

EMC TEST REPORT

(FULL COMPLIANT)

Report Number: 102966681ATL-001 Project Number: G102966681

Report Issue Date: 06/18/2017

Model(s) Tested: MTW100 (Wi-Fi 2.4 GHz)

Model(s) Partially Tested: None Model(s) Not Tested but declared equivalent by the client: None

Standards: FCC Part 15 Subpart C: 2017

FCC Part 15 Subpart B: 2017 RSS 247 Issue 2: 02/2017 RSS 102 Issue 5: 03/2015 ICES 003 Issue 6: 01/2016

Tested by:
Intertek Testing Services NA, Inc.
1950 Evergreen Blvd, Suite 100
Duluth, GA 30096
USA

Intertek Testing Services NA, Inc. 70 Codman Hill Road Boxborough, MA 01719 USA Client: Owl Labs 33-1/2 Union Square Somerville, MA 02143 USA

Report prepared by Naga Suryadevara

Naga Suryadevara/EMC Engineer

Report reviewed by Kouma Sinn

Kouma Sinn/EMC Staff Engineer

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Intertek

Report Number: 102966681ATL-001 Issued: 06/18/2017

Table of Contents

1	Introduction and Conclusion	3
2	Test Summary	3
3	Client Information	4
4	Description of Equipment Under Test and Variant Models	4
5	System Setup and Method	6
6	Transmitter Conducted Output Power and Human RF Exposure	7
7	Power Spectral Density	21
8	Conducted 6 dB Bandwidth	34
9	Transmitter Conducted Spurious Emissions	47
10	Conducted Band-Edge	55
11	Radiated Emissions (Transmitter Spurious, Digital Device and Receiver)	61
12	AC Mains Conducted Emissions	68
13	Revision History	74

Introduction and Conclusion

The tests indicated in section 2.0 were performed on the product constructed as described in section 4.0. The remaining test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test Method, a list of the actual Test Equipment Used, documentation Photos, Results and raw Data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the product tested complies with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested. Intertek does not make any claims of compliance for samples or variants which were not tested.

2 **Test Summary**

Section	Test full name	Result
3	Client Information	
4	Description of Equipment Under Test and Variant Models	
5	System Setup and Method	
6	Transmitter Conducted Output Power and Human RF Exposure (CFR47 FCC Part 15 Subpart C (15.247): 2017 RSS 247: 02/2017 RSS 102: 03/2015)	Compliant
7	Power Spectral Density (CFR47 FCC Part 15 Subpart C (15.247): 2017 RSS 247: 02/2017)	Compliant
8	Conducted 6dB Bandwidth (CFR47 FCC Part 15 Subpart C (15.247): 2017 RSS 247: 02/2017)	Compliant
9	Transmitter Conducted Spurious Emissions (CFR47 FCC Part 15 Subpart C (15.247): 2017 RSS 247: 02/2017)	Compliant
10	Conducted Band-Edge (CFR47 FCC Part 15 Subpart C (15.247): 2017 RSS 247: 02/2017)	Compliant
11	Radiated Emissions (Transmitter Spurious, Digital devices and Receiver) (CFR47 FCC Part 15 Subpart C (15.247): 2017 RSS 247: 02/2017 FCC Part 15 Subpart B: 2017 ICES 003: 01/2016)	Compliant
12	Conducted Emissions (CFR47 FCC Part 15 Subpart C (15.247): 2017 RSS 247: 02/2017 FCC Part 15 Subpart B: 2017 ICES 003: 01/2016)	Compliant
13	Revision History	

Non-Specific Radio Report Shell Rev. August 2015 Page 3 of 74

Client Information

This EUT was tested at the request of:

Client: Owl Labs

> 33-1/2 Union Square Somerville, MA 02143

USA

Contact: Amy DeDeo 508-454-1900 Telephone: 508-454-1900 Fax: Email: amy@owllabs.com

Description of Equipment Under Test and Variant Models

Manufacturer: Nanning Fugui Precision Industrial Co., Ltd.

B Factories Area, Foxconn Nanning Sci-Tech Park, No.51, Tongle Avenue

Nanning, Guangxi 530000

China

Equipment Under Test				
Description	Manufacturer	Model Number	Serial Number	
Video Conferencing Device Foxconn Video Conferencing Device Foxconn		MTW100	ATL1704121031-001 Option	
			A – Conducted Sample	
		MTW100	ATL1704121031-002 Option	
			A – Radiated Sample	

Receive Date:	04/06/2017	
Received Condition:	Good	
Type:	Production	

1	Developed (February Heller Tearford Constitution Press)
	Description of Equipment Under Test (provided by client)
	Video Conferencing device

Equipment Under Test Power Configuration					
Rated Voltage	Rated Current	Rated Frequency	Number of Phases		
100 – 240 VAC 1.7 A		50/60 Hz	1		

Operating modes of the EUT:

No.	Descriptions of EUT Exercising				
1	Transmit low, mid and high channels, low and high data rates Power Level 19				
2	Receive mode				

Software used by the EUT:

No.	Descriptions of EUT Exercising
1	Qualcomm Radio Tool Kit QRTC3

Non-Specific Radio Report Shell Rev. August 2015 Page 4 of 74

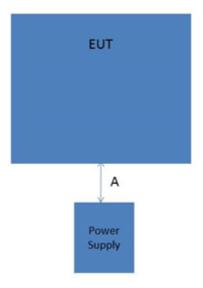
Radio/Receiver Characteristics			
Frequency Band(s)	2412 ~ 2472 MHz		
Modulation Type(s)	802.11b: DSSS (DBPSK, DQPSK, CCK)		
71 ()	802.11g/n: OFDM (BPSK/QPSK/16QAM/64QAM)		
Maximum Output Power	802.11b = 19.48 dBm		
	802.11g = 15.59 dBm		
	802.11n 20MHz BW = 15.52 dBm		
	802.11n 40MHz BW = 10.59 dBm		
Test Channels	802.11b,g,n 20MHz = 1,6,11		
	802.11n 40MHz = 3,6,8		
Occupied Bandwidth	802.11b = 14.221 MHz		
	802.11g = 17.675 MHz		
	802.11n 20MHz BW = 18.359 MHz		
Data Data (Mhna)	802.11n 40MHz BW = 36.152 MHz		
Data Rate (Mbps)	802.11b: 1/2/5.5/11 Mbps		
	802.11g: 6/9/12/18/24/36/48/54 Mbps 802.11n (20 and 40MHz): MCS0 - MCS7		
Transmit Power Control (TPC) With TPC			
Beam Forming Function	Without Beam forming		
Frequency Hopper: Number of Hopping	N/A		
Channels			
Frequency Hopper: Channel Dwell Time	N/A		
Frequency Hopper: Max interval between	N/A		
two instances of use of the same channel			
MIMO Information (# of Transmit and	One each		
Receive antenna ports)			
Equipment Type	Standalone		
ETSI LBT/Adaptivity	N/A		
ETSI Adaptivity Type N/A			
ETSI Temperature Category (I, II, III) N/A			
ETSI Receiver Category (1, 2, 3) N/A			
Antenna Type and Gain	2400-2500MHz; Dipole, i-pex (MHF) connector,		
	Gain = 2.6 dBi (Antenna 1)		

Variant Models:

The following variant models were not tested as part of this evaluation, but have been identified by the manufacturer as being electrically identical models, depopulated models, or with reasonable similarity to the model(s) tested. Intertek does not make any claims of compliance for samples or variants which were not tested.

None

5 **System Setup and Method**


	Cables							
ID	Description	Length (m)	Termination					
Α	AC Adapter	2.5	No	No	AC Mains			
	USB Cable	2	Yes	No	Unterminated			

Support Equipment							
Description	Description Manufacturer Model Number Serial Number						
None							

5.1 Method:

Configuration as required by FCC Part 15 Subpart C: 2017, FCC Part 15 Subpart B: 2017, RSS 247 Issue 2: 02/2017, RSS 102 Issue 5: 03/2015, ICES 003 Issue 6: 01/2016, FCC KDB 558074 D01 DTS Measurement Guidance v03r02, ANSI C63.10: 2013 and ANSI C 63.4: 2014.

5.2 EUT Block Diagram:

Non-Specific Radio Report Shell Rev. August 2015 Page 6 of 74

Transmitter Conducted Output Power and Human RF Exposure

6.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C (15.247), RSS 247 and RSS 102.

TEST SITE: EMC Lab (Duluth, GA)

The EMC Lab has one Semi-anechoic Chamber and one Shielded Chamber. AC Mains Power is available at 120. 230, and 277 Single Phase; 208, 400, and 480 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

6.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
	Pocket weatherman - Rated 300 to 1099 mbar, 0 to					
213187;	50°C, 0 to 100% RH.	Mannix	SAM700BAR	10030208	02/27/2017	02/27/2018
232944;	EMI Receiver 10Hz-26.5GHz	Agilent	MXE-9038A	MY51210135	07/28/2016	07/28/2017
MM1;	RF Coax Cable 10KHz-18GHz	Maury Microwave	UC-N-MM36	161471	05/11/2016	05/11/2017

Software Utilized:

Name	Manufacturer	Version		
None (Receiver Firmware)				

6.3 Results:

The sample tested was found to Comply.

FCC 15.247(b)(3)

- b) The maximum peak conducted output power of the intentional radiator shall not exceed the following:
- (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt.

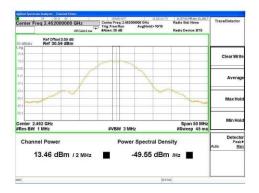

RSS-247 (d)

For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e).

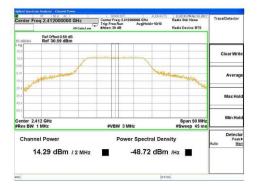
Non-Specific Radio Report Shell Rev. August 2015 Page 7 of 74

6.4 Plots/Data:

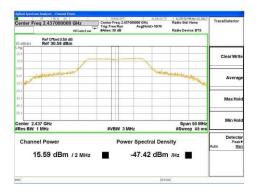

802.11b, 1 and 11 Mbps Low Channel = 2412 MHz Output Power @ 1 Mbps = 13.82 dBm Output Power @ 11 Mbps = 18.05 dBm



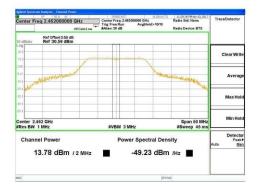
802.11b, 1 and 11 Mbps Mid Channel = 2437 MHz Output Power @ 1 Mbps = 15.23 dBm Output Power @ 11 Mbps = 19.48 dBm



802.11b, 1 and 11 Mbps High Channel = 2462 MHz Output Power @ 1 Mbps = 13.46 dBm Output Power @ 11 Mbps = 17.52 dBm

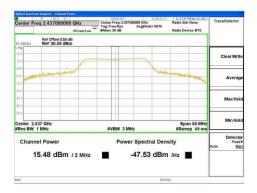


802.11g, 6 and 54 Mbps Low Channel = 2412 MHz Output Power @ 6 Mbps = 14.29 dBm Output Power @ 54 Mbps = 14.59 dBm



802.11g, 6 and 54 Mbps Mid Channel = 2437 MHz Output Power @ 6 Mbps = 15.59 dBm Output Power @ 54 Mbps = 15.53 dBm

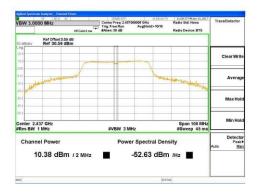
802.11g, 6 and 54 Mbps High Channel = 2462 MHz Output Power @ 6 Mbps = 13.78 dBm Output Power @ 54 Mbps = 14.28 dBm



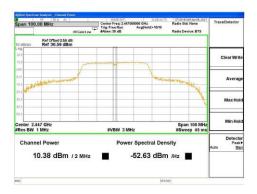
802.11n, 20 MHz BW MCS0 and MCS7 Data rates Low Channel = 2412 MHz Output Power @ MCS0 = 13.97 dBm Output Power @ MCS7 = 14.19 dBm

802.11n, 20 MHz BW MCS0 and MCS7 Data rates Mid Channel = 2437 MHz Output Power @ MCS0 = 15.48 dBm Output Power @ MCS7 = 15.52 dBm

802.11n, 20 MHz BW MCS0 and MCS7 Data rates High Channel = 2462 MHz Output Power @ MCS0 = 13.66 dBm Output Power @ MCS7 = 14.26 dBm



802.11n, 40 MHz BW MCS0 and MCS7 Data rates Low Channel = 2422 MHz Output Power @ MCS0 = 9.96 dBm Output Power @ MCS7 = 9.37 dBm



802.11n, 40 MHz BW MCS0 and MCS7 Data rates Mid Channel = 2437 MHz Output Power @ MCS0 = 10.38 dBm Output Power @ MCS7 = 10.25 dBm

802.11n, 40 MHz BW MCS0 and MCS7 Data rates High Channel = 2447 MHz Output Power @ MCS0 = 10.38 dBm Output Power @ MCS7 = 10.59 dBm

Test Personnel: Mary T Sampson MTS

Supervising/Reviewing Engineer: (Where Applicable) N/A

Product Standard: RSS 247
Input Voltage: 120VAC 60Hz

Pretest Verification: N/A

Test Date: 04/10/2017

Limit Applied: See Section 6.3

Ambient Temperature: 20.3 °C

Relative Humidity: 35.9 %

Atmospheric Pressure: 991.8 mbars

Deviations, Additions, or Exclusions: None

6.5 **Human RF Exposure**

Calculation in in accordance with CFR47 FCC Part 15 Subpart C: 2017 Paragraphs 15.215, 15.247(i), ISED RSS-GEN:2014 Section 3.2.

The maximum measured conducted power, P is 19.48 dBm.

The antenna gain, G is 2.6 dBi.

The maximum EIRP power = P+G

EIRP = 19.48 + 2.6 = 22.08 dBm or 0.16143585568 W

The limits for Maximum Permissible Exposure (MPE) for transmitter operating at 2.4 GHz, MPE is 10 W/m².

The Power Density, S is related to EIRP with the equation:

S = EIRP / $4\pi D^2$, where D is the safe separation distance and = 0.2m, or 20cm

 $S = 0.16143585568 \text{ W} / 4\pi 0.2^2$

 $S = 0.32 \text{ W/m}^2$,

which is below the Maximum Permissible Exposure (MPE) of 1.0 W/m² and RSS 102 Issue 5 RF Exposure limit 5.35 W/ m²

Page 20 of 74

Power Spectral Density

7.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C (15.247) and RSS 247.

TEST SITE: EMC Lab (Duluth, GA)

The EMC Lab has one Semi-anechoic Chamber and one Shielded Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 400, and 480 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

7.2 Test Equipment Used:

_							
[Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
ſ		Pocket weatherman - Rated 300 to 1099 mbar, 0 to					
١	213187;	50°C, 0 to 100% RH.	Mannix	SAM700BAR	10030208	02/27/2017	02/27/2018
ſ	232944;	EMI Receiver 10Hz-26.5GHz	Agilent	MXE-9038A	MY51210135	07/28/2016	07/28/2017
ſ	MM1;	RF Coax Cable 10KHz-18GHz	Maury Microwave	UC-N-MM36	161471	05/11/2016	05/11/2017

Software Utilized:

Name	Manufacturer	Version		
None (Receiver Firmware)				

7.3 Results:

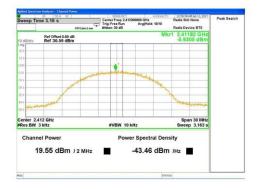
The sample tested was found to Comply.

FCC 15.247(e)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

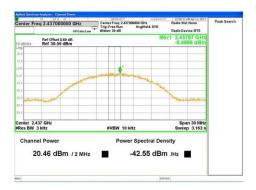
RSS-247 Section 5.2(b)

DTSs include systems that employ digital modulation techniques resulting in spectral characteristics similar to direct sequence systems. The following applies to the bands 902-928 MHz and 2400-2483.5 MHz:

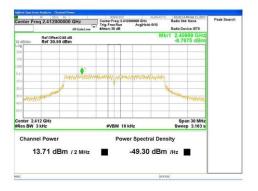

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of section 5.4(d), (i.e. the power spectral density shall be determined using the same method as is used to determine the conducted output power).

Non-Specific Radio Report Shell Rev. August 2015 Page 21 of 74

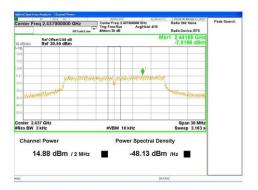
7.4 Plots/Data:

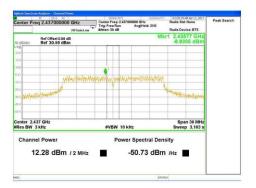

802.11b, 1 and 11 Mbps Low Channel = 2412 MHz PSD @ 1 Mbps = -4.32 dBm PSD @ 11 Mbps = -5.63 dBm

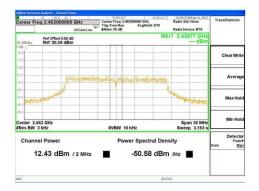

802.11b, 1 and 11 Mbps Mid Channel = 2437 MHz PSD @ 1 Mbps = -4.76 dBm PSD @ 11 Mbps = -5.48 dBm

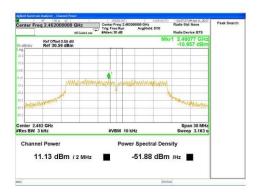


802.11b, 1 and 11 Mbps High Channel = 2462 MHz PSD @ 1 Mbps = -8.0483 dBm PSD @ 11 Mbps = -6.8998 dBm



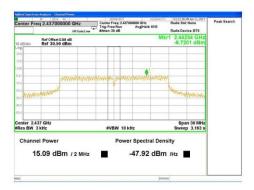

802.11g, 6 and 54 Mbps Low Channel = 2412 MHz PSD @ 1 Mbps = -9.767 dBm PSD @ 11 Mbps = -9.389 dBm

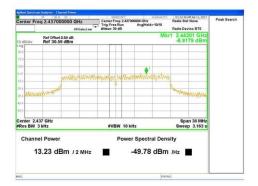


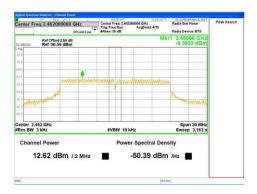

802.11g, 6 and 54 Mbps Mid Channel = 2437 MHz PSD @ 1 Mbps = -7.519 dBm PSD @ 11 Mbps = -8.830 dBm

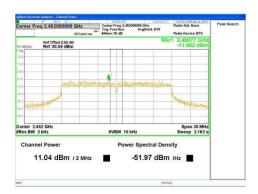


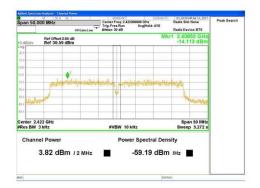

802.11g, 6 and 54 Mbps High Channel = 2462 MHz PSD @ 1 Mbps = -9.41 dBm PSD @ 11 Mbps = -10.957 dBm




802.11n, 20 MHz BW, MCS0 and MCS7 Low Channel = 2412 MHz PSD @ MCS0 = -8.45 dBm PSD @ MCS7 = -10.375 dBm

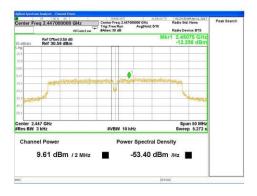


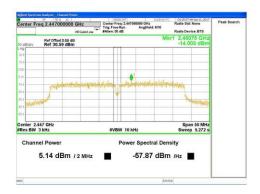

802.11n, 20 MHz BW, MCS0 and MCS7 Mid Channel = 2437 MHz PSD @ MCS0 = -8.7201 dBm PSD @ MCS7 = -8.9179 dBm


802.11n, 20 MHz BW, MCS0 and MCS7 High Channel = 2462 MHz PSD @ MCS0 = -9.3823 dBm PSD @ MCS7 = -11.662 dBm



802.11n, 40 MHz BW, MCS0 and MCS7 Low Channel = 2422 MHz PSD @ MCS0 = -12.997 dBm PSD @ MCS7 = -14.113 dBm




802.11n, 40 MHz BW, MCS0 and MCS7 Mid Channel = 2437 MHz PSD @ MCS0 = -11.970 dBm PSD @ MCS7 = -14.587 dBm

802.11n, 40 MHz BW, MCS0 and MCS7 High Channel = 2447 MHz PSD @ MCS0 = -12.256 dBm PSD @ MCS7 = -14.003 dBm

Test Personnel: Mary T Sampson MTS Supervising/Reviewing Engineer: (Where Applicable) FCC 15.247 Product Standard: **RSS 247** Input Voltage: 120VAC 60Hz

Test Date: 04/10/2017

Limit Applied: See Section 7.3

Pretest Verification: N/A

Ambient Temperature:

20.3 °C

Relative Humidity:

35.9 %

Atmospheric Pressure:

991.8 mbars

Deviations, Additions, or Exclusions: None

Conducted 6 dB Bandwidth

8.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C (15.247) and RSS 247.

TEST SITE: EMC Lab (Duluth, GA)

The EMC Lab has one Semi-anechoic Chamber and one Shielded Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 400, and 480 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

8.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
	Pocket weatherman - Rated 300 to 1099 mbar, 0 to					
213187;	50°C, 0 to 100% RH.	Mannix	SAM700BAR	10030208	02/27/2017	02/27/2018
232944;	EMI Receiver 10Hz-26.5GHz	Agilent	MXE-9038A	MY51210135	07/28/2016	07/28/2017
MM1;	RF Coax Cable 10KHz-18GHz	Maury Microwave	UC-N-MM36	161471	05/11/2016	05/11/2017

Software Utilized:

Name	Manufacturer	Version		
None (Receiver Firmware)				

8.3 Results:

The sample tested was found to Comply.

FCC 15.247(a)(2)

- (a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:
- (2) Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

RSS-247 5.2(a)

DTSs include systems that employ digital modulation techniques resulting in spectral characteristics similar to direct sequence systems. The following applies to the bands 902-928 MHz and 2400-2483.5 MHz:

a) The minimum 6 dB bandwidth shall be 500 kHz.

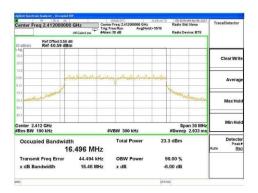
Non-Specific Radio Report Shell Rev. August 2015 Page 34 of 74

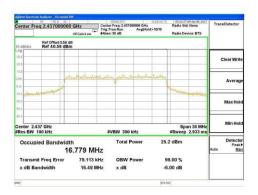
8.4 Plots/Data:

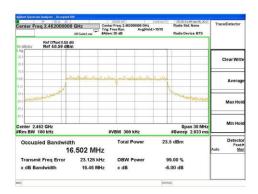
802.11b, 1 and 11 Mbps Low Channel = 2412 MHz 6dB BW @ 1 Mbps = 8.104 MHz 6dB BW @ 11 Mbps = 8.775 MHz

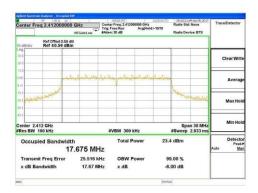
802.11b, 1 and 11 Mbps Mid Channel = 2437 MHz 6dB BW @ 1 Mbps = 9.084 MHz 6dB BW @ 11 Mbps = 8.952 MHz

Page 36 of 74 Company: Owl Labs, Inc. / Model: MTW100


802.11b, 1 and 11 Mbps High Channel = 2462 MHz 6dB BW @ 1 Mbps = 8.536 MHz 6dB BW @ 11 Mbps = 7.662 MHz

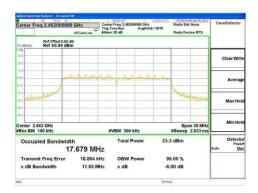

802.11g, 6 and 54 Mbps Low Channel = 2412 MHz 6dB BW @ 1 Mbps = 16.36 MHz 6dB BW @ 11 Mbps = 16.46 MHz

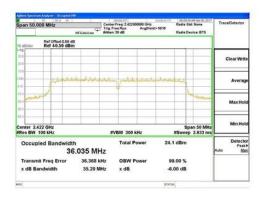

802.11g, 6 and 54 Mbps Mid Channel = 2437 MHz 6dB BW @ 1 Mbps = 16.37 MHz 6dB BW @ 11 Mbps = 16.49 MHz

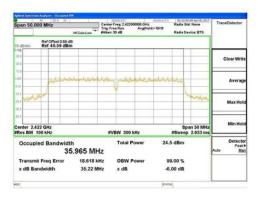

802.11g, 6 and 54 Mbps High Channel = 2462 MHz 6dB BW @ 1 Mbps = 16.38 MHz 6dB BW @ 11 Mbps = 16.46 MHz

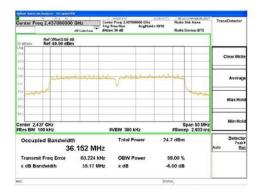

802.11n, MCS0 and MCS7 Low Channel = 2412 MHz 6dB BW @ MCS0 = 17.57 MHz 6dB BW @ MCS7 = 17.67 MHz

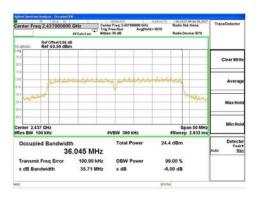
Page 41 of 74

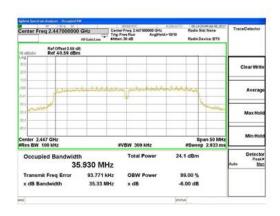

802.11n, MCS0 and MCS7 Mid Channel = 2437 MHz 6dB BW @ MCS0 = 17.61 MHz 6dB BW @ MCS7 = 17.65 MHz

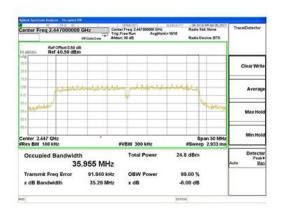



802.11n, MCS0 and MCS7 High Channel = 2462 MHz 6dB BW @ MCS0 = 17.25 MHz 6dB BW @ MCS7 = 17.65 MHz




802.11n, 40MHz BW, MCS0 and MCS7 Low Channel = 2422 MHz 6dB BW @ MCS0 = 35.20 MHz 6dB BW @ MCS7 = 35.22 MHz


802.11n, 40MHz BW, MCS0 and MCS7 Mid Channel = 2437 MHz 6dB BW @ MCS0 = 35.17 MHz 6dB BW @ MCS7 = 35.71 MHz



Page 45 of 74

802.11n, 40MHz BW, MCS0 and MCS7 High Channel = 2447 MHz 6dB BW @ MCS0 = 35.33 MHz 6dB BW @ MCS7 = 35.29 MHz

Test Personnel:
Supervising/Reviewing
Engineer:
(Where Applicable)
Product Standard:
Input Voltage:

Mary T Sampson MTS

N/A
FCC 15.247
RSS 247
120VAC 60Hz

Pretest Verification: N/A

Test Date: 04/07/2017

Limit Applied: See Section 8.3

Ambient Temperature: 20.6 °C

Relative Humidity: 37.3 %

Atmospheric Pressure: 983.3 mbars

Deviations, Additions, or Exclusions: None

9 **Transmitter Conducted Spurious Emissions**

9.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C (15.247) and RSS 247.

TEST SITE: EMC Lab (Duluth, GA)

The EMC Lab has one Semi-anechoic Chamber and one Shielded Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 400, and 480 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

9.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
	Pocket weatherman - Rated 300 to 1099 mbar, 0 to					
213187;	50°C, 0 to 100% RH.	Mannix	SAM700BAR	10030208	02/27/2017	02/27/2018
232944;	EMI Receiver 10Hz-26.5GHz	Agilent	MXE-9038A	MY51210135	07/28/2016	07/28/2017
MM1;	RF Coax Cable 10KHz-18GHz	Maury Microwave	UC-N-MM36	161471	05/11/2016	05/11/2017

Software Utilized:

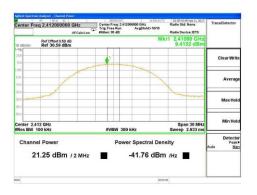
Name	Manufacturer	Version		
	None (Receiver Firmware)			

9.3 Results:

The sample tested was found to Comply.

FCC Part 15.247(d)

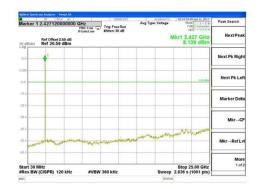
In any 100 kHz bandwidth outside the frequency band, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see 15.205(c)).

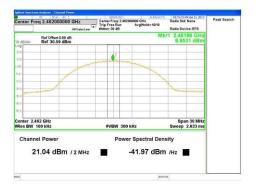

RSS-247 Section 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

Non-Specific Radio Report Shell Rev. August 2015 Page 47 of 74

Plots/Data: 9.4

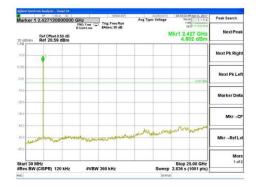

802.11b Long 11 Mbps Low Channel = 2412 MHz


802.11b Long 11 Mbps Mid Channel = 2437 MHz

Non-Specific Radio Report Shell Rev. August 2015 Page 48 of 74

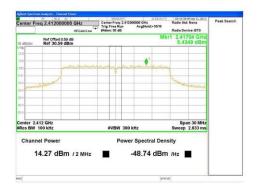
802.11b Long 11 Mbps High Channel = 2462 MHz

802.11g 54 Mbps Low Channel = 2412 MHz



Page 49 of 74

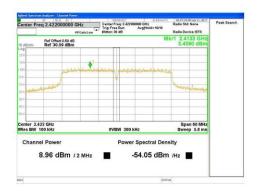
802.11g 54 Mbps Mid Channel = 2437 MHz


802.11g 54 Mbps High Channel = 2462 MHz

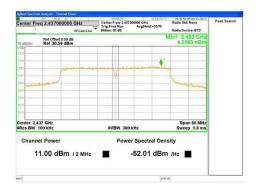

Page 50 of 74

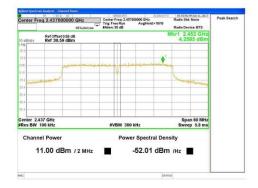
802.11n 20MHz BW MCS7 Low Channel = 2412 MHz

802.11n 20MHz BW MCS7 Mid Channel = 2437 MHz


Page 51 of 74

802.11n 20MHz BW MCS7 High Channel = 2462 MHz


802.11n 40MHz BW MCS7 Low Channel = 2422 MHz



Page 52 of 74

802.11n 40MHz BW MCS7 Mid Channel = 2437 MHz

802.11n 40MHz BW MCS7 High Channel = 2447 MHz

Page 53 of 74

Intertek

Report Number: 102966681ATL-001 Issued: 06/18/2017

Test Personnel: Mary T Sampson MTS Test Date: 04/10/2017 Supervising/Reviewing Engineer: (Where Applicable) FCC 15.247 Product Standard: RSS 247 Limit Applied: See Section 9.3 120VAC 60Hz Input Voltage: Ambient Temperature: 20.3 °C Pretest Verification w/ Ambient Signals or BB Source: Relative Humidity: 35.9 % Atmospheric Pressure: 991.8 mbars

Deviations, Additions, or Exclusions: None

10 Conducted Band-Edge

10.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C (15.247) and RSS 247.

TEST SITE: EMC Lab (Duluth, GA)

The EMC Lab has one Semi-anechoic Chamber and one Shielded Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 400, and 480 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

10.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
	Pocket weatherman - Rated 300 to 1099 mbar, 0 to					
213187;	50°C, 0 to 100% RH.	Mannix	SAM700BAR	10030208	02/27/2017	02/27/2018
232944;	EMI Receiver 10Hz-26.5GHz	Agilent	MXE-9038A	MY51210135	07/28/2016	07/28/2017
MM1;	RF Coax Cable 10KHz-18GHz	Maury Microwave	UC-N-MM36	161471	05/11/2016	05/11/2017

Software Utilized:

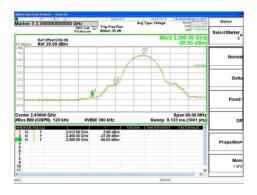
Name	Manufacturer	Version			
	None (Receiver Firmware)				

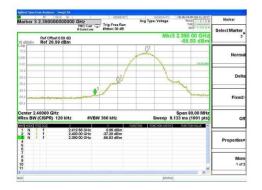
10.3 Results:

The sample tested was found to Comply.

FCC Part 15.247(d)

In any 100 kHz bandwidth outside the frequency band, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see 15.205(c)).


RSS-247 Section 5.5


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

Non-Specific Radio Report Shell Rev. August 2015 Page 55 of 74

10.4 Plots/Data:

802.11b 11 Mbps Low Channel = 2412 MHz

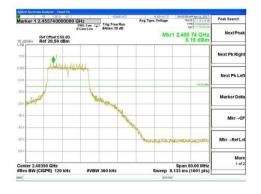
802.11b 11 Mbps High Channel = 2462 MHz



Page 56 of 74

802.11g 54 Mbps Low Channel = 2412 MHz

802.11g 54 Mbps High Channel = 2412 MHz


Page 57 of 74

802.11n 20 MHz BW MCS7 Low Channel = 2412 MHz

802.11n 20 MHz BW MCS7 High Channel = 2462 MHz

Page 58 of 74

802.11n 40 MHz BW MCS7 Low Channel = 2422 MHz

802.11n 40 MHz BW High Channel = 2447 MHz

Page 59 of 74 Company: Owl Labs, Inc. / Model: MTW100

Intertek

 Report Number: 102966681ATL-001
 Issued: 06/18/2017

 Test Personnel: Supervising/Reviewing Engineer: (Where Applicable)
 Mary T Sampson MTS
 Test Date: 04/10/2017

 Product Standard: Input Voltage: Input Voltage: Pretest Verification: N/A
 N/A
 Limit Applied: See Section 10.3

 Ambient Temperature: 20.3 ℃
 Ambient Temperature: 35.9 %

Atmospheric Pressure: 991.8 mbars

11 Radiated Emissions (Transmitter Spurious, Digital Device and Receiver)

11.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C (15.247), RSS 247, FCC Part 15 Subpart B and ICES 003.

TEST SITE: 10M ALSE (Duluth, GA) and 10M ALSE (Boxborough, MA)

10 Meter Semi-Anechoic Chamber The test site for radiated emissions is located at 1950 Evergreen Blvd, Suite 100, Duluth, Georgia 30096. It is a 10 meter semi-anechoic chamber manufactured by Panashield. Embedded in the floor is a 3 meter diameter turntable.

The 10m ALSE at Boxborough MA is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a nonconductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty Duluth, Georgia

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 10m	30-1000 MHz	3.6 dB	6.3 dB
Radiated Emissions, 3m	30-1000 MHz	3.9 dB	6.3 dB
Radiated Emissions, 3m	1-6 GHz	4.2 dB	5.2 dB
Radiated Emissions, 3m	6-15 GHz	4.2 dB	5.5 dB
Radiated Emissions, 3m	15-18 GHz	4.2 dB	5.5 dB
Radiated Emissions, 3m	18-40 GHz	4.2 dB	5.5 dB

Measurement Uncertainty Boxborough, Massachusetts

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 10m	30-1000 MHz	4.6 dB	6.3 dB
Radiated Emissions, 3m	30-1000 MHz	5.3 dB	6.3 dB
Radiated Emissions, 3m	1-6 GHz	4.5 dB	5.2 dB
Radiated Emissions, 3m	6-15 GHz	5.2 dB	5.5 dB
Radiated Emissions, 3m	15-18 GHz	5.0 dB	5.5 dB
Radiated Emissions, 3m	18-40 GHz	5.0 dB	5.5 dB

As shown in the table above our radiated emissions $U_{\it lab}$ is less than the corresponding $U_{\it CISPR}$ reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Non-Specific Radio Report Shell Rev. August 2015 Page 61 of 74

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where $FS = Field Strength in dB\mu V/m$

RA = Receiver Amplitude (including preamplifier) in dBµV

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB_µV is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dBμV/m. This value in dB_μV/m was converted to its corresponding level in μV/m.

 $RA = 52.0 dB\mu V$ AF = 7.4 dB/mCF = 1.6 dB $AG = 29.0 \, dB$ $FS = 32 dB\mu V/m$

To convert from $dB\mu V$ to μV or mV the following was used:

UF =
$$10^{(NF/20)}$$
 where UF = Net Reading in μ V
NF = Net Reading in dB μ V

Example:

$$FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0 \\ UF = 10^{(32 \, dB_{\mu}V \, / \, 20)} = 39.8 \; \mu V/m$$

Non-Specific Radio Report Shell Rev. August 2015 Page 62 of 74

11.2 Test Equipment Used:

Test equipment used on 04/11/2017 and 04/13/2017

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
	Pocket weatherman - Rated 300 to 1099 mbar, 0 to					
213187;	50°C, 0 to 100% RH.	Mannix	SAM700BAR	10030208	02/27/2017	02/27/2018
013662;	Multimeter	Fluke	77 II	61170590	12/13/2016	12/13/2017
232944;	EMI Receiver 10Hz-26.5GHz	Agilent	MXE-9038A	MY51210135	07/28/2016	07/28/2017
200069;	Preamplifier, 10 MHz to 2000 MHz, 40 dB gain	Mini-Circuits	ZKL-2	D011105	04/13/2016	04/13/2017
200074;	Preamplifier, 10 MHz to 2000 MHz, 37 dB gain	Mini-Circuits	ZKL-2	D052005	11/16/2016	11/16/2017
			A81-0303-			
ST-6;	RF Coax Cable - Rated 9 kHz to 18 GHz.	Megaphase	275	16-01-801	02/07/2017	02/07/2018
TW2						
211411;	Cable TW2	Andrews	Cable TW2	TW2	05/03/2016	05/03/2017
MM1;	RF Coax Cable 10KHz-18GHz	Maury Microwave	UC-N-MM36	161471	05/11/2016	05/11/2017
MM2;	RF Coax Cable 10KHz-18GHz	Maury Microwave	UC-N-MM78	1514381	05/11/2016	05/11/2017
213312;	Bilog antenna	Teseq	CBL 6112D	40527	05/18/2016	05/18/2017
213061;	Antenna, Horn, <18 GHz	EMCO	3115	9208-3919	09/16/2016	09/16/2017
200108;	Preamplifier, 20 MHz to 18 GHz, 40 dB	A.H. Systems	PAM-0118	199	06/14/2016	06/14/2017
MM9;	RF Coax Cable 9KHz-18GHz	Maury Microwave	UC-N-MM267	1635290	10/07/2016	10/07/2017
			7HS-4G/18G-			
213153A;	Filter, 4 GHz High Pass	Reactel, Inc.	S11	01-7	08/16/2016	08/16/2017

Software Utilized:

Name	Manufacturer	Version
Tile – Emissions for MXE	Quantum Change	3.4.K.22

Test equipment used on 05/06/2017

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
145145'	Broadband Hybrid Antenna 30 MHz - 3 GHz	Sunol Sciences Corp. JB3		A122313	05/02/2017	05/02/2018
			10m Track A			
145-410'	Cables 145-420 145-421 145-422 145-406	Huber + Suhner	Cables	multiple	07/30/2016	07/30/2017
PRE10'	30-1000MHz pre-amp	ITS	PRE10	PRE10	12/16/2016	12/16/2017
145128'	EMI Receiver (20 Hz - 40 Ghz)	Rohde & Schwarz	ESIB 40	839283/001	03/15/2017	03/15/2018
ETS002'	1-18GHz DRG Horn Antenna	ETS Lindgren	3117	00143260	05/13/2016	05/13/2017
145014'	Preamplifier (1 GHz to 26.5 GHz)	Hewlett Packard	8449B	3008A00232	05/27/2016	05/27/2017
EMC04'	ANTENNA, RIDGED GUIDE, 18-40 GHZ	EMCO	3116	2090	09/14/2016	09/14/2017
REA004'	3GHz High Pass Filter	Reactel, Inc	7HSX- 3G/18G-S11	06-1	02/17/2017	02/17/2018
PRE9'	100MHz-40GHz Preamp	MITEQ	NSP4000- NFG	1260417	08/23/2016	08/23/2017
CBLHF2012 -2M-1'	2m 9kHz-40GHz Coaxial Cable - SET1	Huber & Suhner	SF102	252675001	02/08/2017	02/08/2018
CBLHF2012	ZIII 3KI IZ-40GI IZ OGAXIAI GADIC - GET I	Tidder & Suriner	01 102	232073001	02/00/2017	02/00/2010
-5M-1'	5m 9kHz-40GHz Coaxial Cable - SET 1	Huber & Suhner	SF102	252676001	02/08/2017	02/08/2018
145-416'	Cables 145-420 145-423 145-424 145-408	Huber + Suhner	3m Track B cables	multiple	07/30/2016	07/30/2017

Software Utilized:

Name	Manufacturer	Version
EMI Boxborough.xlsx	Intertek Boxborough	08/27/2010

Non-Specific Radio Report Shell Rev. August 2015 Page 63 of 74

11.3 Results:

The sample tested was found to Comply.

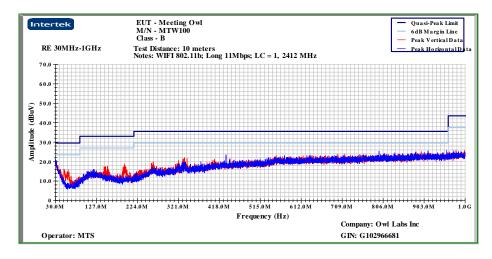
FCC Part 15.247(d)

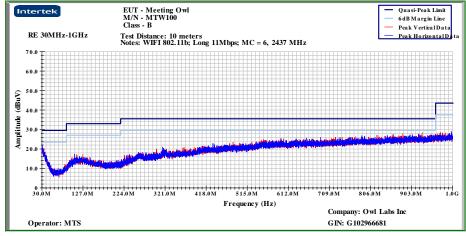
In any 100 kHz bandwidth outside the frequency band, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see 15.205(c)).

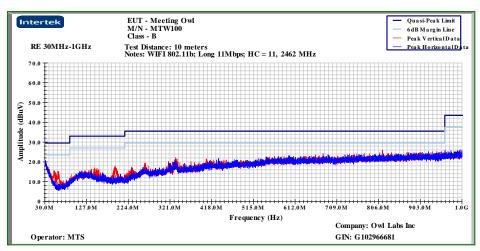
RSS-247 Section 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

FCC Part 15.209(a) & RSS-210 A8.5 - Restricted Band Radiated Spurious/Harmonics Limits


Frequency	Fiel	Test Distance	
(MHz)	μV/m	dBμV/m	(meters)
30–88	100	40.00	3
88–216	150	43.52	3
216–960	200	46.02	3
Above 960	500	53.98	3


Non-Specific Radio Report Shell Rev. August 2015 Page 64 of 74


11.4 Plots/Data:

Note: Transmitter spurious emissions were performed on 802.11b modulation with 11 Mbps data rate where highest output power was measured.

30-1000 MHz Transmitter Spurious Emissions @ 802.11b 11 Mbps (Transmit on Low: 2412 MHz, Mid: 2437 MHz, and High: 2462 MHz – Pre-scan Plots

30-1000 MHz Transmitter Spurious Emissions @ 802.11b 11 Mbps (Mid Channel worst case data)

Client: Owl Labs, Inc. **Receiver:** Agilent MXE Model Number: MTW100 Antenna: Teseq 40527

Project Number: G102966681 Cables: ST-6+TW2+MM1 +MM2

Tested By: MTS Preamp: ZKL-2 200074

Date: 04/13/2017

Frequency Range (MHz): 30 to 1000 Test Distance (m): 10

Input power: 120Vac/60Hz Limit: FCC15 Class B-10m

NOTE: 802.11b, Long 11Mbps, MC = 6, 2437MHz Modifications for compliance (y/n): n

A	В	C	D	Е	F	G	Н	I	J
Ant.			Antenna	Cable	Pre-amp		10m		Detectors /
Pol.	Frequency	Reading	Factor	Loss	Factor	Net	Limit	Margin	Bandwidths
(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB(uV/m)	dB(uV/m)	dB	Det/RBW
V	42.490	41.1	18.0	0.7	40.3	19.6	29.5	-9.9	QP/120kHz
V	857.653	32.5	26.0	3.8	40.5	21.7	35.5	-13.8	QP/120kHz
V	860.926	32.4	26.0	3.8	40.5	21.6	35.5	-13.9	QP/120kHz
V	882.509	32.4	26.2	3.8	40.6	21.8	35.5	-13.7	QP/120kHz
V	928.341	32.6	26.4	4.0	40.7	22.3	35.5	-13.2	QP/120kHz
V	861.930	32.4	26.0	3.8	40.5	21.7	35.5	-13.8	QP/120kHz
V	884.250	32.4	26.2	3.8	40.6	21.8	35.5	-13.7	QP/120kHz
Calculations G=C+D+E-F I=G-H									

1-25 GHz Transmitter Spurious Emissions @ 802.11b 11 Mbps (Tx on Low, Mid and High Channels)

Note: Spurious emissions were performed @ worst case modulation, data rate and bandwidth where highest power was measured.

was meas											
	Ant.			Antenna	Cable	Pre-amp	Distance				
Detector	Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin	Bandwidth
Type	(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB	
	05/06/2017	724C/37%/	/997 DAV00)3 - Low Ch	annel 2412	MHz, 802	(11b) Long	11Mbps, 20	MHz BW,	1-25 GHz	
PK	V	4824.000	42.50	33.99	8.29	33.88	0.00	50.89	74.00	-23.11	1/3 MHz
AVG	٧	4824.000	37.37	33.99	8.29	33.88	0.00	45.76	54.00	-8.24	1/3 MHz
PK	Ι	4824.000	37.71	33.99	8.29	33.88	0.00	46.10	74.00	-27.90	1/3 MHz
AVG	Η	4824.000	34.52	33.99	8.29	33.88	0.00	42.91	54.00	-11.09	1/3 MHz
PK	٧	7236.000	36.32	35.73	10.90	34.66	0.00	48.29	74.00	-25.71	1/3 MHz
AVG	V	7236.000	28.82	35.73	10.90	34.66	0.00	40.79	54.00	-13.21	1/3 MHz
	05/06/201	724C/37%	997 DAV00	03 - Mid Ch	annel 2437	MHz, 802	(11b) Long	11Mbps, 20	MHz BW,	1-25 GHz	
PK	٧	4874.000	40.76	34.00	8.39	33.89	0.00	49.26	74.00	-24.74	1/3 MHz
AVG	٧	4874.000	34.88	34.00	8.39	33.89	0.00	43.38	54.00	-10.62	1/3 MHz
PK	Η	4874.000	37.86	34.00	8.39	33.89	0.00	46.36	74.00	-27.64	1/3 MHz
AVG	Η	4874.000	28.62	34.00	8.39	33.89	0.00	37.12	54.00	-16.88	1/3 MHz
PK	٧	7311.000	37.08	35.76	11.05	34.72	0.00	49.17	74.00	-24.83	1/3 MHz
AVG	V	7311.000	27.92	35.76	11.05	34.72	0.00	40.01	54.00	-13.99	1/3 MHz
	05/06/2017	724C/37%/	997 DAV00	3 - High Ch	annel 2462	MHz, 802	(11b) Long	11Mbps, 2	0 MHz BW	, 1-25 GHz	
PK	٧	4924.000	41.85	34.05	8.49	33.90	0.00	50.49	74.00	-23.51	1/3 MHz
AVG	V	4924.000	35.13	34.05	8.49	33.90	0.00	43.77	54.00	-10.23	1/3 MHz
PK	Η	4924.000	39.09	34.05	8.49	33.90	0.00	47.73	74.00	-26.27	1/3 MHz
AVG	Η	4924.000	34.19	34.05	8.49	33.90	0.00	42.83	54.00	-11.17	1/3 MHz
PK	V	7386.000	36.55	35.67	11.15	34.78	0.00	48.59	74.00	-25.41	1/3 MHz
AVG	V	7386.000	27.69	35.67	11.15	34.78	0.00	39.73	54.00	-14.27	1/3 MHz

Note: No emissions than at the frequencies indicated in the above table were detected above noise floor. Data from worst case polarization of the antenna is indicated in the above table. No emissions were detected at the band edge.

Page 66 of 74 Company: Owl Labs, Inc. / Model: MTW100

30-1000 MHz Rx Mode

	Ant.			Antenna	Cable	Pre-amp	Distance				
Detector	Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin	Bandwidth
Type	(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB	
QP	V	31.229	36.19	19.94	1.29	40.74	0.00	16.68	30.00	-13.32	120/300 kHz
QP	٧	39.262	35.12	14.49	1.29	40.72	0.00	10.18	30.00	-19.82	120/300 kHz
QP	V	287.190	37.17	13.44	3.08	40.68	0.00	13.01	36.00	-22.99	120/300 kHz
QP	Н	298.760	30.19	13.50	3.13	40.69	0.00	6.14	36.00	-29.86	120/300 kHz
QP	Н	420.120	32.12	16.30	3.67	40.76	0.00	11.33	36.00	-24.67	120/300 kHz
QP	V	432.130	33.19	16.74	3.72	40.75	0.00	12.90	36.00	-23.10	120/300 kHz

Note: No emissions than at the frequencies indicated in the above table were detected above noise floor. Data from worst case polarization of the antenna is indicated in the above table.

1-25 GHz Rx Mode

	Ant.			Antenna	Cable	Pre-amp	Distance				
Detector	Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin	Bandwidth
Type	(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB	
				В	LE Rx mod	de					
PK	V	1287.760	39.29	28.76	3.65	33.38	0.00	38.32	74.00	-35.68	1/3 MHz
AVG	V	1287.760	29.18	28.76	3.65	33.38	0.00	28.21	54.00	-25.79	1/3 MHz
PK	V	3129.240	37.26	33.05	6.02	33.72	0.00	42.60	74.00	-31.40	1/3 MHz
AVG	V	3129.240	28.47	33.05	6.02	33.72	0.00	33.81	54.00	-20.19	1/3 MHz
PK	V	9980.120	37.12	37.15	13.30	35.01	0.00	52.56	74.00	-21.44	1/3 MHz
AVG	V	9980.120	26.12	37.15	13.30	35.01	0.00	41.56	54.00	-12.44	1/3 MHz

Note: No emissions than at the frequencies indicated in the above table were detected above noise floor. Data from worst case polarization of the antenna is indicated in the above table.

	Mary T Sampson MTS	Test Date:	04/11/2017 04/13/2017	
Test Personnel:	Vathana Ven		05/06/2017	
Supervising/Reviewing				
Engineer:				
(Where Applicable)	N/A	<u> </u>		
	FCC 15.247			
Product Standard:	RSS 247	Limit Applied:	See Section 11.3	
Input Voltage:	120VAC 60Hz	_		
Pretest Verification w/		Ambient Temperature:	24.5. 21.8. 24.0 °C	
Ambient Signals or			-, -, -	
BB Source:	BB source	Relative Humidity:	31.3, 44.0, 37 %	

Atmospheric Pressure: 988.9, 991.5, 997 mbars

Deviations, Additions, or Exclusions: None

Page 67 of 74

12 AC Mains Conducted Emissions

12.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C, FCC Part 15 Subpart B, RSS 247 and ICES 003.

TEST SITE: EMC Lab (Boxborough, MA)

The EMC Lab has one Semi-anechoic Chamber and one Shielded Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 400, and 480 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
AC Line Conducted			
Emissions	150 kHz - 30 MHz	2.8dB	3.4dB
Telco Port Emissions	150 kHz - 30 MHz	3.2dB	5.0dB

As shown in the table above our conducted emissions $U_{\it lab}$ is less than the corresponding $U_{\it CISPR}$ reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Page 68 of 74 Company: Owl Labs, Inc. / Model: MTW100

Sample Calculations

The following is how net line-conducted readings were determined:

NF = RF + LF + CF + AF Where NF = Net Reading in $dB\mu V$ RF = Reading from receiver in $dB\mu V$ LF = LISN or ISN Correction Factor in dBCF = Cable Correction Factor in dBAF = Attenuator Loss Factor in dB

To convert from $dB\mu V$ to μV or mV the following was used:

UF =
$$10^{(NF/20)}$$
 where UF = Net Reading in μV NF = Net Reading in $dB\mu V$

Example:

NF = RF + LF + CF + AF =
$$28.5 + 0.2 + 0.4 + 20.0 = 49.1 \text{ dB}\mu\text{V}$$

UF = $10^{(49.1 \text{ dB}\mu\text{V} / 20)} = 285.1 \text{ }\mu\text{V/m}$

Alternately, when C5 Software is used, the "Level" includes all losses and gains and is compared directly in the "Margin" column to the "Limit". "TF" is the Transducer Factor; in this case LISN or ISN loss.

Intertek

Report Number: 102966681ATL-001 Issued: 06/18/2017

12.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV002'	Weather Station	Davis Instruments	7400	PE80519A93	06/01/2016	06/01/2017
ROS002'	9kHz to 3GHz EMI Test Receiver	Rohde & Schwartz	ESCI 1166.5950K03	100067	07/29/2016	07/29/2017
DS22'	Attenuator, 20dB	Mini Circuits	20dB, 50 ohm	DS22	09/08/2016	09/08/2017
CBLBNC7'	30 ft 50 ohm coax, BNC - BNC	ITT Pomona	RG 58 C/U	CBLBNC7	01/10/2017	01/10/2018
LISN34'	LISN - CISPR16 Compliant 9kHz-30MHz	Com-Power	LI-215A	191956	06/27/2016	06/27/2017

Software Utilized:

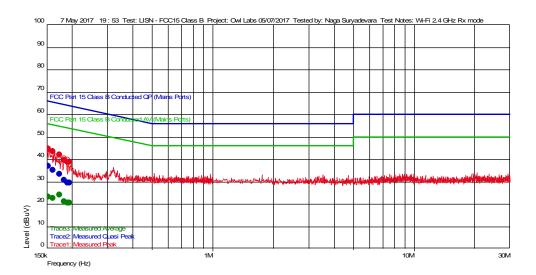
Name	Manufacturer	Version
Compliance 5	Teseq	5.26.46.46

12.3 Results:

The sample tested was found to Comply.

Page 70 of 74

12.4 Plots/Data:


Receive Mode

Test Information

User Entry LISN - FCC15 Class B Owl Labs 05/07/2017 Test Details Test: Project: Test Notes: Wi-Fi 2.4 GHz Rx mode Temperature: 22 C 29% 992 mbars Naga Suryadevara 7 May 2017 19:53 Humidity: Tested by: Test Started:

Additional Information

Prescan Emission Graph

Measured Peak Value Measured Quasi Peak Value Measured Average Value

Maximum Value of Mast and Turntable

Swept Peak Data Swept Quasi Peak Data

Swept Average Data

Emissions Test Data

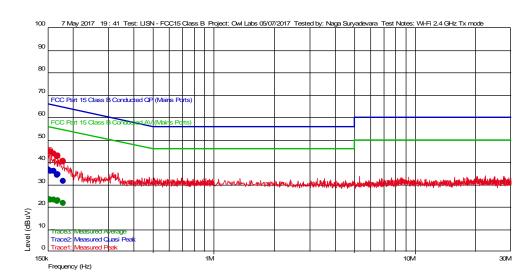
Trace2: Measured Quasi Peak

Frequency(Hz)	Level(dBuV)	TF	PA+CL	Limit(dBuV)	Margin(dBuV)	RBW(Hz)	Comment	LINE
190.8 k	29.37	1.585	20.039	64.002	-34.63	9 k		N
195.9 k	29.28	1.438	20.040	63.783	-34.50	9 k		L1
183.15 k	30.72	1.805	20.038	64.342	-33.62	9 k		N
173.8 k	33.39	2.075	20.037	64.777	-31.39	9 k		N
161.05 k	35.06	2.442	20.036	65.410	-30.35	9 k		L1
152.55 k	36.75	2.687	20.035	65.860	-29.11	9 k		L1

Trace3: Measured Average

Frequency(Hz)	Level(dBuV)	TF	PA+CL	Limit(dBuV)	Margin(dBuV)	RBW(Hz)	Comment	LINE
190.8 k	20.50	1.585	20.039	54.002	-33.50	9 k		N
195.9 k	20.36	1.438	20.040	53.783	-33.42	9 k		L1
183.15 k	20.93	1.805	20.038	54.342	-33.41	9 k		N
161.05 k	22.60	2.442	20.036	55.410	-32.81	9 k		L1
152.55 k	23.25	2.687	20.035	55.860	-32.61	9 k		L1
173.8 k	23.90	2.075	20.037	54.777	-30.87	9 k		N

Non-Specific Radio Report Shell Rev. August 2015 Page 71 of 74


Transmit Mode

Test Information

User Entry LISN - FCC15 Class B Owl Labs 05/07/2017 Wi-Fi 2.4 GHz Tx mode Test Details Test: Project: Test Notes: Temperature: 29% 992 mbars Humidity: Tested by: Naga Suryadevara 7 May 2017 19:41 Test Started:

Additional Information

Prescan Emission Graph

Measured Peak Value Measured Quasi Peak Value Measured Average Value

Swept Peak Data Swept Quasi Peak Data Swept Average Data

Maximum Value of Mast and Turntable

Emissions Test Data Trace2: Measured Quasi Peak

macez. measure	u Quasi r cak							
Frequency(Hz)	Level(dBuV)	TF	PA+CL	Limit(dBuV)	Margin(dBuV)	RBW(Hz)	Comment	LINE
179.75 k	31.43	1.903	20.038	64.497	-33.06	9 k		L1
167.0 k	34.30	2.270	20.037	65.108	-30.81	9 k		L1
168.7 k	34.45	2.221	20.037	65.024	-30.57	9 k		L1
155.1 k	36.01	2.613	20.036	65.722	-29.71	9 k		N
161.9 k	35.94	2.417	20.036	65.366	-29.42	9 k		N
151.7 k	36.66	2.711	20.035	65.906	-29.25	9 k		N

Trace3: Measure	ed Average							
Frequency(Hz)	Level(dBuV)	TF	PA+CL	Limit(dBuV)	Margin(dBuV)	RBW(Hz)	Comment	LINE
179.75 k	21.58	1.903	20.038	54.497	-32.92	9 k		L1
167.0 k	22.50	2.270	20.037	55.108	-32.61	9 k		L1
155.1 k	23.17	2.613	20.036	55.722	-32.55	9 k		N
151.7 k	23.45	2.711	20.035	55.906	-32.46	9 k		N
161.9 k	23.14	2.417	20.036	55.366	-32.23	9 k		N
168.7 k	22.86	2.221	20.037	55.024	-32.17	9 k		L1

Non-Specific Radio Report Shell Rev. August 2015 Page 72 of 74

Intertek

Report Number: 102966681ATL-001 Issued: 06/18/2017

Naga Suryadevara N 5 Test Personnel: Test Date: 05/07/2017 Supervising/Reviewing Engineer: (Where Applicable) FCC Part 15 Subpart B ICES 003 120VAC 60Hz Product Standard: Limit Applied: All Class B Input Voltage: Pretest Verification w/ Ambient Temperature: 22 °C Ambient Signals or BB Source: Yes Relative Humidity: 29 % Atmospheric Pressure: 992 mbars

Deviations, Additions, or Exclusions: None

Intertek

Report Number: 102966681ATL-001 Issued: 06/18/2017

13 Revision History

Revision Level	Date	Report Number	Prepared By	Reviewed By	Notes
0	06/18/2017	102966681ATL-001	N.5	KPS 43	Original Issue

Page 74 of 74