Client : NIM Certificate No: Z16-97166 ### **CALIBRATION CERTIFICATE** Object DAE4 - SN: 1390 Calibration Procedure(s) FD-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: September 22, 2016 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |---------|--|-----------------------| | 1971018 | 27-June-16 (CTTL, No:J16X04778) | June-17 | | | | | Name Function Signature Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Qi Dianyuan SAR Project Leader Approved by: Lu Bingsong Deputy Director of the laboratory Issued: September 23, 2013 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Glossary: DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. ## Methods Applied and Interpretation of Parameters: - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The report provide only calibration results for DAE, it does not contain other performance test results. Certificate No: Z16-97166 Page 2 of 3 ### **DC Voltage Measurement** A/D - Converter Resolution nominal | Calibration Factors | X | Y | Z | | |---------------------|-----------------------|-----------------------|-----------------------|--| | High Range | 403.717 ± 0.15% (k=2) | 403.432 ± 0.15% (k=2) | 404.320 ± 0.15% (k=2) | | | Low Range | 3.98392 ± 0.7% (k=2) | 3.98338 ± 0.7% (k=2) | 3.98415 ± 0.7% (k=2) | | ### **Connector Angle** | Connector Angle to be used in DASY system | 71.5° ± 1 ° | |---|-------------| |---|-------------| Certificate No: Z16-97166 Client : NIM Certificate No: Z17-97164 # **CALIBRATION CERTIFICATE** Object DAE4 - SN: 1390 Calibration Procedure(s) FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: September 15, 2017 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |------------------------|---------|--|-----------------------| | Process Calibrator 753 | 1971018 | 27-Jun-17 (CTTL, No.J17X05859) | June-18 | | | | | | Name Function > Yu Zongying SAR Test Engineer Reviewed by Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: September 18, 2017 Gignature This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Calibrated by: Glossary: DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. ### Methods Applied and Interpretation of Parameters: - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The report provide only calibration results for DAE, it does not contain other performance test results. Certificate No: Z17-97164 Page 2 of 3 ### DC Voltage Measurement A/D - Converter Resolution nominal | Calibration Factors | X | Y | Z | | | |---------------------|-----------------------|-----------------------|-----------------------|--|--| | High Range | 403.764 ± 0.15% (k=2) | 403.475 ± 0.15% (k=2) | 404.354 ± 0.15% (k=2) | | | | Low Range | 3.98341 ± 0.7% (k=2) | 3.98246 ± 0.7% (k=2) | 3.98373 ± 0.7% (k=2) | | | ### **Connector Angle** | Connector Angle to be used in DASY system | 70.5° ± 1 ° | |---|-------------| |---|-------------| Certificate No: Z17-97164 Client UL Certificate No: Z16-97247 ### **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:7383 Calibration Procedure(s) FD-Z11-004-01 Calibration Procedures for Dosimetric E-field Probes Calibration date: December 27, 2016 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) $^{\circ}$ C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|-------------|--|-----------------------| | Power Meter NRP2 | 101919 | 27-Jun-16 (CTTL, No.J16X04777) | Jun-17 | | Power sensor NRP-Z91 | 101547 | 27-Jun-16 (CTTL, No.J16X04777) | Jun-17 | | Power sensor NRP-Z91 | 101548 | 27-Jun-16 (CTTL, No.J16X04777) | Jun-17 | | Reference10dBAttenuator | 18N50W-10dB | 13-Mar-16(CTTL,No.J16X01547) | Mar-18 | | Reference20dBAttenuator | 18N50W-20dB | 13-Mar-16(CTTL, No.J16X01548) | Mar-18 | | Reference Probe EX3DV4 | SN 7433 | 26-Sep-16(SPEAG,No.EX3-7433_Sep16) | Sep-17 | | DAE4 | SN 1331 | 21-Jan-16(SPEAG, No.DAE4-1331_Jan16 | 6) Jan -17 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | SignalGeneratorMG3700A | 6201052605 | 27-Jun-16 (CTTL, No.J16X04776) | Jun-17 | | Network Analyzer E5071C | MY46110673 | 26-Jan-16 (CTTL, No.J16X00894) | Jan -17 | | | Name | Function | Signature | | Calibrated by: | Zhao Jing | SAR Test Engineer | 是是 | | Reviewed by: | Qi Dianyuan | SAR Project Leader | in or | | Approved by: | Lu Bingsong | Deputy Director of the laboratory | in witz | | | | | 1/ | Issued: December 31, 2016 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters Polarization θ or rotation around an axis that is in the plane normal to probe axis (at measurement center), i θ =0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ =0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E^2 -field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. - Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4
software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMX (no uncertainty required). Certificate No: Z16-97247 Page 2 of 11 # Probe EX3DV4 SN: 7383 Calibrated: December 27, 2016 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) Certificate No: Z16-97247 Page 3 of 11 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7383 ### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |------------------------------|----------|----------|----------|-----------| | Norm(µV/(V/m)²) ^A | 0.39 | 0.48 | 0.51 | ±10.8% | | DCP(mV) ^B | 97.7 | 97.3 | 101.0 | | ### **Modulation Calibration Parameters** | UID | Communication | | Α | В | С | D | VR | Unc ^E | |-----|---------------|---|-----|------|-----|------|-------|------------------| | | System Name | | dB | dBõV | | dB | mV | (k=2) | | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 168.0 | ±2.5% | | | | Y | 0.0 | 0.0 | 1.0 | | 189.9 | 7 | | | | Z | 0.0 | 0.0 | 1.0 | | 196.8 | | The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z16-97247 Page 4 of 11 ^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6). ^B Numerical linearization parameter: uncertainty not required. ^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ### DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7383 ### Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity ^F | Conductivity (S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|---------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 10.08 | 10.08 | 10.08 | 0.30 | 0.70 | ±12% | | 835 | 41.5 | 0.90 | 9.69 | 9.69 | 9.69 | 0.13 | 1.45 | ±12% | | 900 | 41.5 | 0.97 | 9.81 | 9.81 | 9.81 | 0.13 | 1.41 | ±12% | | 1450 | 40.5 | 1.20 | 8.90 | 8.90 | 8.90 | 0.17 | 1.05 | ±12% | | 1810 | 40.0 | 1.40 | 8.17 | 8.17 | 8.17 | 0.25 | 1.02 | ±12% | | 1900 | 40.0 | 1.40 | 8.26 | 8.26 | 8.26 | 0.21 | 1.21 | ±12% | | 2100 | 39.8 | 1.49 | 8.34 | 8.34 | 8.34 | 0.16 | 1.36 | ±12% | | 2300 | 39.5 | 1.67 | 7.78 | 7.78 | 7.78 | 0.45 | 0.77 | ±12% | | 2450 | 39.2 | 1.80 | 7.45 | 7.45 | 7.45 | 0.28 | 1.27 | ±12% | | 2600 | 39.0 | 1.96 | 7.35 | 7.35 | 7.35 | 0.33 | 1.09 | ±12% | | 3500 | 37.9 | 2.91 | 6.92 | 6.92 | 6.92 | 0.32 | 1.64 | ±13% | | 3700 | 37.7 | 3.12 | 6.58 | 6.58 | 6.58 | 0.38 | 1.25 | ±13% | | 5250 | 35.9 | 4.71 | 5.20 | 5.20 | 5.20 | 0.35 | 1.50 | ±13% | | 5600 | 35.5 | 5.07 | 4.69 | 4.69 | 4.69 | 0.40 | 1.50 | ±13% | | 5750 | 35.4 | 5.22 | 4.90 | 4.90 | 4.90 | 0.40 | 1.50 | ±13% | ^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No: Z16-97247 Page 5 of 11 ^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. ### DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7383 ### Calibration Parameter Determined in Body Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 55.5 | 0.96 | 10.40 | 10.40 | 10.40 | 0.40 | 0.82 | ±12% | | 835 | 55.2 | 0.97 | 10.13 | 10.13 | 10.13 | 0.15 | 1.58 | ±12% | | 900 | 55.0 | 1.05 | 10.14 | 10.14 | 10.14 | 0.19 | 1.35 | ±12% | | 1450 | 54.0 | 1.30 | 8.71 | 8.71 | 8.71 | 0.12 | 1.49 | ±12% | | 1810 | 53.3 | 1.52 | 8.10 | 8.10 | 8.10 | 0.15 | 1.58 | ±12% | | 1900 | 53.3 | 1.52 | 8.01 | 8.01 | 8.01 | 0.17 | 1.41 | ±12% | | 2100 | 53.2 | 1.62 | 8.32 | 8.32 | 8.32 | 0.16 | 1.63 | ±12% | | 2300 | 52.9 | 1.81 | 7.83 | 7.83 | 7.83 | 0.33 | 1.21 | ±12% | | 2450 | 52.7 | 1.95 | 7.63 | 7.63 | 7.63 | 0.38 | 1.05 | ±12% | | 2600 | 52.5 | 2.16 | 7.55 | 7.55 | 7.55 | 0.38 | 1.03 | ±12% | | 3500 | 51.3 | 3.31 | 6.57 | 6.57 | 6.57 | 0.41 | 1.53 | ±13% | | 3700 | 51.0 | 3.55 | 6.58 | 6.58 | 6.58 | 0.40 | 1.85 | ±13% | | 5250 | 48.9 | 5.36 | 4.63 | 4.63 | 4.63 | 0.46 | 1.90 | ±13% | | 5600 | 48.5 | 5.77 | 3.99 | 3.99 | 3.99 | 0.50 | 1.95 | ±13% | | 5750 | 48.3 | 5.94 | 4.33 | 4.33 | 4.33 | 0.52 | 2.00 | ±13% | ^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No: Z16-97247 Page 6 of 11 F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ±7.5% (k=2) Certificate No: Z16-97247 Page 7 of 11 # Receiving Pattern (Φ), θ=0° # f=600 MHz, TEM # f=1800 MHz, R22 Certificate No: Z16-97247 Page 8 of 11 Certificate No: Z16-97247 Page 9 of 11 ### **Conversion Factor Assessment** ### f=900 MHz, WGLS R9(H_convF) ### f=1810 MHz, WGLS R22(H convF) # **Deviation from Isotropy in Liquid** Uncertainty of Spherical Isotropy Assessment: ±2.8% (K=2) # DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7383 ### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 127.9 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disable | | Probe Overall Length | 337mm | | Probe Body Diameter | 10mm | | Tip Length | 9mm | | Tip Diameter | 2.5mm | | Probe Tip to Sensor X Calibration Point | 1mm | | Probe Tip to Sensor Y Calibration Point | 1mm | | Probe Tip to Sensor Z Calibration Point | 1mm | | Recommended Measurement Distance from Surface | 1.4mm | Certificate No: Z16-97247 Page 11 of 11 Client BTL-CN Certificate No: Z17-97061 ### CALIBRATION CERTIFICATE Object EX3DV4 - SN:7396 Calibration Procedure(s) FF-Z11-004-01 Calibration Procedures for Dosimetric E-field Probes Calibration date: May 25, 2017 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |------------------------|---------------|--
--| | Power Meter NRP2 | 101919 | 27-Jun-16 (CTTL, No.J16X04777) | Jun-17 | | Power sensor NRP-Z91 | 101547 | 27-Jun-16 (CTTL, No.J16X04777) | Jun-17 | | Power sensor NRP-Z91 | 101548 | 27-Jun-16 (CTTL, No.J16X04777) | Jun-17 | | Reference10dBAttenuato | r 18N50W-10dE | 3 13-Mar-16(CTTL,No.J16X01547) | Mar-18 | | Reference20dBAttenuato | r 18N50W-20dE | 3 13-Mar-16(CTTL, No.J16X01548) | Mar-18 | | Reference Probe EX3DV | 4 SN 7433 | 26-Sep-16(SPEAG,No.EX3-7433_Sep16) | Sep-17 | | DAE4 | SN 549 | 13-Dec-16(SPEAG, No.DAE4-549_Dec16) | Dec -17 | | | | | | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | SignalGeneratorMG3700 | A 6201052605 | 27-Jun-16 (CTTL, No.J16X04776) | Jun-17 | | Network Analyzer E5071 | C MY46110673 | 13-Jan-17 (CTTL, No.J17X00285) | Jan -18 | | | Name | Function | Signature | | Calibrated by: | Yu Zongying | SAR Test Engineer | EVE | | Reviewed by: | Lin Hao | SAR Test Engineer | The state of s | | Approved by: | Qi Dianyuan | SAR Project Leader | 2002 | Issued: May 26, 2017 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z17-97061 Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters Polarization Φ Φ rotation around probe axis Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i θ =0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ =0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E^2 -field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - *DCPx,y,z:* DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. - Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: Z17-97061 Page 2 of 11 # Probe EX3DV4 SN: 7396 Calibrated: May 25, 2017 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) Certificate No: Z17-97061 Page 3 of 11 # DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7396 ### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |------------------------------|----------|----------|----------|-----------| | Norm(µV/(V/m)²) ^A | 0.54 | 0.53 | 0.50 | ±10.0% | | DCP(mV) ^B | 97.8 | 104.5 | 102.5 | | ### **Modulation Calibration Parameters** | UID | Communication | | Α | В | С | D | VR | Unc ^E | |------|---------------|---|-----|------|-----|------|-------|------------------| | | System Name | | dB | dBõV | | dB | mV | (k=2) | | 0 CW | CW | Х | 0.0 | 0.0 | 1.0 | 0.00 | 199.9 | ±2.4% | | | | Υ | 0.0 | 0.0 | 1.0 | | 203.3 | | | | | Z | 0.0 | 0.0 | 1.0 | | 195.0 | | The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z17-97061 Page 4 of 11 ^A The uncertainties of Norm X, Y, Z do not affect the E^2 -field uncertainty inside TSL (see Page 5 and Page 6). ^B Numerical linearization parameter: uncertainty not required. E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ### DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7396 ### Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 9.82 | 9.82 | 9.82 | 0.30 | 0.85 | ±12.1% | | 835 | 41.5 | 0.90 | 9.71 | 9.71 | 9.71 | 0.15 | 1.36 | ±12.1% | | 900 | 41.5 | 0.97 | 9.87 | 9.87 | 9.87 | 0.16 | 1.37 | ±12.1% | | 1750 | 40.1 | 1.37 | 8.61 | 8.61 | 8.61 | 0.25 | 1.04 | ±12.1% | | 1900 | 40.0 | 1.40 | 8.13 | 8.13 | 8.13 | 0.24 | 1.01 | ±12.1% | | 2100 | 39.8 | 1.49 | 8.14 | 8.14 | 8.14 | 0.24 | 1.04 | ±12.1% | | 2300 | 39.5 | 1.67 | 7.85 | 7.85 | 7.85 | 0.40 | 0.75 | ±12.1% | | 2450 | 39.2 | 1.80 | 7.57 | 7.57 | 7.57 | 0.50 | 0.75 | ±12.1% | | 2600 | 39.0 | 1.96 | 7.38 | 7.38 | 7.38 | 0.64 | 0.68 | ±12.1% | | 5250 | 35.9 | 4.71 | 5.33 | 5.33 | 5.33 | 0.45 | 1.30 | ±13.3% | | 5600 | 35.5 | 5.07 | 4.89 | 4.89 | 4.89 | 0.45 | 1.35 | ±13.3% | | 5750 | 35.4 | 5.22 | 4.92 | 4.92 | 4.92 | 0.45 | 1.45 | ±13.3% | ^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.
Certificate No: Z17-97061 Page 5 of 11 F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. ### DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7396 ### Calibration Parameter Determined in Body Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 55.5 | 0.96 | 10.09 | 10.09 | 10.09 | 0.30 | 0.90 | ±12.1% | | 835 | 55.2 | 0.97 | 9.88 | 9.88 | 9.88 | 0.19 | 1.32 | ±12.1% | | 900 | 55.0 | 1.05 | 9.82 | 9.82 | 9.82 | 0.23 | 1.15 | ±12.1% | | 1750 | 53.4 | 1.49 | 8.24 | 8.24 | 8.24 | 0.24 | 1.06 | ±12.1% | | 1900 | 53.3 | 1.52 | 7.97 | 7.97 | 7.97 | 0.19 | 1.24 | ±12.1% | | 2100 | 53.2 | 1.62 | 8.18 | 8.18 | 8.18 | 0.19 | 1.39 | ±12.1% | | 2300 | 52.9 | 1.81 | 7.88 | 7.88 | 7.88 | 0.55 | 0.80 | ±12.1% | | 2450 | 52.7 | 1.95 | 7.53 | 7.53 | 7.53 | 0.46 | 0.89 | ±12.1% | | 2600 | 52.5 | 2.16 | 7.38 | 7.38 | 7.38 | 0.52 | 0.80 | ±12.1% | | 5250 | 48.9 | 5.36 | 4.93 | 4.93 | 4.93 | 0.45 | 1.80 | ±13.3% | | 5600 | 48.5 | 5.77 | 4.19 | 4.19 | 4.19 | 0.48 | 1.90 | ±13.3% | | 5750 | 48.3 | 5.94 | 4.52 | 4.52 | 4.52 | 0.48 | 1.95 | ±13.3% | ^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No: Z17-97061 Page 6 of 11 F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ±7.4% (k=2) Certificate No: Z17-97061 Page 7 of 11 # Receiving Pattern (Φ), θ=0° # f=600 MHz, TEM # f=1800 MHz, R22 Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) Certificate No: Z17-97061 Page 9 of 11 # **Conversion Factor Assessment** ## f=900 MHz, WGLS R9(H_convF) ### f=1750 MHz, WGLS R22(H_convF) 60 # **Deviation from Isotropy in Liquid** Uncertainty of Spherical Isotropy Assessment: ±3.2% (K=2) # DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7396 ### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 156.9 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disable | | Probe Overall Length | 337mm | | Probe Body Diameter | 10mm | | Tip Length | 9mm | | Tip Diameter | 2.5mm | | Probe Tip to Sensor X Calibration Point | 1mm | | Probe Tip to Sensor Y Calibration Point | 1mm | | Probe Tip to Sensor Z Calibration Point | 1mm | | Recommended Measurement Distance from Surface | 1.4mm | Certificate No: Z17-97061 Page 11 of 11 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client BTL-CN (Auden) Accreditation No.: SCS 0108 Certificate No: D835V2-4d160_Sep15 ### **CALIBRATION CERTIFICATE** Object D835V2 - SN: 4d160 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: September 30, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 07-Oct-14 (No. 217-02020) | Oct-15 | | Power sensor HP 8481A | US37292783 | 07-Oct-14 (No. 217-02020) | Oct-15 | | Power sensor HP 8481A | MY41092317 | 07-Oct-14 (No. 217-02021) | Oct-15 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 01-Apr-15 (No. 217-02131) | Mar-16 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 01-Apr-15 (No. 217-02134) | Mar-16 | | Reference Probe EX3DV4 | SN: 7349 | 30-Dec-14 (No. EX3-7349_Dec14) | Dec-15 | | DAE4 | SN: 601 | 17-Aug-15 (No. DAE4-601_Aug15) | Aug-16 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | RF generator R&S SMT-06 | 100972 | 15-Jun-15 (in house check Jun-15) | In house check: Jun-18 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-14) | In house check: Oct-15 | | | Name | Function | Signature | | Calibrated by: | Leif Klysner | Laboratory Technician | Sef Them | | Approved by: | Katja Pokovic | Technical Manager | alue | Issued: October 2, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D835V2-4d160_Sep15 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### **Additional Documentation:** Certificate No: D835V2-4d160_Sep15 e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Page 2 of 8 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer |
 Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 835 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.8 ± 6 % | 0.94 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.45 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.50 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.58 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.17 W/kg ± 16.5 % (k=2) | ### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.8 ± 6 % | 1.00 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | **** | ### SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.45 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 9.52 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.59 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 6.22 W/kg ± 16.5 % (k=2) | Certificate No: D835V2-4d160_Sep15 ### Appendix (Additional assessments outside the scope of SCS 0108) ### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 51.6 Ω - 3.1 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 29.3 dB | | ### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 47.2 Ω - 5.0 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 24.7 dB | | ### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.442 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | | |-----------------|-------------------|--| | Manufactured on | December 28, 2012 | | Certificate No: D835V2-4d160_Sep15 Page 4 of 8 ### **DASY5 Validation Report for Head TSL** Date: 17.09.2015 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d160 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.94$ S/m; $\varepsilon_r = 41.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(9.77, 9.77, 9.77); Calibrated: 30.12.2014; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 17.08.2015 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 • DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) # Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 61.89 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.77 W/kg SAR(1 g) = 2.45 W/kg; SAR(10 g) = 1.58 W/kg Maximum value of SAR (measured) = 3.31 W/kg 0 dB = 3.31 W/kg = 5.20 dBW/kg ### Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date: 30.09.2015 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d160 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 1$ S/m; $\varepsilon_r = 53.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(9.72, 9.72, 9.72); Calibrated: 30.12.2014; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 17.08.2015 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 • DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) # Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 59.47 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 3.78 W/kg SAR(1 g) = 2.45 W/kg; SAR(10 g) = 1.59 W/kg Maximum value of SAR (measured) = 3.30 W/kg 0 dB = 3.30 W/kg = 5.19 dBW/kg ### Impedance Measurement Plot for Body TSL #### **Dipole Internal Calibration Record** NO.: D835MHzV2 E-437 Asset No. Model No.: Cal. Date: 4d160 ENA Network Analyzer Serial No. : Next Cal. Date : Equipment: Environmental condition: 23.4 °C R.H.: Temp: Standard List IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorpiton IEEE Std 1528-2013 1 Rate(SAR) in the Human Head from Wireless Communication Devices: Measurement Texhniques, June Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in IEC 62209-2 2 close proximity to the human body(frequency range of 30 MHz to 6 GHz), March 2010 SAR Measurement Requirements for 100 MHz to 6 GHz 3 KDB865664 **Equipment Information** Equipment: Manufacturer Model No. : Serial No. : Cal.Organization: Certificate No. : **ENA Network** E5071C Agilent MY46102965 NA NA Mar. 27, 2016 Analyzer Original Cal. Report Calibration Value: For Head Tissue Verified on 2016/7/26 Original Cal. Result Frequency Item Deviation Result Impedance, transformed to feed 51.6Ω - $3.1j\Omega$ 48.3Ω-1.1jΩ<5Ω Pass 835MHz Return Loss(dB) -29.3 -33.5 -14.3% Pass For Body Tissue Original Cal. Result | Verified on 2016/7/12 Deviation Frequency Item Impedance, transformed to feed 47.2Ω-5jΩ 47.81Ω-5.24jΩ Pass <5Ω 835MHz -24.7 -25.44 -3.0% Return Loss(dB) Pass Impedance Test -Head Return Loss Test-Head Impedance Test -Body 2015/9/30 2018/9/30 59% Cal. Date : Annex From NO.: E_YYMMDD; E=Dipole NO., YYMMDD=Year/Month/Date. FM-xxx-xx Ver.1.0 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **BTL-CN (Auden)** Certificate No: D1750V2-1101_Sep15 # **CALIBRATION CERTIFICATE** Object D1750V2 - SN: 1101 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: September 22, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 07-Oct-14 (No. 217-02020) | Oct-15 | | Power sensor HP 8481A | US37292783 | 07-Oct-14 (No. 217-02020) | Oct-15 | | Power sensor HP 8481A | MY41092317 | 07-Oct-14 (No. 217-02021) | Oct-15 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 01-Apr-15 (No. 217-02131) | Mar-16 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 01-Apr-15 (No. 217-02134) | Mar-16 | | Reference Probe EX3DV4 | SN: 7349 | 30-Dec-14 (No. EX3-7349_Dec14) | Dec-15 | | DAE4 | SN: 601 | 17-Aug-15 (No. DAE4-601_Aug15) | Aug-16 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | RF generator R&S SMT-06 | 100972 | 15-Jun-15 (in house check Jun-15) | In house check: Jun-18 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-14) | In house check: Oct-15 | | | Name | Function | Signature \ | | Calibrated by: | Claudio Leubler | Laboratory Technician | | Approved by: Katja Pokovic Technical Manager Issued: September 23, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### Calibration
Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio syizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** Certificate No: D1750V2-1101_Sep15 e) DASY4/5 System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 1750 MHz ± 1 MHz | | #### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.9 ± 6 % | 1.36 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.13 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 36.6 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.82 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 19.3 W/kg ± 16.5 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | ne following parameters and calculations were appil | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.4 | 1.49 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.1 ± 6 % | 1.48 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | on before | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 8.94 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 35.7 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.75 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 19.0 W/kg ± 16.5 % (k=2) | # Appendix (Additional assessments outside the scope of SCS 0108) # Antenna Parameters with Head TSL | Impedance, transformed to feed point | 49.5 Ω - 1.5 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 36.0 dB | | # Antenna Parameters with Body TSL | Impedance, transformed to feed point | 47.6 Ω - 1.9 jΩ | |--------------------------------------|-----------------| | | - 30.1 dB | | Return Loss | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.221 ns | |----------------------------------|----------| | Libertical 2 1-17 (| | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|--------------| | Manufactured on | May 16, 2013 | Certificate No: D1750V2-1101_Sep15 Page 4 of 8 ### **DASY5 Validation Report for Head TSL** Date: 22.09.2015 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1101 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.36$ S/m; $\varepsilon_r = 39.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.38, 8.38, 8.38); Calibrated: 30.12.2014; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 17.08.2015 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 103.7 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 17.0 W/kg SAR(1 g) = 9.13 W/kg; SAR(10 g) = 4.82 W/kg Maximum value of SAR (measured) = 13.6 W/kg 0 dB = 13.6 W/kg = 11.34 dBW/kg # Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 22.09.2015 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1101 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.48$ S/m; $\epsilon_r = 52.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.25, 8.25, 8.25); Calibrated: 30.12.2014; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 17.08.2015 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 • DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.00 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 16.1 W/kg SAR(1 g) = 8.94 W/kg; SAR(10 g) = 4.75 W/kg Maximum value of SAR (measured) = 13.4 W/kg 0 dB = 13.4 W/kg = 11.27 dBW/kg # Impedance Measurement Plot for Body TSL #### **Dipole Internal Calibration Record** NO.: D1750MHzV2 E-438 Model No.: Cal. Date: Asset No. ENA Network Analyzer 1101 Serial No.: Next Cal. Date: Equipment: Environmental condition: Temp: 23.2 °C R.H.: Standard List IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorpiton Rate(SAR) in 1 IEEE Std 1528-2013 the Human Head from Wireless Communication Devices: Measurement Texhniques, June 2013 Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close 2 IEC 62209-2 proximity to the human body(frequency range of 30 MHz to 6 GHz), March 2010 SAR Measurement Requirements for 100 MHz to 6 GHz 3 KDB865664 **Equipment Information** Certificate No. : Equipment: Manufacturer: Model No. : Serial No. : Cal.Organization: **ENA Network** E5071C MY46102965 Mar. 27, 2016 Agilent NA NA Analyzer Calibration Value: For
Head Tissue Frequency Original Cal. Result Verified on 2016/7/26 Deviation Result Item Impedance, transformed to 49.5Ω-1.5jΩ 48.3Ω-2.2jΩ <5Ω Pass 1750MHz feed point -36 -31.5 12.5% Return Loss(dB) Pass For Body Tissue Frequency Item Original Cal. Result Verified on 2016/8/12 Deviation Impedance, transformed to 47.6Ω-1.9jΩ 47.38Ω-1.8jΩ <5Ω Pass 1750MHz feed point Return Loss(dB) -30.1 -30.35 -0.8% Pass Impedance Test- Head Return Loss-Head 2015/9/22 2018/9/22 60% Cal. Date: Annex From NO.: E_YYMMDD; E=Dipole NO., YYMMDD=Year/Month/Date. FM-xxx-xx Ver.1.0 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client BTL-CN (Auden) Certificate No: D1900V2-5d179_Sep15 # **CALIBRATION CERTIFICATE** Object D1900V2 - SN:5d179 Calibration procedure(s) **QA CAL-05.v9** Calibration procedure for dipole validation kits above 700 MHz Calibration date September 29, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | | |--|----------------------------|--|------------------------| | Power meter EPM-442A | GB37480704 | 07-Oct-14 (No. 217-02020) | Scheduled Calibration | | Power sensor HP 8481A | US37292783 | 07-Oct-14 (No. 217-02020) | Oct-15 | | Power sensor HP 8481A | MY41092317 | 07-Oct-14 (No. 217-02021) | Oct-15 | | Reference 20 dB Attenuator | SN: 5058 (20k) | | Oct-15 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 01-Apr-15 (No. 217-02131) | Mar-16 | | Reference Probe EX3DV4 | SN: 7349 | 01-Apr-15 (No. 217-02134) | Mar-16 | | DAE4 | SN: 601 | 30-Dec-14 (No. EX3-7349_Dec14)
17-Aug-15 (No. DAE4-601_Aug15) | Dec-15 | | | | | Aug-16 | | Secondary Standards | ID# | Check Date (in house) | | | RF generator R&S SMT-06
Network Analyzer HP 8753E | 100972
US37390585 S4206 | | Scheduled Check | | | | 15-Jun-15 (in house check Jun-15)
18-Oct-01 (in house check Oct-14) | In house check: Jun-18 | | | | | In house check: Oct-15 | | Calibrated by: | Name | | | | | Leif Klysner | Function | Signature | | | Lon Mysher | Laboratory Technician | Sel Illan | | Approved by: | Katja Pokovic | Technical Manager | | Issued: September 30, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory Certificate No: D1900V2-5d179_Sep15 Technical Manager #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.