

FCC RADIO TEST REPORT

FCC ID	: 2A4B7-1021
Equipment	: Contactless Sleep Tracker and Wake Light
Model Name	: V4E6N2
Applicant	: Blueberry Cornel LLC 2150 S. Central Expressway Suite 200 McKinney, TX 75070
Standard	: FCC Part 15 Subpart C §15.247

The product was received on Apr. 06, 2022 and testing was performed from May 30, 2022 to Jun. 22, 2022. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu

Sporton International Inc. Wensan Laboratory No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.)

Table of Contents

His	story o	f this test report	3
Su	mmary	/ of Test Result	4
1	Gener	al Description	5
	1.1	Product Feature of Equipment Under Test	
	1.2	Product Specification of Equipment Under Test	
	1.3	Modification of EUT	
	1.4	Testing Location	
	1.5	Applicable Standards	6
2	Test C	Configuration of Equipment Under Test	7
	2.1	Carrier Frequency and Channel	7
	2.2	Test Mode	
	2.3	Connection Diagram of Test System	9
	2.4	Support Unit used in test configuration and system	
	2.5	EUT Operation Test Setup	11
	2.6	Measurement Results Explanation Example	11
3	Test F	Result	12
	3.1	6dB and 99% Bandwidth Measurement	12
	3.2	Output Power Measurement	15
	3.3	Power Spectral Density Measurement	16
	3.4	Conducted Band Edges and Spurious Emission Measurement	18
	3.5	Radiated Band Edges and Spurious Emission Measurement	34
	3.6	AC Conducted Emission Measurement	39
	3.7	Antenna Requirements	41
4	List o	f Measuring Equipment	42
5	Uncer	tainty of Evaluation	44
Ap	pendix	A. Conducted Test Results	
•	•	B. AC Conducted Emission Test Result	
-	•	C. Radiated Spurious Emission	
۰.	nondia	D. Dediated Source Emission Dista	

- Appendix D. Radiated Spurious Emission Plots
- Appendix E. Duty Cycle Plots
- Appendix F. Setup Photographs

History of this test report

Report No.	Version	Description	Issue Date
FR1D2427-01C	01	Initial issue of report	Jul. 22, 2022

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)
3.1	15.247(a)(2)	6dB Bandwidth	Pass
3.1	2.1049	99% Occupied Bandwidth	Reporting only
3.2	15.247(b)	Power Output Measurement	Pass
3.3	15.247(e)	Power Spectral Density	Pass
2.4	45 047(4)	Conducted Band Edges	Pass
3.4	15.247(d)	Conducted Spurious Emission	Pass
3.5	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	Pass
3.6	15.207	AC Conducted Emission	Pass
3.7	15.203 & 15.247(b)	Antenna Requirement	Pass

Summary of Test Result

Declaration of Conformity:

 The test results (PASS/FAIL) with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers. It's means measurement values may risk exceeding the limit of regulation standards, if measurement uncertainty is include in test results.

2. The measurement uncertainty please refer to this report "Uncertainty of Evaluation".

Comments and Explanations:

The product specifications of the EUT presented in the report are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Alan Liu

Report Producer: Michelle Chen

TEL: 886-3-327-0868	Page Number	: 4 of 44
FAX: 886-3-327-0855	Issue Date	: Jul. 22, 2022
Report Template No.: BU5-FR15CWLAC MA Version 2.4	Report Version	: 01

1 General Description

1.1 Product Feature of Equipment Under Test

	Product Feature
Equipment	Contactless Sleep Tracker and Wake Light
Model Name	V4E6N2
FCC ID	2A4B7-1021
EUT supports Radios application	WLAN 11b/g/n HT20 WLAN 11a/n HT20 Bluetooth BR/EDR/LE 60GHz

1.2 Product Specification of Equipment Under Test

Product Specification subjective to this standard		
Tx/Rx Frequency Range	2412 MHz ~ 2472 MHz	
Maximum Average Output Power to	802.11b: 18.80 dBm (0.0759 W)	
antenna	802.11g: 18.20 dBm (0.0661 W)	
antenna	802.11n HT20: 18.30 dBm (0.0676 W)	
	802.11b : 12.84 MHz	
99% Occupied Bandwidth	802.11g : 19.33 MHz	
	802.11n HT20 : 20.38 MHz	
Antenna Type / Gain PIFA Antenna with gain 5.2 dBi		
Type of Medulation	802.11b : DSSS (DBPSK / DQPSK / CCK)	
Type of Modulation	802.11g/n : OFDM (BPSK / QPSK / 16QAM / 64QAM)	

1.3 Modification of EUT

No modifications made to the EUT during the testing.

1.4 Testing Location

Test Site	Sporton International Inc. EMC & Wireless Communications Laboratory	
Test Site LocationNo.52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978		
Test Site No.	Sporton Site No.	
Test Sile NO.	CO05-HY (TAF Code: 1190)	
Remark The AC Conducted Emission test item subcontracted to Sporton International Inc. EMC & Wireless Communications Laboratory.		

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	Sporton International Inc. Wensan Laboratory	
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855	
Sporton Site No. TH05-HY, 03CH13-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190 and TW3786

1.5 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01.
- ANSI C63.10-2013

Remark:

- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.

2 Test Configuration of Equipment Under Test

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower).
- b. AC power line Conducted Emission was tested under maximum output power.

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	1	2412	8	2447
	2	2417	9	2452
	3	2422	10	2457
2400-2483.5 MHz	4	2427	11	2462
	5	2432	12	2467
	6	2437	13	2472
	7	2442		

2.1 Carrier Frequency and Channel

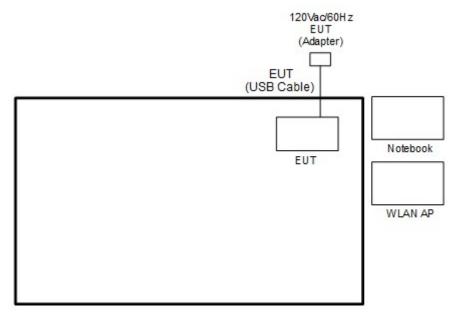
2.2 Test Mode

The final test modes consider the modulation and the worst data rates as shown in the table below.

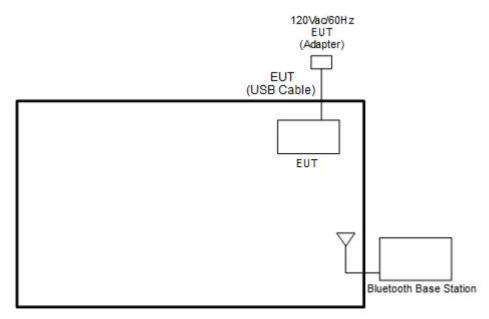
Modulation	Data Rate
802.11b	1 Mbps
802.11g	6 Mbps
802.11n HT20	MCS0

	Test Cases		
	Mode 1: WLAN (2.4GHz) Link + rel start - Continuous Stress (CPU + SOC + FLASH		
AC	+ Radar + LED + Clock + Buzzer/Audio + Temp Sensors) with NA AP31		
Conducted	Adapter		
Emission	Mode 2 Radios on Bluetooth + rel start - Continuous Stress (CPU + SOC + FLASH +		
EIIIISSIOII	Radar + LED + Clock + Buzzer/Audio + Temp Sensors) with NA AP31		
	Adapter		
Remark:1. The worst case of Conducted Emission is mode 1; only the test data of it was reported.			

2. For Radiated Test Cases, the tests were performed with Adapter (AP31).

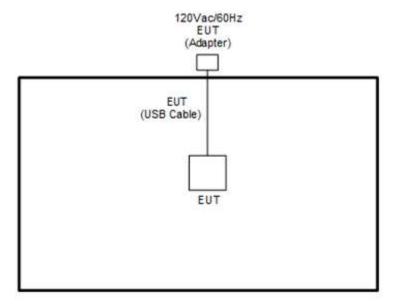

Ch #	2400-2483.5 MHz			
Ch. #	802.11b	802.11g	802.11n HT20	
Low	01	01	01	
Middle	06	06	06	
	11	11	11	
High	12	12	12	
	13	13	13	

Remark: For radiation spurious emission, the modulation and the data rate picked for testing are determined by the Max. RF conducted power.



2.3 Connection Diagram of Test System

<AC Conducted Emission with WLAN Link Mode >



<AC Conducted Emission with Bluetooth Mode>

TEL: 886-3-327-0868	Page Number	: 9 of 44
FAX: 886-3-327-0855	Issue Date	: Jul. 22, 2022
Report Template No.: BU5-FR15CWL AC MA Version 2.4	Report Version	: 01

<WLAN Tx Mode>

2.4 Support Unit used in test configuration and system

Item	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 1.8 m
2.	Notebook	DELL	Latitude 3400	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
3.	Bluetooth Base Station	R&S	CBT32	N/A	N/A	Unshielded, 1.8 m

2.5 EUT Operation Test Setup

The RF test items, utility "Compliance 1.0.1.9" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor. *Offset = RF cable loss + attenuator factor.* Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB). = 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.1.2 Measuring Instruments

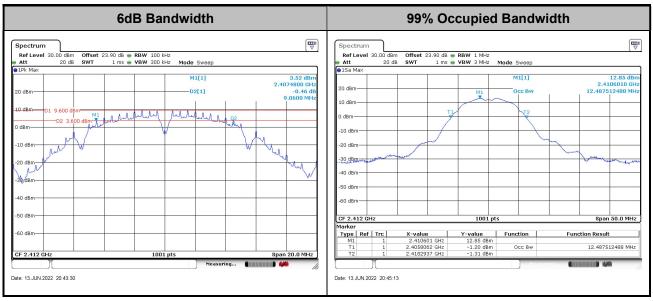
Please refer to the measuring equipment list in this test report.

3.1.3 Test Procedures

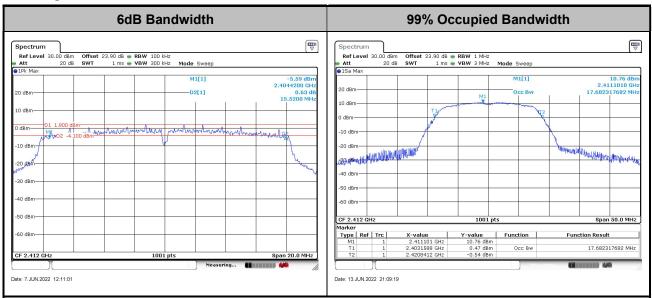
- 1. The testing follows the ANSI C63.10 Section 6.9.3 (OBW) and 11.8.1 (6dB BW).
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- 5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1-5% of the emission bandwidth and set the Video bandwidth (VBW) \ge 3 * RBW.
- 6. Measure and record the results in the test report.

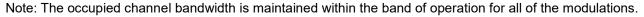
3.1.4 Test Setup

EUT


Spectrum Analyzer

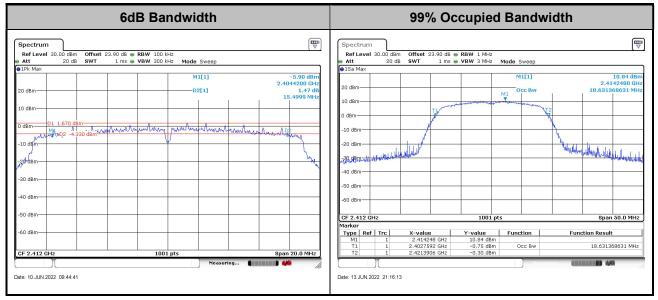
3.1.5 Test Result of 6dB and 99% Occupied Bandwidth


Please refer to Appendix A.


<802.11b>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

<802.11g>



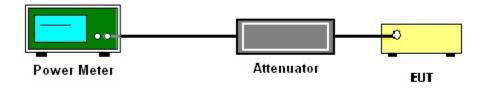
<802.11n HT20>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5 MHz, the limit for output power is 30 dBm. If transmitting antenna with directional gain greater than 6 dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.


3.2.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.2.3 Test Procedures

- 1. For Average Power, the testing follows ANSI C63.10 Section 11.9.2.3.2 Method AVGPM-G
- 2. The RF output of EUT is connected to the power meter by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

3.2.5 Test Result of Average Output Power

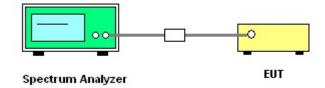
Please refer to Appendix A.

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

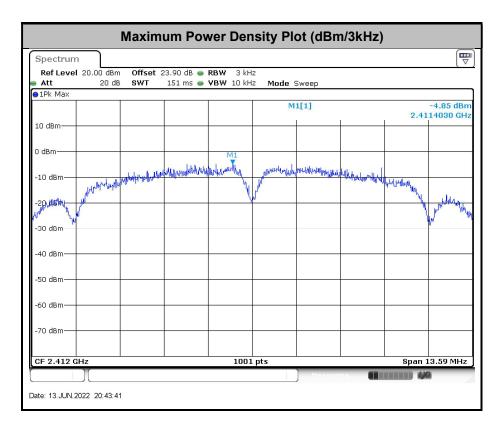
The peak power spectral density shall not be greater than 8 dBm in any 3 kHz band at any time interval of continuous transmission.

3.3.2 Measuring Instruments


Please refer to the measuring equipment list in this test report.

3.3.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.10.2 Method PKPSD.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
 Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.



3.3.4 Test Setup

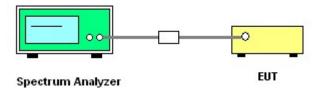
3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission Measurement

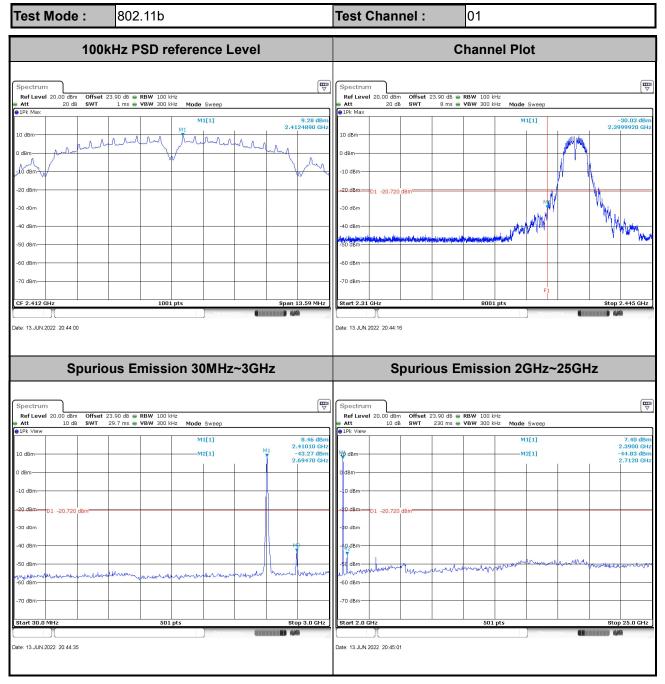
In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement.


3.4.2 Measuring Instruments

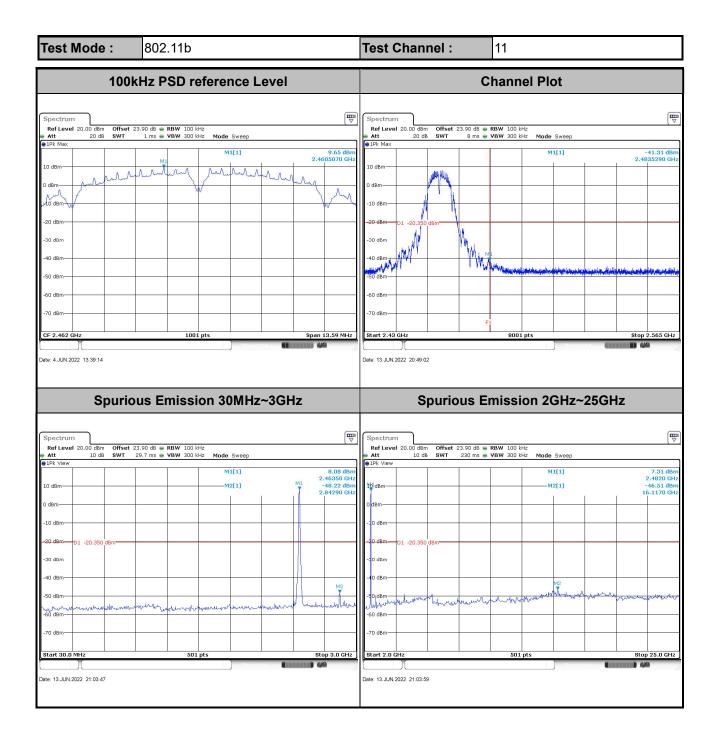
Please refer to the measuring equipment list in this test report.

3.4.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.11.3 Emission level measurement.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d).
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.


3.4.4 Test Setup

3.4.5 Test Result of Conducted Band Edges and Spurious Emission


Number of TX = 1, Ant. 1 (Measured)

Test Mode :	802.11b	Test Channel : 06		
100	kHz PSD reference Level	Channel Plot		
Spectrum Ref Level 20.00 dBm Offset Att 20 dB SWT ID dBm 10 dBm 0 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -50 dBm -70 dBm -60 dBm -70 dBm	23.00 dB = RBW 100 kH2 1 ms = VBW 300 kH2 Mode Swep:			
	ous Emission 30MHz~3GHz	Spurious Emission 2GHz~25GHz		
	23.90 dB ● RBW 100 kHz 29.7 ms ● VBW 300 kHz Mode Sweep	Spectrum mm Ref Level 20.00 dBm Offset 23.90 dB ● RBW 100 kHz Att 10 dB SWT 230 ms VBW 300 kHz Mode Sweep ● IPK Vew ■		
10 dBm 0 dBm -10 dBm -20 dBm 01 -20.540 dBm	M1[1] 9.49 dBm M1 2.43990 GHz -46.23 dBm 2.77180 GHz	MI[1] 6.90 dBm YD dBm 2.4360 GHz M2[1] -46.03 dBm 0 dBm -10 dBm -10 dBm -20.540 dBm		
-30 dbm -40 dBm -50 dBm -50 dBm -70 dBm -70 dBm	Me M	-20 dbm		
Start 30.0 MHz	501 pts Stop 3.0 GHz	Start 2.0 GHz Stop 25.0 GHz Date: 13 JUN 2022 20.48 21 Meaning for the store of t		

