

TEST REPORT				
FCC ID:	2BE6N-K100			
Test Report No::	TCT240322E031			
Date of issue::	Apr. 03, 2024	Apr. 03, 2024		
Testing laboratory:	SHENZHEN TONGCE TESTING LAB			
Testing location/ address:	2101 & 2201, Zhenchan Fuhai Subdistrict, Bao'a 518103, People's Reput	n District,	Shenzhen, Guar	
Applicant's name:	GIRAFIT INC			
Address::	21642 GOLDEN POPP States	COURT	, WALNUT, CA 9	91749, United
Manufacturer's name:	GIRAFIT INC			_,
Address:	21642 GOLDEN POPP States	COURT	WALNUT CA 91	749 United
Standard(s):	FCC CFR Title 47 Part 15 Subpart E Section 15.407 KDB 662911 D01 Multiple Transmitter Output v02r01 KDB 789033 D02 General U-NII Test Procedures New Rules v02r01			
Product Name::	K100 Indoor Camera			
Trade Mark::	N/A	(3)		
Model/Type reference:	GRF-K100W, K100, CK	800		
Rating(s)::	Adapter Information: Model: SA0101-050100 Input: AC 100-240V, 50 Output: DC 5.0V, 1.0A,	/60Hz, 0.	35A	(c')
Date of receipt of test item:	Mar. 22, 2024	(c ¹)	(4)	5
Date (s) of performance of test:	Mar. 22, 2024 ~ Apr. 03	, 2024		
Tested by (+signature):	Ronaldo LUO		Panala dwas	
Check by (+signature):	Beryl ZHAO		Boy CAPT C	T) GIV
Approved by (+signature):	Tomsin		loms into	84)

General disclaimer:

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

TABLE OF CONTENTS

1. General Product Informa			
1.1. EUT description	(,0')	(20)	3
1.2. Model(s) list			3
1.3. Test Frequency			
2. Test Result Summary			5
3. General Information			6
3.1. Test environment and m			
3.2. Description of Support	Units		7
4. Facilities and Accreditat			
4.1. Facilities	(c)	(5)	8
4.2. Location			8
4.3. Measurement Uncertain	ity		8
5. Test Results and Measu	rement Data	(20)	9
5.1. Antenna requirement			9
5.2. Conducted Emission			
5.3. Maximum Conducted O	utput Power		14
5.4. 6dB Emission Bandwidt			
5.5. 26dB Bandwidth and 99	% Occupied Bandwidth	1	17
5.6. Power Spectral Density			18
5.7. Band edge			
5.8. Unwanted Emissions) ((30
5.9. Frequency Stability Mea	asurement		45
Appendix A: Test Result of	of Conducted Test		
Appendix B: Photographs	s of Test Setup		
Appendix C: Photographs	s of EUT		

1. General Product Information

1.1. EUT description

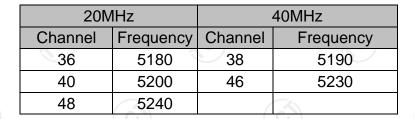
Product Name:	K100 Indoor Camera	(3)	
Model/Type reference:	GRF-K100W		
Sample Number:	TCT240322E029-0101		
Operation Frequency:	Band 1: 5180 MHz ~ 5240 MHz Band 3: 5745 MHz ~ 5825 MHz		
Channel Bandwidth::	802.11a: 20MHz 802.11n: 20MHz, 40MHz 802.11ac: 20MHz, 40MHz 802.11ax: 20MHz, 40MHz		
Modulation Technology:	Orthogonal Frequency Division Mu	Itiplexing(OFDM)	
Modulation Type:	256QAM, 64QAM, 16QAM, BPSK,	QPSK (
Antenna Type:	Metal Antenna		
Antenna Gain:	Band 1: 4.81dBi Band 3: 4.88dBi		
Rating(s)::	Adapter Information: Model: SA0101-0501000UA Input: AC 100–240V, 50/60Hz, 0.3 Output: DC 5.0V, 1.0A, 5.0W	5A	

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

No.	Model No.	Tested with
1	GRF-K100W	
Other models	K100, CK008	

Note: GRF-K100W is tested model, other models are derivative models. The models are identical in circuit and PCB layout, only different on the model names. So the test data of GRF-K100W can represent the remaining models.


Page 3 of 146

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

1.3. Test Frequency

Band 1

Band 3

20MHz		40MHz		
Channel	Frequency	Channel	Frequency	
149	5745	151	5755	
157	5785	159	5795	
165	5825	(

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Report No.: TCT240322E031

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203	PASS
AC Power Line Conducted Emission	§15.207	PASS
Maximum Conducted Output Power	§15.407(a)	PASS
6dB Emission Bandwidth	§15.407(a)	PASS
26dB Emission Bandwidth& 99% Occupied Bandwidth	§15.407(a)	PASS
Power Spectral Density	§15.407(a)	PASS
Restricted Bands around fundamental frequency	§15.407(b)	PASS
Radiated Emission	§15.407(b)	PASS
Frequency Stability	§15.407(g)	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.
- 5. For the band 5.15-5.25 GHz, EUT meet the requirements of 15.407(a)(ii).

TESTING CENTRE TECHNOLOGY Report No.: TCT240322E031

3. General Information

3.1. Test environment and mode

Operating Environment:				
Condition	Conducted Emission	Radiated Emission		
Temperature:	20.3 °C	24.9 °C		
Humidity:	47 % RH	51 % RH		
Atmospheric Pressure:	1010 mbar	1010 mbar		
Test Software:				
Software Information:	putty			
Power Level:	16			
Test Mode:				
Engineer mode: Keep the EUT in continuous transmitting by select channel and modulations with max duty cycle				

The sample was placed 0.8m/1.5m for blow/above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11a	6 Mbps
802.11n(HT20)	6.5 Mbps
802.11n(HT40)	13.5 Mbps
802.11ac(VHT20)	6.5 Mbps
802.11ac(VHT40)	13.5 Mbps
802.11ax(VHT20)	6.5Mbps
802.11ax(VHT40)	13.5Mbps

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
1	1	1		

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC - Registration No.: 10668A-1

SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China

TEL: +86-755-27673339

4.3. Measurement Uncertainty

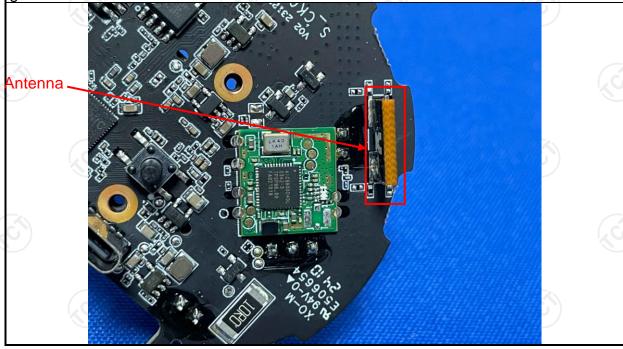
The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

Report No.: TCT240322E031

5. Test Results and Measurement Data

5.1. Antenna requirement


Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The WIFI antenna is metal antenna which permanently attached, and the best case gain of the antenna is 4.88dBi of Band 3.

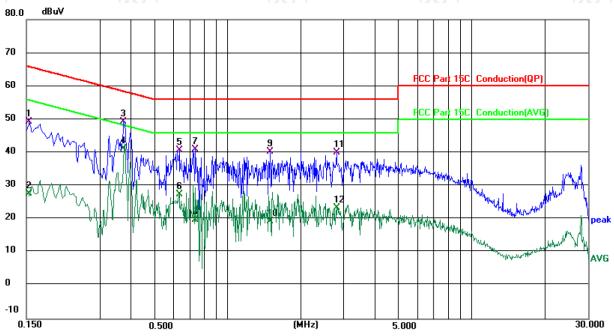
5.2. Conducted Emission

5.2.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.207			
Test Method:	ANSI C63.10:2013			
Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz		
Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time	e=auto	
Limits:	Frequency range (MHz) 0.15-0.5 0.5-5 5-30	Limit (Quasi-peak 66 to 56* 56	dBuV) Average 56 to 46* 46 50	
Test Setup:	Test table/Insulation plane Remark E.U.T AC power Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Notes table height=0.8m	er Bliter Filter EMI Receiver	r — AC power	
Test Mode:	Transmitting Mode	Transmitting Mode		
Test Procedure:	 The E.U.T and sim power through a lin (L.I.S.N.). This primpedance for the new coupling impedance refer to the block photographs). Both sides of A.C conducted interfere emission, the relative the interface cable ANSI C63.10: 2013 	e impedance stable ovides a 500hm neasuring equipm ces are also connects with 500hm term diagram of the line are checked need in order to find the line are changes must be changed.	pilization network n/50uH coupling ent. ected to the main a 50ohm/50uH nination. (Please test setup and ed for maximum and the maximum sipment and all of ged according to	
Test Result:	PASS			

5.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)				
Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESCI3	100898	Jun. 29, 2024
Line Impedance Stabilisation Newtork(LISN)	Schwarzbeck	NSLK 8126	8126453	Jan. 31, 2025
Line-5	TCT	CE-05	/	Jul. 03, 2024
EMI Test Software	Shurple Technology	EZ-EMC	1 (6)	1 6



5.2.3. Test data

Please refer to following diagram for individual

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

Site 844 Shielding Room

Phase: L1

Temperature: 20.3 (°C)

Humidity: 47 %

Report No.: TCT240322E031

Limit: FCC Part 15C Conduction(QP)

Power: AC 120V/60Hz

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
-	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1539	39.31	10.02	49.33	65.79	-16.46	QP	
2	0.1539	17.56	10.02	27.58	55.79	-28.21	AVG	
3	0.3738	39.88	9.46	49.34	58.42	-9.08	QP	
4 *	0.3738	31.67	9.46	41.13	48.42	-7.29	AVG	
5	0.6340	31.60	9.22	40.82	56.00	-15.18	QP	
6	0.6340	18.16	9.22	27.38	46.00	-18.62	AVG	
7	0.7419	31.90	9.13	41.03	56.00	-14.97	QP	
8	0.7419	10.63	9.13	19.76	46.00	-26.24	AVG	
9	1.5020	30.34	9.97	40.31	56.00	-15.69	QP	
10	1.5020	9.31	9.97	19.28	46.00	-26.72	AVG	
11	2.8020	29.89	10.16	40.05	56.00	-15.95	QP	
12	2.8220	13.18	10.16	23.34	46.00	-22.66	AVG	

Note:

Freq. = Emission frequency in MHz

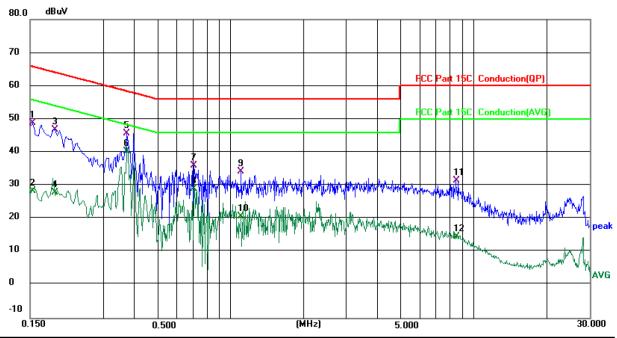
Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

 $Limit (dB\mu V) = Limit stated in standard$

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$


Q.P. =Quasi-Peak

AVG =average

^{*} is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Site 844 Shielding Room

Phase: N

Power: AC 120V/60Hz

Temperature: 20.3 (°C)

Humidity: 47 %

Limit: FCC Part 15C Conduction(QP)

		i ait ioc	Oonaacii						
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1539	38.81	10.00	48.81	65.79	-16.98	QP	
2		0.1539	18.40	10.00	28.40	55.79	-27.39	AVG	
3		0.1900	36.74	10.01	46.75	64.04	-17.29	QP	
4		0.1900	17.86	10.01	27.87	54.04	-26.17	AVG	
5		0.3738	36.19	9.44	45.63	58.42	-12.79	QP	
6	*	0.3738	30.86	9.44	40.30	48.42	-8.12	AVG	
7		0.7100	26.86	9.12	35.98	56.00	-20.02	QP	
8		0.7100	19.99	9.12	29.11	46.00	-16.89	AVG	
9		1.1060	24.31	9.87	34.18	56.00	-21.82	QP	
10		1.1060	10.93	9.87	20.80	46.00	-25.20	AVG	
11		8.4619	21.03	10.54	31.57	60.00	-28.43	QP	
12		8.4619	4.13	10.54	14.67	50.00	-35.33	AVG	

Note:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

 $Limit (dB\mu V) = Limit stated in standard$

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

Q.P. =Quasi-Peak

AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Measurements were conducted in all three channels (high, middle, low) and all modulation (802.11a, 802.11n(HT20), 802.11n(HT40), 802.11ac(VHT20), 802.11ac(VHT40), 802.11ax(VHT20), 802.11ax(VHT40) and the worst case Mode (Lowest channel and 802.11n(HT20)) was submitted only.

5.3. Maximum Conducted Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 E Section 2.1046	on 15.407(a)& Part 2 J Section				
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section E					
	Frequency Band (MHz)	Limit				
	5180 - 5240	24dBm(250mW) for client device				
Limit:	5260 - 5320 5470 - 5725	24dBm(250mW) or 11 dBm + 10 log B, B is the 26 dB emission bandwidth in megahertz 24dBm(250mW) or 11 dBm + 10 log B, B is the 26 dB emission bandwidth in megahertz				
	5745 - 5825	30dBm(1W)				
Test Setup:	Power meter EUT					
Test Mode:	Transmitting mode w	vith modulation				
Test Procedure:	 The testing follows the Measurement Procedure of KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section E, 3, a The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Measure the conducted output power and record the results in the test report. 					
Test Result:	PASS					
Remark:	Conducted output power= measurement power +10log(1/x) X is duty cycle=1, so 10log(1/1)=0 Conducted output power= measurement power					

5.3.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Power Meter	Agilent	E4418B	MY45100357	Jun. 27, 2024
Power Sensor	Agilent	8481A	MY41091497	Jun. 27, 2024
Combiner Box	Ascentest	AT890-RFB		

5.4. 6dB Emission Bandwidth

5.4.1. Test Specification

	FCC CFR47 Part 15 Section 15.407(e)& Part 2 J Section
Test Requirement:	2.1049
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C
Limit:	>500kHz
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Test Result:	PASS

5.4.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB	1 (3)	1 6

Page 16 of 146

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

5.5. 26dB Bandwidth and 99% Occupied Bandwidth

5.5.1. Test Specification

	47 CED Dark 45C Continue 45 407 (a) 9 Dark 2 1 Continue
Test Requirement:	47 CFR Part 15C Section 15.407 (a)& Part 2 J Section 2.1049
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D
Limit:	No restriction limits
Test Setup:	Spectrum deskurs EUT
	Spectrum Analyzer
Test Mode:	Transmitting mode with modulation
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 1% to 5% of the OBW. Set the Video bandwidth (VBW) = 3 *RBW. In order to make an accurate measurement. Measure and record the results in the test report.
Test Result:	PASS

5.5.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB	1	1

Page 17 of 146

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

5.6. Power Spectral Density

5.6.1. Test Specification

Test Requirement:	FCC Part15 E Section 15.407 (a)
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section F
Limit:	≤11.00dBm/MHz for Band 1 5150MHz-5250MHz(client device) ≤11.00dBm/MHz for Band 2A&2C 5250-5350&5470-5725 ≤30.00dBm/500KHz for Band 3 5725MHz-5850MHz The e.i,r,p spectral density for Band 1 5150MHz – 5250 MHz should not exceed 10dBm/MHz
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 Set the spectrum analyzer or EMI receiver span to view the entire emission bandwidth. Set RBW = 510 kHz/1 MHz, VBW ≥ 3*RBW, Sweep time = Auto, Detector = RMS. Allow the sweeps to continue until the trace stabilizes. Use the peak marker function to determine the maximum amplitude level. The E.I.R.P spectral density used radiated test method. At a test site that has been validated using the procedures of ANSI C63.4 or the latest CISPR 16-1-4 for measurements above 1 GHz, so as to simulate a near free-space environment.
Test Result:	PASS

5.6.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB		

5.7. Band edge

5.7.1. Test Specification

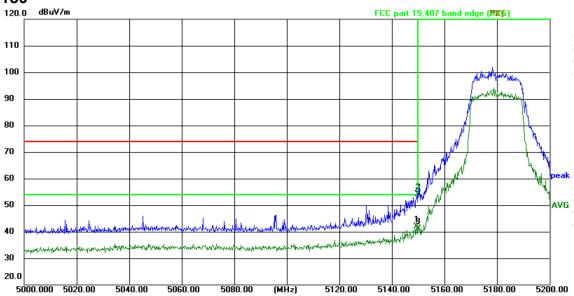
Test Requirement:	FCC CFR47 Part 15E Section 15.407							
Test Method:	ANSI C63.10 20	ANSI C63.10 2013						
	In un-restricted band: For Band 1&2A&2C: -27dBm/MHz For Band 3:							
	Frequency (MHz)	Limit (dBm/MHz)	Frequency (MHz)	Limit (dBm/MHz)				
	< 5650	-27	5850~5855	27~15.6				
Limit:	5650~5700	-27~10	5855~5875	15.6~10				
	5700~5720	10~15.6	5875~5925	10~-27				
	5720~5725 E[dBµV/m] = EIR In restricted band			-27				
	Detec		Limit @					
	Peal		74dBµ 54dBµ					
Test Setup:	S C (T. waterde)	Ground Reference Place Test FieceNey Test FieceNe						
Test Mode:	Transmitting mo	de with mod	ulation					
Test Procedure:	meters above the was rotated 360 highest radiation 2. The EUT was interference-received the top of a varia. The antennameters above the value of the field polarizations of measurement. 4. For each susto its worst case heights from 1 returned from 0 demaximum readi	 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect 						

Report No.: TCT240322E031

Mode.

Report No.: TCT240322E031

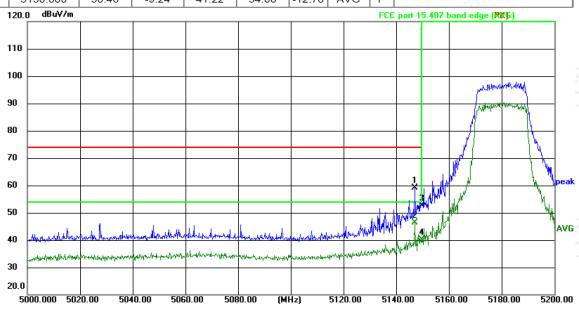
6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet.					



5.7.2. Test Instruments

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESIB7	100197	Jun. 29, 2024
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 29, 2024
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Pre-amplifier	SKET	LNPA_0118G- 45	SK202101210 2	Jan. 31, 2025
Pre-amplifier	SKET	LNPA_1840G- 50	SK202109203 500	Jan. 31, 2025
Pre-amplifier	HP	8447D	2727A05017	Jun. 27, 2024
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jul. 02, 2024
Broadband Antenna	Schwarzbeck	VULB9163	340	Jul. 01, 2024
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jul. 01, 2024
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Feb. 02, 2025
Coaxial cable	SKET	RC-18G-N-M) /	Jan. 31, 2025
Coaxial cable	SKET	RC_40G-K-M	/	Jan. 31, 2025
Antenna Mast	Keleto	CC-A-4M	(0)	1 (6)
EMI Test Software	Shurple Technology	EZ-EMC	1	1

5.7.3. Test Data AX20-5180



Site: 3m Anechoic Chamber Polarization: Horizontal Temperature: 24.1(°C) Humidity: 43 %

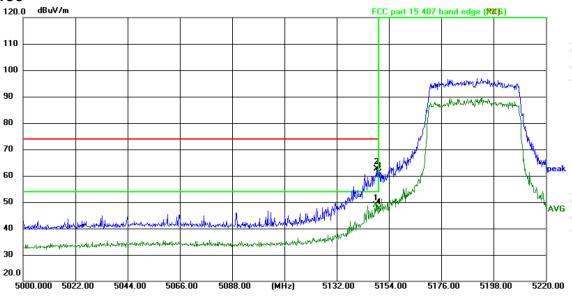
Limit: FCC part 15.407 band edge (PK)

Power:AC 120 V/60 Hz

	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
	1 *	5149.420	51.23	-9.26	41.97	54.00	-12.03	AVG	Р	
	2	5150.000	63.28	-9.24	54.04	74.00	-19.96	peak	Р	
- 1	3	5150 000	50.46	-9.24	/1 22	54.00	12 78	AVG	Ь	

Site: 3m Anechoic Chamber Polarization: *Vertical* Temperature: 24.1(°C) Humidity: 43 %

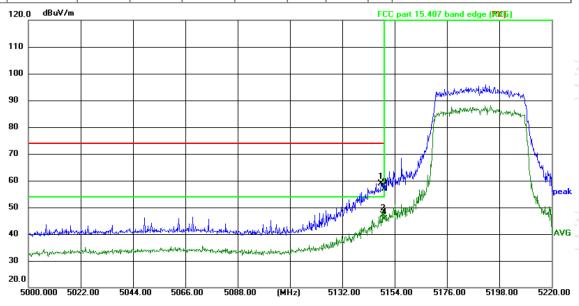
Limit: FCC part 15.407 band edge (PK)


Power:AC 12	20 V/60 Hz
-------------	------------

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	5147.020	68.30	-9.29	59.01	74.00	-14.99	peak	Р	
2 *	5147.020	55.57	-9.29	46.28	54.00	-7.72	AVG	Р	
3	5150.000	61.81	-9.24	52.57	74.00	-21.43	peak	Р	
4	5150.000	49.37	-9.24	40.13	54.00	-13.87	AVG	Р	

Report No.: TCT240322E031

AX40-5190

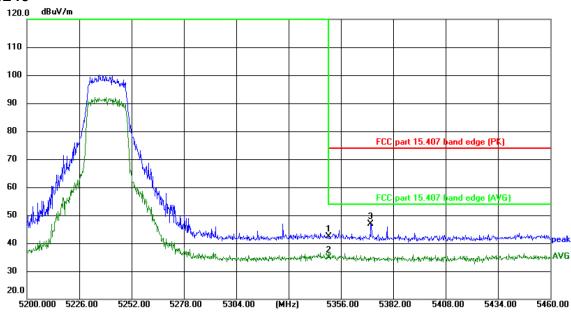


Site: 3m Anechoic Chamber Polarization: *Horizontal* Temperature: 24.1(°C) Humidity: 43 %

Limit: FCC part 15.407 band edge (PK)

Power:AC 120 V/60 Hz

	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
-	1 *	5148.764	58.03	-9.26	48.77	54.00	-5.23	AVG	Р	
	2	5149.072	71.91	-9.26	62.65	74.00	-11.35	peak	Р	
	3	5150.000	70.31	-9.24	61.07	74.00	-12.93	peak	Р	
Г	4	5150.000	56.57	-9.24	47.33	54.00	-6.67	AVG	Р	


Site: 3m Anechoic Chamber Polarization: *Vertical* Temperature: 24.1(°C) Humidity: 43 %

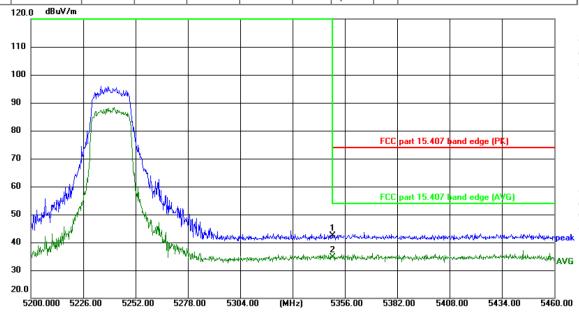
Limit: FCC part 15.407 band edge (PK)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	5148.478	68.17	-9.27	58.90	74.00	-15.10	peak	Р	
2 *	5149.402	56.48	-9.26	47.22	54.00	-6.78	AVG	Р	
3	5150.000	66.22	-9.24	56.98	74.00	-17.02	peak	Р	
4	5150.000	54.93	-9.24	45.69	54.00	-8.31	AVG	Р	

AX20-5240

Site: 3m Anechoic Chamber

Polarization: Horizontal


Temperature: 24.1(°C)

Humidity: 43 %

Limit: FCC part 15.407 band edge (PK)

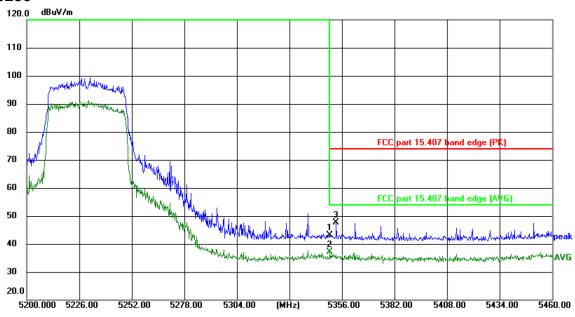
Power:AC 120 V/60 Hz

	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
	1	5350.000	50.42	-8.15	42.27	74.00	-31.73	peak	Р	
	2 *	5350.000	43.08	-8.15	34.93	54.00	-19.07	AVG	Р	
ľ	3	5371.054	55.00	-8.15	46.85	74.00	-27.15	peak	Р	

Site: 3m Anechoic Chamber

Polarization: Vertical

Temperature: 24.1(℃)


Humidity: 43 %

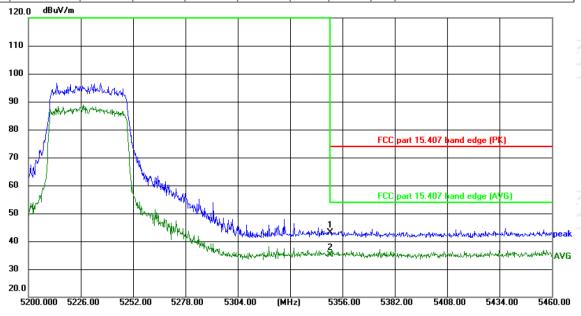
Limit: FCC part 15.407 band edge (PK)

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5350.000	50.47	-8.15	42.32	74.00	-31.68	peak	Р	
2 *	5350.000	42.83	-8.15	34.68	54.00	-19.32	AVG	Р	

AX40-5230

Site: 3m Anechoic Chamber

Polarization: Horizontal


Temperature: 24.1(°C)

Humidity: 43 %

Limit: FCC part 15.407 band edge (PK)

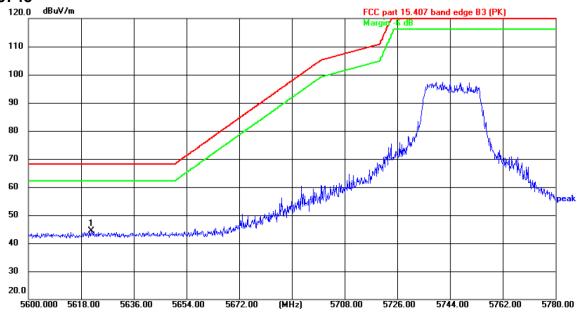
Power:AC 120 V/60 Hz

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	5350.000	51.16	-8.15	43.01	74.00	-30.99	peak	Р	
2 *	5350.000	45.18	-8.15	37.03	54.00	-16.97	AVG	Р	
3	5353.530	55.67	-8.16	47.51	74.00	-26.49	peak	Р	

Site: 3m Anechoic Chamber

Polarization: Vertical

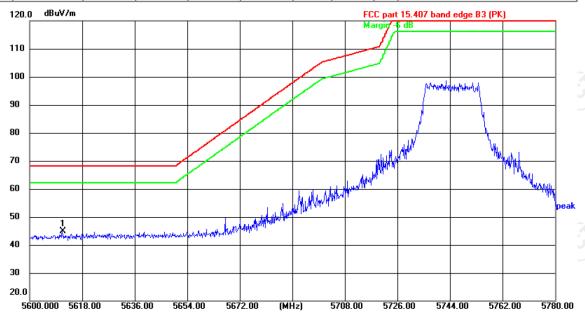
Temperature: 24.1(°C)


Humidity: 43 %

Limit: FCC part 15.407 band edge (PK)

N	0.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1		5350.000	51.40	-8.15	43.25	74.00	-30.75	peak	Р	
2	*	5350.000	43.37	-8.15	35.22	54.00	-18.78	AVG	Р	

AX20-5745



Site: 3m Anechoic Chamber Polarization: *Horizontal*Limit: FCC part 15.407 band edge B3 (PK) Power:

Power:AC 120 V/60 Hz

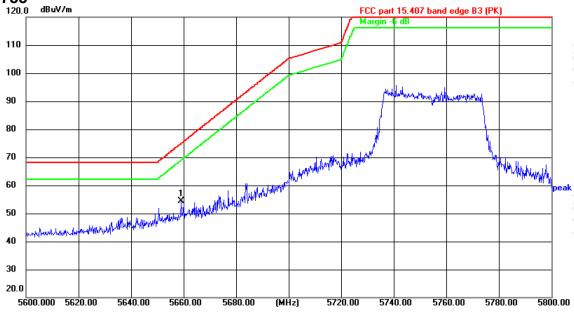
Temperature: $24.1(^{\circ}C)$ Humidity: 43 %

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5621.582	52.00	-7.67	44.33	68.20	-23.87	peak	Р	

Site: 3m Anechoic Chamber

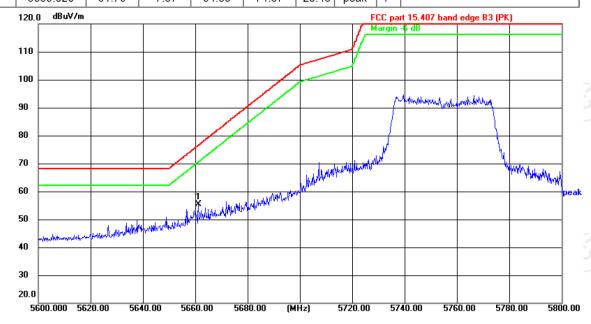
Polarization: Vertical

Temperature: 24.1(°C)


Humidity: 43 %

Limit: FCC part 15.407 band edge B3 (PK)

		•		•	,					
1 1	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
-	1 *	5611.196	52.60	-7.82	44.78	68.20	-23.42	peak	Р	

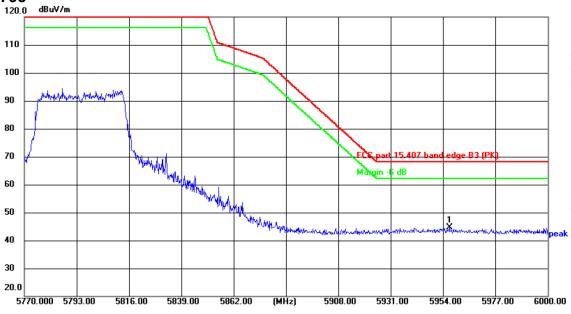


Site: 3m Anechoic Chamber Polarization: *Horizontal* Temperature: 24.1(°C) Humidity: 43 %

Limit: FCC part 15.407 band edge B3 (PK)

Power: AC 120 V/60 Hz

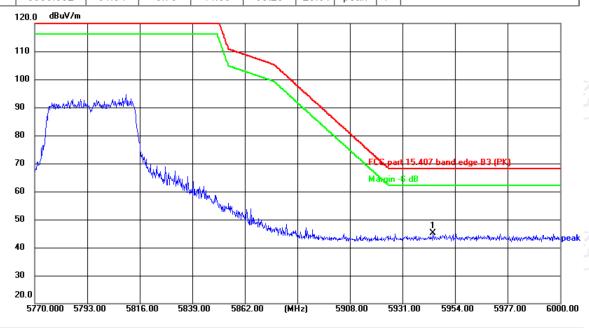
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
-	1 *	5659 020	61.76	-7 37	54 39	74 87	-20 48	neak	Р	


Site: 3m Anechoic Chamber Polarization: *Vertical* Temperature: 24.1(°C) Humidity: 43 %

Limit: FCC part 15.407 band edge B3 (PK)

		•		•	,					
	No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
,	1 *	5661.200	62.71	-7.39	55.32	76.49	-21.17	peak	Р	

AX40-5795

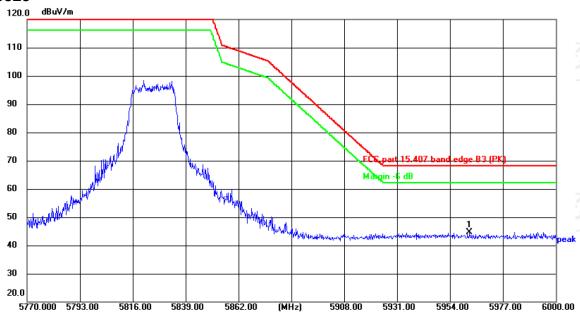


Site: 3m Anechoic Chamber Polarization: Horizontal Temperature: 24.1(°C) Humidity: 43 %

Limit: FCC part 15.407 band edge B3 (PK)

Power:AC 120 V/60 Hz

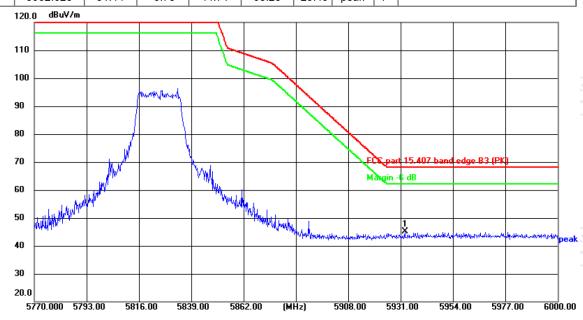
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1 *	5956.852	51.34	-6.75	44.59	68.20	-23.61	peak	Р	


Site: 3m Anechoic Chamber Temperature: 24.1(°C) Humidity: 43 % Polarization: Vertical

Limit: FCC part 15.407 band edge B3 (PK)

nit	Margin	Detector	P/F	Remark

AX20-5825



Site: 3m Anechoic Chamber Polarization: Horizontal Temperature: 24.1(°C) Humidity: 43 %

Limit: FCC part 15.407 band edge B3 (PK)

Power: AC 120 V/60 Hz

. i					I					
	No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
	1 *	5962 625	51.44	-6.73	44.71	68.20	-23 49	peak	Р	

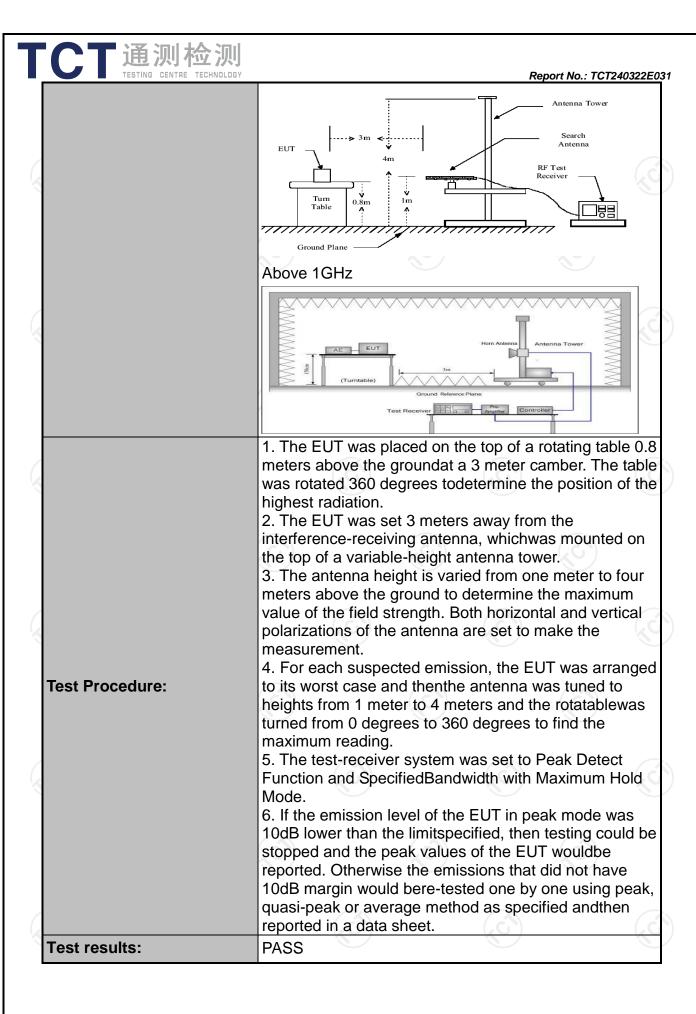
Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 24.1(°C) Humidity: 43 %

Limit: FCC part 15.407 band edge B3 (PK)

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5932.955	52.09	-6.86	45.23	68.20	-22.97	peak	Р	

Power: AC 120 V/60 Hz

Note: All modulation (802.11a, 802.11a, 802.11ac, 802.11ax) have been tested, only the worst case in 802.11ax be reported.


TESTING CENTRE TECHNOLOGY

Report No.: TCT240322E031

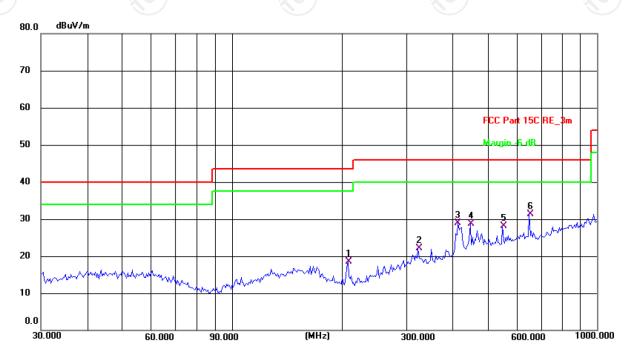
5.8. Unwanted Emissions

5.8.1. Test Specification

Test Requirement:	FCC CFR47	Part 15 S	ection 15	.407 & 1	5.209 & 15.205			
Test Method:	KDB 789033	D02 v02r	01		(6)			
Frequency Range:	9kHz to 40G	Hz						
Measurement Distance:	3 m		3		(3)			
Antenna Polarization:	Horizontal &	Vertical						
Operation mode:	Transmitting	mode witl	vith modulation					
Receiver Setup:	Frequency 9kHz- 150kHz 150kHz- 30MHz 30MHz Above 1GHz	Detector Quasi-peak Quasi-peak Quasi-peak Peak Peak	9kHz	VBW 1kHz 30kHz 300KHz 3MHz 10Hz	Remark Quasi-peak Value Quasi-peak Value Quasi-peak Value Peak Value Average Value			
Limit:	per FCC Par	t15.205 sl strength bands:	Detection of the composition of	et forth in the store in the st	Limit@3m 74dBµV/m 54dBµV/m Measurement Distance (meters) 300 3 30 3 3 3			
Test setup:	EUT	Turn table	lm [Pre -	Computer Amplifier			

5.8.2. Test Instruments

	Radiated Em	ission Test Site	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESIB7	100197	Jun. 29, 2024
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 29, 2024
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Jan. 31, 2025
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Jan. 31, 2025
Pre-amplifier	HP	8447D	2727A05017	Jun. 27, 2024
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jul. 02, 2024
Broadband Antenna	Schwarzbeck	VULB9163	340	Jul. 01, 2024
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jul. 01, 2024
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Feb. 02, 2025
Antenna Mast	Keleto	RE-AM	1	
Coaxial cable	SKET	RC-18G-N-M) /	Jan. 31, 2025
Coaxial cable	SKET	RC_40G-K-M	/	Jan. 31, 2025
EMI Test Software	Shurple Technology	EZ-EMC		, &

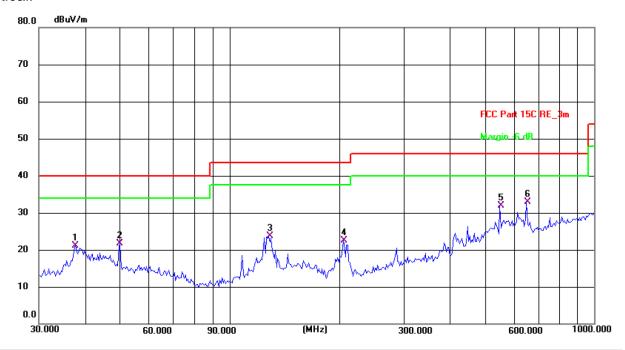


5.8.3. Test Data

Please refer to following diagram for individual

Below 1GHz

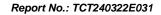
Horizontal:


Temperature: 24.9(C) Humidity: 51 % Site: 3m Anechoic Chamber Polarization: Horizontal

Limit:	FCC Part 15C F	RE_3m				Power:	AC 120	V/60H	łz _
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	207.8501	33.09	-14.61	18.48	43.50	-25.02	QP	Р	
2	323.3204	31.81	-9.63	22.18	46.00	-23.82	QP	Р	
3	416.1791	36.96	-7.98	28.98	46.00	-17.02	QP	Р	
4	449.5558	36.13	-7.45	28.68	46.00	-17.32	QP	Р	
5	550.9480	33.85	-5.70	28.15	46.00	-17.85	QP	Р	
6 *	651.9417	34.66	-3.26	31.40	46.00	-14.60	QP	Р	

Vertical:

Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 24.9(C) Humidity: 51 %


Power: AC 120V/60Hz

Limit: FCC Part 15C RE_3m

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	37.8121	33.75	-12.65	21.10	40.00	-18.90	QP	Р	
2	50.0566	34.29	-12.65	21.64	40.00	-18.36	QP	Р	
3	128.1129	36.18	-12.49	23.69	43.50	-19.81	QP	Р	
4	204.9551	37.22	-14.64	22.58	43.50	-20.92	QP	Р	
5	550.9480	37.58	-5.70	31.88	46.00	-14.12	QP	Р	
6 *	651.9417	36.19	-3.26	32.93	46.00	-13.07	QP	Р	_

Note: 1.The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

- 2. Measurements were conducted in all three channels (high, middle, low) and all modulation (802.11a, 802.11n(HT20), 802.11n(HT40), 802.11ac(VHT20), 802.11ac(VHT40), 802.11ax(VHT20), 802.11ax(VHT40) and the worst case Mode (Lowest channel and 802.11n(HT20)) was submitted only.
- 3.Measurement (dBμV) = Reading level + Correction Factor , correction Factor= Antenna Factor + Cable loss Pre-amplifier.

			N	lodulation T	ype: Band 1	1			
				11a CH36:					
Frequency	Ant. Pol.	Peak reading	AV reading	Correctio n Factor	Emissio	n Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10360	Н	38.13		8.02	46.15		68.2		-22.05
15540	H	38.04	K	9.87	47.91		74	54	-6.09
	H		70)	(5	0)		(C)	
10360	V	38.33		8.02	46.35		68.2		-21.85
15540	V	38.64		9.87	48.51		74	54	-5.49
(0)	V	(,0)		(2)			<u> </u>		(10)
	•			11a CH40	: 5200MHz				
		Peak	AV	Correctio			<u></u>		
Frequency	Ant. Pol.	reading	reading	n Factor	Emissio	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10400	Н	39.45		7.97	47.42		68.2		-20.78
15600	Н	39.31		9.83	49.14		74	54	-4.86
(2)	Н	((c			<u></u>		
	<u>-</u>								
10400	V	41.32		7.97	49.29		68.2		-18.91
15600	V	38.69		9.83	48.52		74	54	-5.48
	V				((4)	
				11a CH48	: 5240MHz				
Frequency	Ant. Pol.	Peak reading	AV reading	Correctio n Factor	Emissio	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10480	Н	38.22		7.97	46.19		68.2		-22.01
15720	Н	37.81		9.83	47.64		74	54	-6.36
	Н							7	
	(2G)		(20)			(C)	•	(.C.)	
10480	V	39.52		7.07			00.0		-20.71
		00.02		7.97	47.49		68.2		-20.7 1
15720	V	36.44		9.83	47.49 46.27		68.2 74	54	-7.73
	V			•			1		
15720		36.44		9.83			74	54	-7.73
15720 Frequency	V Ant. Pol.	36.44 Peak	 11 AV	9.83 n(HT20) CI Correctio	46.27 -36: 5180M		74 Peak limit	54 	-7.73 Margin
15720	V	36.44	 11	9.83 n(HT20) CI	46.27 H36: 5180M Emission Peak	 IHz on Level	74	54 	-7.73
15720 Frequency (MHz)	V Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	9.83 n(HT20) CI Correctio n Factor (dB/m)	46.27 H36: 5180M Emission Peak (dBµV/m)	 IHz on Level AV (dBµV/m)	Peak limit	AV limit (dBµV/m)	-7.73 Margin (dB)
15720 Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	9.83 n(HT20) CI Correctio n Factor (dB/m) 8.02	46.27 H36: 5180M Emission Peak (dBµV/m) 49.25	 IHz on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	-7.73 Margin (dB)
15720 Frequency (MHz) 10360 15540	Ant. Pol. H/V	36.44 Peak reading (dBμV) 41.23 38.75	AV reading (dBµV)	9.83 n(HT20) CI Correctio n Factor (dB/m) 8.02 9.87	46.27 H36: 5180M Emission Peak (dBµV/m) 49.25 48.62	IHz on Level AV (dBµV/m)	74 Peak limit (dBμV/m) 68.2 74	54 AV limit (dBμV/m)	-7.73 Margin (dB) -18.95 -5.38
15720 Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	9.83 n(HT20) CI Correctio n Factor (dB/m) 8.02	46.27 H36: 5180M Emission Peak (dBµV/m) 49.25	 IHz on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	-7.73 Margin (dB)
15720 Frequency (MHz) 10360 15540 	Ant. Pol. H/V	36.44 Peak reading (dBμV) 41.23 38.75	AV reading (dBµV)	9.83 n(HT20) CI Correctio n Factor (dB/m) 8.02 9.87	46.27 H36: 5180M Emissic Peak (dBµV/m) 49.25 48.62	AV (dBµV/m)	74 Peak limit (dBµV/m) 68.2 74 	54 AV limit (dBμV/m) 54 	-7.73 Margin (dB) -18.95 -5.38
15720 Frequency (MHz) 10360 15540	Ant. Pol. H/V	36.44 Peak reading (dBμV) 41.23 38.75	AV reading (dBµV)	9.83 n(HT20) CI Correctio n Factor (dB/m) 8.02 9.87	46.27 H36: 5180M Emission Peak (dBµV/m) 49.25 48.62	IHz on Level AV (dBµV/m)	74 Peak limit (dBμV/m) 68.2 74	54 AV limit (dBμV/m)	-7.73 Margin (dB) -18.95 -5.38

Report No.: TCT240322E031 11n(HT20) CH40: 5200MHz Peak ΑV Correctio Ant. Pol. **Emission Level** Frequency Peak limit **AV** limit Margin reading n Factor reading (MHz) H/V (dBµV/m) $(dB\mu V/m)$ (dB) Peak ΑV (dBµV) (dBµV) (dB/m) $(dB\mu V/m)$ (dBµV/m) 10400 Η 40.13 7.97 68.2 48.1 -20.1 15600 Н 38.34 9.83 48.17 -5.83 74 54 Н ------------٧ 10400 40.55 4--7.97 48.52 68.2 ----19.68 ٧ 15600 38.09 9.83 47.92 74 54 -6.08 11n(HT20) CH48: 5240MHz Peak AV Correctio Ant. Pol. **Emission Level** Peak limit **AV** limit Frequency Margin n Factor reading reading (MHz) H/V (dBµV/m) (dBµV/m) (dB) (dBµV) Peak ΑV (dBµV) (dB/m) (dBµV/m) (dBµV/m) 10480 41.72 Н 7.97 -4-49.69 68.2 4 -18.5115720 Н 40.49 9.83 74 50.32 54 -3.68 Η ------10480 V 41.67 7.97 49.64 68.2 -18.5615720 ٧ 40.18 9.83 ---50.01 ---74 54 -3.99V ----------11n(HT40) CH38: 5190MHz Peak ΑV Correctio Ant. Pol. Frequency **Emission Level** Peak limit **AV** limit Margin reading reading n Factor (MHz) H/V (dBµV/m) (dBµV/m) (dB) ΑV (dBµV) (dBµV) (dB/m) Peak (dBµV/m) $(dB\mu V/m)$ 10380 Η 39.06 7.75 68.2 46.81 -21.3915570 Η 37.93 ---9.87 47.8 ---74 54 -6.2Η 10380 ٧ 40.97 ---7.75 68.2 48.72 -19.48 V 15570 38.12 9.87 47.99 74 -6.01 54 ----------------11n(HT40) CH46: 5230MHz Peak ΑV Correctio **Emission Level** Frequency Ant. Pol. Peak limit **AV** limit Margin reading reading n Factor (MHz) H/V (dBµV/m) $(dB\mu V/m)$ (dB) Peak AV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 10460 Н 41.22 ---7.97 49.19 68.2 -19.01 15690 Н 9.83 39.81 49.64 74 54 -4.36 Н ---42 ------------____ ---10460 ٧ 42.48 7.97 68.2 -17.75 50.45 15690 ٧ 39.11 ---9.83 48.94 74 54 -5.06 V

Report No.: TCT240322E031 11ac(VHT20) CH36: 5180MHz Peak ΑV Correctio Ant. Pol. **Emission Level** Frequency Peak limit **AV** limit Margin reading n Factor reading (MHz) H/V (dBµV/m) $(dB\mu V/m)$ (dB) Peak ΑV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 41.45 10360 Η 8.02 49.47 68.2 -18.73 15540 Н 37.12 9.87 46.99 -7.01 74 54 ---Н ------------٧ 10360 38.62 4--8.02 46.64 68.2 ----21.56 15540 ٧ 40.19 9.87 50.06 74 54 -3.94 11ac(VHT20) CH40: 5200MHz ΑV Peak Correctio Ant. Pol. **Emission Level** Peak limit **AV** limit Frequency Margin n Factor reading reading (MHz) H/V (dBµV/m) (dBµV/m) (dB) AV (dBµV) Peak (dBµV) (dB/m) (dBµV/m) (dBµV/m) 10400 Н 39.23 7.97 -4-47.2 68.2 4 -21 15600 Н 39.01 9.83 74 48.84 54 -5.16 Η ------10400 V 40.11 7.97 48.08 68.2 -20.1215600 ٧ 38.04 9.83 ---47.87 ---74 54 -6.13V -------11ac(VHT20) CH48:5240 Peak ΑV Correctio Ant. Pol. Frequency **Emission Level** Peak limit **AV** limit Margin reading reading n Factor (MHz) H/V (dBµV/m) (dBµV/m) (dB) ΑV (dBµV) (dBµV) (dB/m) Peak (dBµV/m) $(dB\mu V/m)$ 10480 Η 38.38 7.97 68.2 46.35 -21.85 15720 Η 38.02 ---9.83 47.85 ---74 54 -6.15 Η 10480 ٧ 39.11 ---7.97 68.2 47.08 ----21.12 15720 V 38.63 9.83 48.46 74 -5.54 54 ----------------11ac(VHT40) CH38:5190 Peak ΑV Correctio **Emission Level** Frequency Ant. Pol. Peak limit **AV** limit Margin reading n Factor reading (MHz) H/V (dBµV/m) $(dB\mu V/m)$ (dB) Peak AV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 10380 Η 40.25 ---7.75 48 68.2 -20.2 Н 9.87 15570 40.18 50.05 74 54 -3.95 Н ---42 ---------------____ ---10380 ٧ 68.2 39.37 7.75 47.12 -21.08 15570 ٧ 38.51 ---9.87 48.38 74 54 -5.62V

15720

V

٧

39.06

Report No.: TCT240322E031 11ac(VHT40) CH46:5230 Peak ΑV Correctio **Emission Level** Frequency Ant. Pol. Peak limit **AV limit** Margin n Factor reading reading (MHz) H/V (dBµV/m) (dBµV/m) (dB) Peak ΑV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 10460 Η 38.75 7.97 68.2 46.72 -21.48 15690 Η 39.12 9.83 48.95 74 -5.05 54 Н ---------10460 ٧ 40.58 7.97 48.55 68.2 -19.65 15690 V 37.13 9.83 74 -7.04 46.96 54 ٧ 11ax(VHT20) CH36: 5180MHz ΑV Correctio Peak Frequency Ant. Pol. **Emission Level** Peak limit **AV limit** Margin reading reading n Factor H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) (MHz) Peak AV (dBµV) (dBµV) (dB/m) $(dB\mu V/m)$ $(dB\mu V/m)$ 10360 Н 41.22 8.02 49.24 68.2 -18.96 15540 H 37.59 9.87 -44 47.46 74 54 -6.54 Н 10360 ٧ 38.18 8.02 68.2 -22 46.2 15540 40.54 9.87 50.41 74 54 -3.59٧ ------11ax(VHT20) CH40: 5200MHz Peak ΑV Correctio **Emission Level** Peak limit Frequency Ant. Pol. **AV limit** Margin reading reading n Factor (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) Peak ΑV (dBµV) (dBµV) (dB/m) $(dB\mu V/m) \mid (dB\mu V/m)$ 10400 Н 39.94 7.97 47.91 68.2 -20.29 15600 Н 39.26 ---9.83 49.09 54 74 -4.91Н ---------------10400 40.03 7.97 48 68.2 -20.215600 V 38.35 ---9.83 48.18 \---74 -5.82 54 V ___ J---11ax(VHT20) CH48:5240 Peak ΑV Correctio Ant. Pol. **Emission Level** Peak limit **AV** limit Frequency Margin reading reading n Factor (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) ΑV (dBµV) Peak (dBµV) (dB/m) (dBµV/m) (dBµV/m) 10480 Η 7.97 38.21 46.18 68.2 -22.02 15720 н 38.25 9.83 48.08 74 ---54 -5.92 ·}---Н 10480 39.39 ---7.97 47.36 ---68.2 ----20.84

-5.11

9.83

48.89

74

54

11ax(VHT40) CH38:5190									
) CH38:519	10			
Frequency	Ant. Pol. H/V	Peak AV reading readin		Correctio n Factor	Emissio	Emission Level		AV limit	Margin (dB)
(MHz)	⊓/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(db)
10380	Н	40.23		7.75	47.98		68.2		-20.22
15570	Η	40.18		9.87	50.05		74	54	-3.95
	Н								
10380	V	39.31	40	7.75	47.06	<u>(</u>	68.2	(- 	-21.14
15570	V	38.43		9.87	48.3	-	74	54	-5.7
	V								
			1	1ax(VHT40) CH46:523	30			
Frequency	Ant. Pol. Peak		AV					AV limit	Margin
(MHz)		reading	reading	n Factor	Emissio	n Level	Peak limit		_
(1711 12)	H/V	reading (dBµV)	reading (dBµV)	n Factor (dB/m)	Peak	AV	(dBµV/m)	AV limit (dBµV/m)	Margin (dB)
(1711 12)		reading (dBµV)	reading (dBµV)						_
10460		•	0		Peak	AV			_
, ,	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10460	H/V	(dBµV)	(dBµV)	(dB/m) 7.97	Peak (dBµV/m) 46.04	ΑV (dBμV/m)	(dBµV/m) 68.2	(dBµV/m)	(dB) -22.16
10460 15690	H/V H	(dBµV) 38.07 39.15	(dBµV)	(dB/m) 7.97 9.83	Peak (dBµV/m) 46.04 48.98	AV (dBµV/m)	(dBµV/m) 68.2 74	(dBµV/m)	-22.16 -5.02
10460 15690	H/V H	(dBµV) 38.07 39.15	(dBµV)	(dB/m) 7.97 9.83	Peak (dBµV/m) 46.04 48.98	AV (dBµV/m)	(dBµV/m) 68.2 74	(dBµV/m)	-22.16 -5.02
10460 15690	H/V H H	(dBμV) 38.07 39.15	(dBµV)	7.97 9.83	Peak (dBµV/m) 46.04 48.98	AV (dBµV/m)	(dBµV/m) 68.2 74 	(dBµV/m) 54	-22.16 -5.02

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. $Margin (dB) = Emission Level (Peak) (dB\mu V/m)-Average limit (dB\mu V/m)$
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

			N	lodulation 7	Type: Band	3			
				11a CH149	• •				
Frequency	Ant. Pol.	Peak reading	AV reading	Correctio n Factor	Emissio	n Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)
11490	Η	39.47		8.09	47.56		74	54	-6.44
17235	Ŧ	37.93		9.67	47.6	- ₂	68.2		-20.6
	H		(- 6)		(,((.c .)	
				/					
11490	V	41.51		8.09	49.6		74	54	-4.4
17235	V	39.42		9.67	49.09		_68.2		-19.11
	V			(
				11a CH157	': 5785MHz				
Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading	Correctio n Factor		Peak limi		AV limit (dBµV/m)	Margin (dB)
(1711 12)	1 1/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(αυμ ν/ιιι)	(αΒμ ۷/111)	(ub)
11570	H	39.09		8.10	47.19		74	54	-6.81
17355	Н	38.38		9.65	48.03		68.2		-20.17
<u> </u>	Н	/X							(\)
(0)		(20)		I _X C			(0)		(20)
11570	V	38.02		8.10	46.12		74	54	-7.88
17355	V	40.19		9.65	49.84		68.2		-18.36
	V							- 7.	
				11a CH165	: 5825MHz				
Frequency	Ant. Pol.	Peak	AV	Correctio	Emissio	n Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	reading (dBµV)	n Factor (dB/m)	Peak	AV	(dBµV/m)	(dBµV/m)	(dB)
			(αυμν)	(ab/iii)	(dBµV/m)	(dBµV/m)			
11650	Н	37.48		12.0	` ' '				
17475				8.12	45.6		74	54	-8.4
	Н	36.23		8.12 9.62	` ' '		74 68.2	54 	-8.4 -22.35
	Н	36.23			45.6				
	H			9.62	45.6 45.85 		68.2		-22.35
11650	H	39.06		9.62 8.12	45.6 45.85 47.18		68.2 74	 54	-22.35 -6.82
	H V V			9.62	45.6 45.85 		68.2		-22.35
11650	H	39.06	 	9.62 8.12 9.62 	45.6 45.85 47.18 48.28	 	68.2 74	 54	-22.35 -6.82
11650 17475	H V V	39.06 38.66	 11r	9.62 8.12 9.62 (HT20) CH	45.6 45.85 47.18 48.28	 	68.2 74 68.2	54 	-22.35 -6.82 -19.92
11650 17475 Frequency	H V V V Ant. Pol.	39.06 38.66	 	9.62 8.12 9.62 	45.6 45.85 47.18 48.28 149: 5745N	MHz	68.2 74 68.2 	54 	-22.35 -6.82 -19.92 Margin
11650 17475 	H V V	39.06 38.66 	 11r	9.62 8.12 9.62 (HT20) CH Correctio	45.6 45.85 47.18 48.28 149: 5745N	 1Hz	74 68.2 	54	-22.35 -6.82 -19.92
11650 17475 Frequency	H V V V Ant. Pol.	39.06 38.66 Peak reading	 11r AV reading	9.62 8.12 9.62 n(HT20) CH Correction	45.6 45.85 47.18 48.28 149: 5745M Emission	MHz on Level	68.2 74 68.2 	54 	-22.35 -6.82 -19.92 Margin
11650 17475 Frequency (MHz)	V V V Ant. Pol. H/V	39.06 38.66 Peak reading (dBµV)	11r AV reading (dBµV)	9.62 8.12 9.62 (HT20) CH Correctio n Factor (dB/m)	45.6 45.85 47.18 48.28 149: 5745M Emissic Peak (dBµV/m)	MHz on Level AV (dBµV/m)	74 68.2 Peak limit (dBµV/m)	54 AV limit (dBµV/m)	-22.35 -6.82 -19.92 Margin (dB)
11650 17475 Frequency (MHz)	H V V V Ant. Pol. H/V	39.06 38.66 Peak reading (dBµV)	11r AV reading (dBµV)	9.62 8.12 9.62 (HT20) CH Correctio n Factor (dB/m) 8.09	45.6 45.85 47.18 48.28 149: 5745M Emissic Peak (dBµV/m) 47.35	MHz on Level AV (dBµV/m)	74 68.2 Peak limit (dBµV/m)	54 AV limit (dBµV/m)	-22.35 -6.82 -19.92 Margin (dB)
11650 17475 Frequency (MHz) 11490 17235	H V V V Ant. Pol. H/V	39.06 38.66 Peak reading (dBµV) 39.26 38.54	11r AV reading (dBµV)	9.62 8.12 9.62 n(HT20) CH Correctio n Factor (dB/m) 8.09 9.67	45.6 45.85 47.18 48.28 149: 5745M Emission Peak (dBµV/m) 47.35 48.21	MHz on Level AV (dBµV/m)	74 68.2 Peak limit (dBµV/m) 74 68.2	54 AV limit (dBµV/m)	-22.35 -6.82 -19.92 Margin (dB) -6.65 -19.99
11650 17475 Frequency (MHz) 11490 17235	H V V V Ant. Pol. H/V	39.06 38.66 Peak reading (dBµV) 39.26 38.54	11r AV reading (dBµV)	9.62 8.12 9.62 n(HT20) CH Correctio n Factor (dB/m) 8.09 9.67	45.6 45.85 47.18 48.28 149: 5745M Emission Peak (dBµV/m) 47.35 48.21	MHz on Level AV (dBµV/m)	74 68.2 Peak limit (dBµV/m) 74 68.2	54 AV limit (dBµV/m)	-22.35 -6.82 -19.92 Margin (dB) -6.65 -19.99
11650 17475 Frequency (MHz) 11490 17235	H V V V Ant. Pol. H/V H H	39.06 38.66 Peak reading (dBµV) 39.26 38.54	11r AV reading (dBµV)	9.62 8.12 9.62 (HT20) CH Correctio n Factor (dB/m) 8.09 9.67	45.6 45.85 47.18 48.28 149: 5745M Emission Peak (dBµV/m) 47.35 48.21	MHz on Level AV (dBµV/m)	68.2 74 68.2 Peak limit (dBμV/m) 74 68.2 	 54 AV limit (dBμV/m)	-22.35 -6.82 -19.92 Margin (dB) -6.65 -19.99

			11r	(HT20) CH	157: 5785N	ИHz			
Frequency	Ant. Pol.	Peak 	AV 	Correctio	Emissio	n Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	reading (dBµV)	n Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11570	Н	38.55		8.10	46.65		74	54	-7.35
17355	Н	39.14		9.65	48.79		68.2		-19.41
	Н								
	(.c.)		(.c.)					(.c.)	
11570	V	39.29		8.10	47.39	<i></i>	74	54	-6.61
17355	V	39.11		9.65	48.76		68.2		-19.44
	V								
			11r	(HT20) CH	165: 5825N	ИHz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correctio n Factor	Emissio	Emission Level Peak lim		t AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)
11650	KH/	39.19	140	8.12	47.31) 	74	54	-6.69
17475	Н	37.46		9.62	47.08		68.2		-21.12
	Н								
					Ž\				
11650	V	38.55		8.12	46.67		74	54	-7.33
17475	V	39.04		9.62	48.66		68.2		-19.54
	V								
			11r	(HT40) CH	151: 5755N	ИHz			
Frequency	Ant. Pol.			Correctio Emission Le		n Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(dBµV/m)) (dB)
11510	Н	41.05		8.09	49.14		74	54	-4.86
17265	Н	37.91		9.67	47.58		68.2		-20.62
	Н								
				ļ	ļ		ļ		
11510	V	42.88		8.09	50.97		74	54	-3.03
17265	V	39.06	-1-	9.67	48.73)	68.2	()	-19.47
	V								
			11r	(HT40) CH	159: 5795N	ИHz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correctio n Factor	Emissio	n Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)
11590	Ж	39.63		8.10	47.73	7	74	54	-6.27
17385	H	38.44	4.0	9.65	48.09	<u>()</u>	68.2	(, G-)	-20.11
	Н					<u></u>			
				· ·	· ·	· ·	 		
11590	V	39.01		8.10	47.11		74	54	-6.89
17385	V	38.13		9.65	47.78		68.2		-20.42
	V				/				

Report No.: TCT240322E031 11ac(VHT20) CH149: 5745MHz Peak ΑV Correctio Ant. Pol. **Emission Level** Frequency Peak limit **AV** limit Margin reading n Factor reading (MHz) H/V (dBµV/m) $(dB\mu V/m)$ (dB) Peak ΑV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 41.36 11490 Η 8.09 49.45 74 54 -4.5517235 Н 38.69 9.67 48.36 68.2 -19.84 ---Н ------٧ 11490 40.58 4--8.09 48.67 74 -5.33 54 17235 ٧ 39.1 9.67 48.77 68.2 -19.43 11ac(VHT20) CH157: 5785MHz Peak AV Correctio Ant. Pol. **Emission Level** Peak limit **AV** limit Frequency Margin n Factor reading reading (MHz) H/V (dBµV/m) (dBµV/m) (dB) (dBµV) Peak ΑV (dBµV) (dB/m) (dBµV/m) (dBµV/m) 11570 Н 38.15 8.10 -4-46.25 ---74 54 -7.75 17355 Н 36.63 9.65 68.2 -21.92 46.28 Η ------٧ 11570 38.29 8.10 46.39 74 54 -7.6117355 ٧ 9.65 38.07 ---47.72 ---68.2 ----20.48V ------11ac(VHT20) CH165: 5825MHz Peak ΑV Correctio Ant. Pol. Frequency **Emission Level** Peak limit **AV** limit Margin reading reading n Factor (MHz) H/V (dBµV/m) (dBµV/m) (dB) ΑV (dBµV) (dBµV) (dB/m) Peak (dBµV/m) $(dB\mu V/m)$ 11650 Η 40.06 8.12 48.18 74 -5.8254 17475 Η 38.83 ---9.62 48.45 ---68.2 -19.75 Η 11650 ٧ 39.39 ---8.12 47.51 ---74 54 -6.4917475 V 40.81 9.62 50.43 68.2 -17.77------/**---**-------11ac(VHT40) CH151: 5755MHz Peak ΑV Correctio **Emission Level** Frequency Ant. Pol. Peak limit **AV** limit Margin reading reading n Factor (MHz) H/V (dBµV/m) $(dB\mu V/m)$ (dB) Peak AV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 11510 Η 39.73 ---8.09 47.82 74 54 -6.18 17265 Н 9.67 38.94 48.61 68.2 -19.59 Н ---4.0 أساب ---------------11510 ٧ 40.02 8.09 48.11 74 54 -5.89 17265 ٧ 36.86 ---9.67 46.53 68.2 -21.67 V

	TESTING	CENTRE TECHNOL					Repo	ort No.: TCT24	10322E031
				<u>` </u>	H159: 5795	MHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correctio n Factor (dB/m)	Peak	AV	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
					(dBµV/m)	(dBµV/m)			
11590	Н	40.26		8.10	48.36	(74	54	-5.64
17385	Н	38.63		9.65	48.28		68.2		-19.92
	Н								
				•		74	,		
11590	V	39.74	(Z O)	8.10	47.84	(`ز	74	54	-6.16
17385	V	38.18		9.65	47.83	/	68.2	<u></u>	-20.37
	V								
				<u> </u>	H149: 5745	MHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading	Correction n Factor	Emissio	(dPu)//m)		AV limit (dBµV/m)	Margin (dB)
(IVII IZ)	1 1/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(ασμ ν/ιιι)	(αΒμ ۷/ΙΙΙ)	(45)
11490	H	39.43	+	8.09	47.52	(/·	74	54	-6.48
17235	(H)	38.39		9.67	48.06	٠	68.2	(2)	-20.14
	Н								
11490	V	40.92		8.09	49.01		74	54	-4.99
17235	V	39.11		9.67	48.78		68.2		-19.42
	V								
			11ax	(VHT20) C	H157: 5785	MHz			
Frequency	Ant. Pol.	Peak	AV	Correctio	Emissio	n Level	Peak limit	AV limit	Margin (dB)
(MHz)	H/V	reading (dBµV)	reading (dBµV)	n Factor (dB/m)	Peak	AV	(dBµV/m)	(dBµV/m)	
					(dBµV/m)	(dBµV/m)			
11570	Н	38.24		8.10	46.34		74	54	-7.66
17355	Н	36.35		9.65	46		68.2		-22.2
	Н						<u> </u>		
44570		00.70		0.40		1			
11570	V	38.73		8.10	46.83		74	54	-7.17
17355	V	39.41	<u> </u>	9.65	49.06	C))	68.2	(G)	-19.14
	V								
1				<u> </u>	H165: 5825	OMHZ	l .		
Frequency	Ant. Pol.	Peak	AV	Correction n Factor	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	reading (dBµV)	(dB/m)	Peak	AV	(dBµV/m)	(dBµV/m)	(dB)
			(αΒμν)	, ,	(dBµV/m)	(dBµV/m)			
11650	Н	40.36		8.12	48.48		74	54	-5.52
17475	Ħ	38.04	-7/4	9.62	47.66	Z\	68.2		-20.54
	Н		70			() <u>)</u>		(<u>, C.ı.</u>)	
-				•			, · · · · · · · · · · · · · · · · · · ·		
11650	V	39.94		8.12	48.06		74	54	-5.94
17475	V	40.06		9.62	49.68		68.2		-18.52
2G -1)	V	(, 6`)		(₂ C)		(C) -}-		(. -G .)

	TESTING	CENTRE TECHNOL	RE TECHNOLOGY Report No.: TCT240322E031								
			11ax	(VHT40) C	H151: 5755	MHz					
Frequency	Ant. Pol. H/V Peak reading (dBµV)	Ant. Pol. reading	AV reading (dBµV)	Correctio n Factor	Emissio	Emission Level		AV limit	Margin		
(MHz)		(dBµV)		(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)		
11510	Н	39.35		8.09	47.44		74	54	-6.56		
17265	Н	38.41		9.67	48.08		68.2		-20.12		
	Н										
11510	V	40.87	420	8.09	48.96	5)	74	54	-5.04		
17265	>	36.45		9.67	46.12		68.2	1	-22.08		
	V										
			11ax	(VHT40) C	H159: 5795	MHz					
Frequency	Ant. Pol.	Peak reading	AV reading	Correctio n Factor	Emissio	on Level	Peak limit	AV limit	Margin		
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)		
11590	H	40.06		8.10	48.16		74	54	-5.84		
17385	H	38.55	-40	9.65	48.2	٠	68.2		-20		
	Н										
11590	V	39.38		8.10	47.48		74	54	-6.52		
17385	V	38.51		9.65	48.16		68.2		-20.04		
	V	1									

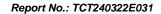
Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

5.9. Frequency Stability Measurement

5.9.1. Test Specification

FCC Part15 Section 15.407(g) &Part2 J Section 2.1055 ANSI C63.10: 2013 The frequency tolerance shall be maintained within the					
The frequency tolerance shall be maintained within the					
The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 45 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.					
Spectrum Analyzer EUT AC/DC Power supply					
The EUT was placed inside the environmental test chamber and powered by nominal AC/DC voltage. b. Turn the EUT on and couple its output to a spectrum analyzer. c. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. e. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to					
PASS					
Pre-scan was performed at all models(11a,11n,11ac, 11ax), the worst case (11ac) was found and test data was shown in this report.					

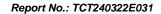


Test plots as follows:

Test mode:	802.11ac(VHT20)	Freque	ency(MHz):	5180		
Temperature (°C)	Voltage(V _{AC})	Measure	Measurement			Result	
Temperature (C)	voitage(v _{AC})	Frequency	(MHz)	Frequency(I	Hz)	Result	
45		5180		0		PASS	
35		5180		0		PASS	
25	120V	5180		0		PASS	
15	1200	5180		0		PASS	
5		5179.9	88	-20000		PASS	
0		5180)	0		PASS	
	102V	5179.9	98	-20000		PASS	
25	120V	5179.9	98	-20000)	PASS	,)
	138V	5180		0		PASS	

Test mode:	802.11ac(\	/HT20) Frequ	ency(MHz):	5200
Temperature (°C)	Voltage(V _{AC})	Measurement	Delta	Result
remperature (C)	voitage(v _{AC})	Frequency(MHz)	Frequency(Hz)	Nesuit
45		5199.98	-20000	PASS
35		5199.98	-20000	PASS
25	120V	5199.98	-20000	PASS
15	1200	5200	0	PASS
5		5199.98	-20000	PASS
0	(c)	5200	0	PASS
	102V	5200	0	PASS
25	120V	5200	0	PASS
	138V	5200	0	PASS

Test mode:		802.11ac(V	VHT20) Frequency(MHz):			z):	5240
Temperature (°C)	\/c	ltage(V _{AC})	Measu	Measurement		elta	Result
remperature (C)	VC	mage(v _{AC})	Frequency(MHz)		Frequency(Hz)		Nesuit
45		(20)	5239	9.98	-20	000	PASS
35			5239	9.98	-20	000	PASS
25		120\/	5240		(0	PASS
15		120V	52	5240		0	PASS
5		(C_{i})	5240		(0	PASS
0			52	40	(0	PASS
		102V	52	40	(0	PASS
25		120V	52	40	3	0	PASS
		138V	52	40		0	PASS



Test mode:	802.11ac(\	/HT20)	(HT20) Frequency(MHz)			5745		
Temperature (°C)	Voltage(V _{AC})	Measu	rement	Delta		Result		
remperature (C)	voitage(v _{AC})	Frequen	cy(MHz)	Frequency(F	Hz)	Result		
45		5744	4.98	-20000		PASS		
35		5744	4.98	-20000		PASS		
25	120V	574	4.98	-20000		PASS		
15	1200	5744	4.96	-40000		PASS		
5		5744	4.98	-20000	(PASS		
0		574	4.98	-20000	,	PASS		
	102V	574	4.96	-40000		PASS		
25	120V	574	4.96	-40000		PASS	3	
(C_{\circ})	138V	5744	4.98	-20000)	PASS		

Test mode:	802.11ac(\)	/HT20) Frequ	uency(MHz):	5785
Temperature (°C)	Voltage(V _{AC})	Measurement	Delta	Result
Temperature (C)	voitage(v _{AC})	Frequency(MHz) Frequency(Hz)	Nesuit
45		5784.98	-20000	PASS
35		5785	0	PASS
25	120V	5784.98	-20000	PASS
15	1200	5784.96	-40000	PASS
5		5784.96	-40000	PASS
0		5784.98	-20000	PASS
	102V	5784.98	-20000	PASS
25	120V	5784.98	-20000	PASS
	138V	5784.98	-20000	PASS

Test mode:	802.11ac(VHT20) Frequ	uency(MHz):	5825
Temperature (°C)	Voltage(V _{AC})	Measurement Frequency(MHz	Delta) Frequency(Hz)	Result
45		5824.98	-20000	PASS
35		5824.98	-20000	PASS
25	120V	5824.98	-20000	PASS
15	1200	5824.96	-40000	PASS
5		5824.98	-20000	PASS
0		5824.98	-20000	PASS
	102V	5824.98	-20000	PASS
25	120V	5824.98	-20000	PASS
	138V	5825	0	PASS

Test mode:	802.11ac(\	802.11ac(VHT40)) Frequency(MHz):		5190	
Temperature (°C)	Voltage(V _{AC})	Measurement		Delta		Result	
remperature (C)	voitage(v _{AC})	Frequency(MHz)		Frequency(Hz)			
45		5190		0		PASS	
35		51	90	0		PASS	
25	120V	51	90	0		PASS	3
15	1200	51	90		0	PASS	3
5		51	90	C)	0	PASS	3
0		51	90		0	PASS	3
	102V	5190	0.04	40	0000	PASS	3
25	120V	51	90		0	PASS	
(C)	138V	51	90		0.0	PASS	((0)

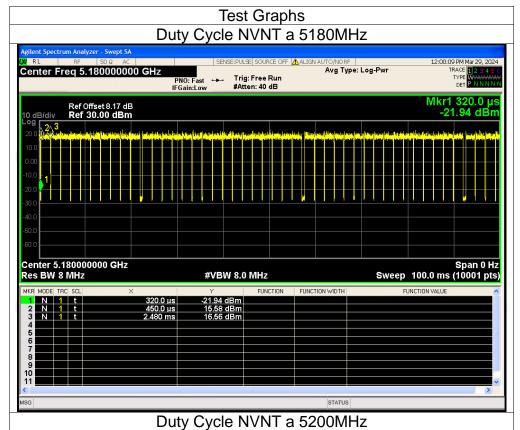
Test mode:	802.11ac(\)	VHT40) Frequ	ency(MHz):	5230	
Temperature (°C)	Voltage(V _{AC})	Measurement	Delta	Result	
Temperature (C)	voitage(v _{AC})	Frequency(MHz)	Frequency(Hz)		
45		5230.04	40000	PASS	
35		5230	0	PASS	
25	120V	5230	0	PASS	
15	1200	5230	0	PASS	
5		5230.04	40000	PASS	
0		5230	0	PASS	
	102V	5230	0	PASS	
25	120V	5230	0	PASS	
	138V	5230.04	40000	PASS	

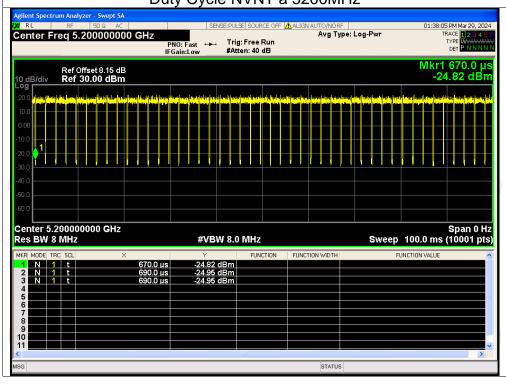
Test mode:	802.11ac(\	/HT40) Frequ	iency(MHz):	5755
Temperature (°C)	Voltage(V _{AC})	Measurement Frequency(MHz)	Delta Frequency(Hz)	Result
45		5754.96	-40000	PASS
35		5755	0	PASS
25	120V	5754.96	-40000	PASS
15	1200	5755	0	PASS
5		5754.96	-40000	PASS
0		5754.96	-40000	PASS
	102V	5754.96	-40000	PASS
25	120V	5754.96	-40000	PASS
	138V	5755	0	PASS

	N.A			
\/oltago(\/\	Measurement	Delta	Result	
Voltage(V _{AC})	Frequency(MHz)	Frequency(Hz)		
(.c.)	5754.96	-40000	PASS	
	5795	0	PASS	
5794.96 -400		-40000	PASS	
1200	5795		PASS	
(,c)	5794.96	-40000	PASS	
0		-40000	PASS	
102V	5795	0	PASS	
120V	5794.96	-40000	PASS	
138V	5795	0.0	PASS	
	120V	120V 5794.96 5795 5794.96 5794.96 5794.96 5794.96 102V 5795 120V 5794.96	120V 5794.96 -40000 5795 0 5794.96 -40000 5795 0 5794.96 -40000 5794.96 -40000 102V 5795 0 120V 5794.96 -40000	

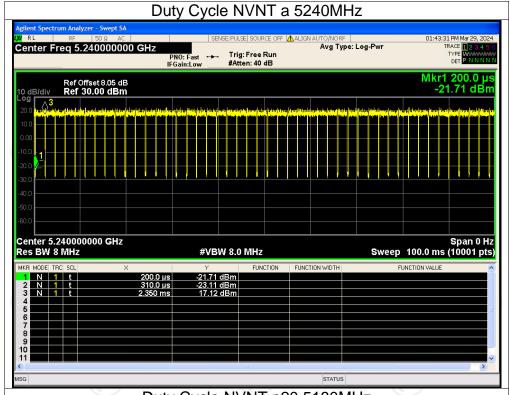
Appendix A: Test Result of Conducted Test

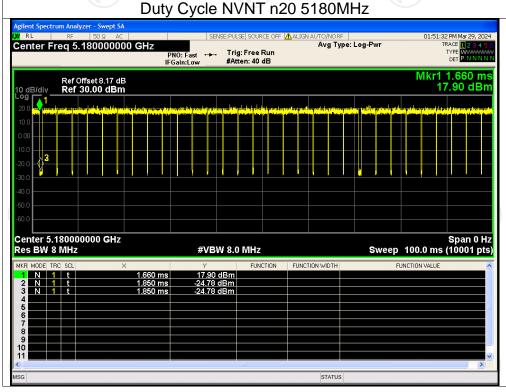
Duty Cycle

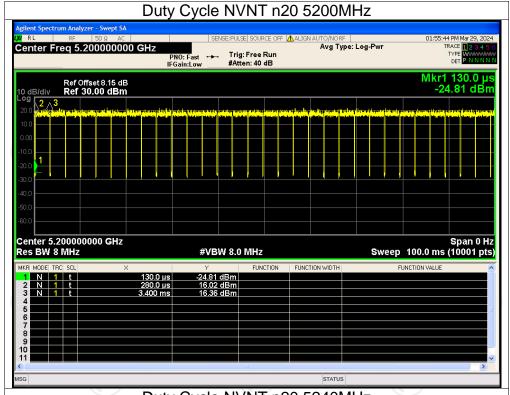

Duty Cycle								
Condition		Frequency		Correction Factor				
				(dB)				
	а			0.29				
	а			0.32				
	а	5240	93.84	0.28				
VNT	n20	5180	95.37	0.21				
VNT	n20	5200	95.56	0.20				
VNT	n20	5240	96.79	0.14				
VNT	n40	5190	96.53	0.15				
VNT	n40	5230	97.88	0.09				
VNT	ac20	5180	96.25	0.17				
VNT	ac20	5200	95.74	0.19				
VNT	ac20	5240	95.74	0.19				
VNT	ac40	5190	95.43	0.20				
VNT	ac40	5230	98.00	0.09				
VNT	ax20	5180	94.69	0.24				
VNT	ax20	5200	95.28	0.21				
VNT	ax20	5240	94.96	0.22				
VNT	ax40	5190	93.90	0.27				
VNT	ax40	5230	97.32	0.12				
VNT	а	5745	97.76	0.10				
VNT	а	5785	97.11	0.13				
VNT	а	5825	96.15	0.17				
VNT	n20	5745	98.78	0.05				
VNT	n20	5785	98.06	0.09				
VNT				0.12				
VNT	n40			0.02				
VNT	n40			0.03				
VNT				0.04				
	-			0.07				
				0.09				
				0.06				
VNT				0.04				
VNT	ax20	5745	98.90	0.05				
VNT		5785		0.07				
				0.11				
				0.03				
	-			0.05				
	VNT	VNT a VNT n20 VNT n20 VNT n20 VNT n40 VNT n40 VNT n40 VNT ac20 VNT ac20 VNT ac20 VNT ac40 VNT ax20 VNT ax20 VNT ax40 VNT ax40 VNT ax40 VNT ax40 VNT ax40 VNT ac40 VNT ac20 VNT n20 VNT n20 VNT n20 VNT n20 VNT n20 VNT n40 VNT ac20 VNT ac20 VNT ac20 VNT ac20 VNT ac40 VNT ac40 VNT ax20	Mode	Idition Mode Frequency (MHz) (%) Duty Cycle (%) VNT a 5180 93.60 VNT a 5200 92.89 VNT a 5240 93.84 VNT n20 5180 95.37 VNT n20 5200 95.56 VNT n20 5240 96.79 VNT n40 5190 96.53 VNT n40 5230 97.88 VNT n40 5230 97.88 VNT ac20 5180 96.25 VNT ac20 5240 95.74 VNT ac20 5240 95.74 VNT ac40 5190 95.43 VNT ac40 5190 95.43 VNT ac40 5230 98.00 VNT ax20 5240 94.69 VNT ax20 5240 94.96 VNT ax40 5190 93.90				

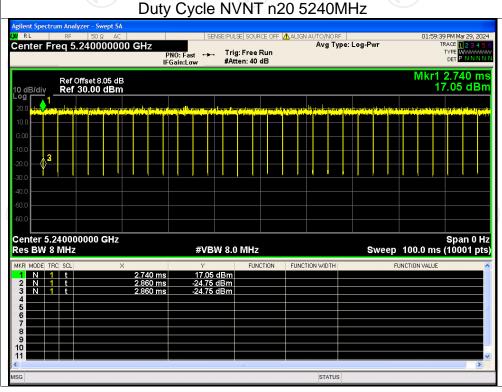

Page 50 of 146

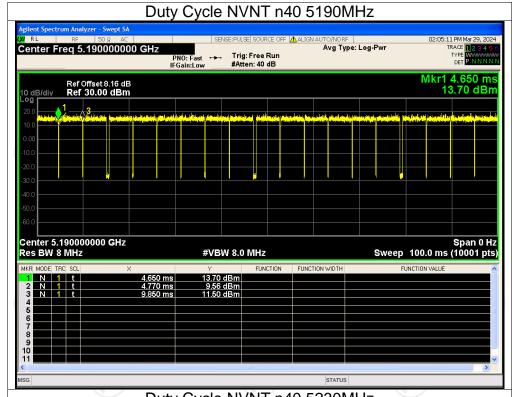
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

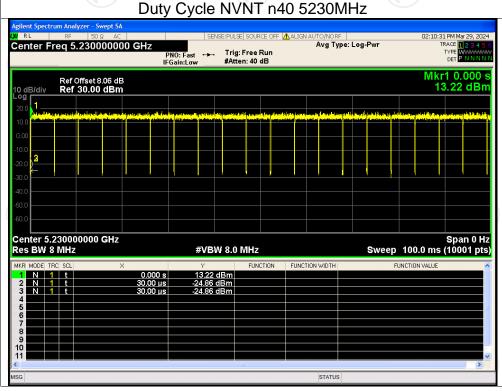


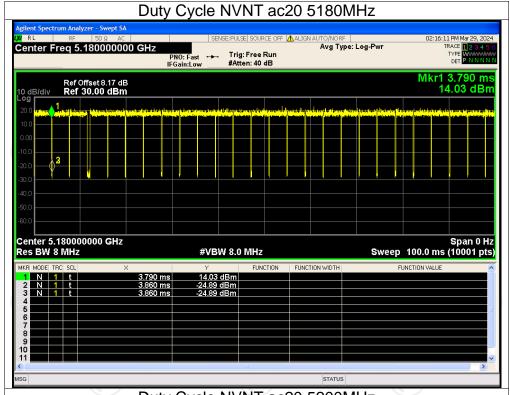


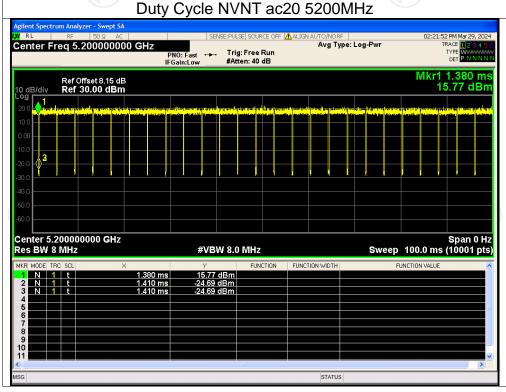


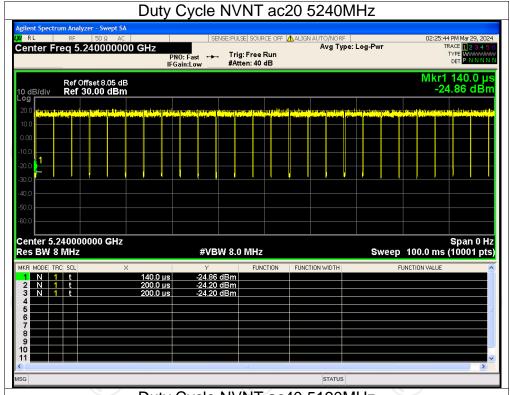


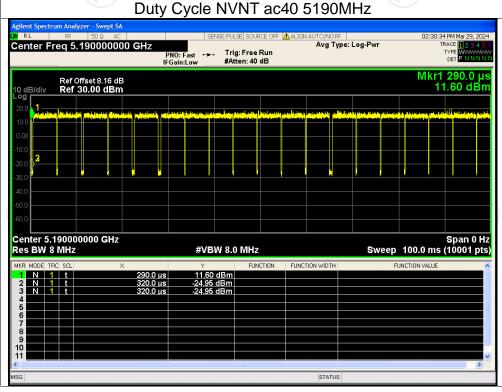


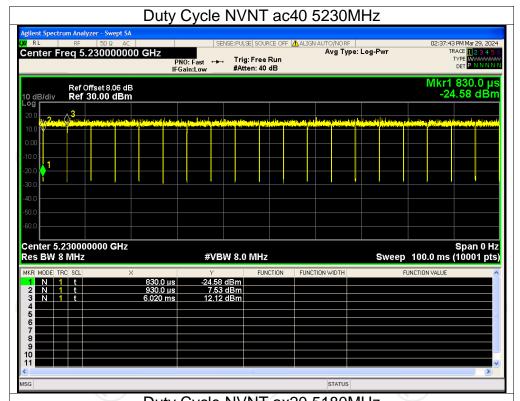


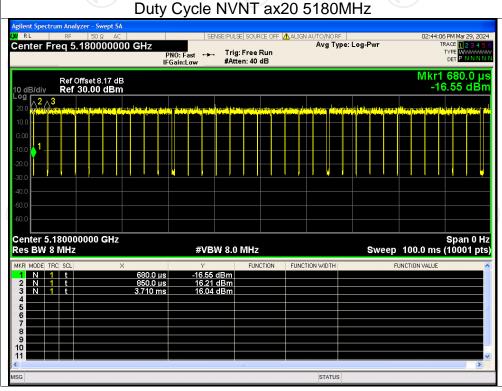


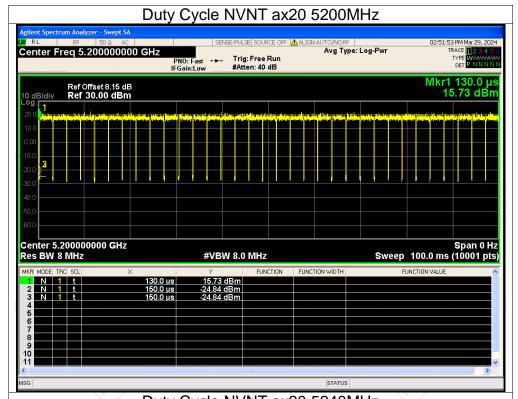


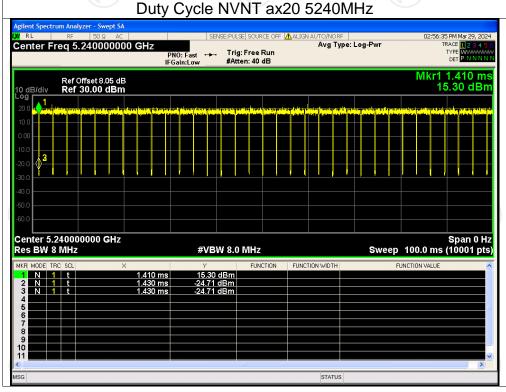


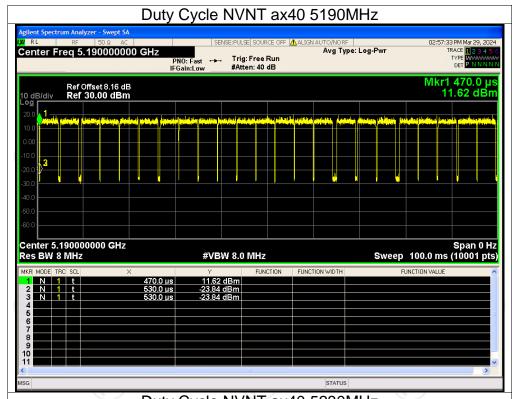


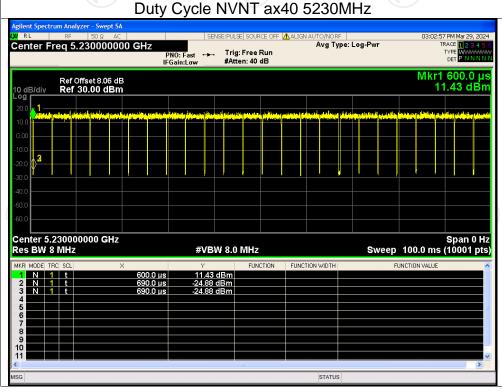


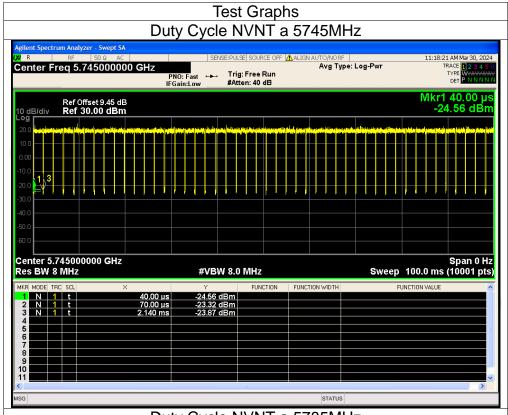


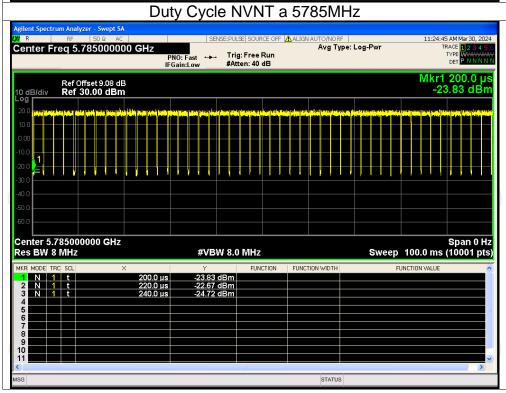


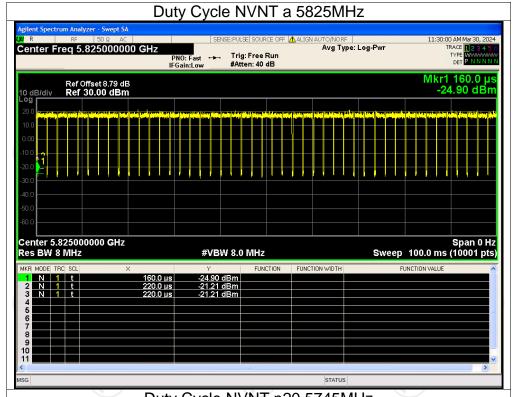


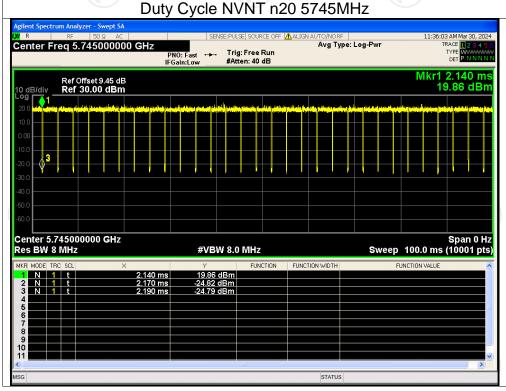


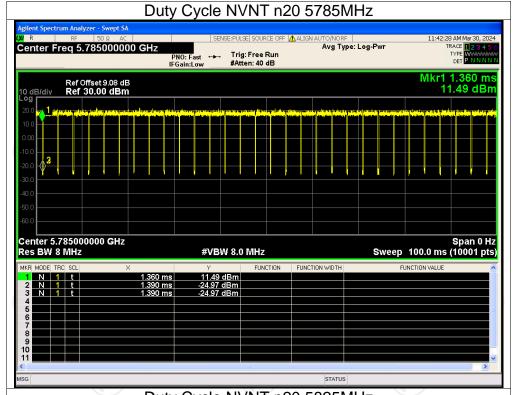


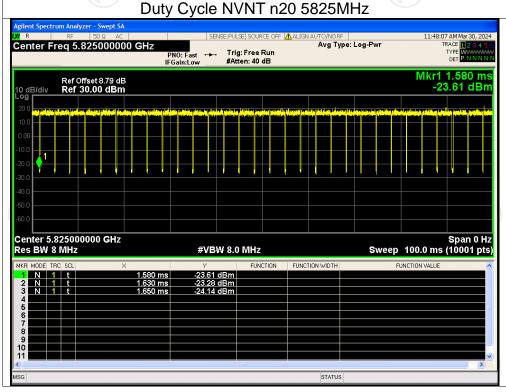


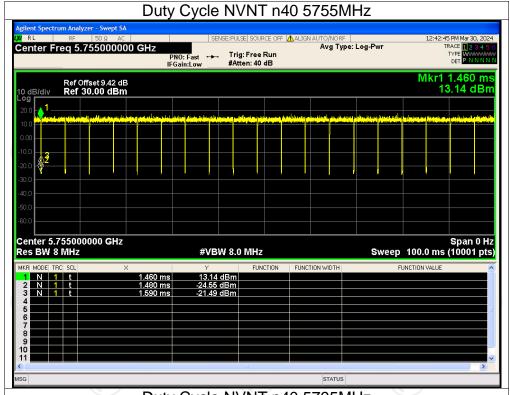


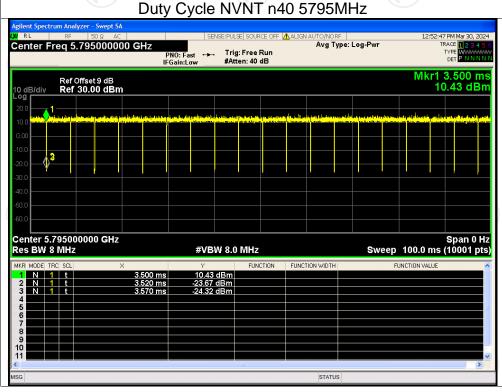


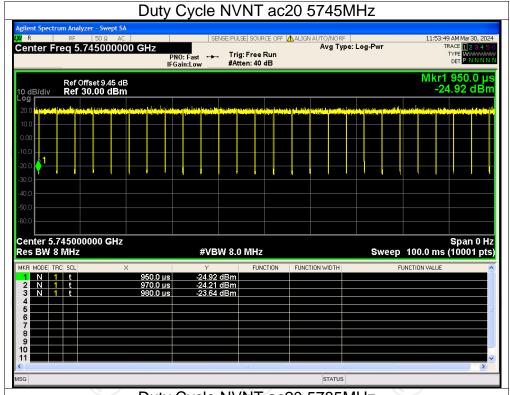


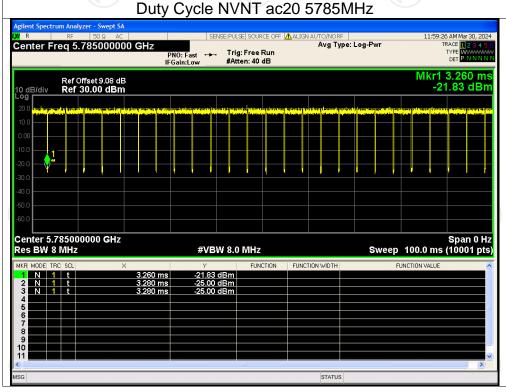


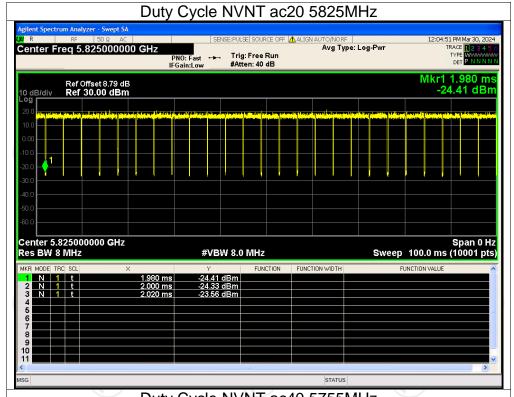


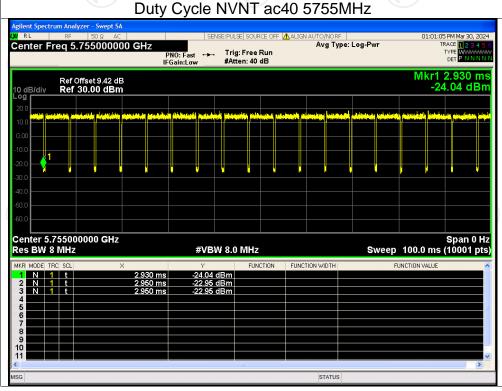


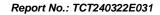


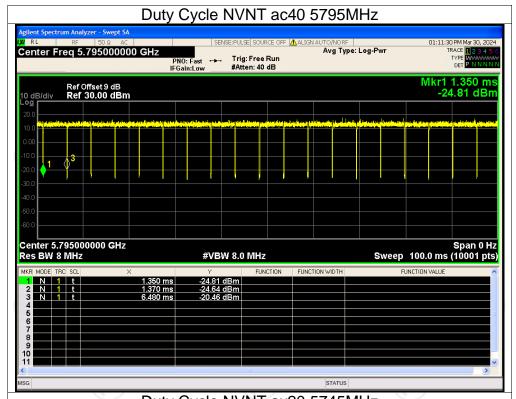


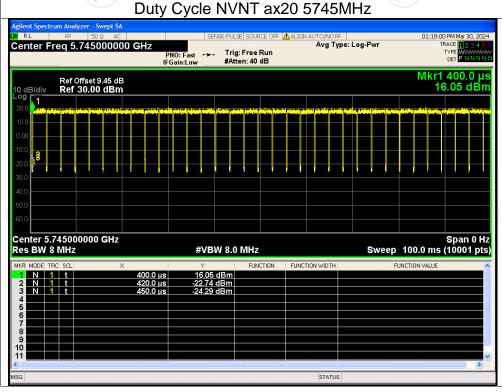


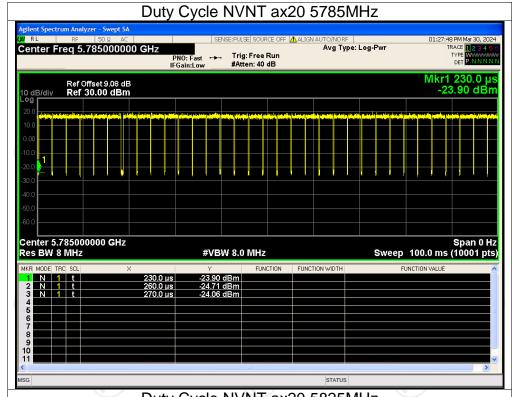


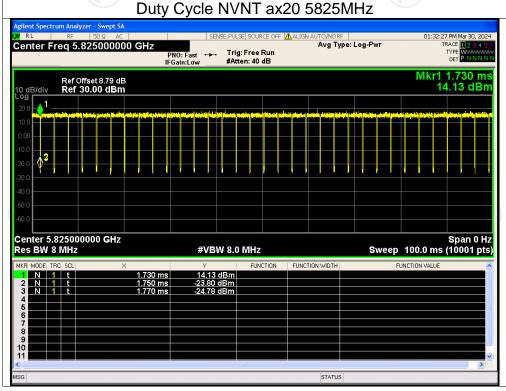


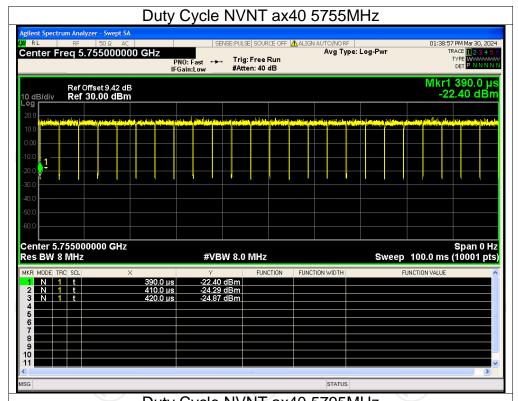


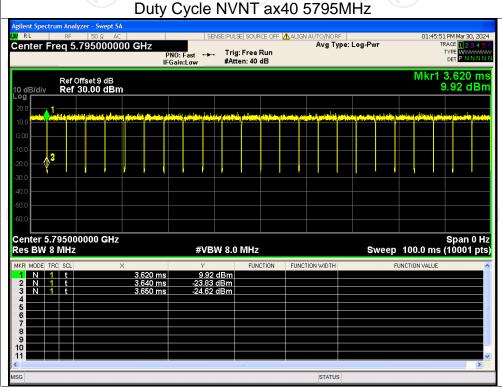


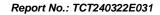


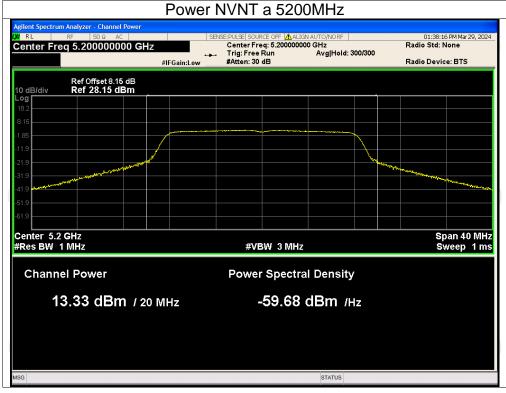











Maximum Conducted Output Power

Condition	Mode	Frequency	Conducted	Duty	Total	Limit	Verdict
Condition	Wiode	(MHz)	Power (dBm)	Factor	Power	(dBm)	Verdict
		(1411 12)	Tower (abili)	(dB)	(dBm)	(abiii)	
NVNT	а	5180	13.35	0.29	13.64	24	Pass
NVNT	а	5200	13.33	0.32	13.65	24	Pass
NVNT	а	5240	13.25	0.28	13.53	24	Pass
NVNT	n20	5180	13.61	0.21	13.82	24	Pass
NVNT	n20	5200	13.38	0.20	13.58	24	Pass
NVNT	n20	5240	13.22	0.14	13.36	24	Pass
NVNT	n40	5190	13.57	0.15	13.72	24	Pass
NVNT	n40	5230	13.14	0.09	13.23	24	Pass
NVNT	ac20	5180	13.60	0.17	13.77	24	Pass
NVNT	ac20	5200	13.48	0.19	13.67	24	Pass
NVNT	ac20	5240	13.41	0.19	13.60	24	Pass
NVNT	ac40	5190	13.59	0.20	13.79	24	Pass
NVNT	ac40	5230	13.18	0.09	13.27	24	Pass
NVNT	ax20	5180	13.45	0.24	13.69	24	Pass
NVNT	ax20	5200	13.39	0.29	13.68	24	Pass
NVNT	ax20	5240	13.31	0.25	13.56	24	Pass
NVNT	ax40	5190	13.52	0.27	13.79	24	Pass
NVNT	ax40	5230	13.16	0.12	13.28	24	Pass
NVNT	а	5745	15.63	0.10	15.73	30	Pass
NVNT	а	5785	14.34	0.13	14.47	30	Pass
NVNT	а	5825	13.23	0.17	13.40	30	Pass
NVNT	n20	5745	15.99	0.05	16.04	30	Pass
NVNT	n20	5785	14.40	0.09	14.49	30	Pass
NVNT	n20	5825	13.26	0.12	13.38	30	Pass
NVNT	n40	5755	13.17	0.02	13.19	30	Pass
NVNT	n40	5795	11.93	0.03	11.96	30	Pass
NVNT	ac20	5745	15.97	0.04	16.01	30	Pass
NVNT	ac20	5785	14.39	0.07	14.46	30	Pass
NVNT	ac20	5825	13.13	0.09	13.22	30	Pass
NVNT	ac40	5755	13.85	0.06	13.91	30	Pass
NVNT	ac40	5795	12.96	0.04	13.00	30	Pass
NVNT	ax20	5745	14.69	0.05	14.74	30	Pass
NVNT	ax20	5785	13.28	0.07	13.35	30	Pass
NVNT	ax20	5825	11.71	0.11	11.82	30	Pass
NVNT	ax40	5755	14.53	0.03	14.56	30	Pass
NVNT	ax40	5795	13.18	0.05	13.23	30	Pass

