

Test Report

Report No.:	MTi241011030-07E1
Date of issue:	2025-01-07
Applicant:	Guangzhou Havit Technology Co., Ltd.
Product name:	OPENBUDS 03A
Model(s):	OWS916 LITE, OPENBUDS 03A
FCC ID:	2AI6I-OWS916LITE

Shenzhen Microtest Co., Ltd. http://www.mtitest.cn

The test report is only used for customer scientific research, teaching, internal quality control and other purposes, and is for internal reference only.

Instructions

- 1. This test report shall not be partially reproduced without the written consent of the laboratory.
- 2. The test results in this test report are only responsible for the samples submitted
- 3. This test report is invalid without the seal and signature of the laboratory.
- 4. This test report is invalid if transferred, altered, or tampered with in any form without authorization.
- 5. Any objection to this test report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

Table of contents

1	Gene	eral Description	5
	1.1 1.2 1.3 1.4 1.5	Description of the EUT Description of test modes Environmental Conditions Description of support units Measurement uncertainty	5 7 7
2	Sum	mary of Test Result	8
3	Test	Facilities and accreditations	9
	3.1	Test laboratory	9
4	List o	of test equipment	10
5	Evalu	uation Results (Evaluation)	11
	5.1	Antenna requirement	11
6	Radi	o Spectrum Matter Test Results (RF)	12
	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9	20dB Bandwidth Maximum Conducted Output Power Channel Separation Number of Hopping Frequencies Dwell Time RF conducted spurious emissions and band edge measurement Band edge emissions (Radiated) Radiated emissions (below 1GHz) Radiated emissions (above 1GHz)	
Pho	otogra	aphs of the test setup	39
Pho	otogra	aphs of the EUT	40
Ар	bendi	x A: 20dB Emission Bandwidth	41
Ар	bendi	x B: Maximum conducted output power	45
Ар	bendi	x C: Carrier frequency separation	49
Ар	bendi	x D: Time of occupancy	51
Ар	bendi	x E: Number of hopping channels	58
Ар	pendi	x F: Band edge measurements	60
		x G: Conducted Spurious Emission	

Test Result Certification				
Applicant:	Guangzhou Havit Technology Co., Ltd.			
Address:	ROOM 1307, 13F, PHASE 2 B, C BUILDING OF POLY WORLD TRADE CENTER, NO.1000, XINGANG EAST ROAD, HAIZHU GUANGDONG China			
Manufacturer:	Guangzhou Havit Technology Co., Ltd.			
Address:	ROOM 1307, 13F, PHASE 2 B, C BUILDING OF POLY WORLD TRADE CENTER, NO.1000, XINGANG EAST ROAD, HAIZHU GUANGDONG China			
Product description				
Product name:	OPENBUDS 03A			
Trademark:	HAVIT			
Model name:	OWS916 LITE			
Series Model(s):	OPENBUDS 03A			
Standards:	47 CFR Part 15.247			
Test Method:	KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10-2013			
Date of Test	Date of Test			
Date of test:	2024-11-22 to 2024-11-26			
Test result:	Pass			

Test Engineer	•	Monleen Davy		
		(Maleah Deng)		
Reviewed By	••	Dowid. Cee		
		(David Lee)		
Approved By	:	(con chen		
		(Leon Chen)		

1 General Description

1.1 Description of the EUT

•	
Product name:	OPENBUDS 03A
Model name:	OWS916 LITE
Series Model(s):	OPENBUDS 03A
Model difference:	All the models are the same circuit and module, except the model name and color.
Electrical rating:	Input: 5V DC, 1A Battery: Charging box: 3.7V DC, 400mAh; Earbuds: 3.7V DC, 40mAh
Accessories:	Cable: USB-A to Type-C cable (0.3m)*1
Hardware version:	S5178-AB5656C-V3
Software version:	V1
Test sample(s) number:	MTi241011030-07S1001
RF specification	
Bluetooth version:	V5.4
Operating frequency range:	2402-2480
Channel number:	79
Modulation type:	GFSK,π/4-DQPSK,8DPSK
Antenna(s) type:	Ceramic Antenna
Antenna(s) gain:	2.5dBi

1.2 Description of test modes

No.	Emission test modes	
Mode1	TX-GFSK	
Mode2	TX-π/4-DQPSK	
Mode3	TX-8DPSK	

1.2.1 Operation channel list

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469

Page 6 of 72

Report No.: MTi241011030-07E1

8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461	-	-

Test Channel List

Lowest Channel (LCH)	Middle Channel (MCH)	Highest Channel (HCH)
(MHz)	(MHz)	(MHz)
2402	2441	2480

Note: The test software provided by manufacturer is used to control EUT for working in engineering mode, that enables selectable channel, and capable of continuous transmitting mode.

Test Software:

For power setting, refer to below table.

Test Software:	BT_Tool				
Mode	2402MHz 2441MHz 2480MHz				
GFSK	6	6	6		
π/4-DQPSK	6	6	6		
8DPSK	6	6 6 6			

1.3 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15°C ~ 35°C
Humidity:	20% RH ~ 75% RH
Atmospheric pressure:	98 kPa ~ 101 kPa

1.4 Description of support units

Support equipment list							
Description Model Serial No. Manufacturer							
<i>I I I I</i>							
Support cable list							
Description Length (m) From To							
1	1	1	/				

1.5 Measurement uncertainty

Measurement	Uncertainty			
Conducted emissions (AMN 150kHz~30MHz)	±3.1dB			
Occupied channel bandwidth	±3 %			
RF output power, conducted	±1 dB			
Time	±1 %			
Unwanted Emissions, conducted	±1 dB			
Radiated spurious emissions (above 1GHz)	±5.3dB			
Radiated spurious emissions (9kHz~30MHz)	±4.3dB			
Radiated spurious emissions (30MHz~1GHz)	±4.7dB			
Temperature	±1 °C			
Humidity	± 5 %			

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2 Summary of Test Result

No.	Item	Standard	Requirement	Result
1	Antenna requirement	tenna requirement 47 CFR Part 15.247		Pass
2	Conducted Emission at AC power line	47 CFR Part 15.247	47 CFR 15.207(a)	N/A
3	20dB Bandwidth	47 CFR Part 15.247	47 CFR 15.247(a)(1)	Pass
4	Maximum Conducted Output Power	47 CFR Part 15.247	47 CFR 15.247(b)(1)	Pass
5	Channel Separation	47 CFR Part 15.247	47 CFR 15.247(a)(1)	Pass
6	Number of Hopping Frequencies	47 CFR Part 15.247	47 CFR 15.247(a)(1)(iii)	Pass
7	Dwell Time	47 CFR Part 15.247	47 CFR 15.247(a)(1)(iii)	Pass
8	RF conducted spurious emissions and band edge measurement	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass
9	Band edge emissions (Radiated)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass
10	Radiated emissions (below 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass
11	Radiated emissions (above 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass

Note1: Since the EUT cannot be operating while charging, therefore AC power line conducted emissions test is not required.

Note2: Left and Right earphones are tested, only shown the worst result of left earphone.

3 Test Facilities and accreditations

3.1 Test laboratory

Test laboratory:	Shenzhen Microtest Co., Ltd.
Test site location:	101, No.7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Telephone:	(86-755)88850135
Fax:	(86-755)88850136
CNAS Registration No.:	CNAS L5868
FCC Registration No.:	448573
IC Registration No.:	21760
CABID:	CN0093

4 List of test equipment

No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due				
	20dB Bandwidth Maximum Conducted Output Power Channel Separation Number of Hopping Frequencies Dwell Time									
	Emissions in non-restricted frequency bands									
1	Wideband Radio Communication Tester	Rohde&schwarz	CMW500	149155	2024-03-20	2025-03-19				
2	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB40051240	2024-03-21	2025-03-20				
3	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2024-03-21	2025-03-20				
4	Synthesized Sweeper	Agilent	83752A	3610A01957	2024-03-21	2025-03-20				
5	MXA Signal Analyzer	Agilent	N9020A	MY50143483	2024-03-21	2025-03-20				
6	RF Control Unit	Tonscend	JS0806-1	19D8060152	2024-03-21	2025-03-20				
7	Band Reject Filter Group	Tonscend	JS0806-F	19D8060160	2024-03-21	2025-03-20				
8	ESG Vector Signal Generator	Agilent	N5182A	MY50143762	2024-03-20	2025-03-19				
9	DC Power Supply	Agilent	E3632A	MY40027695	2024-03-21	2025-03-20				
		Band edge Emissions in frequ	emissions (Radi uency bands (ab							
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03-20	2025-03-19				
2	Double Ridged Broadband Horn Antenna	schwarabeck	BBHA 9120 D	2278	2023-06-17	2025-06-16				
3	Amplifier	Agilent	8449B	3008A01120	2024-03-20	2025-03-19				
4	MXA signal analyzer	Agilent	N9020A	MY54440859	2024-03-21	2025-03-20				
5	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2024-03-21	2025-03-20				
6	Horn antenna	Schwarzbeck	BBHA 9170	00987	2023-06-17	2025-06-16				
7	Pre-amplifier	Space-Dtronics	EWLAN1840 G	210405001	2024-03-21	2025-03-20				
		Emissions in freq	uency bands (be	low 1GHz)						
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03-20	2025-03-19				
2	TRILOG Broadband Antenna	schwarabeck	VULB 9163	9163-1338	2023-06-11	2025-06-10				
3	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2024-03-23	2025-03-22				
4	Amplifier	Hewlett-Packard	8447F	3113A06184	2024-03-20	2025-03-19				

5 Evaluation Results (Evaluation)

5.1 Antenna requirement

Test Requirement:	Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be
	considered sufficient to comply with the provisions of this section.

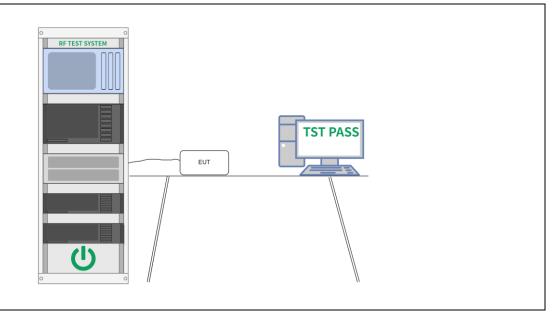
5.1.1 Conclusion:

The antenna of the EUT is permanently attached. The EUT complies with the requirement of FCC PART 15.203.

6 Radio Spectrum Matter Test Results (RF)

6.1 20dB Bandwidth

Test Requirement:	47 CFR 15.247(a)(1)
Test Limit:	Refer to 47 CFR 15.215(c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.
Test Method:	ANSI C63.10-2013, section 7.8.7, For occupied bandwidth measurements, use the procedure in 6.9.2. KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. d) Steps a) through c) might require iteration to adjust within the specified tolerances. e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target "-xx dB down" requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value. f) Set detection mode to peak and trace mode to max hold. g) Determine the reference value: Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value). h) Determine the "-xx dB down amplitude" using [(reference value) - xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument. j) If the reference value is determined by an unmodulated carrier, then turn the EUT modulation ON, and either clear the existing trace or stat a new trace on the spectrum analyzer and allow the new trace to stabilize. Otherwise, the trace from step g) shall be used for step j). j) Place two markers, one at the lowest frequency and the other at the highest frequency of the envel



measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the
plot(s).

6.1.1 E.U.T. Operation:

Operating Environment:							
Temperature: 22.8 °C			Humidity:	57 %		Atmospheric Pressure:	101 kPa
Pre test mode:			e1, Mode2,	Mode3			
Final test mode:		Mode	e1, Mode2,	Mode3			

6.1.2 Test Setup Diagram:

6.1.3 Test Data:

6.2 Maximum Conducted Output Power

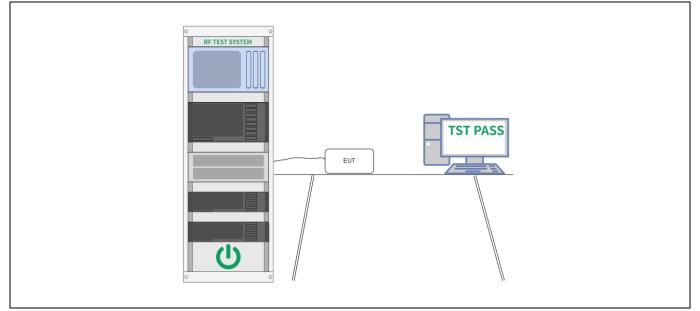

Test Requirement:	47 CFR 15.247(b)(1)
Test Limit:	Refer to 47 CFR 15.247(b)(1), For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
Test Method:	ANSI C63.10-2013, section 7.8.5 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test: a) Use the following spectrum analyzer settings: 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel. 2) RBW > 20 dB bandwidth of the emission being measured. 3) VBW >= RBW. 4) Sweep: Auto. 5) Detector function: Peak. 6) Trace: Max hold. b) Allow trace to stabilize. c) Use the marker-to-peak function to set the marker to the peak of the emission. d) The indicated level is the peak output power, after any corrections for external attenuators and cables. e) A plot of the test results and setup description shall be included in the test report. NOTE—A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.

6.2.1 E.U.T. Operation:

Operating Environment:							
Temperature:	erature: 22.8 °C Humidity: 57 % Atmospheric Pressure: 101 kPa					101 kPa	
Pre test mode: Mod			e1, Mode2, I	Mode3			
Final test mode: Mod		Mode	e1, Mode2, I	Mode3			

6.2.2 Test Setup Diagram:

6.2.3 Test Data:


6.3 Channel Separation

Test Requirement:	47 CFR 15.247(a)(1)
Test Limit:	Refer to 47 CFR 15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Method:	ANSI C63.10-2013, section 7.8.2 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Wide enough to capture the peaks of two adjacent channels. b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. c) Video (or average) bandwidth (VBW) ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

6.3.1 E.U.T. Operation:

Operating Environment:							
Temperature: 22.8 °C Humidity: 57 % Atmospheric Pressure: 101 kPa						101 kPa	
Pre test mode: Mo			e1, Mode2, I	Mode3			
Final test mode: Mo		Mode	e1, Mode2, I	Mode3			

6.3.2 Test Setup Diagram:

6.3.3 Test Data:

6.4 Number of Hopping Frequencies

Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Limit:	Refer to 47 CFR 15.247(a)(1)(iii), Fequency hopping systems in the 2400- 2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	ANSI C63.10-2013, section 7.8.3 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen. b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. c) VBW ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies. Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A plot of the data shall be included in the test report.

6.4.1 E.U.T. Operation:

Operating Environment:			
Temperature: 22.8 °C Humic	lity: 57 %	Atmospheric Pressure:	101 kPa
Pre test mode: Mode1, Mod	de2, Mode3		
Final test mode: Mode1, Mod	de2, Mode3		

6.4.2 Test Setup Diagram:

6.4.3 Test Data:

6.5 Dwell Time

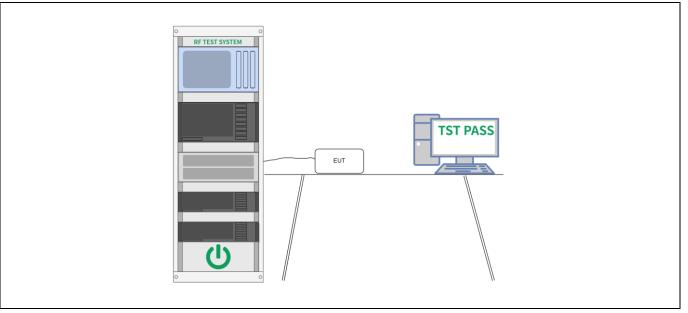

Test Limit: Refer to 47 CFR 15.247(a)(1)(iii), Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels on a particular hopping frequency provided that a minimum of 15 channels are used. Test Method: ANSI C63.10-2013, section 7.8.4 KDB 558074 D01 15.247 Meas Guidance v05r02 Procedure: The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hops over the period specified in the requirements. Determine the number of specified in the requirements. Determine the number of specified in the requirements. Determine the period specified in the requirements. Determine the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. The sweep time shall	Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Method: KDB 558074 D01 15.247 Meas Guidance v05r02 Procedure: The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements, using the following equation: (Number of hops on spectrum analyzer) × (period specified in the requirements, using the following equation: (Number of hops in the period specified in the requirements, using the following equation: (Number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulatin format, number of hops in a specific time varies wit		Refer to 47 CFR 15.247(a)(1)(iii), Frequency hopping systems in the 2400- 2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels
 analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements, using the following equation: (Number of hops on spectrum analyzer) × (period specified in the requirements, using the following equation: (Number of hops on spectrum analyzer) × (period specified in the requirements. If the number of hops in a specific time varies with different modes of operation generation in the requirements. 	Test Method:	
The measured transmit time and time between hops shall be consistent with the values described in the operational description for the EUT.		analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation: (Number of hops on spectrum analyzer) × (period specified in the requirements / analyzer sweep time) The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements. If the number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation. The measured transmit time and time between hops shall be consistent with the values described in the operational description for the EUT.

6.5.1 E.U.T. Operation:

Operating Envi	ronment:					
Temperature:	22.8 °C		Humidity:	57 %	Atmospheric Pressure:	101 kPa
Pre test mode:		Mode	e1, Mode2, I	Mode3		
Final test mode	e:	Mode	e1, Mode2, I	Mode3		
6.5.2 Test Setu	p Diagrar	n:				

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China.Tel: 0755-88850135-1439Mobile: 131-4343-1439 (Wechat same number)Web: http://www.mtitest.cnE-mail: mti@51mti.com

6.5.3 Test Data:


6.6 RF conducted spurious emissions and band edge measurement

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2013 section 7.8.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	Conducted spurious emissions shall be measured for the transmit frequency, per 5.5 and 5.6, and at the maximum transmit powers. Connect the primary antenna port through an attenuator to the spectrum analyzer input; in the results, account for all losses between the unlicensed wireless device output and the spectrum analyzer. The instrument shall span 30 MHz to 10 times the operating frequency in GHz, with a resolution bandwidth of 100 kHz, video bandwidth of 300 kHz, and a coupled sweep time with a peak detector. The band 30 MHz to the highest frequency may be split into smaller spans, as long as the entire spectrum is covered.

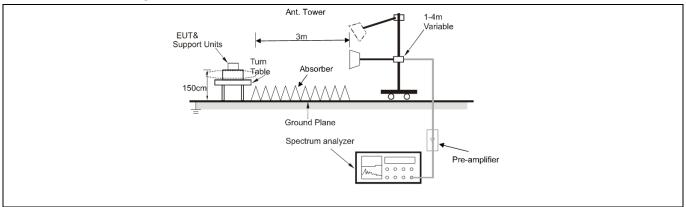
6.6.1 E.U.T. Operation:

Operating Envi	ronment:					
Temperature:	22.8 °C		Humidity:	57 %	Atmospheric Pressure:	101 kPa
Pre test mode:		Mode	e1, Mode2,	Mode3		
Final test mode	e:	Mode	e1, Mode2, I	Mode3		

6.6.2 Test Setup Diagram:

6.6.3 Test Data:

6.7 Band edge emissions (Radiated)


Test Requirement:	restricted bands, as de	7(d), In addition, radiated em fined in § 15.205(a), must als s specified in § 15.209(a)(see	so comply with the
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	intentional radiators op frequency bands 54-72 However, operation wit sections of this part, e. In the emission table a The emission limits sho employing a CISPR qu kHz, 110–490 kHz and	n paragraph (g), fundamenta erating under this section sh 2 MHz, 76-88 MHz, 174-216 hin these frequency bands is g., §§ 15.231 and 15.241. bove, the tighter limit applies own in the above table are ba asi-peak detector except for above 1000 MHz. Radiated on measurements employing	all not be located in the MHz or 470-806 MHz. s permitted under other at the band edges. ased on measurements the frequency bands 9–90 emission limits in these
Test Method:	ANSI C63.10-2013 sec KDB 558074 D01 15.2	tion 6.10 47 Meas Guidance v05r02	
Procedure:	ANSI C63.10-2013 sec	tion 6.10.5.2	

6.7.1 E.U.T. Operation:

Operating Env	ironment					
Temperature:	24 °C		Humidity:	56 %	Atmospheric Pressure:	101 kPa
Pre test mode:		Mod	e1, Mode2,	Mode3		
Final test mode	e:			re-test mode w ded in the repo	ere tested, only the data rt	of the worst mode
Note:			•			

The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

6.7.2 Test Setup Diagram:

6.7.3 Test Data:

Mode3(Left) /	Polar	ization: Hor	izontal / CH	l: L				
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2310.000	48.62	-4.83	43.79	74.00	-30.21	peak
2		2310.000	38.06	-4.83	33.23	54.00	-20.77	AVG
3		2390.000	48.54	-4.31	44.23	74.00	-29.77	peak
4	*	2390.000	38.14	-4.31	33.83	54.00	-20.17	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2310.000	47.66	-4.83	42.83	74.00	-31.17	peak
2		2310.000	38.00	-4.83	33.17	54.00	-20.83	AVG
3		2390.000	47.52	-4.31	43.21	74.00	-30.79	peak
4	*	2390.000	38.08	-4.31	33.77	54.00	-20.23	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	*	2483.500	62.91	-4.21	58.70	74.00	-15.30	peak
2		2483.500	40.24	-4.21	36.03	54.00	-17.97	AVG
3		2500.000	48.77	-4.10	44.67	74.00	-29.33	peak
4		2500.000	38.07	-4.10	33.97	54.00	-20.03	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2483.500	55.01	-4.21	50.80	74.00	-23.20	peak
2	*	2483.500	38.43	-4.21	34.22	54.00	-19.78	AVG
3		2500.000	48.45	-4.10	44.35	74.00	-29.65	peak
4		2500.000	38.11	-4.10	34.01	54.00	-19.99	AVG

Mode3(Right) / Polarization: Horizontal / CH: L

No. N	lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	2310.000	47.23	-4.83	42.40	74.00	-31.60	peak
2	2310.000	37.86	-4.83	33.03	54.00	-20.97	AVG
3	2390.000	46.62	-4.31	42.31	74.00	-31.69	peak
4 *	2390.000	37.79	-4.31	33.48	54.00	-20.52	AVG

Mode3(Right) / Polarization: Vertical / CH: L Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment dBuV dB MHz dBuV/m dBuV/m dB Detector -31.42 1 2310.000 47.41 -4.83 42.58 74.00 peak 2 -21.05 2310.000 37.78 -4.83 32.95 54.00 AVG 3 42.34 -31.66 2390.000 46.65 -4.31 74.00 peak 2390.000 4 * 37.67 -4.31 33.36 54.00 -20.64 AVG

Mode3(Right) / Polarization: Horizontal / CH: H

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2483.500	53.29	-4.21	49.08	74.00	-24.92	peak
2	*	2483.500	38.74	-4.21	34.53	54.00	-19.47	AVG
3		2500.000	49.11	-4.10	45.01	74.00	-28.99	peak
4		2500.000	38.02	-4.10	33.92	54.00	-20.08	AVG

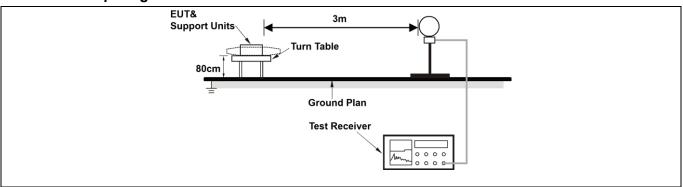
Mode3(Right) /	Polarization: Vertical / CH: H

INU.	Mk.	Freq. MHz	Level dBuV	Factor dB	ment dBuV/m	Limit	Over dB	Detector
1		2483.500	53.23	-4.21	49.02		-24.98	peak
2	*	2483.500	38.82	-4.21	34.61	54.00	-19.39	AVG
3		2500.000	48.38	-4.10	44.28	74.00	-29.72	peak
4		2500.000	37.95	-4.10	33.85	54.00	-20.15	AVG

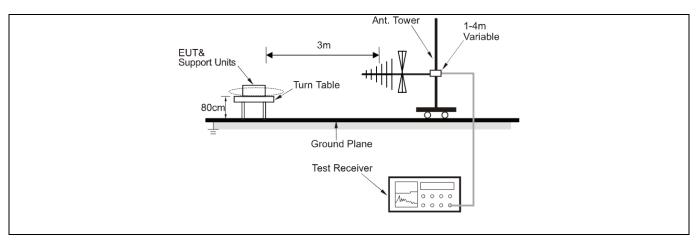
6.8 Radiated emissions (below 1GHz)

Test Requirement:	restricted bands, as de	7(d), In addition, radiated em fined in § 15.205(a), must als s specified in § 15.209(a)(see	so comply with the				
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)				
	0.009-0.490	2400/F(kHz)	300				
	0.490-1.705	24000/F(kHz)	30				
	1.705-30.0	30	30				
	30-88	100 **	3				
	88-216	150 **	3				
	216-960	200 **	3				
	Above 960	500	3				
	 ** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. 						
Test Method:	ANSI C63.10-2013 sec KDB 558074 D01 15.2	tion 6.6.4 47 Meas Guidance v05r02					
Procedure:	ANSI C63.10-2013 sec	tion 6.6.4					

6.8.1 E.U.T. Operation:

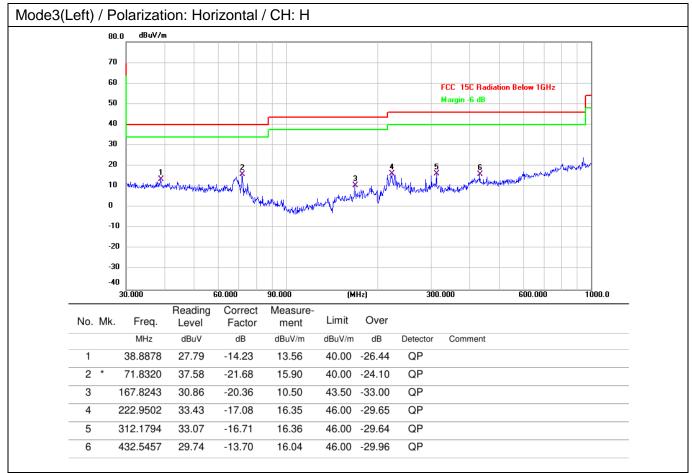

Operating Env	ironment	-				
Temperature:	24 °C		Humidity:	56 %	Atmospheric Pressure:	101 kPa
Pre test mode:		Mode	e1, Mode2,	Mode3		
Final test mode	e:			re-test mode w ded in the repo	vere tested, only the data ort	of the worst mode
Mater						

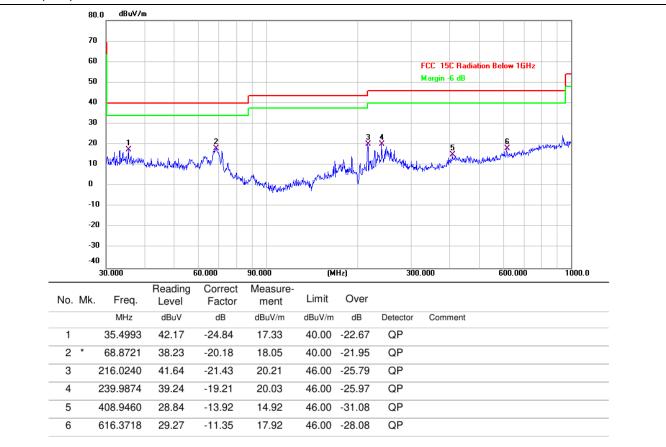
Note:


The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

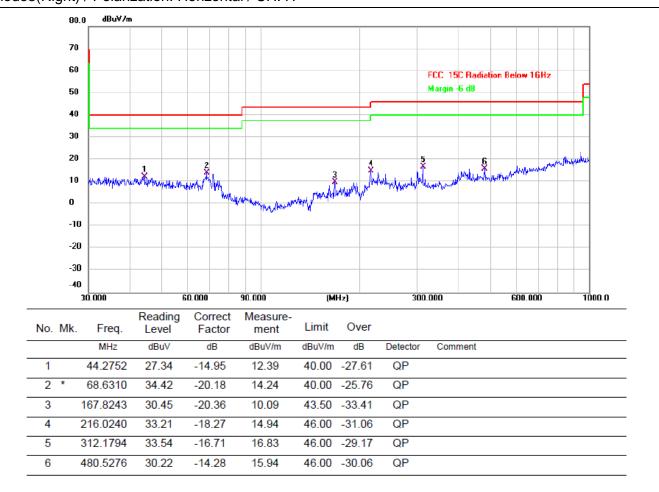
All modes of operation of the EUT were investigated, and only the worst-case results are reported. There were no emissions found below 30MHz within 20dB of the limit.

6.8.2 Test Setup Diagram:





6.8.3 Test Data:



Mode3(Left) / Polarization: Vertical / CH: H

Mode3(Right) / Polarization: Vertical / CH: H

167.8243

248.5519

422.0577

607.7867

30.64

37.86

29.09

27.55

-17.16

-18.18

-14.43

-10.76

13.48

19.68

14.66

16.79

43.50

46.00

46.00

-30.02

-26.32

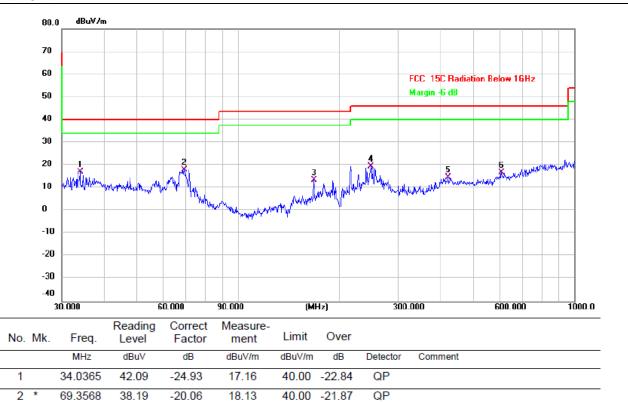
-29.21

46.00 -31.34

QP

QP

QP

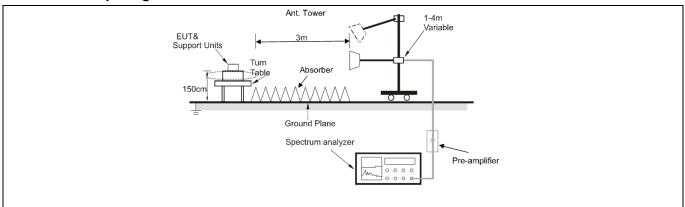

QP

3

4

5

6


6.9 Radiated emissions (above 1GHz)

Test Requirement:	-	nissions which fall in the rest comply with the radiated em 5(c)).`		
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)	
	0.009-0.490	2400/F(kHz)	300	ļ
	0.490-1.705	24000/F(kHz)	30	
	1.705-30.0	30	30	
	30-88	100 **	3	
	88-216	150 **	3	
	216-960	200 **	3	
	Above 960	500	3	
	intentional radiators op frequency bands 54-72 However, operation wit sections of this part, e. In the emission table a The emission limits sho employing a CISPR qu kHz, 110–490 kHz and	n paragraph (g), fundamenta erating under this section sh 2 MHz, 76-88 MHz, 174-216 hin these frequency bands is g., §§ 15.231 and 15.241. bove, the tighter limit applies own in the above table are ba asi-peak detector except for above 1000 MHz. Radiated on measurements employin	all not be located in the MHz or 470-806 MHz. s permitted under other at the band edges. ased on measurements the frequency bands 9–9 emission limits in these	90
Test Method:	ANSI C63.10-2013 sec KDB 558074 D01 15.2	tion 6.6.4 47 Meas Guidance v05r02		
Procedure:	ANSI C63.10-2013 sec	ction 6.6.4		

6.9.1 E.U.T. Operation:

Operating Env	ironment:					
Temperature:	24 °C		Humidity:	56 %	Atmospheric Pressure:	101 kPa
Pre test mode:		Mode	e1, Mode2,	Mode3		
Final test mode	e:			re-test mode ded in the rep	were tested, only the data port	of the worst mode
attenuated mo	re than 20) dB b	elow the lim	nits are not re	plitude of spurious emission ported. nd only the worst-case rest	

6.9.2 Test Setup Diagram:

6.9.3 Test Data:

Mode3(L	eft) / F	Polar	ization: Hor	izontal / CH	: L					
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	
	1		4804.000	49.52	0.53	50.05	74.00	-23.95	peak	
	2		4804.000	44.06	0.53	44.59	54.00	-9.41	AVG	
	3		7206.000	43.52	7.90	51.42	74.00	-22.58	peak	_
	4		7206.000	37.67	7.90	45.57	54.00	-8.43	AVG	_
	5		9608.000	45.61	8.85	54.46	74.00	-19.54	peak	_
	6	*	9608.000	39.47	8.85	48.32	54.00	-5.68	AVG	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4804.000	45.19	0.53	45.72	74.00	-28.28	peak
2		4804.000	39.01	0.53	39.54	54.00	-14.46	AVG
3		7206.000	42.60	7.90	50.50	74.00	-23.50	peak
4		7206.000	36.67	7.90	44.57	54.00	-9.43	AVG
5		9608.000	44.91	8.85	53.76	74.00	-20.24	peak
6	*	9608.000	38.74	8.85	47.59	54.00	-6.41	AVG

Page 34 of 72

Mode3(I	_eft) / F	Polar	ization: Hor	izontal / CH	I: M				
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1		4882.000	48.06	0.57	48.63	74.00	-25.37	peak
	2		4882.000	41.80	0.57	42.37	54.00	-11.63	AVG
	3		7323.000	43.04	7.57	50.61	74.00	-23.39	peak
	4		7323.000	36.78	7.57	44.35	54.00	-9.65	AVG
	5		9764.000	44.71	9.33	54.04	74.00	-19.96	peak
	6	*	9764.000	38.91	9.33	48.24	54.00	-5.76	AVG

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4882.000	43.53	0.57	44.10	74.00	-29.90	peak
2	2	4882.000	37.99	0.57	38.56	54.00	-15.44	AVG
3	}	7323.000	43.61	7.57	51.18	74.00	-22.82	peak
4	ŀ	7323.000	37.60	7.57	45.17	54.00	-8.83	AVG
5	5	9764.000	44.45	9.33	53.78	74.00	-20.22	peak
6	ò *	9764.000	38.35	9.33	47.68	54.00	-6.32	AVG

Page **35** of **72**

()	eft) / Polar No. Mk.			Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	
1		4960.000	48.47	0.66	49.13	74.00	-24.87	peak	
2		4960.000	42.60	0.66	43.26	54.00	-10.74	AVG	
3		7440.000	44.37	7.94	52.31	74.00	-21.69	peak	
4		7440.000	38.21	7.94	46.15	54.00	-7.85	AVG	
5		9920.000	44.39	9.69	54.08	74.00	-19.92	peak	
6	*	9920.000	38.48	9.69	48.17	54.00	-5.83	AVG	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4960.000	44.36	0.66	45.02	74.00	-28.98	peak
2		4960.000	38.48	0.66	39.14	54.00	-14.86	AVG
3		7440.000	44.44	7.94	52.38	74.00	-21.62	peak
4		7440.000	38.31	7.94	46.25	54.00	-7.75	AVG
5		9920.000	44.49	9.69	54.18	74.00	-19.82	peak
6	*	9920.000	38.65	9.69	48.34	54.00	-5.66	AVG

Mode3(Right) / Polarization: Horizontal / CH: L

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4804.000	52.35	0.53	52.88	74.00	-21.12	peak
2		4804.000	44.06	0.53	44.59	54.00	-9.41	AVG
3		7206.000	43.56	7.90	51.46	74.00	-22.54	peak
4		7206.000	35.61	7.90	43.51	54.00	-10.49	AVG
5		9608.000	45.23	8.85	54.08	74.00	-19.92	peak
6	*	9608.000	37.27	8.85	46.12	54.00	-7.88	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4804.000	44.79	0.53	45.32	74.00	-28.68	peak
2		4804.000	37.01	0.53	37.54	54.00	-16.46	AVG
3		7206.000	43.55	7.90	51.45	74.00	-22.55	peak
4		7206.000	35.57	7.90	43.47	54.00	-10.53	AVG
5		9608.000	45.74	8.85	54.59	74.00	-19.41	peak
6	*	9608.000	37.51	8.85	46.36	54.00	-7.64	AVG

Mode3(Right) / Polarization: Horizontal / CH: M

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4882.000	52.80	0.57	53.37	74.00	-20.63	peak
2		4882.000	44.79	0.57	45.36	54.00	-8.64	AVG
3		7323.000	48.61	7.57	56.18	74.00	-17.82	peak
4	*	7323.000	40.75	7.57	48.32	54.00	-5.68	AVG
5		9764.000	44.48	9.33	53.81	74.00	-20.19	peak
6		9764.000	35.91	9.33	45.24	54.00	-8.76	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4882.000	51.05	0.57	51.62	74.00	-22.38	peak
2		4882.000	42.79	0.57	43.36	54.00	-10.64	AVG
3		7323.000	45.85	7.57	53.42	74.00	-20.58	peak
4	*	7323.000	38.02	7.57	45.59	54.00	-8.41	AVG
5		9764.000	44.50	9.33	53.83	74.00	-20.17	peak
6		9764.000	35.91	9.33	45.24	54.00	-8.76	AVG

Mode3(Right) / Polarization: Horizontal / CH: H

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4960.000	49.08	0.66	49.74	74.00	-24.26	peak
2		4960.000	40.71	0.66	41.37	54.00	-12.63	AVG
3		7440.000	46.19	7.94	54.13	74.00	-19.87	peak
4	*	7440.000	38.65	7.94	46.59	54.00	-7.41	AVG
5		9920.000	44.82	9.69	54.51	74.00	-19.49	peak
6		9920.000	36.88	9.69	46.57	54.00	-7.43	AVG

No. N	lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	4960.000	48.99	0.66	49.65	74.00	-24.35	peak
2	4960.000	40.61	0.66	41.27	54.00	-12.73	AVG
3	7440.000	43.76	7.94	51.70	74.00	-22.30	peak
4	7440.000	35.32	7.94	43.26	54.00	-10.74	AVG
5	9920.000	44.59	9.69	54.28	74.00	-19.72	peak
6 *	9920.000	36.88	9.69	46.57	54.00	-7.43	AVG

Photographs of the test setup

Refer to Appendix - Test Setup Photos

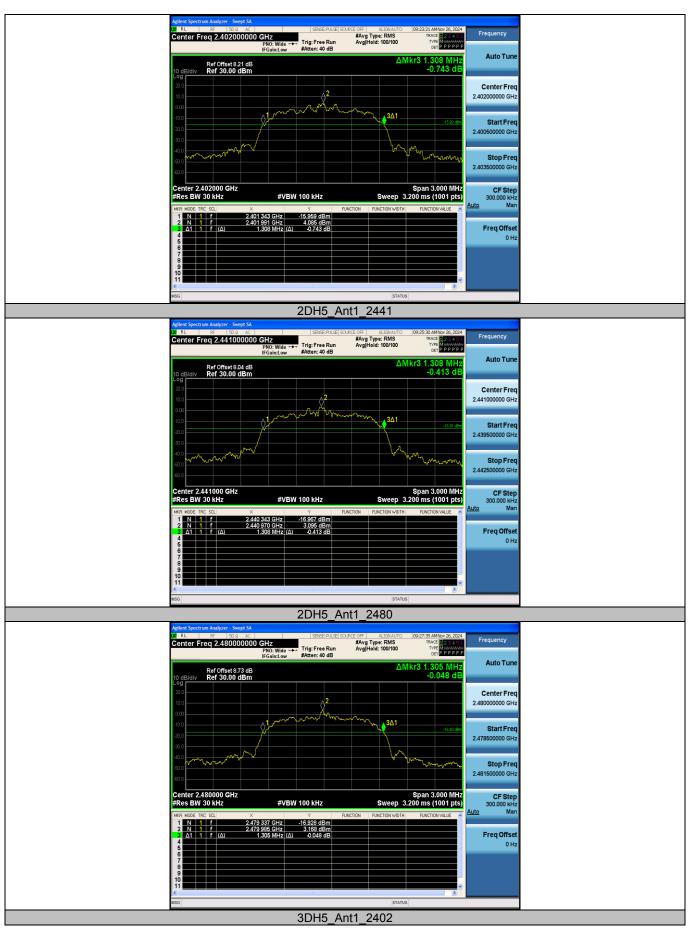
Photographs of the EUT

Refer to Appendix - EUT Photos

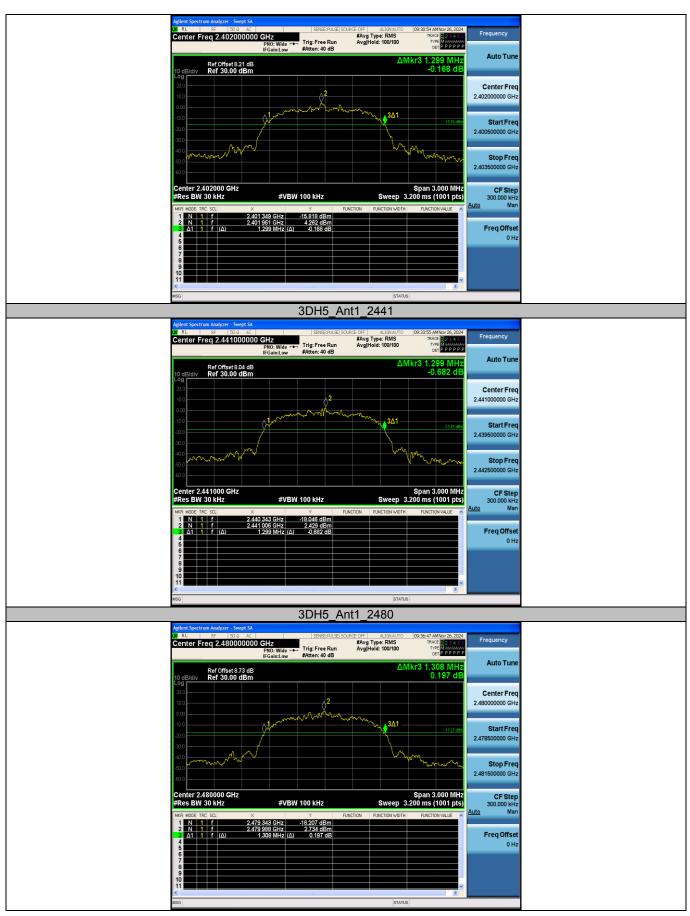
Page 40 of 72

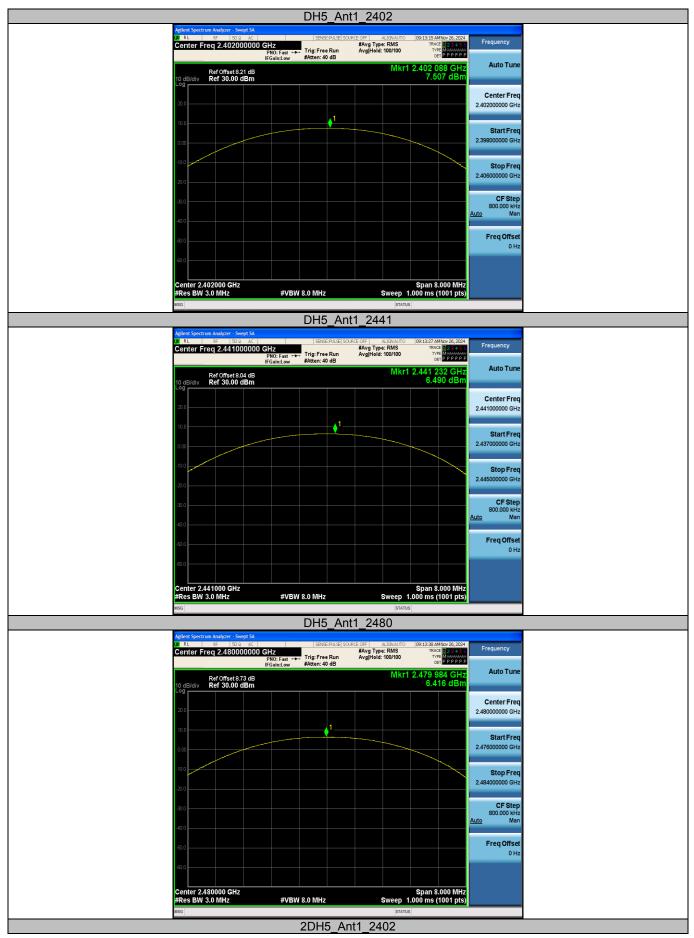
Appendix

Appendix A: 20dB Emission Bandwidth

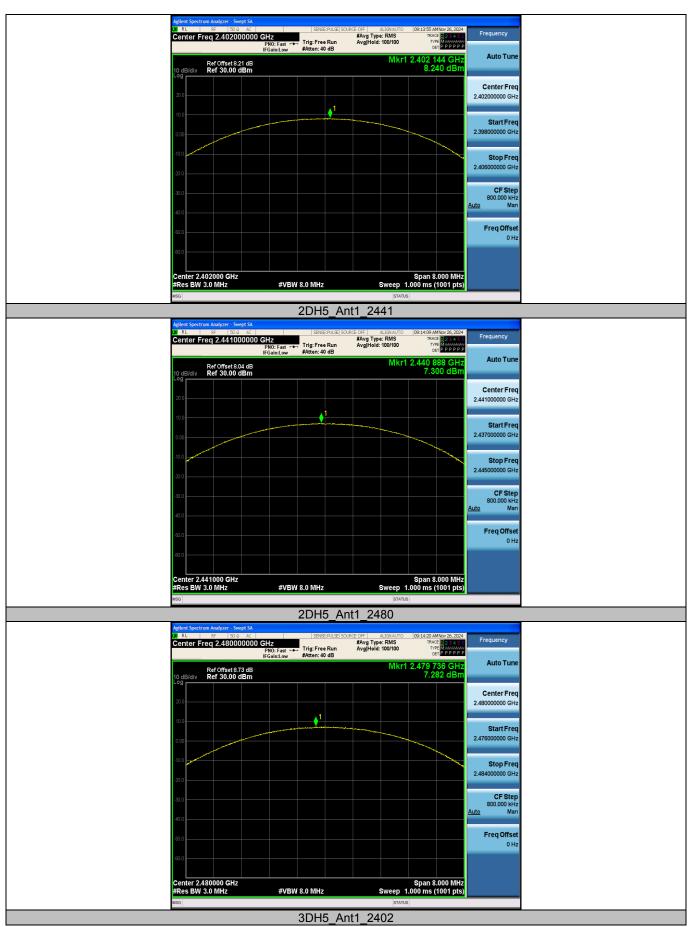

Test Result

Test Mode	Antenna	Frequency [MHz]	20db EBW [MHz]
		2402	0.957
DH5	Ant1	2441	0.960
		2480	0.957
		2402	1.308
2DH5	Ant1	2441	1.308
		2480	1.305
		2402	1.299
3DH5	Ant1	2441	1.299
		2480	1.308

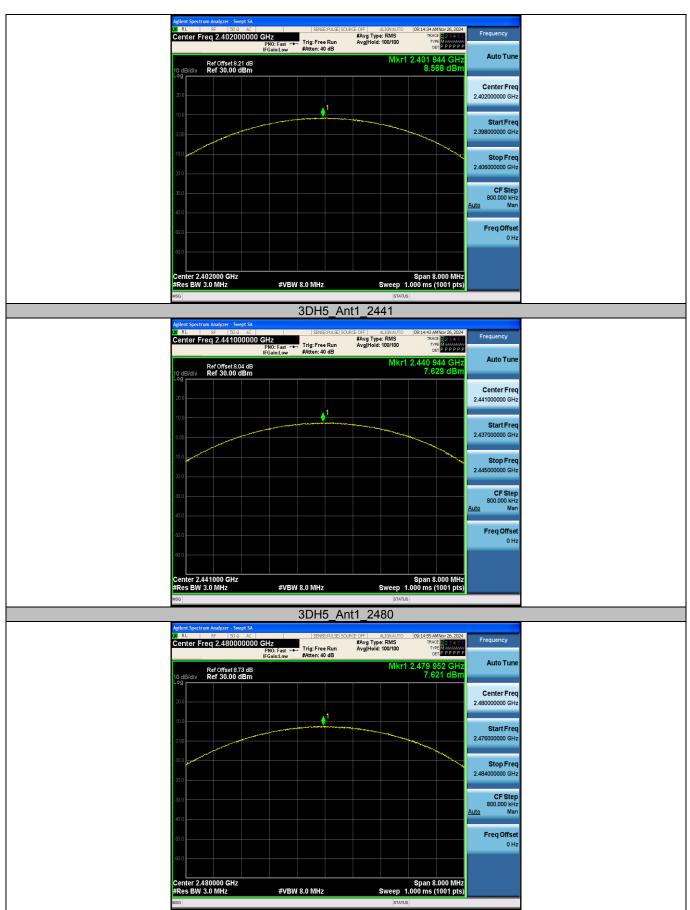


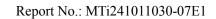


Appendix B: Maximum conducted output power


Test Result Peak

Test Mode	Antenna	Frequency [MHz]	Conducted Peak Power [dBm]	Limit [dBm]	Verdict
		2402	7.51	≤30	PASS
DH5	Ant1	2441	6.49	≤30	PASS
		2480	6.42	≤30	PASS
		2402	8.24	≤20.97	PASS
2DH5	Ant1	2441	7.30	≤20.97	PASS
		2480	7.28	≤20.97	PASS
		2402	8.57	≤20.97	PASS
3DH5	Ant1	2441	7.63	≤20.97	PASS
		2480	7.62	≤20.97	PASS





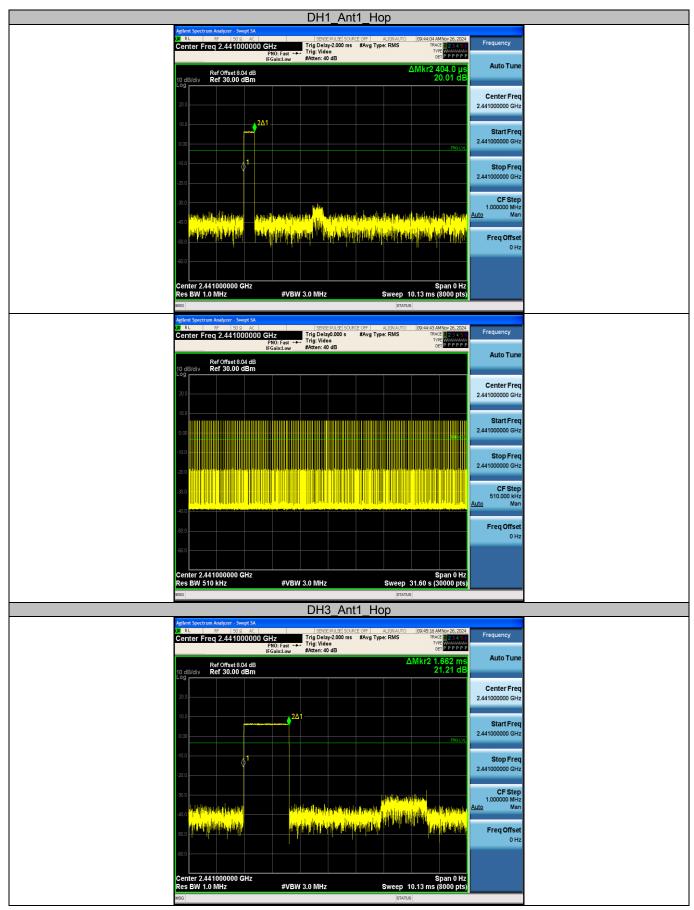
Appendix C: Carrier frequency separation

Test Result

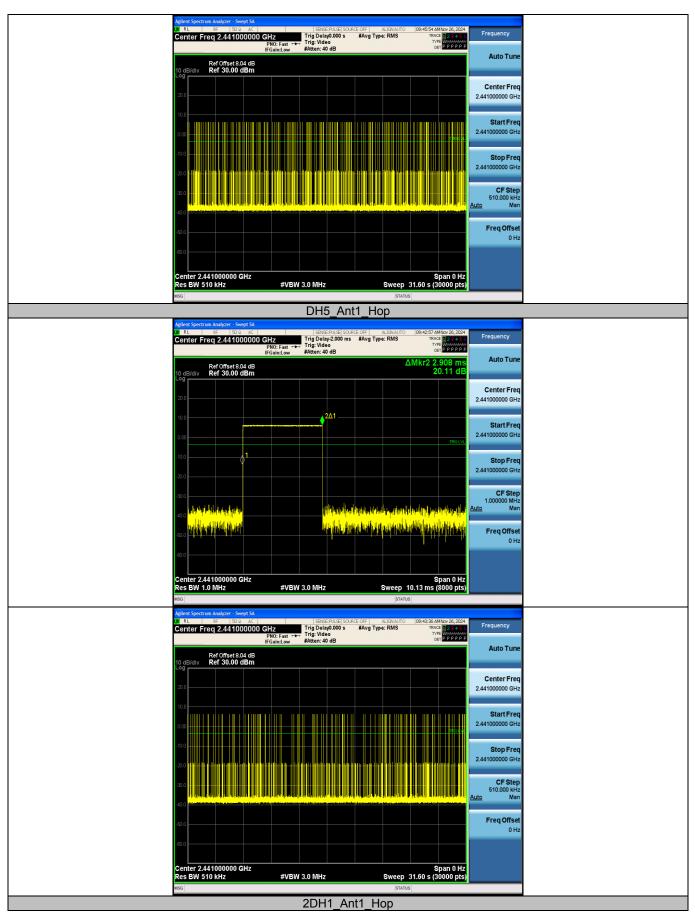
Test Mode	Antenna	Frequency [MHz]	Result [MHz]	Limit [MHz]	Verdict
DH5	Ant1	Нор	1.002	≥0.638	PASS
2DH5	Ant1	Нор	0.982	≥0.872	PASS
3DH5	Ant1	Нор	0.990	≥0.866	PASS

Appendix D: Time of occupancy

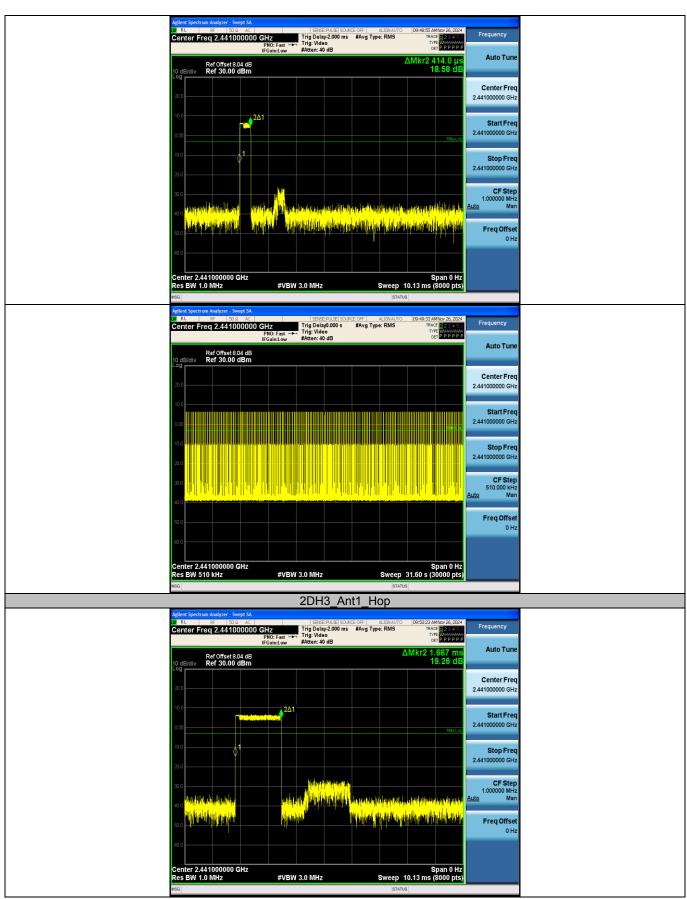
Test Result

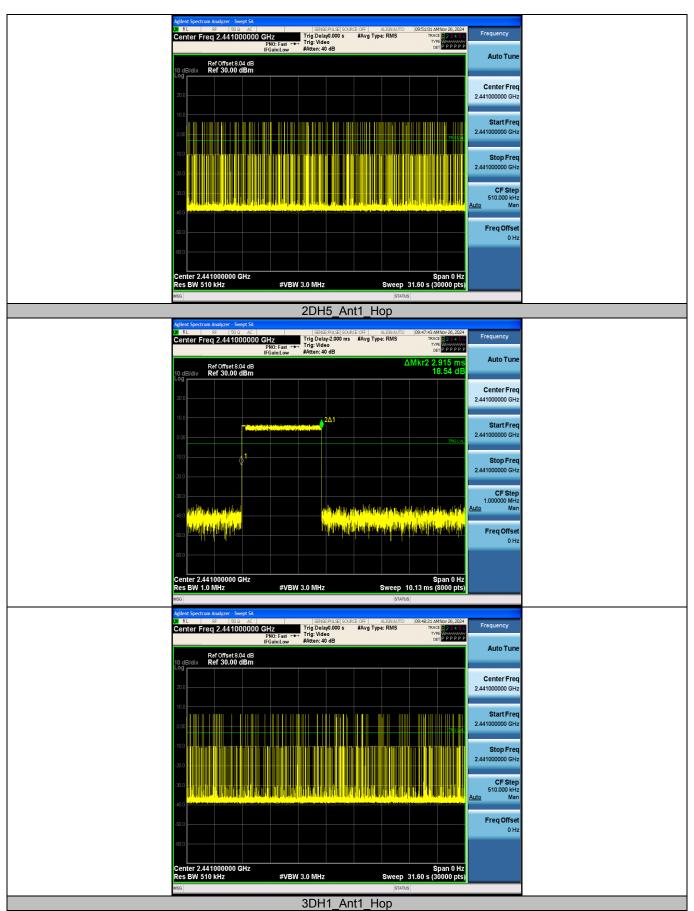

Test Mode	Antenna	Frequency [MHz]	BurstWidth [ms]	Hops in 31.6s [Num]	Result [s]	Limit [s]	Verdict
DH1	Ant1	Нор	0.404	315	0.127	≤0.4	PASS
DH3	Ant1	Нор	1.662	173	0.288	≤0.4	PASS
DH5	Ant1	Нор	2.908	109	0.317	≤0.4	PASS
2DH1	Ant1	Нор	0.414	318	0.132	≤0.4	PASS
2DH3	Ant1	Нор	1.667	151	0.252	≤0.4	PASS
2DH5	Ant1	Нор	2.915	108	0.315	≤0.4	PASS
3DH1	Ant1	Нор	0.418	318	0.133	≤0.4	PASS
3DH3	Ant1	Нор	1.667	152	0.253	≤0.4	PASS
3DH5	Ant1	Нор	2.918	120	0.350	≤0.4	PASS

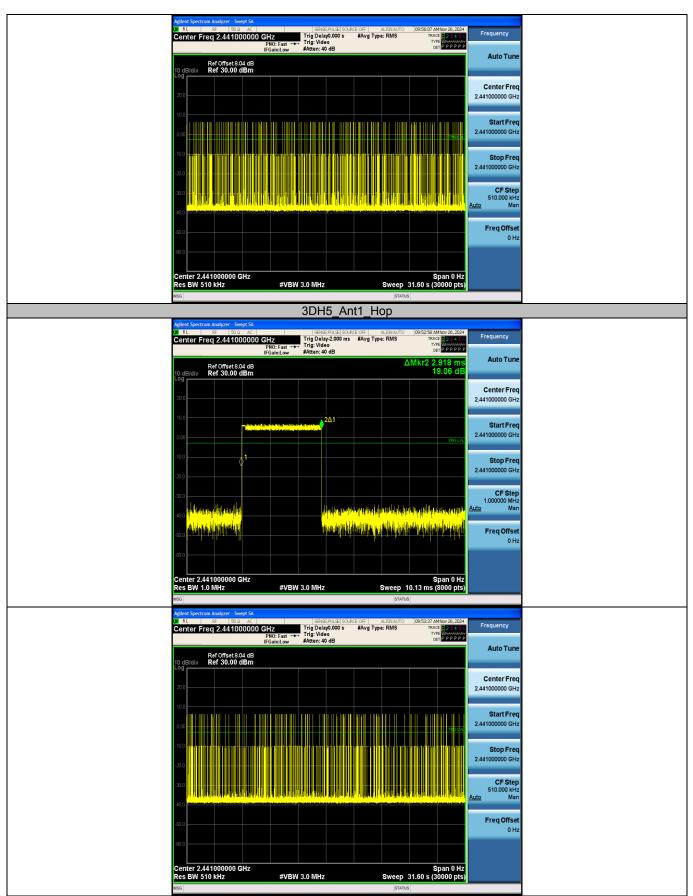
Notes:

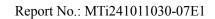

1. Period time = 0.4s * 79 = 31.6s

2. Result (Time of occupancy) = BurstWidth[ms] * Hops in 31.6s [Num]

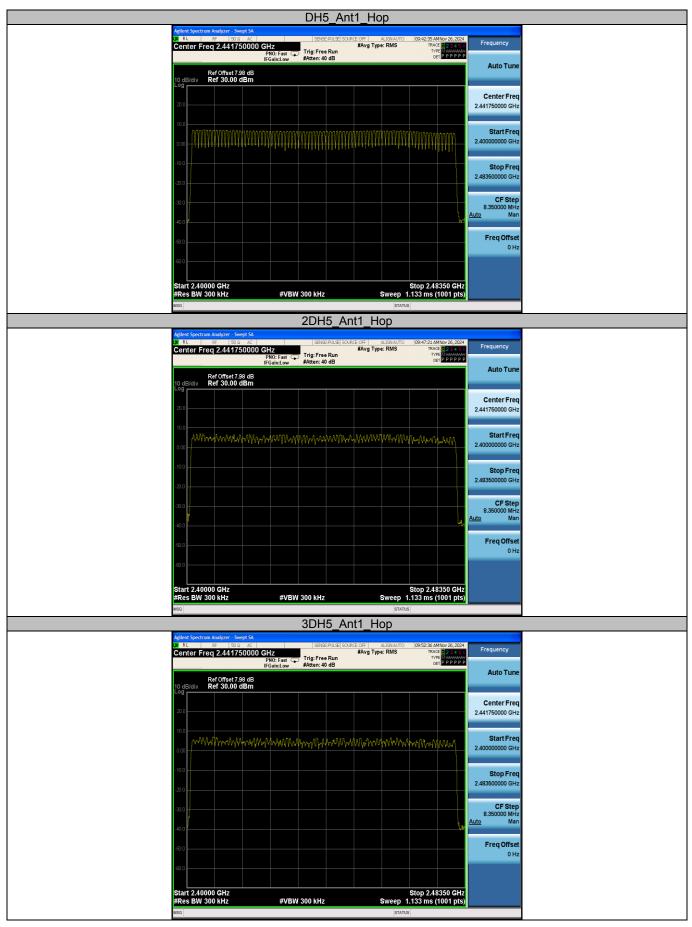








Agilent Spectrum Analyzer - Swept SA		
XX RL RF 50.0 AC SENSEPULSE SOURCE OFF ALIGNAUTO 109:54:09 AM Nov 26:2024	Frequency	
PN0: Fast →→ Trig: Video TYPE		
IFGain:Low #Atten. 40 db		
Ref 0ffset8.04 dB ∆Mkr2 418.0 µs 10 dB/div Ref 30.00 dBm 20.23 dB		
	Contor From	
20.0	Center Freq 2.44100000 GHz	
10.0 2 Δ1	Start Freq	
	2.441000000 GHz	
-100 01	Stop Freq	
-20 0	2.441000000 GHz	
	25.24	
	CF Step 1.000000 MHz	
🔔 oo taabha ka na anna anna anna anna anna anna a	Auto Man	
	Freq Offset	
	0 Hz	
-60.0		
Center 2.441000000 GHz Span 0 Hz		
Res BW 1.0 MHz #VBW 3.0 MHz Sweep 10.13 ms (8000 pts)		
NSG STATUS		
Agilent Spectrum Analyzer - Swept SA 1 2 R L RF 50 Ω AC SEVER PULSE SOURCE OFF ALLISV AUTO 09:54:54 AM Nov 26 ,2024		
Contor From 2 444000000 GHz Trig Delay0000 s #Avg Type: BMS TRACE 12 244 5 6	Frequency	
PND: Fast →- IFGaint.cw FAtter: 40 dB Trig: Video Trig: Video Trig: Video tel 2 P P P P P	Auto Tune	
Ref Offset 8.04 dB 10 dB/div Ref 30.00 dBm		
	Center Freq 2.441000000 GHz	
	2.44100000 GH2	
	Start Freq	
	2.44100000 GHz	
	Stop Freq	
	2.441000000 GHz	
-330	CF Step 510.000 kHz	
sana A sana ing kanang ka	<u>Auto</u> Man	
	Fran Office	
60.0	Freq Offset 0 Hz	
Center 2.441000000 GHz Span 0 Hz		
Res BW 510 kHz #VBW 3.0 MHz Sweep 31.60 s (30000 pts)		
MSG STATUS		
3DH3_Ant1_Hop		
Agilent Spectrum Analyzer - Swept SA DI RL RF 500 AC ISENSE PULSE SOURCE OFF ALIGN AUTO 1095529 MM w/ 26.2024		
Agilent Spectrum Analyzer - Swept SA. 100 RL RF ISO, AC ISSINGE PULSE SOURCE OFFI ALIGN AUTO 1025529 MM Nov 26, 2024	Frequency	
Agilent Spectrum Analyzer - Swypt SA Select State Source Cert AllowAUTO 095829 AMIltor 26,0224 V Riz F308 Acc Select State Source Cert AllowAUTO 095829 AMIltor 26,0224 Center Frag 2.441000000 GHz Trig Delay-2000 ms #Avg Type: RMS Invoid 122 mark Ph0: Fast		
Agliert Spectrum Analyzer - Swept SA DI RL RF 50.0 AC ISPREZULEI SOURIE OFF ALLISIANTO (09-55.22 AMINov 26, 2024 Center Freq 2.441000000 GHz IFGoint.cov Trig Delay-2.000 ms #Avg Type: RMS Triace 122 4 543 Trig: Video #Atten: 40 dB CE CE CE P 20 P 20 P	Frequency Auto Tune	
Actient Spectrum Analyzer - Swept SA. ISSEE SNLEE SOLRCE SET ALIBINATIO 005529 AMIB:r/20, 2024 2 RL 800 AC Trig Delay-2000 ms ALIBINATIO 005529 AMIB:r/20, 2024 Center Freq 2.441000000 GHz Trig Delay-2000 ms #Avg Type: RMS Invo: RMS Invo: RMS Invo: RM	Auto Tune	
Agliert Spectrum Analyzer - Swept SA DI RL RF 50.0 AC ISPREZULEI SOURIE OFF ALLISIANTO (09-55.22 AMINov 26, 2024 Center Freq 2.441000000 GHz IFGoint.cov Trig Delay-2.000 ms #Avg Type: RMS Triace 122 4 543 Trig: Video #Atten: 40 dB CE CE CE P 20 P 20 P	Auto Tune Center Freq	
Agilent Spectrum Analyzer - Swept SA DI RL RF 50.9 AC ISPREERLES OVERE OFF ALIGNAUTO (09:55.22 AMHov 26, 2024 Center Freq 2:441000000 GHz PN0: Fast → IFGainLow RAvg Type: RMS Trace 12:2 4 543 Trig: Video #Atten: 40 dB CENT	Auto Tune	
Agilent Spectrum Analyzer - Swept 5A Sender Subscrupt SA Of RL Center Freq 2.41000000 GHz FGoint.ow Trip Delay-2000 ms #Aren: 40 dB Center Freq 2.41000000 GHz FGoint.ow Trip Udee FGoint.ow Trip: Videe FGoint.ow Action Colspan="2">Trip: Videe FGoint.ow Trip: Videe FGoint.ow Action Colspan="2">Trip: Videe FGoint.ow Action Colspan="2">Trip: Videe FGoint.ow Trip: Videe FGoint.ow Action Colspan="2">Trip: Videe FGoint.ow Trip: Videe FGoint.ow Action Colspan="2">Action Colspan="2">Trip: Videe FGoint.ow Trip: Videe FGoint.ow Action Colspan="2">Trip: Videe FGoint.ow Action Colspan="2">Action Colspan="2">Trip: Videe FGoint.ow Action Colspan="2">Action Colspan="2">Action Colspan="2">Action Colspan="2">Trip: Videe FGoint.ow Action Colspan="2">Action Colspan="2">Action Colspan="2">Action Colspan="2">Action Colspan="2">Action Colspan="2">Action Colspan="2">Action Colspan="2">Action Colspan="2">Colspan="2">Action Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Action Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan= 2"Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colsp	Auto Tune Center Freq 2.441000000 GHz	
Addent Spectrum Analyser - Simple 5A. Center Freq 2.4410000000 GHz Frig Delay-2.000 ms Allow Unto 100 55.29 Million 20,0204 Center Freq 2.4410000000 GHz Frig Delay-2.000 ms Allow Unto 100 55.29 Million 20,0204 Ph0: Fract Frig Video Frig Video Pho: Fract Ph0: Fract Frig Video Million 20,0204 Ph0: Fract Frig Video Ph0: Fract Ph0: Fract Ph0: Fract Ph0: Fract Ph0: Fract Ph0: Fract Fract Fract Ph0: Fract Fract Ph0: Fract <th col<="" td=""><td>Auto Tune Center Freq 2.44100000 GHz Start Freq</td></th>	<td>Auto Tune Center Freq 2.44100000 GHz Start Freq</td>	Auto Tune Center Freq 2.44100000 GHz Start Freq
Agilent Spectrum Analyzer - Swrpt SA Identify Spectrum Analyzer - Swrpt SA Identify Spectrum Analyzer - Swrpt SA Center Freq 2.44100000 GHz PN0: Fast → Identify Video Trig Delay-2.000 ms #Avg Type: RMS If PAGE 12 4 °C Provide Video Ref Orfset8.04 dB AMKr2 1.667 ms 19.94 dB 19.94 dB 10 dB/div Ref 30.00 dBm 19.94 dB 19.94 dB	Auto Tune Center Freq 2.441000000 GHz	
Aglient Spectrum Analyzer - Swept SA O R.L RF SOB AC SSNEE-PULSE[SOURCE OFF] ALIGNATIO OPSS29 Alloy 26.2024 Center Freq 2.4410000000 GHz IFGainLow Trig Delay-2.00 ms #Avg Type: RMS Invace 12.3 4.3 6 mode Trig Video Freq 2.0 0 ms Avg Type: RMS Invace 12.3 4.3 6 mode Trig Video Ref Orfset 8.04 dB AllSMAUTO OPSS29 Alloy 26.2024 10 dBIrdiv Ref Orfset 8.04 dB AllSMAUTO Trig Video Ref 0.000 dBm 19.94 dB 10 dBIrdiv Ref 30.00 dBm 19.94 dB 19.94 dB	Auto Tune Center Freq 2.441000000 GHz Start Freq 2.441000000 GHz	
Agilent Spectrum Analyzer - Swrpt SA Identify Spectrum Analyzer - Swrpt SA Identify Spectrum Analyzer - Swrpt SA Center Freq 2.44100000 GHz PN0: Fast → Identify Video Trig Delay-2.000 ms #Avg Type: RMS If PAGE 12 4 °C Provide Video Ref Orfset8.04 dB AMKr2 1.667 ms 19.94 dB 19.94 dB 10 dB/div Ref 30.00 dBm 19.94 dB 19.94 dB	Auto Tune Center Freq 2.44100000 GHz Start Freq	
Agilent Spectrum Analyzer - Swrpt SA Identify Spectrum Analyzer - Swrpt SA Identify Spectrum Analyzer - Swrpt SA Center Freq 2.44100000 GHz PN0: Fast → Identify Video Trig Delay-2.000 ms #Avg Type: RMS If PAGE 12 4 °C Provide Video Ref Orfset8.04 dB AMKr2 1.667 ms 19.94 dB 19.94 dB 10 dB/div Ref 30.00 dBm 19.94 dB 19.94 dB	Auto Tune Center Freq 2.44100000 GHz Start Freq 2.44100000 GHz Stop Freq	
Applient Spectrum Analyzer - Swept SA SSNEE-PULSE SOURCE OFF ALIGNATIO OPSS29 Alloy 26 2024 Call RL RF ISOB AC Trig Delay-2.00 ms #Avg Type: RMS Invace 28 4 5 6 ms Center Freq 2.4410000000 GHz PR0: East Trig Delay-2.00 ms #Avg Type: RMS Invace 28 4 5 6 ms PR0: East Fred offset 8.04 dB CMIkr2 1.667 ms 19.94 dB 19.94 dB 10 dB/div Ref 30.00 dBm 19.94 dB 19.94 dB 19.94 dB	Auto Tune Center Freq 2.44100000 GHz Start Freq 2.441000000 GHz Stop Freq 2.441000000 GHz CF Step	
Adjenter Spectrum Analyzer - Swept SA Center Freq 2.441000000 GHz PRO: East FrG intow Trig Delsy-2.00 ms Adj Int. 100 (095529 Millor 26.2024) Center Freq 2.441000000 GHz PRO: East Ref Offset 8.04 dB Trig Delsy-2.00 ms Adj Int100 (095529 Millor 26.2024) Center Freq 2.441000000 GHz PRO: East B Trig Udee Ref Offset 8.04 dB Colspan="2">Colspan="2">Trig Udee Ref Offset 8.04 dB Colspan="2">Colspan="2"	Auto Tune Center Freq 2.441000000 GHz Start Freq 2.441000000 GHz 2.441000000 GHz	
Adjent Spectrum Analyzer - Smept 54 Off RL DF (500 m/c) (500	Auto Tune Center Freq 2.441000000 GHz Start Freq 2.441000000 GHz Stop Freq 2.441000000 GHz CF Step 1.000000 MHz	
Adjent Spectrum Analyzer - Smept SA 2// RL product (1) (50)/6::54.55 <t< td=""><td>Auto Tune Center Freq 2.441000000 GHz Start Freq 2.441000000 GHz Stop Freq 2.441000000 GHz CF Step 1.000000 MHz Auto Man Freq Offset</td></t<>	Auto Tune Center Freq 2.441000000 GHz Start Freq 2.441000000 GHz Stop Freq 2.441000000 GHz CF Step 1.000000 MHz Auto Man Freq Offset	
Adjent Spectrum Analyzer - Smept SA IF RE 1500	Auto Tune Center Freq 2.441000000 GHz Start Freq 2.441000000 GHz Stop Freq 2.441000000 GHz CF Step 1.00000 MHz Man	
Adjetent Spectrum Analyzer - Smept SA W RL RF 1500 Add Center Freq 2.441000000 GHz PN0: Fast → IGGintow Trig Delay2.00 ms Adjetation (095222 Millor 26.2024) Center Freq 2.441000000 GHz PN0: Fast → IGGintow Trig Delay2.00 ms Adjetation (09522 Millor 26.2024) Center Freq 2.441000000 GHz Processor Trig Delay2.00 ms Adjetation (00522 Millor 26.2024) Center Freq 2.441000000 GHz Processor Trig Video Millor 10 dB/dt Center Freq 2.4410000000 GHZ Processor Trig Video Millor 10 dB/dt Center Freq 2.44100000000000000000000000000000000000	Auto Tune Center Freq 2.441000000 GHz Start Freq 2.441000000 GHz Stop Freq 2.441000000 GHz CF Step 1.000000 MHz Auto Man Freq Offset	
Ref Offset 8.04 dB Adjent 502.02.02 Trig Delay 200 ms Adjent 100.0000 (3Hz) Trig Vides Trig Vides <td>Auto Tune Center Freq 2.441000000 GHz Start Freq 2.441000000 GHz Stop Freq 2.441000000 GHz CF Step 1.000000 MHz Auto Man Freq Offset 0 Hz</td>	Auto Tune Center Freq 2.441000000 GHz Start Freq 2.441000000 GHz Stop Freq 2.441000000 GHz CF Step 1.000000 MHz Auto Man Freq Offset 0 Hz	
Agilent Spectrum Analyzer - Swept SA Center Freq 2.441000000 GHz PNO: Fast 10 dB/div Trig Delay-2.00 ms AAgin Trig Delay-2.00 ms Ref Offset S.04 dB Center Freq 2.41000000 GHz PNO: Fast 10 dB/div Trig Delay-2.00 ms AAgin Trig Delay-2.00 ms Center Freq 2.41000000 GHz PNO: Fast 10 dB/div Trig Delay-2.00 ms AAgin Trig Delay-2.00 ms Center Freq 2.41000000 GHz PNO: Fast 10 dB/div Trig Delay-2.00 ms AAgin Trig Delay-2.00 ms Center Freq 2.41000000 GHz PNO: Fast 10 dB/div Trig Delay-2.00 ms AAgin Trig Delay-2.00 ms Center Freq 2.41000000 GHz PNO: Fast 10 dB/div Trig Delay-2.00 ms AAgin Trig Delay-2.00 ms Center Freq 2.4100000 GHz PNO: Fast 10 dB/div Center Freq 2.41000000 GHZ PNO: Fast 10 dB/div Cen	Auto Tune Center Freq 2.441000000 GHz Start Freq 2.441000000 GHz Stop Freq 2.441000000 GHz CF Step 1.000000 MHz Auto Man Freq Offset 0 Hz	



Appendix E: Number of hopping channels

Test Result

Test Mode	Antenna	Frequency [MHz]	Result [Num]	Limit [Num]	Verdict
DH5	Ant1	Нор	79	≥15	PASS
2DH5	Ant1	Нор	79	≥15	PASS
3DH5	Ant1	Нор	79	≥15	PASS

Appendix F: Band edge measurements

Test Graphs

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China.Tel: 0755-88850135-1439Mobile: 131-4343-1439 (Wechat same number)Web: http://www.mtitest.cnE-mail: mti@51mti.com