

RF EXPOSURE Test Report

Product: Wireless charging Bluetooth speaker

Report No.: HB20241212005E-03

Trade Mark: ANJANK

Model Number: AC211

FCC ID: 2A7FC-AC211

Prepared for

Shenzhen kerchan Star Technology Co., LTD
7th Floor, Building B, Huafeng International, Robot Industrial Park,Bao'an
District, Shenzhen, China

Prepared by

Shenzhen HongBiao Certification& Testing Co., Ltd Room 102, 201, Building 2, Yuanwanggu RFID Industrial Park, Tongguan Road, Tianliao Community, Yutang Street, Guangming District, Shenzhen, China

Tel.: +86-755-2998 9321 Fax.: +86-755-2998 5110 Website: http://www.sz-hongbiao.com

Table of Contents

Report No.: HB20241212005E-03

1	GI	ENERAL DESCRIPTION	5
	1.1	DESCRIPTION OF EUT	5
	1.2	TEST MODE TEST SETUP	5
	1.3	Test Setup	5
	1.4		5
2	TE	EST FACILITIES AND ACCREDITATIONS	7
	2.1	TEST LABORATORY	7
	2.2	ENVIRONMENTAL CONDITIONS	/
	2.2	MEASUREMENT UNCERTAINTY	/
	2.3	TEST SOFTWARE	
3	LIS	ST OF TEST EQUIPMENT	8
4	RI	F EXPOSURE	9
	4.1	STANDALONE SAR TEST EXCLUSION CONSIDERATIONS	9
		1.1. Limit	9
		1.2. Test Procedures	
		1.3. Test Result	

Applicant's Name...... Shenzhen kerchan Star Technology Co., LTD

TEST RESULT CERTIFICATION

Report No.: HB20241212005E-03

Address:	7th Floor, Building B, Huafeng International, Robot Industrial Park,Bao'an District, Shenzhen, China
Manufacturer's Name:	DONGGUAN SHUNLANG ELECTRONICS.LTD
Address:	4F,BUILDING NO.6,HUAILIN RD NO.27,HUMEN TOWN,DONGGUAN CITY,GUANGDONG
Product description	
Product name:	Wireless charging Bluetooth speaker
Model Number:	AC211
Standards:	FCC CFR 47 PART 1 , 1.1310
Test procedure:	KDB 447498 D01 General RF Exposure Guidance v06
Ltd and the test results show th	as been tested by Shenzhen HongBiao Certification& Testing Co., at the equipment under test (EUT) is in compliance with the EMC e only to the tested sample identified in the report.
Date of Test	:
Date (s) of performance of tests.	
Test Result	Pass
Testing Engineer :	Zoe Sw (Zoe Su)
Technical Manager :	(Zoe Su) Ming Lin
Authorized Signatory :	(Ming Liu)
	(Leo Su)

Revision History

Revised No.	Date of Issue	Description
01	Jan. 02, 2025	Original

1 General Description

1.1 Description of EUT

Product name:	Wireless charging Bluetooth speaker		
Model name:	AC211		
Series Model:	N/A		
Different of series model:	N/A		
Operation frequency:	BT: 2402-2480MHz Wireless Charging: 115kHz-205kHz		
Modulation type:	BT: GFSK, π/4-DQPSK, 8DPSK Wireless Charging: ASK		
Bit Rate of transmitter:	1 Mbps, 2Mbps, 3Mbps		
Antenna type:	BT: PCB Antenna Wireless Charging: Coil Antenna		
Antenna gain:	PCB Antenna: 1.9dBi Coil Antenna: 0dBi		
Max. output power:	BT: 1.25dBm		
Hardware version:	V1.0		
Software version:	V1.0		
Battery:	DC 3.7V, 1100mAh, 4.07Wh		
Power supply:	Input: DC 9V/2A Wireless Output: 5W/7.5W/10W/15W		
Adapter information:	INPUT: 100-240V~ 50/60Hz, 1.0A Max OUTPUT: DC 5V/3A, DC 9V/2A, DC 12V/1.5A		

1.2 Test Mode

Pretest Test Mode	Description of Mode
1	TX
2	/
3	/

1.3 Test Setup

See photographs of the test setup in the report for the actual setup and connections between EUT and support equipment.

1.4 Ancillary Equipment

Equipment	Model	S/N	Manufacturer
Phone	LE2120	8602840564 41073	Shenzhen Oneplus Technology Co., Ltd

- Page 6 of 11 -

2 Test Facilities and Accreditations

2.1 Test Laboratory

Test Site	Shenzhen HongBiao Certification& Testing Co., Ltd			
Test Site Location	Room 102, 201, Building 2, Yuanwanggu RFID Industrial Park, Tongguan Road, Tianliao Community, Yutang Street, Guangming District, Shenzhen, China			
Telephone:	(86-755) 2998 9321			
Fax:	(86-755) 2998 5110			
FCC Registration No.:	CN1341			
A2LA Certificate No.:	6765.01			

2.2 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15°C~35°C
Relative Humidity:	20%~75%
Air Pressure:	98kPa~101kPa

2.3 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

The data and results quoted in this document are true and accurate values, and uncertainties are not involved in the calculations.

In addition, components and mass production processes that are similar to testing equipment may introduce additional deviations, and the manufacturer is solely responsible for the continued compliance of the equipment.

Measurement Frequency Range	U, (dB)	Note
RF frequency	2x 10 ⁻⁵	
RF power, conducted	± 0.57 dB	
Temperature	±1 degree	
Humidity	± 5 %	

2.4 Test Software

Software name	Manufacturer	Model	Version
RF Test System	MWRF	MTS 8310	V2.0.0.0

3 List of Test Equipment

	RF							
Item	Equipmen t No.	Equipment name	Manufact urer	Model	Serial No.	Calibration date	Due date	
1	HB-E041	MXG Anaiog Signal Generator	Agilent	N5181A	MY47070421	2024-05-17	2025-05-16	
2	HB-E042	WIDEBAND RADIO COMMUNIC ATION TESTER	R&S	CMW500	132108	2024-05-17	2025-05-16	
3	HB-E043	MXG Anaiog Signal Generator	Agilent	N5182A	US46240335	2024-05-17	2025-05-16	
4	HB-E044	Signal& spectrum Analyzer	R&S	FSV3044	101264	2024-05-17	2025-05-16	
5	HB-E045	RF Control Box	Noyetec	NY100-R FCB	N/A	/	/	
6	HB-E058	Thermometer Clock Humidity Monitor	N/A	HTC-1	N/A	/	/	

Note: the calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

4 RF Exposure

4.1 Standalone SAR test exclusion considerations

4.1.1. Limit

3.0 for 1g SAR.

4.1.2. Test Procedures

Unless specifically required by the published RF exposure KDB procedures, standalone 1-g head or body and 10-g extremity SAR evaluation for general population exposure conditions, by measurement or numerical simulation, is not required when the corresponding SAR Test Exclusion Threshold condition(s), listed below, is (are) satisfied.

These test exclusion conditions are based on source-based time-averaged maximum conducted output power of the RF channel requiring evaluation, adjusted for tune-up tolerance, and the minimum test separation distance required for the exposure conditions.

The minimum test separation distance defined in 4.1 f) is determined by the smallest distance from the antenna and radiating structures or outer surface of the device, according to the host form factor, exposure conditions and platform requirements, to any part of the body or extremity of a user or bystander.

To qualify for SAR test exclusion, the test separation distances applied must be fully explained and justified, typically in the SAR measurement or SAR analysis report, by the operating configurations and exposure conditions of the transmitter and applicable host platform requirements, according to the required published RF exposure KDB procedures.

When no other RF exposure testing or reporting are required, a statement of justification and compliance must be included in the equipment approval, in lieu of the SAR report, to qualify for SAR test exclusion.

When required, the device specific conditions described in the other published RF exposure KDB procedures must be satisfied before applying these SAR test exclusion provisions.

a) For 100 MHz to 6 GHz and test separation distances ≤ 50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined by the following:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR, and ≤ 7.5 for 10-g extremity SAR, where

- f_(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison
- The values 3.0 and 7.5 are referred to as numeric thresholds in step b) below

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm, and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm according to 4.1 f) is applied to determine SAR test exclusion.

- b) For 100 MHz to 6 GHz and test separation distances > 50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined by the following (also illustrated in Appendix B):
 - 1) {[Power allowed at *numeric threshold* for 50 mm in step a)] + [(test separation distance 50 mm)·(f(MHz)/150)]} mW, for 100 MHz to 1500 MHz
 - 2) {[Power allowed at *numeric threshold* for 50 mm in step a)] + [(test separation distance 50 mm)·10]} mW, for > 1500 MHz and ≤ 6 GHz
- c) For frequencies below 100 MHz, the following may be considered for SAR test exclusion (also illustrated in Appendix C):

- 1) For test separation distances > 50 mm and < 200 mm, the power threshold at the corresponding test separation distance at 100 MHz in step b) is multiplied by [1 + log(100/f(MHz))]
- 2) For test separation distances \leq 50 mm, the power threshold determined by the equation in c) 1) for 50 mm and 100 MHz is multiplied by $\frac{1}{2}$

3) SAR measurement procedures are not established below 100 MHz.

When SAR test exclusion cannot be applied, a KDB inquiry is required to determine SAR evaluation requirements for any SAR test results below 100 MHz to be acceptable.

4.1.3. Test Result

We use 5mm as separation distance to calculated.

Bluetooth DSS:

Transmit Frequency (GHz)	Mode	Measured Power (dBm)	Tune-up power (dBm)	Max tune-up power(dBm)	Result calculation	1g SAR
2.402		0.60	1±1	2	0.4913	3
2.441	GFSK	0.52	1±1	2	0.4952	3
2.480		0.13	1±1	2	0.4992	3
2.402	π/4-DQPSK	0.74	1±1	2	0.4913	3
2.441		0.76	1±1	2	0.4952	3
2.480		0.36	1±1	2	0.4992	3
2.402		1.16	1±1	2	0.4913	3
2.441	8DPSK	1.25	1±1	2	0.4952	3
2.480		0.85	1±1	2	0.4992	3

Conclusion:

For the max result: 0.4992≤ 3.0 for 1g SAR, No SAR is required.

Results for transmit simultaneously

No.	Configurations	Maxi			
		Wireless Power Transfer($\sum (H_m/H_{RL})^{Note}$)	ВТ	Transmit simultaneously	Limits
1	Wireless Power Transfer +BLE	0.0062	0.4992	0.5054	1

Note:

Hm = Measured magnetic field at a specific frequency.

HRL= Reference level limit for the magnetic field at the measurement frequency.

According to KDB 447498 D01 General RF Exposure Guidance v06, At the transmit simultaneously calculation method is as follows:

Transmit simultaneously MPE = Σ of MPE ratios

MPE ratios = Field strengths or power density / MPE limit at the test frequency

No.	Configurations	Maxi			
		Wireless Power Transfer(Σ (E_m/E_{RL}) Note)	ВТ	Transmit simultaneously	Limits
1	Wireless Power Transfer +BLE	0.0712	0.4992	0.5704	1

Note:

Em = Measured magnetic field at a specific frequency.

ERL= Reference level limit for the magnetic field at the measurement frequency.

According to KDB 447498 D01 General RF Exposure Guidance v06, At the transmit simultaneously calculation method is as follows:

Transmit simultaneously MPE = Σ of MPE ratios MPE ratios = Field strengths or power density / MPE limit at the test frequency

***** END OF REPORT *****