EUT on and couple its output to a spectrum analyzer. c. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. e. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.
Test Result:	PASS THE MAKESTING WHITE THE
Remark:	N/A

Test Result as follows:

Mode	Voltage (V)	FHL (5745MHz)	Deviation (KHz)	FHH (5825MHz)	Deviation (KHz)
	4.25V	5744.991	-9	5825.012	12
5.8G Band	5.0V	5745.024	24	5824.981	-19
MINAN.	5.75V	5744.964	-36	5824.988	-12

Mode	Temperature (°C)	FHL (5745MHz)	Deviation (KHz)	FHH (5825MHz)	Deviation (KHz)
3	-30	5744.972	-28	5825.011	11
MUAKTE	-20	5745.014	14	5825.008	8 400
	-10	5744.988	-12	5824.984	-16
Y TESTING	O HUAKT	5744.977	···· -23	5824.973	-27
5.8G Band	10	5744.959	-41	5825.016	16
	20	5745.019	19	5824.989	-11
STINGAKTEST	30	5744.981	-19	5824.971	-29
0,	40	5744.993	-7	5824.969	-31
	50	5744.969	-31	5825.022	22

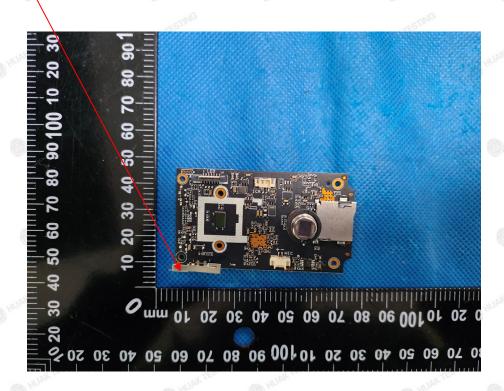
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.9. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.249, if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Report No.: HK2503050950-2E

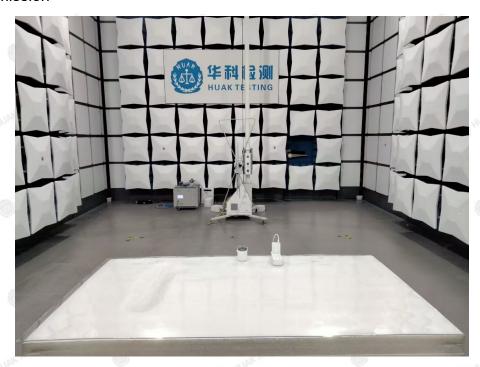

Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The antenna used in this product is a Iron sheet antenna, which permanently attached. It conforms to the standard requirements. The directional gains of antenna used for transmitting is 3.86dBi.

<u>Antenna</u>



⁷² Report No.: HK2503050950-2E

5. Test Setup Photos of the EUT

Radiated Emission

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Conducted Emission

Page 72 of 72 Report No.: HK2503050950-2E

6. Photos of the EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos

End of test report----